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Abstract: Fefferman-Graham ambient construction can be formulated as sp(2)-algebra relations on
three Hamiltonian constraint functions on ambient space. This formulation admits a simple extension
that leads to higher-spin fields, both conformal gauge fields and usual massless fields on anti-de
Sitter spacetime. For the bulk version of the system, we study its possible on-shell version which
is formally consistent and reproduces conformal higher-spin fields on the boundary. Interpretation
of the proposed on-shell version crucially depends on the choice of the functional class. Although
the choice leading to fully interacting higher-spin theory in the bulk is not known, we demonstrate
that the system has a vacuum solution describing general higher-spin flat backgrounds. Moreover,
we propose a functional class such that the system describes propagation of higher-spin fields over
any higher-spin flat background, reproducing all the structures that determine the known nonlinear
higher-spin equations.

Keywords: higher-spin theory; AdS/CFT; Fefferman-Graham

1. Introduction

The theory of higher-spin gravity is intimately tied to Anti de Sitter/Conformal Field theory
(AdS/CFT) correspondence [1–3] in the exotic regime of strong curvature/weak coupling [4–6].
Historically, the discovery of the deep relationship between AdS massless fields and elementary
fields living on the conformal boundary (aka “singletons”) by Flato and Fronsdal [7] anticipated some
ideas of AdS/CFT correspondence. Most presumably, both subjects (higher spins and holography)
still hold important insights worth exploring for their mutual benefit. Particular examples where the
connection between both subjects might deserve to be explored further are the ambient construction
of Fefferman and Graham and its relation to effective actions and higher-spin gauge fields that we
investigate in this work.

First of all, the Fefferman-Graham (FG) ambient construction (The seminal paper is [8] but see
e.g., [9] (and refs therein) for a comprehensive overview on the subject.) is one of the most important
mathematical pillar sustaining the AdS/CFT correspondence since its very birth. In fact, it was
instrumental in the holographic prescription, see e.g., [2,10,11]. In its simplest version it amounts to
the flat ambient space approach [12,13] whose underlying idea is to make conformal and/or AdS
symmetries manifest: conformal algebra acts on the projective hypercone, while AdS algebra acts on
the hyperboloid.

The FG construction can be understood as the curved generalization of the naive ambient space
approach. It can be used in several different ways: to study curved conformal geometry with the
tools of the Riemannian geometry by extending the conformal structure off the hypercone; to study
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Einstein equations with cosmological constant on the hyperboloid in terms of the Ricci flat ambient space
geometry. Also, for odd bulk dimensions the conformal gravity equations on the boundary arise as an
obstruction to extending the conformal structure to the FG ambient metric and can also be seen as arising
from holographic Weyl anomaly [11]. In a similar way, equations of motion/Lagrangians of conformal
gauge fields arise as an obstruction/holographic anomaly of the respective AdS gauge fields [11,14–17].

Typically, it is assumed that in the FG construction the ambient metric is subject to Ricci flatness
condition. With this condition omitted the FG construction is equivalent to Hamiltonian constraints:
three functions on ambient phase space (with Poisson bracket {XA, PB} = δA

B ) that obey the sp(2)
algebra (The fact that there is a triplet of operators that forms sp(2) and it is closely related to the FG
construction was pointed out in [18] (see also [19–22]). In the context of quantizing particle models
this system also appeared in [23]),

{F+, F−} = F0 , {F0, F±} = ±2 F± . (1)

and is referred to as “off-shell FG construction” in what follows. These three constraints have a
specific form: they contain no more than two powers of momenta. More precisely, one constraint
is independent of the momenta, F−, one is linear, F0, and one is quadratic, F+. The constraints can
be shown to imply the existence of an ambient metric GAB(X) and a homothety vector field (closely
related to what is known as “compensator field” in physics literature) VA(X) that satisfy the FG
conditions, which can be summarized as the relation GAB = ∇AVB.

When the off-shell FG construction is realized as sp(2) constraints, a higher-spin (HS) extension is
naturally obtained by allowing the constraints to be arbitrary functions on the phase space (The sp(2)
algebra (or its extensions) plays a prominent role in the unfolded approach [24] to HS theory at the
nonlinear level [25–27], but within a rather different framework). Since the HS extension is done in the
ambient space, one can consider it either in the vicinity of the (curved) hypercone V2 = 0 or in the
vicinity of the (curved) hyperboloid V2 = −1, which leads to two interpretations in terms of HS gauge
fields on the conformal space (the projectivization of the hypercone) and HS fields on the hyperboloid.

The formulations of HS fields based on the ambient space sp(2)-system have originally appeared
in the literature independently of FG ambient construction. The idea to describe a tower of HS fields
on projective hypercone as an sp(2)-system in ambient space was proposed in [28] and developed
further in [20,21]. In the context of HS fields on AdS an sp(2)-system was proposed in [29] where it
was shown to describe off-shell HS fields upon linearizing over the AdS vacuum solution. The same
system describes [17,30] the off-shell theory of conformal higher-spin (CHS) fields [31–34] provided
one subjects the system to certain extra algebraic gauge symmetries.

CHS fields arise as natural sources for conserved higher-rank tensors, likewise the conformal
graviton is a source for the stress-tensor in a CFT. Infinite multiplets of CHS fields are sources for HS
currents that are present in free CFT’s [35–39]. When CHS fields are viewed as infinitesimal sources,
the effective action is simply a generating functional of the free CFT correlators. While it is trivial
to couple the free scalar field to an arbitrary gravitational background, a remarkable fact [32] is that
one can couple the free scalar field to an arbitrary CHS background as well, i.e., to extend CHS fields
beyond infinitesimal sources. This requires an intricate structure of non-abelian symmetries that make
the effective action of the free scalar field gauge-invariant on an arbitrary CHS background. It is these
gauge symmetries for the CHS sources that the sp(2)-system describes, thereby encoding information
about the effective action on any background. Moreover, for even boundary dimension the effective
action has a local log-divergent part: it is the conformal gravity action if the background is gravitational
and the action of CHS gravity if a HS background is turned on [31–34].

On the hyperboloid, V2 = −1, the same sp(2)-system describes off-shell nonlinear bulk HS gauge
fields. More precisely, the sp(2)-system linearized over the AdS background can be put on-shell, giving
the ambient space description of the Fronsdal fields [40]. However, it is not clear how to extend this
beyond the free approximation: a natural suggestion to put the system on-shell at higher orders is
to introduce extra gauge symmetry factoring out the ideal generated by the sp(2)-fields themselves.
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This extra gauge symmetry is precisely the one needed to describe CHS fields on the boundary and
can also be seen as a natural gauge symmetry of the constrained system with constraints Fi, which is
related to a redefinition of the constraints (A somewhat similar factorization procedure is employed
in the Vasiliev system [27] in general space-time dimension. Precisely this gauge symmetry and its
constrained system interpretation was proposed in [41]).

On general grounds, putting the system on-shell by gauging away off-shell modes crucially
depends on the choice of the functional class. For instance, with naive but natural choice the procedure
yields an empty system. When formulated in such terms the problem seems to be closely related to the
issue of locality in field theory, more specifically in higher-spin theories (The degree of non-locality
was quantified in [42–44] by reconstructing the quartic vertex, which revealed that the vertex is highly
non-local. It should always be possible to manufacture interactions in AdS that would give the
expected CFT correlation functions [42,45–48], but it is unclear how to fix such interactions in the bulk
without having to invoke the AdS/CFT argument, which is due to a high degree of non-locality [43,44],
the problem being similar to that in flat spacetime). Indeed, the choice of a functional class controls the
derivative expansion of interactions, which is always strongly-coupled in higher-spin theories due to
the dimensionless coupling constant and unbounded number of derivatives starting from the quartic
order, see e.g., discussion in [49].

Instrumental in investigating various properties of gauge theories (in particular the sp(2)-system
we are interested in) is the parent approach [50–53]. One of the advantages of the parent approach in
the context of the AdS/CFT correspondence is that one can jump directly between bulk and boundary
simply by changing the compensator field from timelike (V2 = −1) to null (V2 = 0) [16,17]. The parent
equations of motion then rearrange themselves in accordance with the representation structure of the
AdS/conformal algebra.

In this work, with the help of the parent approach we demonstrate that the sp(2)-system can
be pushed one step further: the system has a class of exact solutions—higher-spin flat backgrounds.
We also show that one can put the HS fields on-shell over a HS-flat background, which is not necessarily
AdS and thereby probes interactions. More specifically, we propose a suitable functional class in the
auxiliary space of the parent formulation, which allows one to put the system on-shell. The resulting
equations have the correct form of a flatness condition deformed by a two-cocycle of the HS algebra [54].
These are the data that completely determine the Vasiliev equations [24,27].

It has been known for decades that HS fields are hard to make propagate consistently on anything
but constant curvature backgrounds [55]. Nevertheless, we observe that special backgrounds, those
given by flat connections of HS algebras, allow for propagation of HS fields. The flatness condition is
hard to interpret from the vantage point of Fronsdal fields [56]. It is worth mentioning that HS-flat
backgrounds were shown to describe rich physics of HS black holes in three-dimensions, see e.g., [57]
and references therein/thereon.

The outline of the paper is as follows. In Section 2, we discuss the off-shell FG construction and
show that it is equivalent to the sp(2) constraints (with some details delegated to Appendix A.4).
In Section 3, we review and discuss the on-shell FG construction. In Section 4, a HS extension is
proposed and it is discussed how it is related to the known HS systems. In Section 5, we show that the
HS extension can describe fluctuations of massless HS fields over any HS-flat background. Conclusions
and discussion are in Section 6.

2. Off-Shell Fefferman-Graham Theory

By “off-shell gravity” in d + 1 dimensions, we understand a gauge theory whose fields are the
components of the metric tensor gµν (µ, ν = 0, 1, . . . , d), which is assumed invertible and only (i.e., it is
“off-shell” in the sense that the fields are not subject to field equations.) subject to the usual gauge
transformations (infinitesimal diffeomorphisms):

δξ gµν = Lξ gµν := ξρ∂ρgµν + ∂µξρgρν + ∂νξρgµρ , (2)
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where ξµ are the components of a gauge parameter which is assumed unconstrained.
Similarly one defines “off-shell conformal gravity” in d dimensions via an invertible metric

tensor gab (a, b = 0, 1, . . . , d − 1) by introducing the extra gauge transformations (infinitesimal
Weyl transformations):

δξ, ωgab = Lξ gab + 2 ω gab , (3)

where ξa and ω are, respectively, parameters of the infinitesimal diffeomorphisms and Weyl transformations.
The “off-shell FG theory” defined in (d + 2)-dimensional ambient space (see Appendix A

for historical overview and technical details) parameterized by the coordinates XA requires two
ingredients: a nondegenerate ambient metric GAB (A, B = 0, 0′, 1, . . . , d) and a nowhere-vanishing
homothety vector field VA that are assumed to obey

LV GAB = 2 GAB , ∂AVB − ∂BVA = 0 , (4)

from which it follows that VA = ∂A(V2/2) and GAB = ∇AVB. The fields GAB and VA are subject to
usual diffeomorphisms as gauge transformations.

Equivalently, as is shown in Appendix A.4, the same relations can be defined in terms of three totally
symmetric polyvector fields of rank 2, 1 and 0 : GAB(X), VA(X), and F(X) defined on the (d+ 2)-dimensional
ambient space. The equations of motion can be reformulated as the sp(2) algebra relations:

{F+, F−} = F0 , {F0, F±} = ±2 F± , (5)

where
F+(X, P) = 1

2
GAB(X) PAPB , F0(X, P) = VA(X) PA , F−(X, P) = F(X) , (6)

i.e., we encoded the tensor fields in the three generating functions Fi (i = +,−, 0) using extra variables
PA which are ambient momenta, conjugate to the coordinates XA. The Poisson bracket { , } is defined by{

XB, PA

}
= δB

A . (7)

The gauge symmetries in the FG ambient theory are given by

δξ Fi = {ξ, Fi} , (8)

where ξ = ξ A(X) PA is the generating function of the gauge parameters. It is clear that these gauge
transformations are nothing but infinitesimal diffeomorphisms of the ambient space. At the same time,
these are particular canonical transformations of the phase space X, P.

As explained in Appendix A.4, when GAB is nondegenerate (and can thus be seen as the inverse
of a metric GAB), it follows from the three Equation (5) on the three functions (6) that

F(X) = − 1
2

GAB(X)VA(X)VB(X) (9)

and
∇AVB = δB

A , (10)

where ∇ is the Levi-Civita connection of the ambient metric GAB(X).
The off-shell FG theory in d + 2 dimensions is equivalent to off-shell gravity in d + 1 dimensions

provided one disregards the direction along VA(x) as a genuine spacetime dimension. Other way
around, any metric gµν in d + 1 dimensions can be lifted to an ambient metric GAB and homothety
vector field VA defined on the (d + 2)-dimensional ambient space such that the original space is a
“curved hyperboloid” determined by GABVAVB = −1, while the original metric is a pullback of GAB
to this level surface.
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3. On-Shell Fefferman-Graham Theory

We begin with the sp(2) system, i.e., (5) and (8):{
Fi , Fj

}
= Ck

ijFk , δεFi = {ε, Fi} , (11)

which we write in a compact way using sp(2) structure constants Ck
ij. Following [8], let us impose an

extra condition on the ambient metric entering F±:

RAB = 0 , (12)

i.e., one requires the ambient metric GAB to be Ricci flat. The system (11)–(12) defines “on-shell FG
theory”. More precisely, the ambient system should be understood within a certain expansion scheme,
called the FG expansion.

There are two interpretations of the on-shell FG theory in d + 2 dimensions:

• This system is equivalent to on-shell gravity in d+ 1 dimensions with a nonvanishing cosmological
constant (in other words the metric gµν is Einstein). The spacetime manifold can be identified
with the curved hyperboloid V2 = −1;

• This system describes conformal gravity in d dimensions. For d odd it is off-shell, while for d
even it is on-shell, the field equations resulting from the conformal anomaly (For d even, in the
original FG approach the Ricci flatness was imposed only up to a certain power of the defining
function so that the conformal gravity was always off-shell. Another point of view is to require
Ricci flatness at all orders which results in conformal gravity equations. Note that in this case the
system also describes subleading solutions). The spacetime manifold can be identified with the
projectivization of the curved hypercone V2 = 0;

There is another way to describe off-shell conformal gravity by introducing in place of (12) the
following gauge equivalence (A version of this description was proposed in [17,30]).

GAB ∼ GAB + λ GAB + λ(AVB) + λAB V2 , (13)

where λ, λA and λAB are gauge parameters. The parameter λ is related to the usual Weyl symmetry
while λA and λAB implement the equivalence relation up to components along the homothety vector
field and up to terms vanishing on the null-cone V2 = 0 (Note that this formulation (more precisely,
its parent version) of the off-shell conformal gravity gives a manifestly so(d, 2)-covariant description
of the respective jet-space and BRST complex employed [58,59] in classifying conformal invariants).
Both interpretations of the system (11)–(12) as well the system (11) and (13) have simple toy model
counterparts in the context of the scalar field in ambient space, described in Appendix C.

The condition (12) of Ricci flatness on the ambient metric in the FG construction can be understood
as a gauge-fixing condition for the arbitrariness (13) in the extension of the metric from the projective
null cone to the whole ambient space. This gives a field-theoretic explanation of the relation between
the two equivalent ambient descriptions of off-shell conformal gravity.

One can even try to exploit the relation further and to interpret the ambient system (11) and (13)
as defining a field theory on the curved hyperboloid V2 = −1. We postpone detailed discussion of
this approach till Section 5.2 and only mention that there is a simple example illustrating this idea.
Consider the following ambient system:

(VA∂A + ∆)Φ = 0 , Φ ∼ Φ + V2λ , (14)

where Φ is a scalar field on ambient space. Interpret this system as defining a scalar field on the curved
hyperboloid V2 = −1 rather than on the projective hypercone V2 = 0. In so doing one can try to
assume Φ harmonic by adding terms proportional to V2, i.e., try to pick a representative which obeys
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∇2Φ = 0. Of course, this is a subtle procedure and for it to work properly one needs to be careful with
functional issues.

To complete the discussion of the gauge equivalence (13) let us note that (13) can be compactly
written in terms of the generating functions Fi :

F+ ∼ F+ + λ F+ + λAPA F0 +
1
2

λABPAPB F− . (15)

In this form it is clear that this equivalence corresponds to the usual equivalence of constrained
systems related to an infinitesimal redefinition of the constraints. This system (more precisely, its BRST
extension) was considered in [30,41] in the context of AdS HS gauge theory.

4. Higher-Spin Extension of Fefferman-Graham Theory

The idea to describe HS fields by allowing all powers of momenta in the sp(2) constraints was at
the core of Bars’ proposal in [28]. Accordingly, a bold guess for a HS extension of the FG construction
is to remove the restriction on Fi to contain no more than two powers of ambient momentum PA:

F+(X, P) = Φ(X) + ΦA(X)PA +
1
2

GAB(X)PAPB + ΦABC(X)PAPBPC + . . . ,

F0(X, P) = V(X) + VA(X)PA +
1
2

VAB(X)PAPB + . . . ,

F−(X, P) = G̃(X) + G̃A(X)PA + . . . ,

(16)

where the dots denote possible terms of higher order in the momenta. Moreover, one should require
GAB(X) and VA(X) to remain, respectively, nondegenerate and nowhere vanishing. This requirement,
or the choice of a particular vacuum, will break the apparent democracy between the three constraints
Fi(X, P) even if one allows for arbitrary dependence on the momentum for all the three constraints.

We assume that the equations of motion remain the same, which makes the system consistent
with an arbitrary gravitational background (i.e., GAB and VC):{

Fi, Fj
}
= Ck

ijFk . (17)

Here Ck
ij are sp(2) structure constants. The gauge symmetries are

δεFi = {ε, Fi} . (18)

In what follows we analyze this system and relate it to other formulations of HS gauge fields.
As we are going to show, the same system with the Poisson bracket replaced with the Weyl
star-commutator is more appropriate in the context of HS fields. Although the above system has
something to do with both conformal HS fields in d dimensions and HS fields in d + 1 dimensions,
here we are mostly interested in the (d + 1)-dimensional interpretation.

The full system (17) and (18) with Fi as in (16) is known in the literature in various versions
(see e.g., [28,41]). In the context of HS fields in d + 1 dimensions, precisely this system was proposed
in [29] where it was proved to describe off-shell HS fields upon linearizing over the AdS background
solution. Note also that a version of this system with two generators fixed and F+ involving higher
powers in P was also suggested in [20] to describe HS fields in d dimensions and, moreover, the sp(2)
system was cast into an action principle in [21].

The above construction can also be phrased in terms of tractor fields which can be identified with
certain tensor fields in ambient space restricted to the hypercone [60–62]. In particular, this language
was employed to described HS fields in [63–67].
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4.1. Off-Shell Higher-Spin Fields on Gravitational Backgrounds

Suppose we are given a triplet of ambient functions F0
+(X, P), F0

0 (X, P), F0
−(X, P) that are of

degree 2, 1, 0 in PA, respectively, and whose Poisson brackets satisfy the algebra sp(2). We assume that
F0
+(X, P) defines a nondegenerate metric and F0

0 (X, P) defines a nowhere-vanishing vector field. Then,
as was mentioned before, it follows that they are of the form (6) with the scalar field F(X) given by (9)
and the vector field VA(X) satisfying ∇AVB = δA

B .
As was shown by Fefferman and Graham, at least locally any metric gµν in d + 1 dimensions

can be lifted to an ambient metric GAB defined on the (d + 2)-dimensional ambient space such that
the original spacetime is a “curved hyperboloid” determined by GABVAVB = −1, while the original
metric gµν is a pullback of GAB to this surface.

We are going to interpret Fi = F0
i as a background solution of the full HS system, where only

gravitational fields are nonvanishing. In order to see that the full system indeed describes HS fields,
let us consider its linearization around Fi = F0

i . The linearized equations and gauge symmetries read:{
fi, F0

j

}
+
{

F0
i , f j

}
= Ck

ij fk , δε fi =
{

ε, F0
i

}
, (19)

where fi is a perturbation. In more detail, for the gauge transformations of f0 and f− one gets

δε f0 =
{

ε, F0
0

}
= (V · D− P · ∂P)ε , δε f− =

{
ε, F0
−

}
= (V · ∂P)ε , (20)

where DM denotes the covariant derivative acting on generating functions: DM = ∂
∂XM + ΓK

MN PK
∂

∂PN

(see also Appendix B). Since VA is nowhere vanishing, this implies that the gauge f− = f0 = 0 is
reachable. Indeed, by picking a suitable coordinate system one can always assume that the homothety
vector field reads VA ∂

∂XA = ∂
∂ρ , where ρ is one of the coordinates. In such a coordinate system it is

clear that using suitable ε one can set both f− and f0 to zero.
Although the above argument applies to the linearized system, it extends in a usual way to the

nonlinear level provided one restricts oneself to solutions which are “sufficiently close” to F0
i . For such

solutions, the two remaining sp(2) relations involving the perturbation f+ (not necessarily small) imply:

(P · ∂P −V · D− 2) f+ = 0 , (V · ∂P) f+ = 0 , (21)

where F+ = F0
+ + f+. While the first equation uniquely determines f+ in terms of its value on the level

surface V2 = constant, the second one implies that f+ does not depend on the components of P along
V. Finally, such f+ are in one-to-one correspondence with totally symmetric tensor fields on the level
surface V2 = constant.

Similarly, in the gauge F0 = F0
0 and F− = F0

− the residual gauge symmetries read as

δε f+ = {ε, F+} = (P · D)ε + {ε, f+} , with (V · ∂P)ε = 0 , (P · ∂P −V · D)ε = 0 .

The global reducibility parameters ε0 for the linearized symmetries in (19) are described by the sp(2)
centralizer equations

{
ε0, F0

i
}
= 0 which read more explicitly:

(P · D)ε0 = (P · ∂P −V · D)ε0 = (V · ∂P)ε0 = 0 . (22)

These global symmetries (= global reducibility parameters) define an “off-shell HS algebra”, by which
we simply mean the sp(2) centralizer (22) above, canonically equipped with a Lie algebra structure via
the Poisson bracket. More invariantly, the off-shell HS algebra arises here in a usual way (see e.g., [68]
for more details) as an algebra of gauge transformations preserving a given vacuum solution. Its Lie
bracket comes from the commutator of the respective gauge transformations. In particular, for the flat
vacuum VA = XA we get a version of the standard off-shell HS algebra.
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We comment more on various off-shell HS algebras below when the Poisson bracket is replaced
by the star-product. It is worth stressing that the off-shell HS algebra is defined on any gravitational
background, but it is generically trivial. In fact, the system of Equation (22) describes totally symmetric
Killing tensors in d + 1 dimensions, which may not admit nontrivial solutions on a generic background.

To summarize, the natural HS extension of the FG off-shell system provides an elegant description
of totally symmetric tensor gauge fields in d + 1-dimension subject to nonlinear gauge symmetries in
an arbitrary gravitational background (This does not contradict the usual no-go theorems (such as [55])
on the propagation of HS gauge fields in generic gravitational backgrounds since here the tensor gauge
fields are off-shell. For instance, at linearized level the covariantization of Fronsdal gauge transformations
is perfectly well defined. It is only its compatibility with the field equations which is problematic).

4.2. Poisson Bracket vs. Star-Product

If we are interested in the on-shell fields, then the construction of the previous section is not entirely
satisfactory. Moreover, even at the off-shell level the corresponding algebra of global symmetries
coincides with the familiar off-shell HS algebra as a linear space, but is a Lie algebra with respect to
the Poisson bracket, rather than the Weyl commutator as it should. This suggests that the construction
has to be modified by replacing the Poisson bracket with the Weyl ?-commutator determined by

[XA, PB]? = δA
B . (23)

Another reason for considering the “quantum” version has to do with the interpretation of the
off-shell nonlinear system as describing background conformal HS fields in d dimensions to which a scalar
field can consistently couple (for more details, see e.g., [17,32–34,69,70]). Note that from this perspective
the Poisson bracket version naturally corresponds to background fields for the point particle. This in turn
is a mechanical model whose wave function is the above scalar field. The ?-product is crucial for the scalar
field to couple to arbitrary HS background fields. It arises directly as a quantization of the phase space
{xa, pb} = δa

b where HS background fields correspond to arbitrary functions f (x, p). The sp(2)-system
provides an ambient space extension of this construction [17,41,71].

Therefore, we pass to the ?-commutator instead of the Poisson bracket and the corresponding
version of the basic system (17) reads as

[Fi, Fj]? = Ck
ijFk , δεFi = [ε, Fi]? . (24)

Note that if one restricts to the spin-two version of this sp(2)-system, then the same solution (6),
(9) and (10) that satisfies the Poisson bracket version (11) also solves (24). This system of operators
plays an important role in the ambient description of scalar fields [18] (see also [72,73]), in particular
for the singleton (see Appendix C).

Let us now restrict ourselves to the flat vacuum solution: GAB = ηAB, VA = XA. It is easy to see
that in this case F0

i solves the above equations and hence gives a vacuum solution. Linearizing the
equations and the gauge symmetries around F0

i one gets

[F0
i , f j]? + [ fi, F0

j ]? = Ck
ij fk δε fi = [ε, F0

i ]? . (25)

It follows again that f0 and f− can be gauged away, resulting in the linearized system (Note that had we
linearized the system around general gravitational background the linearized gauge transformations
for a spin s-field would in general not only involve contributions from parameters of spin s− 1 but
also those with lower spin. This mixing can be traced back to nonlinear in X terms in F0

+ involved in
the star-commutator with the parameter. It is similar to the analogous mixing observed [69] in the case
of conformal HS fields on the boundary and is consistent with the fact that CHS fields are boundary
values of the bulk ones. We are grateful to A. Tseytlin for discussion of this point.)
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(X · ∂P) f+ = 0 , (P · ∂P − X · ∂X − 2) f+ = 0 ,

δε f+ = [ε, F0
+]? = (P · ∂X)ε , (X · ∂P)ε = 0 , (P · ∂P − X · ∂X)ε = 0 .

(26)

To see the relation with Fronsdal fields, let us recall their ambient space formulation. In terms
of the generating function Φ(X, P) = ∑s

1
s! ΦA1 ...As(X) PA1 . . . PAs , the equations of motion and gauge

symmetries read as

(∂X · ∂X)Φ = (∂P · ∂X)Φ = (∂P · ∂P)Φ = 0 , δεΦ = (P · ∂X)ε , (27)

(X · ∂X − P · ∂P + 2)Φ = (X · ∂P)Φ = 0 , (28)

which is equivalent to

(∇2 −m2
s )φµ1 ...µs = ∇µφµµ2 ...µs = φµ

µµ3 ...µs = 0 , δεφµ1 ...µs = ∇(µ1
εµ2 ...µs) , (29)

in terms of the fields defined on the hyperboloid, where ms is the mass of spin-s Fronsdal field
on (A)dSd+1.

It is clear from (27) that, in order to put the linearized off-shell system (26) on-shell, one has to
impose the equation of motion (∂X · ∂X) f+ = 0 (the remaining divergence and trace constraints arise
automatically as consistency conditions). The above analysis of the system (24) and its relation to
Fronsdal fields has been originally performed in [29] using the parent formulation technique.

To draw an analogy with the FG description of gravity note that (∂X · ∂X) f+ = 0 is a linearized HS
analogue of the Ricci flatness RAB = 0 condition. To find a nonlinear HS version of the Ricci flatness
remains a tantalizing open problem in the metric-like formulation. We pursue a different approach in
the next section.

5. Towards on-Shell Higher-Spin Theory

The sp(2)-system captures off-shell backgrounds, both gravitational and HS ones. In the case
of gravity, the (d + 1)-dimensional Einstein equations with cosmological constant result from Ricci
flatness in the (d + 2)-dimensional ambient space. A natural question is whether it is possible to
directly put the off-shell HS system (24) on-shell.

One possible way would be to find nonlinear corrections to the constraints in the first line of (27).
However, it is not clear which structures may control such deformation and in any case in this way
there is no obvious way to reconstruct the system nonperturbatively.

An alternative is to further exploit the analogy with constrained systems. The sp(2) relations
imposed on Fi can be interpreted as a condition that Fi are first-class constraints while gauge
transformations δεFi = [ε, Fi]? correspond to canonical transformations. The general first-class
condition (= closure of the algebra)

[Fi, Fj]? = Uk
ij ? Fk (30)

is preserved by the following gauge transformations

δFi = λ
j
i ? Fj , (31)

in addition to δεFi = [ε, Fi]?. The transformations (31) correspond to infinitesimal redefinitions of the
constraints (at classical level such symmetries preserve the constraint surface). The sp(2) system (24)
can be seen as a partial gauge-fixing of the system (30)–(31) (Strictly speaking one needs to prove that
such gauge is reachable. Although this is easy to see at the linearized level and hence this is also true
for the field configurations that are sufficiently close to the vacuum, a general statement is not known).
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To explain what symmetries (31) can be useful for, let us consider the linearization of the system
about the flat vacuum solution F0

i corresponding to GAB = ηAB and VA = XA, i.e., F0
+ = 1

2 P · P,
F0

0 = X · P and F0
− = − 1

2 X · X. The linearization of (31) reads as

δ fi = λ
j
i ? F0

j . (32)

At the formal level, these symmetries can be employed to make fi satisfy the constraints in the first
line of (27), i.e., (∂X · ∂X) fi = (∂P · ∂X) fi = (∂P · ∂P) fi = 0. For instance, in the space of polynomials in
X, P variables this is exactly the case.

As we have seen f0 and f− can be set to zero by the gauge symmetries δ fi = [ε, F0
i ]? (for i = 0 ,−).

As a result, there is only one field left, f+. It satisfies (27)–(28) and hence describes the Fronsdal
system (29). The problem with this formal argument is that the space of polynomials in X, P is not
the one where one can set to zero f0, f− (since one somehow has to “invert” the operators X · ∂P
and X · ∂X − P · ∂P). Moreover, it is not the functional space relevant for describing field theory
configurations. Other way around, the space (natural from the field theory perspective) of polynomials
in P and smooth functions in X defined in the vicinity of X2 = −1 allows one to eliminate f0, f− but,
in this space, the gauge transformations (31) can be used to set to zero all the fields fi.

It turns out that one can nevertheless use this system to describe on-shell fields by reformulating the
system in parent form (see Section 5.1) and requiring the fields to belong to a special functional class.

A heuristic explanation for why the extended system (30)–(31) is capable of describing on-shell
HS gauge fields in the bulk employs boundary analysis. More precisely, the extended system in the
vicinity of the hypercone V2 = 0 is known [17,30] to describe off-shell conformal HS gauge fields in d
dimensions. In their turn, these off-shell conformal fields are boundary values of the on-shell bulk
fields in d + 1 dimensions. However, in the ambient approach bulk fields and their boundary values
are described by exactly the same ambient system, considered either near V2 = −1 or near V2 = 0
(for more details see [16,17]). This justifies that the above extended system has something to do with
on-shell bulk fields provided one considers it near V2 = −1.

To give the above considerations a precise meaning it is useful to reformulate the system using
the parent approach which has proved to be instrumental in analyzing boundary values [16,17,74].

5.1. Parent Reformulation

The system (24) can be equivalently reformulated in parent form. The underlying idea is to put the
constrained system under consideration in an auxiliary space where genuine space-time coordinates
are replaced by formal variables, typically denoted by YA, so that the equations of motion and gauge
symmetries become purely algebraic. The parent formulation is then constructed as a gauge field
theory whose target space is the space of fields on the auxiliary space while the source space is the
original space-time. Moreover, in so doing the gauge parameters are promoted to 1-form fields of
the parent system while reducibility parameters to p-form fields. In other words, parent formulation
is an AKSZ sigma model [75] whose target space is the jet-space BRST complex of the intial theory.
The equivalence with the original formulation is maintained by imposing free differential algebra
relations and their associated gauge symmetries, on top of the auxiliary space version of the original
equations of motion and gauge symmetries. More details and references can be found in [50–53].

Being a sigma model of AKSZ type (or equivalently a free differential algebra with constraints)
the parent formulation can be consistently pulled back to any space-time submanifold or even put
(at least formally) on a totally different space-time manifold. This property is extremely useful in
analyzing the relation between the Hamiltonian and Lagrangian description [76], manifest realization
of symmetries [51,71] boundary values of gauge fields [16,77], and, more generally, holographic
dualities [17,77].

In the case at hand the parent reformulation is constructed by first extending XA and PB with
additional variables YA (The geometric meaning is that YA are coordinates on the fibres of the tangent
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bundle over the ambient space). Now XA are the usual space-time coordinate, while YA and PB
are auxiliary variables needed to conveniently pack fields into generating functions. Note however,
that Weyl ?-product is now in the space of Y, P variables so that spacetime coordinates are not
explicitly involved. The field content consists of the original constraints Fi(X, Y, P) and a new field,
the connection one-form A = dXB AB(X, Y, P) associated to the original gauge parameter. The fields
Fi, A are interpreted as generating functions for the component fields identified as the respective
coefficients in the expansion over Y, P.

Due to the fact that the parent formulation contains an infinite number of fields the specification
of the functional class of Fi and A in the Y space is part of the definition of the system. The minimal
choice to begin with is that of formal power series in Y. With this choice the parent formulation is
equivalent to (24). Let us for definiteness and simplicity also restrict ourselves to polynomials in P,
so that we are dealing with polynomials in P with coefficients in formal power series in Y.

The parent form of the sp(2) system, the equations of motion we are going to study, read [29]

dA− 1
2
[A, A]? = 0 , dF− [A, F]? = 0 , [Fi, Fj]? − Ck

ijFk = 0 ,

δε A = dε− [A, ε]? , δεFi = [ε, Fi]? ,
(33)

where from now on [·, ·]? denotes the Weyl ?-commutator (in the Y, P-space). The classical limit where
the star-product commutator is replaced by the Poisson bracket in the Y, P-space also makes sense but,
as we argued above, its interpretation from the effective action point of view is unclear.

The above parent system (33) is background independent and can be considered on
(d + 1)-dimensional manifolds. This can be done by pulling-back the system (33) to the curved
hyperboloid described by V2 = −1. The advantage of the parent formulation is that VA is
non-dynamical and can be conveniently manipulated. In particular, in the resulting theory defined on
V2 = −1 one can gauge fix VA such that VA is constant. Furthermore, in contrast to the X, P-space of
the previous sections, the auxiliary Y, P-space is flat and it is easier to impose algebraic conditions in
order to put the system on-shell.

There is a parent realization for the anti-de Sitter solution of the HS extension of the FG
construction, which reads: [29,41]

F0
+ = 1

2 P · P , F0
0 = 1

2{(V + Y)A, PA}? , F0
− = 1

2 (V + Y) · (V + Y) , (34)

A0 = ωA
B (VB + YB)PA , (35)

where VA is constant, { , }? denotes the ?-anticommutator and ω is a standard so(d, 2) flat connection
such that ∇µVB has rank d + 1. Note that there are more general solutions where, rather than (35),
A0 is taken to be any flat connection taking values in the off-shell HS algebra, i.e., dA0− 1

2 [A0, A0]? = 0
and [F0

i , A0]? = 0, so that A0 is polynomial in Y. Note that although it is easy to check that (34)–(35)
is a solution by redefining variables YA + VA → YA, this redefinition is not well-defined for formal
power series in Y. In particular, the shift by V crucially affects the content of the theory.

The gauge symmetries leaving the vacuum solution (34)–(35) intact,

dε0 − [A0, ε0]? = 0 , [F0
i , ε0]? = 0 , (36)

are 1:1 with the off-shell HS algebra defined as the algebra of elements ?-commuting with all F0
i ’s.

In contrast to Section 4.1, this off-shell HS algebra is not just a Lie algebra, but is an associative one
because the ?-product of two sp(2)-singlets is a singlet again. This off-shell algebra is directly related
to the symmetries of the conformal Laplacian described by Eastwood [78], i.e., it has a two-sided ideal
that can be quotiented out as to get the on-shell HS algebra.

Let us consider the linearization of the parent system around (34). The linearized fluctuations
may be required to be totally traceless in which case one finds an on-shell version. This is analogous
to imposing (∂X · ∂X) f+ = 0 in Section 4.2. More precisely, it can be shown [29] that requiring the
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linearized fluctuations of (33) to be in the kernel of ∂Y · ∂Y, ∂Y · ∂P, and ∂P · ∂P results in the free Fronsdal
equations. The problem is to extend this beyond the linearized approximation. For spin-two, the Ricci
flatness provides a nonlinear completion of these equations but its HS analogue is still missing.

5.2. Factorization

We can push the on-shell HS extension of the FG construction a bit further and get equations that
describe propagation of HS fields on any HS-flat background. Indeed, there is a formally consistent
factorization of the system by the ideal generated by Fi. The factorization is obtained by imposing the
extra gauge symmetry:

δA = λi ? Fi , δFi = λ
j
i ? Fj , (37)

where λi, λi
j are gauge parameters, and requiring equations of motion to hold modulo terms

proportional to Fi. The full system of equations that is suitable for describing on-shell fields together
with gauge transformations is [30] (see also [41] for earlier versions)

dA− 1
2
[A, A]? = ui ? Fi , δA = dε− [A, ε]? + λj ? Fj , (38a)

dFi − [A, Fi]? = uj
i ? Fj , δFi = [ε, Fi]? + λ

j
i ? Fj , (38b)

[Fi, Fj]? − Ck
ijFk = uk

ij ? Fk . (38c)

Here u’s are non-dynamical fields that transform under ε, λ
j
i , λj in an obvious way. Note that ui

jk are
not unconstrained and have to obey the relations following from the Jacobi identities. This system is a
candidate for the on-shell HS-extended FG theory.

Now we are going to study the above system perturbatively over a HS-flat vacuum solution,
where Fi = F0

i as in (34) while A0 is more general. To this end we introduce an appropriate functional
class that allows one to have gauge symmetry (37) without trivializing the solution space and such that
the off-shell HS algebra gets reduced to the correct on-shell HS algebra. The functional class C is that
of polynomials in P with coefficients that are formal power series in Y (It is important to distinguish C

from the space of formal power series in Y with coefficients that are polynomials in P). Having formal
power series in Y is important for being able to gauge away fluctuations of F−, F0. We also require that
C is of finite trace order, i.e., for any f (Y, P) ∈ C there exists an ` ∈ N such that

(∂Y · ∂Y)
` f = 0 . (39)

Note that the space of functions of finite trace order is a module over polynomials in Y, P, i.e., we can
?-multiply f (Y, P) ∈ C by a polynomial p(Y, P) and the result, f (Y, P) ? p(Y, P), is still in C. It then
follows that any function in C can be decomposed as

f = f0 + f i
1 ? F0

i + f ij
2 ? F0

i ? F0
j + . . . , fn – totally traceless , (40)

such that the number of terms is finite. Having an element f decomposed as above, we define
a projector onto the traceless part: (Note that the trace decomposition is defined with respect to
F0
− = − 1

2 (Y + V) · (Y + V), F0
0 = P · (Y + V), and F0

+ = 1
2 P · P i.e., this is not the usual decomposition

into traceless tensors f = f0 + Y ·Y f1 + ... due to the shift by V and due to the ?-product).

Π f = f0 . (41)
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Now we can linearize the system and put it on-shell. As anticipated above, we take a slightly
more general vacuum, where A0 does not have to be just the flat connection (35) linear in P, describing
AdSd+1. The nontrivial part of the vacuum equations reads

dA0 − 1
2
[A0, A0]? = ui ? F0

i , (42a)

[A0, F0
i ]? = uj

i ? F0
j . (42b)

It follows that A0 is equivalent to a flat connection of the on-shell HS algebra. Indeed, the on-shell
HS algebra of Eastwood [78] can be defined within the present framework as follows: (An oscillator
realization of this algebra was given in [27]).

χ ∈ on-shell HS-algebra : [χ, F0
i ]? = 0 , χ ∼ χ + λi ? F0

i , (43)

where χ, λi are in C. The sp(2)-singlet constraints solved for χ in C imply that χ is a polynomial in Y.
Next, for A0 entering (42a)–(42b), we can use gauge symmetry (37) on the vacuum solution

δA0 = λi ? F0
i , (44)

as to gauge away all traces and arrive at A0(Y, P) satisfying ∂Y · ∂Y A0 = ∂Y · ∂P A0 = ∂P · ∂P A0 = 0
(i.e., A0 is a collection of traceless tensors in Y and P, or equivalently ΠA0 = A0). Then the traceless
part of (42a)–(42b) implies that A0 is a flat connection of the on-shell HS algebra:

dA0 =
1
2

Π
(
[A0, A0]?

)
. (45)

The gauge symmetries preserving the vacuum solution are determined by

dε0 = [A0, ε0]? + λi ? F0
i , [F0

i , ε0]? + λ
j
i ? F0

j = 0 . (46)

We can again decompose ε0 into the trace part that is proportional to F0
i and the traceless part. The trace

part unambiguously fixes the λ’s, while the traceless part is covariantly constant with respect to A0.
Therefore, the global symmetry parameters are parameterized by the on-shell HS algebra, as it should be.

Now we can study fluctuations over A0 and F0
i and determine the general structure of the

equations. Let us expand

A = A0 + a , Fi = F0
i + fi , (47)

where a and fi are assumed to belong to the functional class C. The linearized equations read

da− [A0, a]? = ui ? F0
i , δa = dε− [A0, ε]? + λi ? F0

i , (48a)

d fi − [A0, fi]? − [a, F0
i ]? = uj

i ? F0
j , δ fi = [ε, F0

i ]? + λ
j
i ? F0

j , (48b)

[F0
i , f j]? − (i↔ j)− Ck

ij fk = uk
ij ? F0

k . (48c)

We choose Πa = a, Π fi = fi as a legitimate gauge condition. Just like in X, P-space the residual gauge
symmetry δ fi = [ε, F0

i ]? can be employed to gauge away f0, f− in Y, P-space. The only subtlety is that
now both fi and ε are traceless and to see this one needs extra technique (see [51] for details).
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With f0, f− set to zero the equations for a, f+ imply

da = Π
(
[A0, a]?

)
, (49a)

d f+ = Π
(
[A0, f+]?

)
+ (P · ∂Y)a , (49b)

(Y + V) · ∂

∂P
a =

(
P · ∂

∂P
− (Y + V) · ∂

∂Y

)
a = 0 , (49c)

(Y + V) · ∂

∂P
f+ =

(
P · ∂

∂P
− (Y + V) · ∂

∂Y
− 2
)

f+ = 0 . (49d)

Note that for A0 a flat so(d, 2)-connection, the Π projector is not needed and Equation (49) are
known [51] to describe Fronsdal fields on AdS space.

The Equation (49) can be reduced even further down to the unfolded form using a suitable
generalization of the reduction put forward in [51]. Indeed, the procedure is purely algebraic and
allows to eliminate all the components in f+ which are in the image of the operator P · ∂

∂Y and all the
components in a which are not in the kernel of P · ∂

∂Y . The remaining fields f̄ and ā satisfy (49c) and
(49d) and are such that (P · ∂Y)ā = 0 and f̄ parametrizes the quotient f+ ∼ f+ + (P · ∂Y)ε. The reduced
equations have the following structure

dā = Π
(
[A0, ā]?

)
+ µ(A0, A0, f̄ ) ,

d f̄ = Π
(
[A0, f̄ ]?

)
,

(50)

where µ(A0, A0, f̄ ) is a trilinear form.
The structure of Equations (49) and (50) becomes more clear if one reformulates them in terms of

certain modules of the on-shell HS algebra. To this end let us consider the following two modules:

M0 = { f ∈ C : [F0
−, f ]? = [F0

0 , f ]? = 0} , (51a)

M1 = { f ∈ C : [F0
−, f ]? = [F0

0 , f ]? − 2 f = 0} . (51b)

Note that these are precisely the spaces (49c) and (49d) where a and f+ belong to. It is easy to see that
for any f ∈ M0,1 and B from the on-shell HS algebra (43), B ? f and f ? B belong to f ∈ M0,1 so that
f ∈ M0,1 are bimodules over the HS algebra seen as an associative algebra.

Furthermore, it is clear that the operator S† = [·, F0
+]? = P · ∂

∂Y defines a map M0 → M1 and
moreover S†(B ? f ) = B ? (S† f ) for any B in the HS algebra. It follows, that both m0 ≡ ker S† ⊂ M0

and m1 ≡ coker S† ⊂ M1 (i.e., the quotient of M1 modulo Im S†) are also modules of the HS algebra as
an associative algebra.

In what follows we consider M0,1 and m0,1 as modules of the HS algebra seen as a Lie algebra,
with the action being:

ρ(B) f = [B, f ]? (52)

In particular, M0,1 and m0,1 are modules over so(d, 2) which is a Lie subalgebra of the HS algebra.
It is now clear that Equations (49) and (50) are, up to an extra term, nothing but covariant-constancy
conditions with respect to the HS algebra connection A0.

Strictly speaking the above construction applies to the off-shell version of the algebra and modules.
The on-shell version is obtained by requiring all the elements to be totally traceless and applying the
projector Π when necessary. The modules m0,1 of the on-shell HS algebra are known in the literature
as, respectively, the adjoint and the twisted-adjoint modules [24] (also as, respectively, gauge and Weyl
modules). The above realization of the modules originates from [51] (see also [74]), where they were
considered as so(d, 2)-modules only.

System (50) describes propagation of free HS fields, encoded in ā and f̄ , over a background described
by the flat connection A0 taking values in the on-shell HS algebra. The most nontrivial part of the system
comes from the term µ(A0, A0, f̄ ) which is trilinear in the fields and cannot be reduced to a product
in the HS algebra. In the next section, we explain that this is a correct structure which is completely
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fixed by the HS algebra. Therefore, the parent form of the HS extension of the FG construction solves an
important problem of how to make HS fields propagate on backgrounds that differ from pure AdS space.
The derivation above was quite abstract and we do not aim at deriving the explicit form of µ(A0, A0, f̄ )
(its free approximation when A0 is an so(d, 2) connection was discussed many times, see e.g., [27,51,79]).
This is due to the fact that the explicit form of µ(A0, A0, f̄ ) can be changed by field redefinitions and it is
difficult to compare with vertices in the usual weak-field expansion.

Let us discuss if the on-shell conditions entering the full system (38) considered over the flat
vacuum A0, F0

i can be extended beyond the linear order. The general feature of the formulations
that are based on jet bundles is that the field space contains infinitely many auxiliary fields that,
as a consequence of equations of motion, encode derivatives of the fields of arbitrarily high order.
The advantage is that interaction terms can then be written in an algebraic form. However, this does
not come for free and non-linear expressions can easily contain infinitely many derivatives and make
locality properties obscure. This problem becomes visible when nonlinearities are at least bilinear in
fluctuations f̄ , i.e., are of order O( f̄ 2). This is due to the fact that the HS algebra has a well-defined
grading that is mapped to polynomial degree in Y + V, P. Therefore, expressions of order O(ā f̄ )
or O(āā f̄ ) are always local once we fix the spins (i.e., homogeneity in P) in ā and f̄ . However,
expressions of order O( f̄ 2) can have unbounded number of derivatives (Indeed, ā contains a finite
number of derivatives per spin and f̄ contains derivatives of unbounded order. Looking at the possible
contribution of the interaction vertices to a given equation we see that infinite sums over derivatives
require at least two f̄ ’s on the right-hand-side). Such non-localities arise at the quartic order in
weak-field expansion [42,43], i.e., O(ā f̄ 3) O(āā f̄ 2) in the parent formulation (38). In the framework
offered by the nonlinear system (38) understood perturbatively over the flat vacuum A0, F0

i the locality
problem manifest itself in that the functional class C is not closed under star-multiplication. Although
this does not affect the linearized system (49), at higher orders either the functional class or even the
system itself has to be amended.

5.3. Relation to Unfolded Equations

The system (50) can also be understood as a specific free differential algebra [80–82], unfolded
Equation [24] or AKSZ sigma model [75] associated to a certain target-space Q-manifold (see also [83]).
The underlying Q-manifold can be directly related to the deformation procedure that is relevant for
higher-spin theories [24]. Our aim is to show how (50) arises. The field content, or the coordinates of
the Q-manifold, consists of a connection of the on-shell HS algebra ω and a zero-form C that takes
values in the on-shell HS algebra as well. The deformation procedure starts with the flatness condition
for ω and a covariant constancy condition for C:

dω = ω ∗ ω , (53a)

dC = ω ∗ C− C ∗ π(ω) , (53b)

where the automorphism π is induced by an automorphism of so(d, 2) that flips the sign of the
transvection generators and leaves Lorentz generators intact. Note that in contrast to the previous
section ω and C take values in the on-shell HS algebra from the very beginning and the associative
product is denoted ∗. As we discussed in the previous section the twisted-adjoint covariant constancy
equation for C can be systematically derived from the parent system (49), which in turn arises from
the HS extended FG theory upon factorization.

System (53) involves a HS-flat background ω and a linear fluctuation C. When considered over
AdS background, given by ω belonging to the so(d, 2) subalgebra, the equation for C describes a scalar
field and s = 1, 2, 3, ... massless fields in terms of their gauge-invariant field strengths contained in C:
Faraday tensor, Weyl tensor and higher-spin generalizations thereof [24].
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The deformation procedure has C as an expansion parameter. Therefore, the first order
deformation of (53) involves a vertex that violates the flatness of ω:

dω = ω ∗ ω + V(ω, ω, C) +O(C2) , (54a)

dC = ω ∗ C− C ∗ π(ω) +O(C2) . (54b)

The consistency conditions on V follow from d d ≡ 0. The solution for V can be cast into the
form [54] (A crucial assumption needed to reduce a complicated problem of Chevalley-Eilenberg
cohomology of higher-spin algebra to a much simpler problem of Hochschild cohomology is to assume
that higher-spin theory should allow for Yang-Mills gaugings u(M) for any M. This assumption is
justified by AdS/CFT correspondence where higher-spin theories are dual to free CFT’s and it is
always possible to take a number of free fields as to have u(M) (times higher-spin algebra) as a global
symmetry on the CFT side and hence HS algebra tensored with matrices is a gauge symmetry on
the AdS side. Having this matrix factor allows one to reduce the problem [54] to the Hochschild
cohomology).

V(ω, ω, C) = Φ(ω, ω) ∗ π(C) , (55)

where Φ(•,•) is a Hochschild two-cocycle of the higher-spin algebra in the twisted-adjoint representation:

a ∗ Φ(b, c) + Φ(a ∗ b, c)−Φ(a, b ∗ c) + Φ(a, b) ∗ π(c) = 0 . (56)

The deformation does not stop at O(C2) order and higher orders are needed. For a large class of
algebras it can be shown [54,84] that there are no obstructions at higher orders. Therefore, any consistent
system that has (54) as the order-O(C) approximation can be completed to a solution to the full
non-linear deformation problem. The conclusion is that the full nonlinear system is determined by HS
algebra, its twisted-adjoint module and the vertex V(ω, ω, C).

The system that describes fluctuations of HS fields over any HS-flat background is obtained from (54)
by taking any flat connection A0 and expanding the system ω→ A0 + ω to the first order in C and ω:

dA0 = A0 ∗ A0 , (57a)

dω = A0 ∗ ω + ω ∗ A0 + V(A0, A0, C) , (57b)

dC = A0 ∗ C− C ∗ π(A0) . (57c)

These equations are fully consistent, gauge invariant and do not require any higher order
corrections. They can be identified with Equations (45) and (50) obtained as a linearization of the
HS-extension of the FG-construction (38).

To sum up, we observe that all the structures governing HS theories within the unfolded approach
are already present in the linearization over a HS-flat background. In its turn this system and the
respective structures can be extracted from the nonlinear system (38), which in turn can be related to
the HS-extension of the FG construction. Equations (45) and (50) from the previous section are exactly
of this form. Fluctuations over a HS-flat background seems to be the farthest one can get without
facing the locality problem in this approach.

6. Conclusions and Discussion

In this work, we have shown that the sp(2)-constraints on the ambient phase space are equivalent
to the off-shell Fefferman-Graham theory, if the three constraints are of degree 0, 1, 2 in the momentum.
The HS extension then follows by letting the three constraints to have arbitrary powers of momenta.
The HS extended sp(2)-system has already been studied in the past, both in the context of bulk HS
theories [29] (see also [28,41]) and conformal HS fields on the boundary [17,20,30].
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It is more convenient to analyze the equations after reformulating the system in parent form, i.e.,
by moving the ambient space-time to the fiber and introducing an extra gauge field associated with
ambient diffeomorphisms. In so doing the original space time coordinates XA are promoted to the
components of the compensator field VA. In particular, the bulk theory can now be formulated in terms
of intrinsic geometry of AdS space by pulling back the ambient parent system to d + 1 dimensions and
setting V2 = −1.

Although it was known that the linearized parent formulation of sp(2)-system can be put on-shell
by supplementing the system with extra conditions, thereby giving rise to the infinite multiplet of
on-shell Fronsdal fields, it was not clear how to implement this beyond the linearized approximation
over the AdS vacuum. In this work, we propose a procedure that allows to go one step further such
approximation. More precisely, we consider a factorized version of the parent sp(2)-system. Although
with the simplest functional class the system is empty when considered over AdS background, we have
succeeded to find another functional class (in auxiliary space) such that the modified system admits
HS-flat vacuum solution and the respective linearized system is nonempty and properly describes
propagation of HS fields over a HS-flat background. Even though the extension to higher orders still
remains an open problem, this linearized system already contains all the structures determining the
Vasiliev equations.

It has been known for many years that free massless HS fields cannot be put on nontrivial
gravitational backgrounds as it leads to breakdown of gauge invariance. However, HS gauge fields can
propagate on nontrivial backgrounds that have other higher-spin gauge fields turned on—backgrounds
described by a flat connection of a HS algebra (In three dimensions HS fields do not have propagating
degrees of freedom but HS-flat backgrounds were found to contain many interesting solutions, e.g.,
black holes and conical defects). The resulting equations have a clear algebraic meaning of flatness
condition deformed by a Hochschild two-cocycle of the relevant HS algebra. This probes the structure
of interactions, even though it is hard to directly make a link to the vertices in the weak field expansion
over anti-de Sitter space.

It can be argued [54] that, at least within the formal deformation procedure, a HS algebra and its
Hochschild cocycle determine the full non-linear completion so that the knowledge of free fluctuations
over sufficiently general backgrounds is enough to recover the full structure of interactions. We showed
that all this information is already present in the factorized version of the parent sp(2)-system. The problem
of putting the system on-shell at higher orders is clearly related to the subtlety of higher-spin interactions
in anti-de Sitter space: the interactions are known to be non-local starting from the quartic order [42–44]
and the precise characterization of the appropriate functional class is not yet known.

The factorized version of the parent sp(2)-system employed in the paper also has a natural
interpretation in the context of CHS theories. Indeed, the same system considered on the boundary,
by setting V2 = 0, describes nonlinear CHS fields at the off-shell level. More specifically, it is equivalent
(at least perturbatively) to the system from [32] underlying the nonlinear theory of CHS fields.

It is not surprising that that the system describing off-shell conformal HS fields on the boundary
has something to do with on-shell HS fields in the bulk. Indeed, the former are the boundary values of
the later while in the ambient space formulation bulk fields and their boundary values are typically
described by one and the same ambient system considered, respectively, around the hyperboloid and
around the hypercone (see e.g., [17,85] for a parent formulation). Therefore, the parent sp(2)-system
provides a direct link between the symmetries of the effective action of the scalar field on CHS
background and HS gravity in the bulk.

From this perspective, the approach advocated in this paper can be viewed as a purely classical
version of the holographic reconstruction (see e.g., [10,42,43] for somewhat related approaches). Indeed,
the candidate system describing nonlinear on-shell HS fields in the bulk is obtained by pulling to
the bulk the boundary system describing off-shell conformal fields. It is a remarkable feature of the
ambient space formulation that it does not only allows one to go from bulk to boundary but also to
reverse the procedure in order to reconstruct bulk theory from the boundary values. Strictly speaking,
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to make it work one also employs the parent formulation as to fine-tune the system by picking specific
functional classes in the auxiliary space.

Possible generalizations and extensions of the above construction involve a number of cases:
theories of partially-massless higher-spin fields [17,30,86], which result from the same sp(2)-system but
making use of GJMS operators [18] for the higher-order singleton and a slightly different factorization
procedure [30,87]. It would be also interesting to consider other algebras of constraints. For example,
osp(1|2)-constraints should describe the yet-unknown Type-B theory that is dual to free massless
fermions and Gross-Neveu model. This problem was recently discussed in [21,88].

Finally, let us note that there exists an alternative approach to described (HS) fields in AdSd+1
in terms of sp(2)-system in (d + 3)-dimensional ambient space. In so doing one needs an additional
ingredient, the scale tractor, that breaks the conformal invariance of the tractor formulation [89,90].

Acknowledgments: We thank the organizers of the very stimulating workshop on “Higher-spin gauge theories”
(26-28 of April, 2017, Mons, Belgium) for providing us the opportunity to present this work in a warm atmosphere.
This research was supported by the Russian Science Foundation grant 14-42-00047 in association with the Lebedev
Physical Institute.

Author Contributions: All the authors contributed equally to this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. FG Ambient Construction as sp(2) Algebra of Constraints

Appendix A.1. Klein Flat Ambient Model

In modern conformal field theory and its holographic dual interpretation, a celebrated technique
for performing computations is the ambient formalism. Its principle goes back to Dirac’s cone
reformulation of conformal fields and their wave equations [13] corresponding to the case of flat
Lorentzian conformal geometry.

In turn, Dirac’s approach goes back to Klein’s model of flat Euclidean d-dimensional conformal
geometry, that is the round sphere Sd with conformal isometry algebra so(d+ 1, 1). The main idea of the
ambient approach is to make conformal symmetry manifest via an embedding of this geometry inside
an “ambient” (d + 2)-dimensional Minkowski space Rd+1,1. The (d + 1)-dimensional upper null cone
N ⊂ Rd+1,1, generated by light-like rays through the origin, plays a crucial role. The conformal sphere
Sd is realized as the projective future light-cone PN := N/R+ (with R+ the multiplicative group of
positive real numbers) inside the (d+1)-dimensional projective ambient space PRd+1,1 := Rd+1,1/R+.
The interior of the projective future light-cone PN ⊂ PRd+1,1 is a (d+1)-dimensional hyperbolic ball
Hd+1

∼= Bd+1, of which the d-dimensional sphere Sd is the conformal boundary.

Appendix A.2. Fefferman-Graham Ambient Construction

In 1985, Fefferman and Graham generalized the ambient construction of Klein to curved conformal
geometry (of any signature) [8].

Conformal space: The basic data of conformal geometry is a manifold M and a conformal metric [gab]

on M, i.e., an equivalence class of Riemanian metrics for the equivalence relation

g̃ab = Ω2gab ∼ gab (A1)

with Ω a nowhere vanishing function on M (which we will assume strictly positive Ω > 0).

Example. In the case of flat Euclidean conformal geometry, M = Sd and gab is the standard metric of the unit
sphere (which is conformally flat since the flat metric δab belongs to the same equivalence class [gab]).

Metric bundle: The first step in the construction of Fefferman and Graham is the introduction of a
principal R+-bundle N over M, whose fiber at a point (of coordinates xa with a = 1, · · · , d) is the



Universe 2018, 4, 17 19 of 26

collection of values at this point of all representatives g̃ab(x) = Ω2(x)gab(x) inside the conformal class.
The base manifold is recovered as the quotient M = N/R+. One may take (xa, t) as local coordinates
on N with t := Ω(x). This bundle is called the metric bundle because its sections are the representatives
g̃ab of the given conformal class [gab]. The fundamental vector field of the principal R+-bundle N will
be denoted v (= t∂t in local coordinates). The conformal class [gab] of metrics defines a degenerate
metric on N by pullback along the projection map π : N → M ,

ds2
N = t2 gab(x) dxadxb . (A2)

This metric is homogeneous of degree 2 under the action of R+ on N. However, this metric is
degenerate, it annihilates for instance the fundamental vector field v.

Example. In the case of flat Euclidean conformal geometry the metric bundle N, as it was introduced, has the
topology of a cylinder Sd ×R+, which can be interpreted as an upper cone (but it can be extended to a complete
cone if we extend the range of values of t to all real numbers). Together with its degenerate metric, it is indeed a
null cone, as mentioned in Section A.1.

Ambient space: The second step in the construction of Fefferman and Graham is to embed the
(d + 1)-dimensional manifold N inside a “slightly thicker” (d + 2)-dimensional ambient space, e.g.,
Ñ = N× I, where I ⊂ R is an open interval around zero. The natural extension to Ñ of the fundamental
vector field v on N is a vector field V on Ñ which one might call the homothety vector field. A defining
function ρ is a function on Ñ with homogeneity degree zero under the homothety vector field V, and
such that ρ = 0 but dρ 6= 0 on N. The ambient space Ñ is endowed with local coordinates YM = (xa, t, ρ)
where ρ is a defining function. An ambient metric GMN is a metric on ambient space Ñ such that:

• its signature has one more timelike and one more spacelike direction with respect to gab,
• it is homogeneous of degree two with respect to the homotheties: LV GMN = 2 GMN ,
• it is an extension to Ñ of the degenerate metric (A2) on N,
• the one-form VM = GMNVN is closed.

There exists a local choice of coordinates such that the ambient metric reads [9]

ds2
Ñ = t2 gab(x) dxadxb + 2 ρ dt2 + 2 t dt dρ (A3)

and the vector field ∂/∂ρ is geodesic. The square of the homothety vector field is proportional to
the defining function ρ since, from (A3), one has GMNVMVN = t2ρ . Taking (A3) into account gives
VMdYM = 2ρ t dt + t2 dρ = d(t2ρ) in local coordinates.

Up to the well-known subtleties in the holographic reconstruction related to conformal anomalies,
the ambient metric is essentially uniquely specified (in an infinitesimally thick neighborhood around
N or, more precisely, as a formal power series in the variable ρ) if one further requires GMN to be Ricci
flat: RMN = 0.

Example. In the case of flat Euclidean conformal geometry, the ambient space is the Minkowski spacetime
Ñ = Rd+1,1 with ambient metric ηMN = diag(−1,+1,...,+1) in the Cartesian coordinates XM with M =

0, 1, · · · , d + 1. The homothety vector field reads V = XM∂M and the metric bundle N is embedded as the
light-cone through the origin V2 = 0 ⇔ ηMN XMXN = 0. The relation between the Cartesian coordinates
XM and the FG coordinates YM = (xa, t, ρ) is as follows: Xa = t xa, X0 − Xd+1 = t and X0 + Xd+1 =

t ( δabxaxb − 2ρ ) . In such case, ds2
Ñ
= ηMNdXMdXN reproduces (A3) with gab = δab .

Bulk: The third step in the construction of Fefferman and Graham provided its holographic
interpretation, cherished by theoretical physicists. The bulk space is the (d+1)-dimensional manifold
M̃ := (Ñ − N)/R+. One may take (xm, ρ) as local coordinates on the bulk space M̃ which can be
realized as the level hypersurface t2ρ = constant. It is endowed with a metric gµν which has [gab] as
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conformal class at conformal infinity (i.e., at ρ = 0). If the ambient metric GMN is Ricci flat (RMN = 0),
then the bulk metric is Einstein (Rµν = 1

d+1 R gµν).

Example. In the case of flat Euclidean conformal geometry, to be more precise the (d + 2)-dimensional
ambient space is the interior future light-cone Ñ inside the Minkowski spacetime Rd+1,1. Then the bulk
space is the (d + 1)-dimensional hyperbolic space Hd+1 realized as one sheet of a two-sheeted hyperboloid
ηMN XMXN = −1 of time-like vectors of constant square in ambient space. This corresponds to the level
hypersurface t2ρ = − 1

2 in the FG coordinates. Up to the change of coordinate z = 1/ t , this leads to the
standard form ds2

M̃
= z−2 ( δab dxadxb + dz2 ) of the hyperbolic space metric in Poincaré coordinates.

Appendix A.3. Properties of the Ambient Metric and of the Homothety Vector Field

The two main ingredients of Fefferman-Graham construction are the ambient metric GAB and the
homothety vector field VA. They are closely related to each other due to the two following properties:

(I) The ambient metric is of homogeneity degree two with respect to the homothety vector field:

LV GAB = 2 GAB . (A4)

(II) The homothety one-form is closed:
∂[AVB] = 0 . (A5)

In particular, the property (II) implies that, locally, VA = ∂A f . In particular, the homothety vector
field VA is hypersurface orthogonal to the level surfaces f = constant.

The properties (I) and (II) are equivalent to the following useful property:

(III) The ambient metric is equal to the covariant derivative of the homothety one-form:

GAB = ∇AVB = ∇BVA . (A6)

Equivalently,
∇AVB = δB

A . (A7)

Proof. While the relation (A4) is equivalent to

∇AVB + ∇BVA = 2 GAB , (A8)

the relation (A5) is equivalent to ∇[AVB] = 0, i.e.,

∇AVB − ∇BVA = 0 . (A9)

Summing Equations (A8) and (A9) gives (A6).

In turn, the property (III) implies the following corollary:

(IV) The homothety one-form is equal to half the gradient of the homothety vector field squared:

VA = ∂A

(V2

2

)
. (A10)

Proof. Contracting GAB =∇AVB with VB gives the relation VA = VB∇AVB which implies (A10).

In particular, the homothety vector field is hypersurface orthogonal to the level surfaces V2 = constant.
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Appendix A.4. Hypersurface Orthogonality and Homogeneity as sp(2) Algebra

Consider the cotangent bundle T∗Ñ of the ambient space. Local coordinates on T∗Ñ read (XM, PN)
and the canonical Poisson bracket on the algebra of functions on T∗Ñ is such that {XM, PN} = δM

N .
In the main text, we need the relation between the Fefferman-Graham ambient construction and the
sp(2) algebra of constraints.

Consider as data, three Hamiltonian constraints which are respectively quadratic, linear,
independent, of the momenta:

F+ =
1
2

PMPNGMN(X) (A11)

F0 = PMVM(X) (A12)

F− = F(X) (A13)

The first Hamiltonian constraint is quadratic in the momenta, thus its coefficients define
a covariant symmetric tensor GMN(X), which can be interpreted as an inverse metric if it is
nondegenerate. This fact will be called the nondegeneracy condition. The second Hamiltonian constraint
is linear in the momenta, thence its coefficients define a vector field VM(X). The third Hamiltonian
constraint is a scalar field F(X).

Proposition. Under the assumption of nondegeneracy, the property that the three
functions (A11)–(A12) on the ambient phase space form the sp(2) algebra

{F+, F−} = F0 , {F0, F+} = + 2 F+ , {F0, F−} = − 2 F− , (A14)

under the Poisson bracket is equivalent to the fact that

• the scalar field is equal to F(X) = − 1
2 VM(X) GMN(X)VN(X),

• the symmetric tensor field GMN(X) and the vector field VM(X) obey the properties (I)-(IV).

Proof. Since h = P · V(X) is linear in the momenta, the adjoint action of the constraint h via the
Poisson bracket is related to the Lie derivative along the homothety vector field, {h, ·} = −LV .
Therefore, the second relation in (6) is equivalent to the condition LV GMN = − 2 GMN ⇔ LV GMN =

2 GMN , i.e., it is equivalent to (A4). The first relation in (A14) gives the relation ∂MF = −VM,
i.e., it implies the property (II) in Section 2. Together with property (I), it implies the properties
(III)–(IV) of Section 2. In particular, the relation (A10) implies ∂MF = − ∂M

(V2

2
)
. This leads to

F(X) = C− 1
2 VM(X)GMN(X)VN(X), where C ∈ R an arbitrary constant which is enforced to vanish

by the third relation in (A14). Then, the third relation in (A14) is equivalent to the homogeneity
property LV GMN = 2 GMN .

Appendix B. Covariant Derivatives

Suppose we are given with the ambient metric gMN(X) and the compensator VM(X) such that
∇MVN = GMN , where ∇ denotes the covariant derivative determined by the Levi-Civita connection.

Introduce the covariant derivative acting on functions in X, P as follows:

DM f (X, P) := ∂M + ΓR
MN PR

∂

∂PN

so that e.g.,
DM(VN PN) = (∇MVN)PN .

It is easy to check that the Poisson bracket of functions in X, P can be written in terms of the
covariant derivative:

{F, G} := ∂F
∂XM

∂G
∂PM
− ∂F

∂PM

∂G
∂XM = DMF ∂G

∂PM
− ∂F

∂PM
DMG .
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For instance, for the adjoint action of sp(2) generators we have:{
VMPM, f

}
= (∂NVM)PM

(
∂

∂PN
f
)
−VM∂M f

= (∇NVM)PM

(
∂

∂PN
f
)
− ΓM

NRVRPM

(
∂

∂PN
f
)
−VM∂M f

= (∇NVM)PM

(
∂

∂PN
f
)
−VADA f

=
(

PM
∂

∂PM
−VADA

)
f .

(A15)

Similarly for the other generators.

Appendix C. Off-shell vs On-shell, Boundary vs. Bulk

The different physical interpretations of the FG ambient construction, mentioned in
Sections 2 and 3, can be illustrated in the simple case of a scalar field, which is an inspiring toy model
(For more details on the ambient formulation of the scalar field and its holographic interpretation (in
the case of the flat ambient space) see e.g., [16,17]). This simple example is actually of interest on its
own, since it corresponds to the first-quantization of the sp(2) Hamiltonian constraints. To be more
precise, we consider an ambient scalar field in a background of off-shell FG theory.

Appendix C.1. Off-Shell Boundary Scalar Field

The null cone V2(X) = 0 quotiented by the integral lines of the vector field V = VA∂A is a
d-dimensional conformal space. A scalar primary conformal field of conformal weight ∆ on this
d-dimensional conformal space can be lifted uniquely to a scalar field on the null cone V2 = 0 with
homogeneity degree −∆ . However, the latter does not determine a unique scalar field Φ(X) in the
vicinity of the null cone, but only up to the following equivalence relation Φ ∼ Φ + V2 λ . This can be
summarized by saying that an off-shell conformal scalar field in d dimensions is equivalently described
by an ambient scalar field obeying to the following set of one equation and one equivalence relation:

(VA∂A + ∆)Φ(X) = 0 , Φ(X) ∼ Φ(X) + V2(X) λ(X) . (A16)

The consistency of the above equations amounts to the fact that the operators VA∂A and V2 form
a Lie algebra (the lower-triangular subalgebra of sp(2)).

Spin-two analogue: Off-shell conformal gravity determines the value of the ambient metric on the
null cone. The ambient metric in off-shell FG theory has homogeneity degree two and its extension
beyond the null cone is completely undetermined.

Appendix C.2. On-Shell Bulk Scalar Field

An on-shell scalar field on the d + 1 dimensional level manifold V2(X) = −1, i.e., a scalar field
obeying to Klein-Gordon equation in the bulk, can be lifted uniquely to a scalar field Φ(X) on the
region V2 < 0 of the ambient space. The lift is unique if the scalar field is of fixed homogeneity degree,
say −∆ ∈ R, along the homothety vector field V, i.e., LVΦ = −∆ Φ . More precisely, the ambient
scalar field obeys the following two equations:

(VA∂A + ∆)Φ(X) = 0 , ∇2Φ(X) = 0 , (A17)

where ∇2 = GAB∇A∇B is the Laplacian for the ambient metric. The consistency of the two conditions
in (A17) can be checked by using ∇AVB = δB

A and its consequence RAB|CDVD = 0 . Moreover, these
two operators form the upper-triangular subalgebra of sp(2).

When the scalar field Φ(X) admits a regular extension to the whole region V2 6 0 of the ambient
space, then its restriction to the null cone V2 = 0 corresponds to the asymptotic boundary data of the
on-shell bulk scalar field, with scaling behavior prescribed by ∆ (see e.g., [16] for more details). To be



Universe 2018, 4, 17 23 of 26

more precise, two scaling behaviours are actually possible (∆+ = ∆ and ∆− = d− ∆), corresponding
to the two branches of solutions of the bulk Klein-Gordon equation.

Spin-two analogue: The Ricci flatness of the ambient metric is the analogue of the harmonicity
of the ambient scalar field, while Einstein equation with a cosmological constant of bulk gravity is
the analogue of Klein-Gordon equation of the bulk scalar field. The holographic reconstruction of
the (d + 1)-dimensional spacetime metric from the d-dimensional conformal boundary data via the
(d + 2)-dimensional ambient space is the essence of FG construction.

Appendix C.3. On-Shell Boundary Scalar Field (Aka Singleton)

For generic values of the conformal dimension ∆, the harmonicity ∇2Φ = 0 is incompatible
with the gauge equivalence Φ ∼ Φ + V2 λ . In such cases, the harmonicity can be interpreted as a
gauge-fixing condition for the gauge equivalence. This can be summarized by saying that the off-shell
boundary scalar field can be equivalently described as the ambient scalar satisfying (A16) or (A17).
However, when the conformal dimension takes the value ∆ = (d− 2)/2 one can impose consistently

∇2Φ = 0 ,
(

VA∂A +
d− 2

2

)
Φ = 0 , Φ ∼ Φ + V2 λ . (A18)

The consistency of the system follows from the fact that (as was originally observed in [18]) the
operators ∇2, VA∂A + d+2

2 , V2 form the algebra sp(2). Note that these operators can be thought as
first-quantized versions of the sp(2)-constraints F+, F0, F−.

Identifying an equivalence class determined by the second and the third relations in (A18) with
an off-shell boundary scalar field, the first equation imposes the Yamabe equation for this conformal
scalar field in d dimensions. Another interpretation of the same fact is that the first two constraints
describe the bulk Klein-Gordon equation with critical mass. Considered in the vicinity of the boundary,
the equivalence relation described by the third relation in (A18) then eliminates the subleading
solutions. From this perspective, the Yamabe equation appears as an obstruction in extending the
unconstrained boundary value to an on-shell bulk field (or, equivalently, as an obstruction in the
near-boundary expansion of the on-shell bulk scalar field).

Spin-two analogue: Consider d = 4 for simplicity (but similar discussion holds for any even d).
The Bach tensor appears as an obstruction (related to the holographic anomaly) in the FG expansion of
bulk gravity in five dimensions. This obstruction is absent if and only if four-dimensional conformal
gravity is on-shell.
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