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The emergence of chaotic phenomena in a quantum system has long been an elusive subject.
Experimental progresses in this subject have become urgently needed in recent years, when con-
siderable theoretical studies have unveiled the vital roles of chaos in a broad range of topics in
quantum physics. Here, we report the first experimental observation of time singularity, that sig-
nals a classical-to-quantum chaos transition and finds its origin in the sudden change in system’s
memory behaviors. The time singularity observed is an analog of the dynamical quantum phase
transition (DQPT) – proposed very recently for regular systems – in chaotic systems, but with
totally different physical origin.

PACS numbers: 03.75.-b, 72.15.Rn, 05.45.Mt, 64.70.qj

Classical and quantum chaos are two sides of the same
coin, but behave in a very different, even opposite, way.
Notably, in the former dynamical instabilities erase the
memory of initial states, whereas in the latter the dy-
namics is stable, and this memory is kept during the
time evolution of the system. A natural question for
quantized classical chaotic systems is how quantum ef-
fects and classical chaos interplay and give rise to this
memory recovery, and the ensuing emergence of quan-
tum chaos. This is important not only to the fundamen-
tal subject of the quantum-classical correspondence in
chaotic systems, but also for realizing quantum control
of chaos. Furthermore, it may shed new light on various
intriguing quantum chaotic phenomena found in differ-
ent fields recently (e.g., Refs. [1–9]). Notwithstanding
that the interplay between quantum effects and classical
chaos have been investigated from distinct aspects the-
oretically (e.g. Refs. [4, 11–14]), most experiments focus
on the deep quantum regime, where information on clas-
sical chaos is difficult to extract, and thus tell us nothing
about this interplay.

Here we explore this subject experimentally by using
the atom-optics realization of a canonical model in non-
linear dynamics, the quantum kicked rotor (QKR) [15],
and its variants. We measure the time evolution of cer-
tain observable (to be defined below) O(t) and find that,
as shown schematically in Fig. 1, it displays a singularity
at a critical time, namely, the Ehrenfest time t∗E [16]. The
Ehrenfest time results from the amplification of Planck’s
cell by dynamical instability, and signals the breakdown
of quantum-classical correspondence. At time t = t∗E, the
behavior of O(t) undergoes a sudden change,

O(m)(t) =
{ 0, t < t∗E;
c(t− t∗E)−ν , t > t∗E,

(1)

where the superscript (m) stands for the m(∈ N)th or-
der derivative, and ν ≥ 0. Moreover, the lower order
derivatives of O(t) are regular. The values of m, ν are de-
termined by system’s symmetry, but not by the detailed
construction of QKR. The latter only affects the values
of t∗E and the proportionality coefficient c. We argue that
this dynamical phenomenon is analogous to the continu-
ous phase transitions in statistical mechanics: t mimics
the (inverse) temperature, O(t) the order parameter, and
ν the critical exponent. This singularity was predicted
analytically in Refs. [1, 3], and has been observed in a
numerical study of the out-of-time-order correlator [19].
We further show in the supplemental material [20] that
it is intimately related to a nonanalytic behavior of the
return probability at the critical time. Thus the time
singularity observed is analogous to the DQPT referred
to nonanalytic behaviors of the return probability at a
critical time, which was predicted originally for regular
systems and has been confirmed experimentally [21–23].
As discussed below, the singularity finds its origin in a
sudden change in system’s memory behavior. Thus it is
a sharp border between classical and quantum chaos in
the time domain.

To see the origin mentioned above (cf. Fig. 1) we work
in the Wigner representation, which yields a “natural”
connection between classical and quantum mechanics.
In this representation a quantum state corresponds to
a Planck’s cell in the phase space. For short evolution
time, t < t∗E, the cell’s center moves along a classical
trajectory – the quantum-classical correspondence – and
fast separation between nearby trajectories (i.e., dynam-
ical instability) renders the memory of the initial state
γi lost in the course of time. As a result, the final state
γf is uncorrelated with γi, and the system wanders ran-
domly in phase space. For long evolution time, t > t∗E,
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FIG. 1: Physical mechanism for time singularity. At the crit-
ical time t∗E (top) the system’s memory behavior undergoes
a sudden change (middle). For t < t∗E the system wanders
randomly in phase space and the initial and final states, γi
and γf , are uncorrelated (i). For t > t∗E two trajectories (blue
solid and red dashed lines) departing from Planck’s cell at
γi, due to dynamical instability (bottom), can interfere con-
structively and meet again with a significant probability in
the same cell (ii) or the cell (iii) at γ̄i (which is the time re-
versed conjugate of γi) after long wandering; thus the memory
of γi is recovered.

trajectories departing from the same Planck’s cell reach
a large separation at t = t∗E, and wander independently
at later times. However, these trajectories have a chance
to meet again in the initial cell γi or its time reversed γ̄i,
depending on whether the time-reversal (Tc) symmetry
is present. In particular, when two such trajectories in
phase space are piecewise identical or identical up to the
time reversal, their quantum amplitudes have the same
phases and thus they can interfere constructively. Con-
sequently, the probability for “meeting” in the vicinity
of γi or γ̄i is enhanced. This enhancement has recently
been observed experimentally in the QKR [24]. As such,
the memory of γi is recovered, and we see that both the
dynamical instability and quantum interference are in-
dispensable for this recovery. This physical picture is
quite general. In particular, it has nothing to do with

the system’s eventual fate [e.g., (de)localization], and is
independent of the choice of observables. Taking this de-
gree of freedom, throughout this work we choose O(t) to
be what is defined by Eq. (3) below. It can be shown [20]
that the corresponding O(2)(t) gives the time correlation
of the angular position of QKR.

Our experimental realization of the QKR consists of an
atom of mass M which is submitted to a series of short
pulses (kicks) of a one-dimensional sinusoidal potential
applied periodically in time, at intervals T1, during very
short periods of time τ . The potential is realized us-
ing a far-detuned laser standing wave (SW), formed by
two independent counter-propagating laser beams, with
wavenumber kL. For τ � T1 the pulse can be considered
as a Dirac function, and thus the Hamiltonian describing
the atom’s motion is:

Ĥ(t) =
p̂2

2
+K cos (x̂− a(t))

∑
n

δ(t− n). (2)

Here, the time unit is T1, the space unit is 1/(2kL),
and the momentum unit is M/(2kLT1). In these units,
[x̂, p̂] = ik̄, where k̄ = 4~k2LT1/M is reduced Planck’s
constant and ~ is the Planck’s constant. The normalized
strength K of the kicks, called the stochasticity parame-
ter, is ∝ I/|∆|, where I is the maximum laser intensity
and ∆ the laser-atom detuning.

We load a cloud of about 106 cesium atoms in a stan-
dard magneto-optical trap and cool it to a temperature
of few microkelvins by an optimized molasses phase. The
cloud is then exposed to a pulsed, vertical SW with the
following parameters: laser beam wavelength 852 nm (D2
line), T1 = 9.6 µs, τ in the range of 200−300 ns, ∆ ≈ −13
GHz (so that spontaneous emission can be neglected for
the duration of experiments), waist 0.8 mm and I ≈ 30
W/cm2, corresponding to K in the range of 4 − 12. We
estimate an about 5-10% inhomogeneity in K due to the
finite transverse extension (150− 250 µm) of the atomic
cloud. By adding a linear chirp of the relative frequency
of the beams, we generate an SW whose nodes are ac-
celerated, and this acceleration is adjusted to be exactly
equal to the gravity’s acceleration. Hence in the (non-
inertial) reference frame in which the SW is at rest, an
inertial force exactly compensates the effect of gravity
[25]. At the end of the kick sequence, the atomic mo-
mentum distribution Π(p, t) is detected by a standard
time-of-flight measurement of a duration of 170ms. From
Π(p, t) we obtain the cloud expansion [26]:

δ〈p2(t)〉 =

∫
dpp2(Π(p, t)−Π(p, 0)) ≡ O(t), (3)

which defines the aforementioned observable to be stud-
ied in this work. In order to explore the transition from
classical to quantum chaos a small k̄ is desired, so that the
time scale at which localization effects [15, 27] dominate
can be long enough. However, because the requirement:
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T1 � τ introduces a limitation on the minimal value of
k̄, only k̄ ≥ 1 can be achieved in our experiments [28].

The phase shift a(t) in Eq. (2) is the relative phase
between the two laser beams, and its profile can be read-
ily changed. When a is a constant, the model described
by Eq. (2) reduces to the standard QKR [15]. When
a(t) is modulated by (d − 1) incommensurate frequen-
cies, which are all incommensurate with 2π, a quasiperi-
odic QKR results, which is equivalent to a d-dimensional
periodic QKR [29]. Investigations into effects of periodic
modulation, i.e., a(t + N) = a(t) with N being an inte-
ger, were initiated in Ref. [1]; substantial progresses have
been made recently [25, 30]. This variant of the standard
QKR is called the periodically-shifted QKR [30]. Thus
Ĥ(t) describes a generalized QKR system.

Depending on the time dependence of a(t), this gen-
eralized QKR system exhibits very different dynamical
behaviors. In particular, the periodic modulation allows
one to explore rich symmetry effects. Indeed, the stan-
dard QKR (N=1) possesses the (effective) Tc symme-
try. Namely, Ĥ(t) is invariant under the transformation:
t→ −t, x̂→ −x̂, p̂→ p̂. Note that x̂ mimics the electron
momentum and p̂ the position in conventional disordered
electronic systems [31]. Equivalently, the Floquet opera-
tor: Û ≡ e− i

4k̄ p̂
2

e−
iK
k̄ cos x̂e−

i
4k̄ p̂

2

, governing the dynamics
at integer times, is invariant under the matrix transpo-
sition (up to unitary transformations corresponding to
space and time translations),

(Û)pp′ = (Û)p′p ⇒ Tc symmetry. (4)

As a result of this symmetry, the dynamical localiza-
tion in standard QKR [15, 27] is found to be an analog
of Anderson localization in quasi one-dimensional disor-
dered systems [2] in the orthogonal class (in jargon of
the random matrix theory). More universality classes
can be realized in periodically-shifted QKR (N > 2)
[1, 30]. In particular, as adopted below, one can ran-
domly choose the modulation configuration: {a(0) =
0, a(1), · · · , a(N −1)}. In this case, the Floquet operator
is a product of successive N one-step evolution operators,
and can be checked to break the Tc symmetry (4) [33].
Dynamical localization is then analogous to that of An-
derson localization in the unitary class [1]. The symmetry
effects of periodic modulation can be seen readily from
fluctuations of the quasieigenenergy spectrum of Floquet
operators [20].

We now present experimental results and their theo-
retical analysis, starting with the standard QKR (N=1)
which exhibits the Tc symmetry. Since the decoherence
rate, which introduces a limitation on the duration of ex-
periments, increases withK, we chooseK = 5.5. For this
K the classical dynamics is known to be strongly chaotic
[34]. We choose k̄ = 1.

The measurements of δ〈p2(t)〉 are displayed in the
inset of Fig. 2. At early times, its growth is linear,
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FIG. 2: Experiments on the standard QKR (K = 5.5, k̄ = 1),
that displays Tc symmetry, confirm a classical-to-quantum
chaos transition, manifesting in the time profile of δ〈p2(t)〉 −
2D0t. Experimental data (symbols) is very well described by
Eq. (5) with tloc and t∗E treated as fitting parameters, and
show a time singularity at t∗E = 4.7 (green solid line). The
data is incompatible with t∗E = 0 (pink dotted line). Inset:
Same as main panel, showing δ〈p2(t)〉 instead. The black
dashed line represents the diffusion at early times.

δ〈p2(t)〉 = 2D0t with D0 the diffusion coefficient, cor-
responding to the classical chaotic behavior. This im-
plies that the system undergoes random wandering in
phase space [(i) in Fig. 1] and exhibits a (normal) diffu-
sion in rotor’s momentum (p) direction. To better ana-
lyze the behaviors at later times, we also show in Fig. 2
δ〈p2(t)〉−2D0t. We clearly observe that the growth is
purely linear up to a critical time t∗E , from which it starts
to deviate from the classical behaviors.

To determine t∗E and study the dynamical behaviors
beyond this critical time, we use the Ehrenfest time-
dependent weak dynamical localization theory [1, 3],
which gives for the standard QKR:

δ〈p2(t)〉 = 2D0

(
t− 4

3
√
π
θ(t− t∗E)

(t− t∗E)3/2

t
1/2
loc

)
(5)

with tloc the localization time and θ(t) the Heavisde func-
tion. Equation (5) shows that δ〈p2(t)〉 measured at inte-
ger t can be embedded into a curve which is continuous
in t, and this curve exhibits a singularity (cf. Fig. 1) at
the Ehrenfest time t∗E (not necessarily an integer), with:

m = 2, ν = 1/2. (6)

The scaling law ∼ (t − t∗E)3/2 accounts for the weak dy-
namical localization, arising from constructive interfer-
ence between a trajectory and its time reversal [(iii) in
Fig. 1] which exists for t ≥ t∗E. This formula was de-
rived analytically for K�1�k̄. For present parameters:
K=5.5, k̄=1, we expect that it remains valid qualitatively
– as the physical picture of the second term is quite gen-
eral, but not quantitatively. We will thus use tloc as an
additional fitting parameter. Our fitting procedure of
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FIG. 3: Results of numerical simulations for different values
of k̄ < 1 (symbols), corresponding to the weak dynamical
localization correction term in Eq. (5), scaled by D0/

√
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The results are very well described by Eq. (5) (solid lines).
The time singularity occurs at t∗E = 4.7 (tloc = 39) for k̄ = 1,
t∗E = 6.3 (tloc = 172) for k̄ = 0.2 and t∗E = 11.8 (tloc = 1200)
for k̄ = 0.0625. Inset: Same as the main panel, with the
time axis shifted by −t∗E. Beyond t∗E, all data collapse into a
universal curve, in very good agreement with the ∼ (t−t∗E)3/2

scaling law (solid line).

the experimental data is as follows: First of all, we pick
a time t0, and perform a linear fit δ〈p2(t)〉 from t = 0 to
t = t0 to extract a diffusion coefficient D0; we then per-
form a two-parameter fit of the full data using t∗E and tloc
as parameters (keeping D0 fixed); if t0>t∗E or if t0 � t∗E,
we re-estimate D0 by setting t0 to t∗E and repeat the pro-
cedure until t0 and t∗E converge. As shown in Fig. 2, the
measurements are in excellent agreement with Eq. (5)
for tloc = 33 and t∗E = 4.7. A vanishing t∗E, as predicted
in the QKR analog [35] of standard weak localization in
disordered systems [36] is clearly inconsistent with the
experimental data.

To better understand the physical meaning of t∗E we
further perform numerical simulations for values of k̄ <
1 which, as discussed above, cannot be achieved in our
experiments. The results of δ〈p2(t)〉 for different k̄ are
displayed Fig. 3. They are in excellent agreement with
Eq. (5). (We use the same fitting procedure as above to
extract first D0 and then tloc and t∗E.) Most importantly,
we see that, when keeping K approximately constant,
the critical time increases as k̄ decreases (main panel).
This is consistent with the physical interpretation that
the Ehrenfest time signals the breakdown of quantum-
classical correspondence and thus should increases with
decreasing k̄ [1, 3, 12–14, 16, 19], although we do not have
analytical formula for this regime of K, k̄. In addition,
when we shift t by −t∗E and rescale δ〈p2(t)〉−2D0t, all
data collapse into a universal curve corresponding to the
scaling law ∼ (t− t∗E)3/2 (inset).

We proceed to study the periodically-shifted QKR with
N = 4, for which Tc symmetry is broken. For each ex-
periment, a phase configuration {a(1), a(2), a(3), a(4)} is
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FIG. 4: Classical-to-quantum chaos transition in the absence
of Tc symmetry (N = 4,K = 3.9, k̄ = 1). Experimental data
(symbols) is very well described by Eq. (7) with tloc and t∗E
treated as fitting parameters, and show a time singularity at
t∗E = 10.2 (green full line). The data is incompatible with
t∗E = 0 (pink dotted line). Inset: Same as main panel, show-
ing δ〈p2(t)〉 instead. The black dashed line represents the
diffusion at early times.

picked randomly [33]. We choose K = 3.9, for which
we have checked numerically that the classical dynamics
is strongly chaotic, and k̄ = 1. We repeat the experi-
ment for 100 phase configurations. The inset of Fig. 4
displays the measurements of δ〈p2(t)〉 averaged over the
configurations.

To analyze the experimental data, we use the Ehrenfest
time-dependent weak dynamical localization theory [1]
in the case of broken Tc symmetry. We can generalize
straightforwardly the previous result of Ref. [1] to the
present system, obtaining

δ〈p2(t)〉 = 2D0

(
t− 1

tloc
θ(t− t∗E1)(t− t∗E1)2

+
1

2tloc
θ(t− t∗E2)(t− t∗E2)2

)
. (7)

The Ehrenfest times t∗E1,2 are different in general. Com-
paring Eqs. (5) and (7), we find that the power 3/2-law is
replaced by a quadratic law. This is because when the Tc
symmetry is broken, the coherent returning to the initial
state or its time reversal is via more complicated interfer-
ence patterns [e.g., (ii) in Fig. 1]. Note that in Eq. (7) the
second term is negative, arising from the coherent return-
ing to the time reversal of initial state, whereas the third
term is positive, arising from the coherent returning to
the initial state, and has the same origin as the coherent
forward scattering in disordered systems, which has re-
cently been observed experimentally in the QKR [30, 37].
We use the same fitting procedure as above, to extract
first D0 and then tloc, t∗E1 and t∗E2. Excellent agreement
with measurements is found if we set t∗E1 = t∗E2(≡ t∗E)
(Fig. 4), which yields t∗E = 10.2 and tloc = 163. We also
see that when t∗E is set to zero, Eq. (7) deviates from
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measurements. The measurements of δ〈p2(t)〉 provide us
strong evidence for a time singularity at finite t∗E, with:

m = 2, ν = 0, (8)

which signals a sudden change in system’s memory be-
havior.

In conclusion, our measurements are fully compatible
with the existence of a DQPT in chaotic systems, with
the critical time being the Ehrenfest time. We took ad-
vantage of the flexibility of ultracold atoms experiments
to finely study exotic effects in the short time dynam-
ics of quantum chaotic systems. This paves the way for
a detailed study of the all-time dynamics of such sys-
tems. Finally, we remark that the QKR is a one-body
system. In the future, it would be interesting to the-
oretically investigate the time singularity in many-body
quantum chaos, notably in the Sachdev-Ye-Kitaev model
[2, 38] currently under intensive investigations, and the
ensuing connections to the AdS/CFT duality [4].
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SUPPLEMENTAL MATERIAL FOR: EXPERIMENTAL OBSERVATION OF TIME SINGULARITY IN
CLASSICAL-TO-QUANTUM CHAOS TRANSITION

The origin of time singularity

The return probability, L(t) = |〈p|Û t|p〉|2, for standard QKR has been shown [1, 2] to be

L(t) =

∫
dω

2π
e−iωt

∫
dϕ

2π
Y(ϕ, ω), (S1)

where

Y(ϕ, ω) =
1

−iω +D(ω)ϕ2
(S2)

with D(ω) being the frequency-dependent diffusion coefficient. On the other hand, the cloud expansion

δ〈p2(t)〉 = −
∫
dω

2π
e−iωt∂2ϕ|ϕ→0Y(ϕ, ω). (S3)

Equations (S1), (S2) and (S3) show that L(t) and δ〈p2(t)〉 are mutually related. Specifically, Eq. (5) is equivalent to
[1, 3]

D(ω) = D0 −
k̄

π

∫
dϕeiωt

∗
E

−iω +D0ϕ2
. (S4)

When substitute it into Eq. (S2), we obtain

L(t) =
1√

4πD0t
+

1

4

k̄

D0
θ(t− t∗E), (S5)

which is nonanalytic at t = t∗E.

The time correlation of angular position

We derive a relation between the time correlation of rotor’s angular position x̂, defined as [4]

Cq(t) ≡
K2

2
〈0| sin x̂(t) sin x̂(0) + sin x̂(0) sin x̂(t)|0〉, (S6)

and the observable defined by Eq. (3). To simplify discussions we focus on the standard QKR. The Green-Kubo
formula for the static diffusion coefficient D(ω → 0) was given in Ref. [4], read

D(ω → 0) =

∫ ∞
−∞

dtCq(t). (S7)

This formula can be generalized straightforwardly to the dynamic diffusion coefficient D(ω) as

D(ω) =

∫ ∞
−∞

dteiωtCq(t). (S8)

On the other hand, Eq. (S3) gives

δ〈p2(t)〉 = −
∫
dω

π
e−iωt

D(ω)

ω2
. (S9)

Cq(t) =
1

2

d2

dt2
δ〈p2(t)〉. (S10)
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Spectral statistics of the periodically-shifted QKR

Because of a(t + N) = a(t), the Floquet operator Û of the periodically-shifted QKR is a product of N one-step
evolution operators, i.e.,

Û =

0∏
j=−(N−1)

Û(j), Û(j) ≡ e− i
4k̄ p̂

2

e−i
K
k̄ cos(x̂−a(j))e−

i
4k̄ p̂

2

. (S11)

The transposition (denoted as ‘T’) of this operator is

ÛT =

N−1∏
j=0

ÛT(−j) =

0∏
j=−(N−1)

ÛT(−(j − (N − 1))), ÛT(j) = e−
i

4k̄ p̂
2

e−i
K
k̄ cos(x̂+a(j))e−

i
4k̄ p̂

2

. (S12)

The system has the Tc symmetry if ÛT = Û , up to unitary transformations corresponding to space and time transla-
tions (allowing to choose the axis of symmetry for both parity and time reversal transformations). For instance, the
choice a(j) = −a(N − 1− j) satisfies this criterion.
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FIG. S1: Simulations (histograms) show that the level spacing distribution P (s) of the periodically-shifted QKR is in excellent
agreement with the Wigner surmise (solid line) of orthogonal type, when the Tc symmetry is present (a), and of unitary type
when the symmetry is broken (b).

We study numerically the spectral fluctuations of the periodically-shifted QKR with (broken) Tc symmetry. We
consider N = 4. To realize a periodically-shifted QKR with Tc symmetry, we choose the modulation configuration with
a(3) = −a(0) and a(2) = −a(1), where a(0) and a(1) are sampled randomly, whereas to realize a periodically-shifted
QKR with broken Tc symmetry, the four phases are picked at random. We truncate in the momentum basis p = mk̄,
with a pmax small compared to the localization length. More precisely, we evolve all states |p〉 (p = −pmax, · · · , pmax)
over one period using the standard fast Fourier transformation technique to reconstruct the matrix element (Û)pp′ .
We then diagonalize the matrix {(Û)pp′} to obtain its eigenvalues {e−iεn} and order the quasi-energies {εn ∈ [0, 2π[}.
From this we compute the distribution of the normalized level spacing sn = εn+1−εn

δ , where δ is the mean level spacing.
We randomly sample about 10000 modulation configurations with phase configurations corresponding to the (broken)
Tc symmetry. The results are shown in Fig. S1. We see that the distribution P (s) for the periodically-shifted QKR
with (broken) Tc symmetry is in excellent agreement with the Wigner surmise for the orthogonal (unitary) class.
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