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Abstract 

Material properties of the human tongue tissue have a significant role in understanding its function in 
speech, respiration, suckling, and swallowing. Tongue as a combination of various muscles is surrounded 
by the mucous membrane and is a complicated architecture to study. As a first step before the quantitative 
mechanical characterization of human tongue tissues, the passive biomechanical properties in the superior 
longitudinal muscle (SLM) and the mucous tissues of a bovine tongue have been measured. Since the rate 
of loading has a sizeable contribution to the resultant stress of soft tissues, the rate dependent behavior of 
tongue tissues has been investigated via uniaxial tension tests (UTTs). A method to determine the 
mechanical properties of transversely isotropic tissues using UTTs and inverse finite element (FE) method 
has been proposed. 

Assuming the strain energy as a general nonlinear relationship with respect to the stretch and the rate 
of stretch, two visco-hyperelastic constitutive laws (CLs) have been proposed for isotropic and transversely 
isotropic soft tissues to model their stress-stretch behavior. Both of them have been implemented in 
ABAQUS explicit through coding a user-defined material subroutine called VUMAT and the experimental 
stress-stretch points have been well tracked by the results of FE analyses. It has been demonstrated that the 
proposed laws make a good description of the viscous nature of tongue tissues. Reliability of the proposed 
models has been compared with similar nonlinear visco-hyperelastic CLs. 

Keywords: Bovine tongue tissue, Visco-hyperelasticity, Passive behavior, Transversely isotropic, 
inverse finite element method.  

1. Introduction 

Soft tissues envelope, bind, and connect other parts of the body (Kulkarni et al. 2016). From a 
mechanical point of view, soft tissues exhibit nonlinear stress-strain behavior, strain rate sensitivity, 
hysteresis, viscoelastic responses (relaxation and creep), and permanent strains. They have been extensively 
studied using continuum mechanics and nonlinear elasticity (Humphrey 2003 and Holzapfel et al. 2010). 

The tongue is one of the most intriguing human soft tissues because it plays a vital role in respiration, 
suckling, acquiring and manipulating food, swallowing, and speech. Obviously, not all species use the 
tongue in the same way, so this organ has evolved to generate deformations into various shapes and 
mechanisms of movement (McLoon et al. 2012). Especially, human tongue experiences finite strains with 
high rates during speech production (Gerard et al. 2005 and Rastadmehr et al. 2008).  

The mammalian tongue is a complex muscular organ which is composed of the mucous membrane, 
intrinsic and extrinsic muscles (McLoon et al. 2012). Extrinsic muscles originate on structures external to 
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the tongue like bones and insert into the body of the tongue: the genioglossus, the hyoglossus, the 
styloglossus, the geniohyoid and the palatoglossus. These muscles help the tongue to move in any 
directions. Intrinsic muscles are fully embedded in the body of the tongue and determine the shape of the 
tongue: the superior longitudinal, the inferior longitudinal, the verticalis and the transversalis (Gerard et al. 
2003). 

The muscular tissues have been frequently considered as a network of muscle fibers embedded in an 
isotropic matrix (Hernández et al. 2011). Skeletal muscles are composed of 70-80% of water so they are 
usually considered to be incompressible (Takaza et al. 2013). The main course of the fibers determines one 
of the directions of material anisotropy and such fibers may be considered as transversely isotropic or 
orthotropic materials (Martin et al. 1998 and 2006). Mechanical behavior of the skeletal muscles can be 
characterized by their passive and active responses. The passive response can be modeled within the 
framework of hyperelasticity. The active response which is due to the contractile behavior of the muscle 
fibers can be represented by some muscle models like Hill-type characteristic behavior’s (Nazari 2011, 
Martin et al. 1998). 

The tongue has been widely investigated experimentally and numerically to describe its actions in the 
human body (Gerard et al. 2003, Tricarico 1995, Dang and Honda 2002, Vogt 2005 and Fujita et al. 2007). 
The developed FE models intend to improve the understanding of the role of the tongue in linguistics. Kajee 
et al. (2013) developed a linear elastic FE model of the tongue tissue to better understand its actions in the 
obstructive sleep apnea syndrome. Using an indentation test, Gerard et al. (2003) proposed an isotropic 
hyperelastic model of the tongue to investigate its role in speech production. Unfortunately, complex 
behavior of the tongue tissue has been reduced by much simpler models in previous researches. Due to the 
lack of experiments, a CL considering the nonlinear nature of tongue tissues, their time dependent response 
and anisotropic behavior has not been proposed yet.  

In higher order mammals, the musculatures of tongues are similar (Gilbert et al. 2006 and McLoon et 
al. 2012). It was therefore decided to focus this paper on bovine tongue tissues since it is still complicated 
to characterize the biomechanical properties of human tongue tissues. Regarding the distinct ability of the 
bovine tongue which wraps around the grass and heaves to rip it off, it was hypothesized that both of the 
human and the bovine tongue tissue have similar passive constitutive behavior. This unique function of the 
bovine tongue is probably due to the fact that the capacity of producing the active force in the muscles of 
the bovine tongue is more than the human one. 

To characterize the mechanical properties of the bovine tongue tissue, the rate dependent and fiber 
oriented responses of bovine tongue tissue are measured under UTTs. Furthermore, two accurate and 
reliable visco-hyperelastic CLs are proposed for the passive behavior of isotropic and transversely isotropic 
soft tissues. Also, in comparison to the well-known CLs, the accuracy of the proposed model in 
approximating the experimental data is demonstrated. 

2. Tests Procedure 

In order to accurately measure the mechanical properties of the bovine tongue tissue, four freshly 
slaughtered adult bovine tongues were provided. The sacrifice has been done early morning. Immediately 
after the sacrifice, the tongue was cut from the larynx and immersed in a saline solution at 4°C to keep it 
fresh and prevent its degradation (Hernández et al. 2011 and Gras et al. 2012). Due to the complex structure 
and the direction variation of tongue fibers (Gilbert et al. 2006), cutting an appropriate sample with a fixed 
fiber direction from each muscle part is difficult in practice. So in the current research, the samples were 
cut from the mucous membrane and the SLM tissue. The length to width ratio of the samples was at least 
around 8. These samples underwent a UTT on a Santam STM-1 machine with a 6 kg full-scale load cell. 
All of the reported data in this paper have been averaged among the measured stress-stretch behavior in 
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different samples dissected from four bovine tongues. Figure 1 shows the bovine tongue and a 
corresponding sample during a tensile test. 

 

Figure 1. Bovine tongue (a) and a sample of the superior longitudinal muscle under uniaxial tension test (b). 

2.1 Mucous Membrane 

 The mucous membrane has mainly an isotropic structure, so its mechanical properties should be easier 
to obtain than for tongue muscles. With the aid of a surgical blade, the mucous was separated from the 
muscles at the tip of the tongue, then some samples were dissected from it. Tests were performed at four 
different strain rates to measure the elastic and viscoelastic components. Each reported stress-stretch curve 
for the mucous tissue represents the average measured stress in five samples. 

2.2 SLM 

The SLM is a thin layer of muscle fibers along the tongue axis that located below the mucous membrane 
and covers the tongue body. In the bovine tongue tissue, the SLM is combined with the fat tissues in the 
posterior regions and has a variable thickness in the frontal planes in the anterior regions. So, it is very 
difficult to dissect a sample from the SLM with 90° and even 45° to the fibers alignment that can be used 
experimentally. Therefore, in this research, the measurement of the mechanical response of the SLM was 
limited to the samples aligned with 0°, 20°, and 35° with respect to the fibers’ direction. 

At the upper surface of the bovine tongue, fibers have a fixed direction along the SLM; our samples 
were therefore cut from this region. Response of the SLM tissue to the UTTs strongly depends on the angle 
between the direction of the fibers and the tensile force. To measure this dependency, samples were chosen 
parallel to the fibers direction and 20° with respect to them. Six samples along the fibers direction, four 
samples at 20° to the fibers, and two samples at 35° to the fibers were prepared to measure the average 
response in the SLM tissue. As for the mucous tissues, tests were performed at different strain rates to 
quantify the viscous contribution of stress.  

3. Constitutive Model 

A CL has to be chosen to describe the stress-strain relationship of the tissues. Chagnon et al. (2015) 
reviewed and classified the most popular hyperelastic CLs. Among the many CLs proposed in the literature, 
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those which consider the strain rate as an explicit variable have provided better predictions of viscous 
behavior especially at higher strain rates (Pioletti et al. 1998, 2000 and 2006). Furthermore, the domain of 
validity of other visco-hyperelastic constitutive models, like Fung’s quasi-linear viscoelastic law (Fung 
2013) and Holzapfel’s model (Holzapfel 2000), have been restricted to low strain rates (Pioletti et al. 1998, 
Limbert et al. 2004, Zhurov et al. 2007 and Lu et al. 2010).  

In this research, the nonlinearity of the stress-strain curves and their dependence on the strain rate are 
incorporated in the strain energy function through the introduction of powers of strain rates as independent 
explicit variables. 

3.1. Kinematics 

Let 𝐗 and 𝐱 be the position vector of material points in the reference (undeformed) and deformed 
configuration, respectively. The deformation gradient tensor, 𝐅, of any function 𝜒, describing the motion 
𝐱 = 𝜒(𝐗, 𝑡), is given by 

𝐅 =
∂𝐱

∂𝐗
 (1) 

which maps any position vector of the reference configuration to the deformed configuration. The right 
Cauchy-Green strain tensor is given by 𝐂 = 𝐅୘𝐅. For three dimensional hyperelastic CLs representing 
isotropic materials, it is common to use the invariants of a material strain tensor as variables instead of the 
components of the tensor itself. So, taking 𝐂 as this material tensor, its three principal invariants are defined 
as 

𝐼ଵ = 𝑡𝑟(𝐂),   𝐼ଶ =
1

2
[𝑡𝑟(𝐂)ଶ − 𝑡𝑟(𝐂ଶ)],   𝐼ଷ = 𝑑𝑒𝑡(𝐂) = 𝐽ଶ (2) 

in which 𝐽 is the Jacobian and represents the ratio of volume change during the deformation. For materials 
reinforced with one family of fibers, the principal invariants defined by equation (2) are not sufficient to 
describe the behavior. Hence, for transversely isotropic materials with a preferred fiber direction specified 
by the unit vector 𝐍 in the reference configuration, the structural tensor 𝐀 and two additional invariants 𝐼ସ,ହ 
are defined as: 

𝐀 = 𝐍⨂𝐍 
𝐼ସ = 𝑡𝑟(𝐂𝐀),   𝐼ହ = 𝑡𝑟൫𝐂𝟐𝑨൯ 

(3a) 
(3b) 

where ⨂ represents the dyadic multiplication of two vectors (Spencer 1984).  

It can be easily shown that the rate of the deformation gradient tensor, 𝐅̇, and the velocity gradient 
tensor, 𝐥, are related as: 

𝐅̇ = 𝐥𝐅 (4) 
So, the rate of 𝐂 can be shown to be 𝐂̇ = 2𝐅୘𝐝𝐅 where the tensor 𝐝 is the symmetric part of 𝐥. As for 𝐂, the 
use of the invariants of 𝐂̇ are often preferred to propose CLs for viscoelastic materials. In general, for a 
transversely isotropic material, 12 invariants (𝐽ଵ, 𝐽ଶ, … , 𝐽ଵଶ) of 𝐂̇ have been defined (Boehler 1987). Among 
them, 𝐽ଶ and 𝐽ହ are the most popular invariants in the proposed viscoelastic CLs for isotropic and 
transversely isotropic materials, respectively (Pioletti et al. 1998, Limbert et al. 2004, Zhurov et al. 2007, 
Lu et al. 2010, Kulkarni et al. 2016 and Ahsanizadeh and LePing 2015): 

 𝐽ଶ =
1

2
𝑡𝑟൫𝐂̇ଶ൯, 𝐽ହ = 𝐍. 𝐂̇ଶ𝐍 (5) 

Their derivatives with respect to the 𝐂̇ have been presented by Limbert et al. (2004).  

3.2. Stress 

In hyperelasticity, it is postulated that a scalar valued free energy function exists which is called the 
Helmholtz free energy function. In thermally independent processes, the rate of Helmholtz free energy 
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function is equivalent to the rate of elastic potential 𝜓௘(𝐂, 𝐀). In order to include the loading rate effects in 
the resultant stress, 𝐂̇ can be considered as an explicit variable in the stress definition, like 𝐒 = 𝐒(𝐂, 𝐂̇), 
where 𝐒 is the second Piola-Kirchhoff stress tensor. 

For isothermal process, the thermodynamical principles reduce to the satisfaction of the Clausius-
Duhem inequality 

ቆ𝐒 − 2
∂𝜓௘

∂𝐂
ቇ :

𝐂̇

2
≥ 0    ∀𝐂, 𝐂̇ (6) 

in which : represents the double contraction of two tensors. Without energy dissipation, Pioletti et al. (1998) 

showed that 𝐒 = 𝐒௘ = 2
பట೐

ப𝐂
 can be a solution for equation (6), where 𝐒௘ is the elastic part of stress.  

In the existence of dissipation, potential viscous function 𝜓௩(𝐂, 𝐂̇, 𝐀) was defined as 2
பటೡ

ப𝐂̇
= 𝐒 − 2

பట೐

ப𝐂
. 

So, the Clausius-Duhem inequality can be written as 
∂𝜓௩

∂𝐂̇
: 𝐂̇ ≥ 0    ∀𝐂̇ (7) 

which is valid for all continuous, non-negative and convex 𝜓௩ (Pioletti et al. 1998). So, for a viscoelastic 
material, the stress tensor can be represented by 

𝐒 = 2
∂𝜓௘

∂𝐂
+ 2

𝜕𝜓௩

∂𝐂̇
= 𝐒௘ + 𝐒௩ (8) 

where the first term is the quasi-static part of the response and the second term represents the rate dependent 
measure of the material response in loading.  

3.3. CLs 

In the current research, two CLs for better prediction of the viscoelastic behavior of soft tissues are 
presented. Inspired by Vogel et al. (Vogel et al. 2017), these CLs are in the viscous potential part and model 
the isotropic and transversely isotropic behaviors. In the isotropic case, constitutive models are proposed 
as:  

𝜓௘ = 𝑝(𝐽 − 1) +
𝑐ଵ

𝑐ଶ
൫𝑒௖మ(ூభିଷ) − 1൯ 

𝜓௩ = 𝑐ଷ𝐽ଶ(𝐼ଵ − 3)௖ర  

(9a) 
(9b) 

with the Lagrangean multiplier 𝑝 and the material parameters (MPs) 𝑐ଵିସ, in which all of them must have 
non-negative values to warrant the convexity condition of 𝜓௘ and 𝜓௩. In 𝜓௘, the first term ensures the 
incompressibility constraint of soft tissues.  

In the case of a transversely isotropic material, a particular elastic potential function 𝜓௘ = 𝜓௘(𝐼ଵ, 𝐽, 𝐼ସ) 
and a viscous potential function 𝜓௩ = 𝜓௩(𝐽ହ) are proposed as (for 𝐼ସ > 1 ):  

𝜓௘ = 𝑝(𝐽 − 1) + 𝑐ଵ(𝐼ଵ − 3)ଶ +
𝑐ଶ

𝑐ଷ
(𝐼ସ − 1)௖య  

𝜓௩ = 𝑐ସ𝐽ହ(𝐼ସ − 1)௖ఱ  

(10a) 
(10b) 

with the MPs 𝑐ଵିହ, in which all of them have to be non-negative to warrant the convexity condition. For 
𝜓௘, the second term is added to take into account the contribution of the matrix-fiber ensemble in a 
transversely isotropic material, and the third term accounts for the fibers’ resistance to elongation. In order 
to reduce the number of MPs, the viscoelastic behavior only considers fibers resistance to loadings. Similar 
to term 𝐽ଶ(𝐼ଵ − 3)௖ర  in equation (9b), the term 𝐽ହ(𝐼ସ − 1)௖ఱ  provides a zero value for 𝜓௩ in the reference 
configuration and ensures a nonlinear relationship for the stress as a function of the strain and strain rate. 

The idea of proposing such potential viscous functions is based on the previous viscoelastic models for 
long-time behavior (creep and stress relaxation) of soft tissues (Davis and Vita 2012 and 2014, Pena et al. 
2011). In order to improve the accuracy of the quasi-linear viscoelastic (QLV) models, it has been 
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demonstrated that the characteristic time constants and dimensionless coefficients of the Prony series have 
to be considered as a nonlinear function of strain. So, similar to the long-time responses, the rate dependent 
(short-time) responses of soft tissues must be strongly dependent on the strain. The use of power 𝑐ହ in 
equation (10b) and power 𝑐ସ in (9b) ensures the existence of a general nonlinear dependency of stress to 
strain in the proposed CLs. 

For the proposed model in equation (9), the elastic and viscoelastic part of 𝐒 are given by:  
𝐒௘ = 𝑝𝐂ିଵ + 2𝑐ଵ𝑒௖మ(ூభିଷ)𝐈 

𝐒௩ = 2𝑐ଷ(𝐼ଵ − 3)௖ర𝐂̇ 
(11a) 
(11b) 

in which 𝐈 represents the second order identity tensor. With the use of equation (10), the similar relationships 
for stress can be obtained as: 

𝐒௘ = 𝑝𝐂ିଵ + 4𝑐ଵ(𝐼ଵ − 3)𝐈 + 2𝑐ଶ(𝐼ସ − 1)(௖యିଵ)𝐀 
𝐒௩ = 2𝑐ସ(𝐼ସ − 1)௖ఱ(𝐍⨂𝐂̇𝐍 + 𝐍𝐂̇⨂𝐍). 

(12a) 
(12b) 

Figure 2 represents a fully incompressible sample with fibers along the direction of unit vector 𝐍 with 
zero component out of the E1E2 plane. When this sample is loaded along the E1 direction, 𝐅 can be written 
as (Ogden 2009): 

𝐅 = ൥

𝐹ଵଵ 𝐹ଵଶ 0
𝐹ଶଵ 𝐹ଶଶ 0
0 0 𝐹ଷଷ

൩ (13) 

 
Figure 2. A transversely isotropic sample under uniaxial tension. Fibers are supposed to be fully laid in the E1E2 plane. 

in which the off-diagonal components vanish only for 𝜃 = 0° and 𝜃 = 90°; 𝐹ଷଷ = 1 𝐹ଵଵ𝐹ଶଶ⁄  due to 
incompressibility assumption. Thus, using the relationship 𝐏 = 𝐅𝐒, from equation (12) and (13) the 
components of the nominal stress tensor 𝐏 can be obtained as a function of the components of 𝐅 and 𝐅̇. 
Also, the traction free boundary conditions in E3 direction leads to an equation, from which the unknown 
pressure 𝑝 can be computed. In general, it is not possible to determine all the components of 𝐅 for an 
arbitrary 𝜃. For 𝜃 ≠ 0° sample undergoes shear stress in the E1E2 plane. Therefore, there is no explicit 
relationship between the stress and the controllable parameters of the machine. Thus, a inverse FE method 
has to be used next to the experimental data points to determine the uncontrollable components of 𝐅.  

To calculate the time derivative of 𝐅 to be used in the FE analysis (FEA), let the deformation gradient 
tensors at the beginning and at the end of a time increment ∆𝑡 = 𝑡 − 𝑡଴ be 𝐅௧బ

 and 𝐅௧, respectively. A fully 
implicit time integration of equation (4) yields (Li et al. 2004): 

𝐅௧ = 𝑒𝑥𝑝(∆𝑡𝐥௧)𝐅௧బ
 (14) 

in which 𝐥௧ represents the velocity gradient tensor at time t. For sufficiently small ∆𝑡, equation (14) can be 
approximated by: 

𝐅௧ ≅ (𝐈 + ∆𝑡𝐥௧)𝐅௧బ
 (15) 

Thus, by use of the calculated velocity gradient tensor from equation (15) in equation (4), 𝐅̇ can be 
computed. 
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Also, from equation (11) the horizontal component of 𝐏, which undergoes a symmetric deformation in 
E2 and E3 directions, 𝜆ଶ = 𝜆ଵ

ି଴.ହ, can be obtained as: 

𝑃ଵଵ
௘ = 𝑝𝜆ଵ

ିଵ + 2𝑐ଵ𝜆ଵ𝑒௖మ൫ఒభ
మାଶఒభ

షభିଷ൯ 
𝑃ଵଵ

௩ = 4𝑐ଷ𝜆ଵ
ଶ𝜆̇ଵ(𝜆ଵ

ଶ + 2𝜆ଵ
ିଵ − 3)௖ర  

(16a) 
(16b) 

To show the accuracy of the proposed models in predicting the rate dependent behavior, they are 
compared with one of the most popular transversely isotropic visco-hyperelastic CLs for soft tissues 
(Limbert et al. 2004 and 2007, Lu et al. 2010 and Kulkarni et al. 2016), originally proposed by Limbert et 
al. (2004):  

𝜓௩ = 𝑎ଵ𝐽ଶ(𝐼ଵ − 3) + 𝑎ଶ𝐽ହ(𝐼ସ − 1)ଶ (17) 
𝑎ଵିଶ being non-negative MPs.  The second term in equation (17) is not considered for isotropic materials. 

4. Numerical Results 

In this section, the two CLs proposed to model viscoelastic soft tissues are compared to experimental 
data collected on different parts of bovine tongue tissue. At first, the elastic MPs have to be determined 
independently of the viscoelastic MPs by ignoring the potential viscous functions. Then, the viscoelastic 
MPs can be estimated from one of the tests at a non-zero strain rate. For the mucous tissue, the quasi-static 
response of the proposed model can be approximated by equation (16a). So, parameters 𝑐1,2 can be obtained 
by fitting equation (16a) to the elastic stress-stretch response via a MATLAB script according to the 
Levenberg–Marquardt optimization algorithm. Similarly, the viscous material parameters 𝑐ଷ,ସ and 𝑎ଵ are 
estimated by fitting both models to the experimental data points at a strain rate of 1.46%/s. Table 1 compares 
the results of the parameters estimation for the mucous tissue when our proposed CL is assumed from one 
side, and with the use of the Limbert’s model from the other side. Figure 3 plots nominal stress versus 
stretch for the elastic loading and strain rate of 1.46%/s in the mucous tissue. In this figure, the coefficient 
of determination 𝑅ଶ as a measurement of goodness of fitting shows that in the both models the MPs are 
well-defined to follow the experimental points.  

Table 1. Mucous tissue material parameters estimations for the proposed model and for Limbert’s model. 

 𝒄𝟏 
(kPa) 

𝒄𝟐 
(-) 

𝒄𝟑 
(kPa) 

𝒄𝟒 
(-) 

𝒂𝟏 
(kPa) 

Proposed model 22.09 4.433 1016 0.606 - 
Limbert et al. 22.09 4.433 - - 1870 
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Figure 3. Behavior of the mucous tissue under uniaxial tensile tests and the fitted constitutive laws.  

Using the estimated MPs, the behavior of the mucous tissue was predicted at different strain rates of 
5.46%/s and 6.60%/s. As can be seen from the coefficient of determinations in figure 4, our model provides 
a slightly better prediction than Limbert’s model on the viscoelastic behavior of the mucous tissue. 

 
Figure 4. Comparison of the accuracy of prediction of the rate dependent response  

of the mucous tissue between the proposed model and Limbert’s one.  
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As for the mucous tissue, the proposed CL is evaluated to predict the behavior of the bovine SLM. 
Equations (12a) and (13) are used to define the relationship between 𝐏 and stretch in the muscle. The overall 
response to the external loading can be approximated by the sum of the resistance to the elongation of the 
matrix and of the fibers. To compute the contribution of each part, the quasi-static parameters 𝑐ଵିଷ are 
calculated from the results of the two quasi-static (elastic) tensile tests with 𝜃 = 0° and 𝜃 = 20°. Because 
𝐏 in the case of 𝜃 = 20° is not only a function of the controllable parameters of the machine, some 
complementary tools like a FEA has to be employed to determine the uncontrollable parameters of 𝐅. So, 
the use of the FEA besides the results of the uniaxial tension tests leads to a complete determination of 
portions of the matrix and fibers in the resultant stress.  

A first guess of the values of 𝑐ଵିଷ are approximated from the results of tensile test along the direction 
of fibers, in which stress-stretch relationship can be simplified to a function of horizontal stretch 𝐹ଵଵ from 
equation (12a) and (13). The process is similar to elastic MPs estimation of the mucous membrane. Then, 
the tensile test with 𝜃 = 20° is simulated in ABAQUS explicit by implementing a user-defined material 
model in subroutine VUMAT. After the analysis, changes of the non-zero components of 𝐅 during the 
loading time are ready to be used in 𝐏. Thus, an updated values of 𝑐1−3 can be calculated by minimizing 
the differences between the measured and predicted stress values at 𝜃 = 0° and 𝜃 = 20° via a MATLAB 
script according to the Genetic algorithm. The proposed procedure of MPs estimation has to be iterated 
with the updated parameters to converge to constant values. Figure 5 shows the required steps to calculate 
the parameters of a transversely isotropic material via UTTs. The proposed method also can be used for 
materials with two families of fibers. For this case, the MPs converge to final values with more iterations 
on UTTs in various angles with respect to fibers directions. 
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Figure 5. Flowchart of material parameters estimation procedure of a transversely isotropic material from uniaxial tensile tests. 

Figure 6 shows the elastic response of the proposed model fitted to the experimental data points. The 
values of 𝑐1−3 have been determined by fitting the equation (12a) to the measured stress at 𝜃 = 0° and 𝜃 =
20°. Figure 6 shows that the proposed CLs with the estimated MPs accurately predicts the elastic response 
of the SLM at 𝜃 = 35°. In Table 2 the estimated MPs for this case are provided, in which they have 
converged to constant values after 5 iterations of the proposed procedure.  

Table 2. Material parameters of the bovine superior longitudinal muscle tissue estimated for the proposed model and for 
Limbert’s model. 

 𝒄𝟏 
(kPa) 

𝒄𝟐 
(kPa) 

𝒄𝟑 
(-) 

𝒄𝟒 
(kPa) 

𝒄𝟓 
(-) 

𝒂𝟏 
(kPa) 

𝒂𝟐 
(kPa) 

Proposed model 38.081 47.863 1.773 1400 1.231 - - 
Limbert et al. 38.081 47.863 1.773 - - 7079 0 

Start 
1st guess of 𝑐௜  

Obtain 𝐅 from FEA 
of the tensile test 

with 𝜃 ≠ 0° 

Calculate new 𝑐௜  
from fitting 𝐏 to the 
experimental data 

If 𝑐௜  is 
converged? 

Terminate 

Yes 

No 
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Figure 6. Elastic response of the superior longitudinal muscle tissue to the uniaxial tension tests in different angles  

with the fibers direction. Similarly, the best approximation of the proposed model is depicted.  

After determining the elastic MPs, to estimate the viscous behavior of the tissues, MPs 𝑐ସ,ହ and 𝑎ଵ,ଶ are 
computed by fitting the equations (12b), (13) and (17) to the stress-stretch data points of the tension test 
along the fibers (𝜃 = 0°) at a strain rate of 1.46%/s. The values of these parameters are reported in table 2. 
It is remarkable that the best fitted Limbert’s model to the experimental data points does not share any 
contribution for the fibers in the viscous response of the SLM (𝑎ଶ = 0), unlike our model in equation (10b), 
in which the viscous part of stress has been restricted to the fibers effect. 
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Figure 7. Fitting the proposed model and Limbert’s model to the rate dependent  

response of the superior longitudinal muscle tissue. 

Finally, using these estimated MPs, the accuracy of the proposed model (equation 10) is compared with 
respect to Limbert’s relationship at a strain rate of 1.65%/s and with 𝜃 = 20°with respect to the fibers. In 
this case, nominal stress versus stretch is plotted in figure 8. Both models have been implemented in the 
ABAQUS explicit software and nominal stresses at a point far away from the machine clips are plotted in 
figure 8. 

It seems that the proposed model predicts significantly more accurately the viscoelastic and the fiber 
orientation dependent nature of the muscle tissues. This accuracy probably originates from the existence in 
our model of a more general nonlinear relationship between stress and the stretch and stretch rate. Also, the 
significant differences of the response predictions in figure 8 emphasize that the viscous response 
considerably depends more on the fibers than the matrix. 
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Figure 8. Comparison of the rate and orientation dependent responses of the  

superior longitudinal muscle tissue between the proposed model and the one developed by Limbert et al.  

Also, to show that the MPs are uniquely determined and there is not another set of the MPs that can 
provide an accurate prediction for the SLM, a demonstration has been given in Appendix A. 

5. Discussions 

During the last two decades, many researchers have studied tongue functions, but very few data were 
provided as concerns its material properties, in particular, the viscoelastic and anisotropic nature of its 
tissues. This paper has proposed to address this question by studying the mechanical response of bovine 
tongue tissues. Appropriate samples from the mucous part of the tongue were dissected and elongated 
uniaxially at different strain rates. Among the various muscle groups of the tongue, the SLM was chosen 
because of its ability to provide acceptable macroscopic samples. Such samples were tested at multiple 
strain rates and in various angles with respect to fibers’ direction to determine the stress-stretch responses.  

With the aid of inverse FE method, an iteration-based procedure of MPs estimation was proposed for 
materials with one or two families of fibers. Using the proposed procedure the mechanical properties of 
these families of materials can be determined via UTTs without any need for biaxial tests. According to 
this procedure, the material properties of the SLM of bovine tongue tissue did converge to the reported 
values with only 5 iterations. 

Assuming the energy function as a general nonlinear relationship with respect to the stretch and the rate 
of stretch, two visco-hyperelastic CLs were proposed for the isotropic and transversely isotropic soft tissues, 
using the invariants of 𝐂 and 𝐂̇. In addition, the proposed models incorporate the objectivity and convexity 
constraints for both strain energy function and potential viscous function.  

The proposed models were implemented in ABAQUS explicit via a VUMAT subroutine. A good 
agreement between FEA results and experimental data points validates the estimated MPs of bovine tongue 
tissue. Compared to a reference visco-hyperelastic CLs presented by Limbert, for the isotropic mucous 
tissue in which the proposed model uses an extra material parameter, a slightly more accurate prediction 
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was obtained. For the transversely isotropic case, in which both the proposed relationship and Limbert’s 
model use the same number of MPs, our model shows a better agreement with a larger domain of 
conformity. The proposed models account for large deformation, orientation dependent and viscous 
behaviors accurately and show their advantage for modeling the behavior of soft tissues. 
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Appendix A  

Uniqueness of the estimated Material parameters 

The proposed CL to describe the passive behavior of the SLM in equation (10) has five material 
parameters 𝑐ଵିହ. Each of them represents a specific mechanical behavior of the SLM, 𝑐ଵିଷ and 𝑐ସ,ହ in 
equation (10) are considered constituting the elastic and rate dependent responses, respectively. 
Furthermore, it has to be emphasized that their values are not determined at the same time and after the 
estimation of the coefficients 𝑐ଵିଷ, 𝑐ସ,ହ can be determined. In the following, it has been demonstrated that 
the elastic material parameters have been determined uniquely. Then, a similar proof has been provided for 
the coefficients of equation (10b). 

To describe the behavior of a transversely isotropic material, it is necessary to consider both of the 
matrix and fibers effects. Thus, at least two independent material parameters have to be used in a 
constitutive law. But the sufficiency of only two material parameters to accurately predicting the observed 
behavior depends on the shape of the measured stress-stretch curves in the experiments. According to this 
point, a 3-parameters model has been chosen to describe the elastic stress-stretch relationship in the SLM, 
equation (10a). 

Basically, the possibility of leading to non-unique values of the material parameters in a specific model 
originates from using some additional material parameters which can be ignored without a significant 
decrease in the goodness of fitting. In another word, an extra material parameter provides some extra 
degrees of freedom to the curve which is not necessary for following the experimental data points. In the 
proposed model in equation (10a), 𝑐ଵ is the only parameter which has been employed to represent the effects 
of the matrix in the material resistance and can’t be ignored. Also, 𝑐ଶ and 𝑐ଷ represent the effect of the 
fibers and perhaps one of them being unnecessary. To examine the question, once 𝑐ଶ has been disregarded 
(𝑐ଶ = 1) in the model and then 𝑐ଷ has been treated similarly. Best curves fitted to the experimental data 
points, similar to the figure 6 of the article, under these conditions are depicted in figure A1. 

From figure A1 it is obvious that a 2-parameters constitutive law roughly predicts the behavior of the 
SLM. Thus, it seems that at least a 3-parameters model can provide enough degrees of freedom to follow 
the experimental data points. 

In addition, it is supposed to add an extra term like 𝑐଺(𝐼ଵ − 3)ଷ to the proposed model in equation (10a) 
and the material parameters have to be tuned in this case. In another word, a 4-parameters constitutive law, 
representing the matrix property, is chosen for the elastic response of the SLM. For this case, two figures 
of the best fits like figure 6 in the article are depicted in figure A2. 
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𝑐1 = 93.355,   𝑐2 = 1,   𝑐3 = 12.279 𝑐1 = 92.255,   𝑐2 = 10.124,   𝑐3 = 1 
(a) (b) 

Figure A1. Best fitted curves to the elastic response of the SLM tissue when 𝑐ଶ was ignored (a) and 
when 𝑐ଷ was ignored (b). 

  

𝑐1 = 34.057,   𝑐2 = 47.863,   𝑐3 = 1.773,   𝑐6 = 4.06 𝑐1 = 31.948,   𝑐2 = 47.867,   𝑐3 = 1.772,   𝑐6 = 6.01 
(a) (b) 

Figure A2. Best fitted curves to the elastic response of the SLM tissue when an extra term was added 
to equation (10a). 

As it can be seen from figure A2, the figures can go on and on with different values of the material 
parameters because an extra degree of freedom was included in the model. So, it can be deduced that the 
three parameters are the minimum required number of material parameters in the proposed model to 
describe the elastic behavior of the SLM and they converged to the unique values which have been reported 
in the article. 

Similar proofs to show that the rate dependent material parameters in equation (10b) have been uniquely 
determined can be provided here. It is supposed that there is no need for two independent material 
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parameters to predict the rate dependent behavior of the SLM. Thus, the goodness of fitting has to be 
examined when one of the c_4 or c_5 is disregarded. Like figure 7 in the article, the best fitted curves to 
the viscoelastic stress-stretch data points at θ=0^°are given in figure A3. 

𝑐1 = 38.071,   𝑐2 = 47.863,   𝑐3 = 1.773 
𝑐4 = 1,   𝑐5 = 0 

𝑐1 = 38.071,   𝑐2 = 47.863,   𝑐3 = 1.773 
𝑐4 = 1280,   𝑐5 = 1 

(a) (b) 

Figure A3. Best fitted curves to the rate dependent response of the SLM tissue when 𝑐ସ was ignored 
(a) and when 𝑐ହ was ignored (b). 

It seems that the fitted curve which is given in figure A3(b) accurately follows the experimental data 
points. But when it was examined to predict the response of the SLM in another direction, it did not result 
in an accurate prediction compared to the one has been reported in the article. So, it was decided to add the 
coefficient 𝑐ହ to the proposed model in equation (10b) to provide a better description to the soft tissues. 

 

 


