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Property FW, differentiable structures, and smoothability of
singular actions

Yash Lodha∗ Nicolás Matte Bon† Michele Triestino‡

Abstract
We provide a smoothening criterion for group actions on manifolds by singular diffeomorphisms.

We prove that if a countable group Γ has the fixed point property FW for walls (e.g. if it has
property (T)), every aperiodic action of Γ by diffeomorphisms that are of class Cr with countably
many singularities is conjugate to an action by diffeomorphisms of class Cr on a homeomorphic
(possibly non-diffeomorphic) manifold. As applications, we show that Navas’s rigidity result for
actions of Kazhdan groups on the circle, as well as the recent solutions to Zimmer’s conjecture,
generalise to aperiodic actions by diffeomorphisms with countably many singularities. 1

1 Introduction

Let Γ be a countable group acting by homeomorphisms on a compact differentiable manifold M .
Assume that every g ∈ Γ acts as a diffeomorphism on the complement of some finite subset of points,
called the singularities of g. We are interested in the following question: when is such a singular
action smoothable, i.e. conjugate to an action by honest diffeomorphisms? The purpose of this paper
is to show that this is always the case provided Γ has Kazhdan’s property (T) and the action has no
finite orbit. More generally, the same holds true for actions with a countable set of singularities (in
a sense made precise below).

Recall that a countable group Γ is a Kazhdan group (or has Kazhdan’s property (T)) if every
isometric affine action of Γ on a Hilbert space has a fixed point. Even if this is not the original
definition, it is equivalent after the Delorme–Guichardet theorem. (See [3] as a general reference on
property (T).) In fact, our results are based on a property weaker than property (T), namely the fixed
point property for walls FW, named after Barnhill–Chatterji [2] and extensively studied by Cornulier
[11,12] (see also [10] for a recent application to birational dynamics). To recall its definition, let Γ be
a countable group acting on a set X. A subset A ⊂ X is said to be commensurated if the symmetric
difference g(A)4A is finite for every g ∈ Γ. It is said to be transfixed if there exists a Γ-invariant
subset B ⊂ X such that A4B is finite. A group Γ has property FW if for every Γ-action, every
commensurated subset is transfixed. Property FW is equivalent to a fixed point property for actions
on CAT(0) cube complexes, and admits various other equivalent definitions, for which we refer
to [12]. Property (T) implies property FW.

For any real r ∈ [1,∞] we will denote by Diffr(M) the group of Cr diffeomorphisms of a
manifold M , with the convention that when r is not integer, this means functions whose brc-th
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derivative exists and is (r − brc)-Hölder continuous. We further let ΩDiffr(M) be the group of
countably singular diffeomorphisms of class Cr, defined as the group of all homeomorphisms g of M
such that there exists a dense open subset Ug ⊂M whose complement is countable and such that g
is of class Cr in restriction to Ug.

It can happen that two manifolds M and N are homeomorphic through a countably singular
diffeomorphism, yet they are are not diffeomorphic. This famous discovery is due to Milnor [30],
who showed that there are manifolds homeomorphic to the 7-sphere, but not diffeomorphic to it.
Manifolds homeomorphic to spheres are now known as exotic spheres. In fact, every exotic sphere of
dimension d ≥ 7 admits a singular diffeomorphism to Sd with just one singular point. On the other
hand if M and N are as above, then the groups ΩDiffr(M) and ΩDiffr(N) are isomorphic. For this
reason, exotic differentiable structures arise naturally in the context studied in this paper.

We prove the following theorem.

Theorem 1.1. Let M be a closed differentiable manifold, and fix r ∈ [1,∞]. Let Γ be a finitely
generated group with property FW. For every homomorphism ρ : Γ→ ΩDiffr(M), one of the following
holds:

(i) the action of ρ(Γ) on M has a finite orbit;

(ii) there exist a closed differentiable manifold N and a countably singular diffeomorphism ϕ : M →
N such that ϕρ(Γ)ϕ−1 ⊂ Diffr(N).

This is a special case of Theorem 3.1, which deals with more general geometric structures on
manifolds.

In the second case, the manifold N delivered by the proof is a connected sum of M with finitely
many exotic spheres. In particular, it is homeomorphic to M , but not necessarily diffeomorphic. If
the dimension d of M is such that the d-sphere admits a unique differentiable structure, then it is
possible to choose N = M (see Theorem 3.1). It is known that the differentiable structure on Sd is
unique for d = 1, 2, 3, 5, 6, 12, 56, 61 [23, 24, 38], and never unique for odd d 6= 1, 3, 5, 61 [24, 38], while
a general answer is unknown in even dimension. This is a widely open problem for d = 4, known as
the 4-dimensional smooth Poincaré conjecture.

In the particular case of representations of Γ into groups of singular diffeomorphisms with finitely
many singularities, we obtain a more precise statement in the finite-orbit case (i), namely that the
action is conjugate to an action that is of class Cr away from a finite invariant subset (Theorem 3.6).

Let us discuss applications of Theorem 1.1 in dimension n = 1, namely when M = S1. It
is an open problem whether every action of a Kazhdan group on the circle by homeomorphisms
factors through a finite quotient. Andrés Navas proved that the answer is affirmative for actions
by diffeomorphisms of class C3/2 [32]. (More precisely, this result is proven in [32] for Cr-actions
with r > 3/2, but according to [33, Rmk. 5.2.24] it can be extended to C3/2-actions, relying on
work by Bader–Furman–Gelander–Monod [1], by means of an Lp-analogue of property (T) due to
Fisher–Margulis.)

Theorem 1.2 (Navas). If Γ is a Kazhdan group, every homomorphism ρ : Γ→ Diff3/2(S1) has finite
image.

Motivated by a question asked by him (cf. [4, Question 4.8], [33, Rmk. 5.2.24] and [34, §1]), it is
natural to study this problem for actions by countably singular diffeomorphisms. A relevant special
case is the one of actions by piecewise diffeomorphisms (or piecewise differentiable homeomorphisms),
i.e. those for which the singular set is finite, and moreover at every singular point the right and
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left derivatives exist up to the required order of regularity. We denote by PDiffr(S1) the group
of all piecewise differentiable homeomorphisms of the circle of class Cr. Well-studied examples of
groups of piecewise differentiable homeomorphisms of the circle include groups of piecewise linear
and piecewise projective homeomorphisms, and the existence of infinite Kazhdan groups was an open
question even in this case. Since Kazhdan’s property (T) implies property FW, the combination
of Theorem 1.1 with Navas’ theorem allows to answer to this question for actions by piecewise
differentiable homeomorphisms. In the case of actions by countably singular diffeomorphisms, it
allows to reduce the question to actions on the real line.

Corollary 1.3. Let Γ be a Kazhdan group. Then the following hold.

(i) Every homomorphism ρ : Γ→ PDiff3/2(S1) has finite image.

(ii) For every homomorphism ρ : Γ→ ΩDiff3/2(S1), the action of ρ(Γ) on S1 has a finite orbit.

In an independent preprint [13], Yves de Cornulier has obtained part (i) of Corollary 1.3 also
allowing the presence of finitely many points of discontinuity for actions by piecewise linear or
projective homeomorphisms (see Question 1.16 below and the remark following it).
Remark 1.4. The relevant difference between parts (i) and (ii) in Corollary 1.3 is that Thurston’s
stability theorem holds in piecewise C1 regularity.
Remark 1.5. Corollary 1.3 cannot be strengthened to obtain that every subgroup of PDiffr(S1)
with property FW is finite. For example the group PSL(2,Z[

√
2]) acts on the circle by Möbius

transformations. This group has property FW, as proved by Cornulier relying on work of Haglund
and Carter–Keller [12, Ex. 6.A.8].
Remark 1.6. There exist finitely generated subgroups of the group PDiff∞(S1) that are not smoothable,
and even not isomorphic to groups of C1-diffeomorphisms [4, 29].
Remark 1.7. If we allow an uncountable closed set of singularities (of empty interior), then every
group of circle homeomorphisms is isomorphic to a group of singular diffeomorphisms. Blowing up
an orbit, it is possible to obtain any desired level of regularity on the complement of a Cantor set.

It is a classical leitmotiv that Kazhdan groups should behave like lattices in higher-rank simple
Lie groups, which are the primary source of examples of Kazhdan groups. This is certainly far from
true in full generality (e.g. there are Kazhdan groups that are hyperbolic), and it is an interesting
problem to see how far one can go with this comparison. That is, what are the rigidity properties
of Kazhdan groups? For higher-rank lattices, beyond the classical rigidity theorems by Mostow,
Margulis and Zimmer, one of the most interesting rigidity properties is described by the so-called
Zimmer’s program. An important conjecture in this program states that a lattice in a higher rank
simple Lie group has only (virtually) trivial actions on closed manifolds of dimension < d, where d
is an explicit constant depending on the ambient Lie group (bounded below by its real rank). This
conjecture has been (partially) solved recently with the breakthrough work of Brown, Fisher and
Hurtado [6, 7, 15]. For what concerns actions on one-dimensional manifolds, earlier and more precise
results were obtained by Ghys, Burger–Monod, and Witte Morris [8, 17, 40]. In relation to our work,
the main result of [8, 17] implies that any morphism from a lattice in a simple Lie group of rank ≥ 2
to the group PDiff1(S1) has finite image.

It is a well known open problem whether Zimmer’s conjecture holds for action by homeomorphisms
that are not diffeomorphisms. In combination with the aforementioned results of Brown–Fisher–
Hurtado [6, 7], Theorem 1.1 yields the following.
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Corollary 1.8. Let Md be a closed manifold of dimension d. Let G be a connected Lie group, whose
Lie algebra is simple and with finite centre. Assume that the real rank of G is r > d and let Γ ⊂ G
be a cocompact lattice, or Γ = SL(r + 1,Z). For any morphism ρ : Γ → ΩDiff2(M), the action of
ρ(Γ) on M has a finite orbit.

Using a more general version of Theorem 1.1 (namely Theorem 3.1), we also establish an analogous
statement in the case of actions preserving a volume form, see Corollary 3.7.
Remark 1.9. Here we have simplified the statement for avoiding introducing unnecessary notations.
The interested reader will be able to improve the above statement from the results appearing in
[6, 7, 9, 15]. Note also that Theorem 3.6 gives a stronger result for actions by elements with finitely
many singularities.
Remark 1.10. For the particular classes of groups of elementary matrices, and automorphism groups of
free groups (and some relatives) questions related to Zimmer’s program have been largely investigated
by Ye, with no restrictions on regularity (see e.g. [41, 42,44]).

Let us give an outline of the paper and of the proof of Theorem 1.1. The core of our argument
has purely topological dynamical nature (no manifolds are involved, only group actions on locally
compact spaces), and is contained in Section 2. We consider an action of a countable group Γ on
a locally compact space X whose germs at every point belong to a given groupoid of germs H,
except for a finite set of singular points for every group element (all the necessary terminology
will be defined in Section 2). We provide a criterion on H that implies, when Γ has property FW,
that the action is conjugate to an action whose germ at every point belongs to H. To do so we
construct a commensurating action of Γ inspired from work of Juschenko–Nekrashevych–de la Salle
on amenability of groups of homeomorphisms [21]. We then extend this to the case of countably
many singularities by transfinite induction on the Cantor–Bendixson rank of the set of singular
points of the generators of Γ.

In Section 3 we apply this criterion to singular actions on manifolds. In fact, the set of
diffeomorphisms of class Cr do not play any special role in the proof of Theorem 1.1. We shall work
in a more general setting (see Theorem 3.1), by allowing actions that are countably singular with
respect to an arbitrary given groupoid of germs G of local homeomorphisms of Rd, provided M has
the structure of a G-manifold, i.e. admits an atlas whose changes of charts have germs in G (see
Thurston’s book [37, Ch. 3] as a standard reference on G-manifolds). In the course of the proof,
we are faced to the problem of extending a finite collection of germs of singular diffeomorphisms
to the whole ambient manifold, without introducing new singularities. Such an extension does not
always exist. In the case of actions by diffeomorphisms the obstruction to its existence is measured
by the group of twisted n-spheres Γn = π0(Diff+(Sn−1))/π0(Diff+(Dn)), which is is in one-to-one
correspondence with the differentiable structures of Sn (for n 6= 4). Taking a connected sum with
exotic spheres allows to eliminate this obstruction by producing another manifold, homeomorphic to
the original one, on which the action can be regularised.

In Section 4 we discuss the case of piecewise differentiable circle diffeomorphisms, and then focus
on the example of groups of piecewise linear (PL) homeomorphisms of the circle. In this case, we
provide a more elementary proof of the fact that they do not have property (T), which only relies on
Hölder’s theorem. Namely, we will exhibit an isometric action of PL+(S1) on the Hilbert space `2(S1),
with linear part defined by the action of the groups on S1: we twist the linear action with a cocycle
that measures the failure of elements to be affine. This cocycle has been widely used (implicitly
or explicitly) for understanding many properties of groups of piecewise linear homeomorphisms
[18,19,27,31] (just to cite a few). This is to be compared to the result by Farley and Hughes [16,26]
that Thompson’s group V has the Haagerup property, which is also proved by exhibiting an explicit
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proper action of V on a Hilbert space (Farley’s proof of this result in [16] had a gap and has been
fixed by Hughes [26]).

Let us end this introduction with a list of problems.

Question 1.11. Which subgroups of PDiffr(S1) have the Haagerup property?

Question 1.12. Does the group ΩDiffr(R) of countably singular diffeomorphisms of the real line
contain infinite property (T) subgroups?

Question 1.13. Study Zimmer’s conjecture for piecewise differentiable (or PL) actions of higher
rank lattices on manifolds of small dimension. (cf. the work of Ye [43].)

Question 1.14. Consider the renormalised linear action of SL(n + 1,Z) on the sphere Sn, with
n ≥ 7. For which differentiable structures on Sn is this action topologically conjugate to a smooth
action?

Question 1.15. Extend Corollary 1.3 to groups of discontinuous transformations, such as AIET,
the group of affine interval exchange transformations. (The group of isometric interval exchange
transformations does not contain infinite Kazhdan subgroups [14].)

Question 1.16 (cf. [35]). Classify the subgroups of the group of piecewise projective circle homeo-
morphisms PP+(S1) that are topologically conjugate to PSL(2,R), up to PP conjugacy.

Questions 1.15 and 1.16 (that were written in a preliminary version of this paper) have been
answered by Yves de Cornulier in [13]. His answer to Question 1.16 makes use of the classification
of projective one-manifolds and their automorphism groups: using the fact that PSL(2,Z[

√
2]) has

property FW (Remark 1.5) and is dense in PSL(2,R), he concludes that the action of a topological
PSL(2,R) must preserve a projective structure on S1.

2 Property FW and singular actions on locally compact spaces

2.1 Groupoids of germs

Throughout the section, we let X be a locally compact Hausdorff space (not necessarily a
manifold). We will be primarily interested in the case where the space X is compact. However, in
the course of the proofs, it will be useful to consider non-compact spaces as well.

Recall that the support of a homeomorphism h of X is the subset supp(h) = {x ∈ X : h(x) 6= x}
of X, which is the closure of the set of points which are moved by h. A germ (on the space X)
is the equivalence class of a pair (h, x), where x ∈ X and h is a homeomorphisms defined from a
neighbourhood of x to a neighbourhood of h(x) ∈ X, where (h1, x1) and (h2, x2) are equivalent if
x1 = x2 and h1 and h2 coincide on a neighbourhood of x1. We denote by [h]x the equivalence class
of (h, x). If γ = [h]x is a germ, where (h, x) is a representative pair of γ, the points s(γ) = x and
t(γ) = h(x) are called the source and the target of γ. Two germs γ1, γ2 can be multiplied provided
t(γ2) = s(γ1), and in this case γ1γ2 = [h1h2]s(γ2), where (h1, s(γ1)) and (h2, s(γ2)) are any choice of
representatives of γ1, γ2. They are inverted according to the rule [h]−1

x = [h−1]h(x). Given a point
x ∈ X, we will denote by 1x the germ of the identity homeomorphism at x.

Definition 2.1. A groupoid of germs (over X) is a set G of germs on X which verifies the following
properties:

(i) if γ1, γ2 ∈ G are such that s(γ1) = t(γ2), then γ1γ2 ∈ G, and we have γ−1 ∈ G for every γ ∈ G;
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(ii) we have 1x ∈ G for every x ∈ X;

(iii) every γ ∈ G admits a representative pair (h, s(γ)) with the property that [h]y ∈ G for every y
in the domain of definition of h.

The topological full group of G is the group F (G) of all compactly supported homeomorphisms g of
X with the property that [g]x ∈ G for every x ∈ X.

2.2 Finitely many singularities

In this subsection we study group actions on locally compact spaces whose germs at every point
belong to a given groupoid of germs, except for finitely many isolated “singularities”. To formalise
this idea, we will work in the following setting.

Definition 2.2. Let H ⊂ G be groupoids of germs over X. We say that the pair H ⊂ G is co-discrete
if every γ ∈ G admits a representative (h, s(γ)) with the property that [h]y ∈ H for every y 6= s(γ)
in the domain of definition of h. We will say that γ ∈ G is singular if it does not belong to H, and
that it is regular otherwise.

Similarly given g ∈ F (G), we will say that a point x ∈ X is singular for g if [g]x /∈ H, and regular
otherwise.

The terminology “co-discrete” comes from the fact that a groupoid of germs is naturally endowed
with a topology (the so-called sheaf topology), and the condition above is equivalent to the fact that
the complement G \ H is discrete with the induced topology (however we will not take this point of
view). A simple compactness argument yields the following lemma:

Lemma 2.3. Assume that H ⊂ G is a co-discrete pair. Then every g ∈ F (G) has finitely many
singular points.

Proof. This follows from the fact that elements of F (G) are compactly supported, and from a simple
compactness argument.

We also give the following definition.

Definition 2.4. Let H ⊂ G be a co-discrete pair. We say that it has resolvable singularities if the
following holds. For every choice of finitely many germs γ1, . . . , γ` ∈ G such that t(γ1), . . . , t(γ`)
are distinct points, and every compact subset K ⊂ X there exists an element ϕ ∈ F (G) with the
following properties.

(i) We have [ϕ]t(γi)γi ∈ H for every i = 1, . . . , `.

(ii) We have [ϕ]y ∈ H for every y ∈ K \ {t(γ1), . . . t(γ`)}.

Intuitively, this means that any finite family of singular germs γ1, . . . γ` ∈ G can be “resolved”
(i.e. brought back to H) by post-composing them with an element ϕ ∈ F (G) that can be chosen
without any additional singularities in any arbitrarily large compact subset. Note that if X is
compact, the compact subset K is redundant in the definition as we can choose K = X.

The reader can have in mind the following example: H is the groupoid of all germs of partially
defined diffeomorphisms of the circle, and G is defined similarly by allowing isolated singularities for
the derivatives. In this situation, the fact that the pair H ⊂ G has resolvable singularities is easy to
verify (and will follow from Proposition 3.5).

We consider now subgroups of the topological full group F (G).
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Remark 2.5. If a group Γ is countable, then property FW implies automatically that it is finitely
generated (this is already a consequence of property FA of Serre, which is implied by FW, see [12]).

Given a subgroup Γ ⊂ F (G), its support supp(Γ) =
⋃
h∈Γ supp(h) is the closure in X of the set

of points of X that are moved by some element of Γ. When the subgroup is finitely generated, as
it is the case for countable subgroups with property FW, the support of Γ is just the union of the
supports of elements in a symmetric generating system. We also say that a point x ∈ X is singular
for Γ if there exists g ∈ Γ such that x is singular for g.

Proposition 2.6. Let H ⊂ G be a co-discrete pair of groupoids of germs over X with resolvable
singularities. Let Γ ⊂ F (G) be a countable subgroup, with property FW. Then there exists ϕ ∈ F (G)
such that the set of singular points of the group ϕΓϕ−1 is finite and consists of points with a finite
ϕΓϕ−1-orbit.

In particular, if the action of Γ on its support has no finite orbits, then Γ is conjugate in F (G)
to a subgroup of F (H).

In the proof, we will use the following terminology. Given a pair of groupoids of germs H ⊂ G,
there is a well-defined coset space G/H. The latter is defined as the set of equivalence classes of the
equivalence relation on G that identifies γ1, γ2 ∈ G if t(γ1) = t(γ2) and γ−1

1 γ2 ∈ H. The equivalence
class of γ is denoted by γH. Note that the target map t : G → X descends to a well-defined map
t : G/H → X, t(γH) = t(γ).

Proof. We let the group Γ act on the coset space G/H by the rule

g · γH = [g]t(γ)γH, g ∈ Γ, γH ∈ G/H.

Observe that the target map t : G/H → X is equivariant for this action. Let Y = supp(Γ) ⊂ X be
the support of Γ. The action of Γ is trivial in restriction to fibres t−1(x), x /∈ Y . Therefore, the
subset t−1(Y ) = {γH ∈ G/H : t(γ) ∈ Y } is a Γ-invariant subset of G/H. Consider the trivial section
A = {1xH : x ∈ Y } ⊂ t−1(Y ) in G/H.

Claim 1. The subset A is commensurated.

Proof of claim. Take g ∈ Γ. For every 1xH ∈ A, the condition that g ·1xH = [g]xH /∈ A is equivalent
to the fact that [g]x /∈ H, and there are only finitely many points x ∈ Y with this property by
Lemma 2.3. This shows that g(A) \ A is finite. The same reasoning applied to g−1 shows that
A \ g(A) is also finite. Hence A is commensurated.

Since we are assuming that Γ has FW, it follows that A is transfixed. Let B ⊂ t−1(Y ) in G/H,
be a Γ-invariant subset such that A4B is finite.

Claim 2. There exists a finite subset E ⊂ Y which is Γ-invariant and such that for every x ∈ Y \E,
we have |t−1(x) ∩B| = 1.

Proof of claim. We set E = {x ∈ Y : |t−1(x) ∩B| 6= 1}. Then, by invariance of B and equivariance
of t, it follows that E is Γ-invariant. Since B4A is finite, and A ∩ t−1(x) = {1xH} for every x ∈ Y ,
we deduce that E must be finite.

For every x ∈ Y \ E, denote by γxH the unique element of t−1(x) ∩B (where we fix arbitrarily
a representative γx of the coset for every x ∈ Y \ E). Note that, since B4A is finite, we have
γxH = 1xH for all but finitely many x. Note also that t(γx) = x for every x ∈ Y . Invariance of B
reads as follows.

γg(x)H = [g]xγxH, ∀x ∈ Y \ E, ∀g ∈ Γ. (1)
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Claim 3. There exists ϕ ∈ F (G) with the property that

[ϕ−1]ϕ(x)H = γxH ∀x ∈ Y \ E.

Proof of claim. Let Σ ⊂ Y \E be the finite subset of points x ∈ Y \E such that γxH 6= 1xH. We
use the assumption that the pair H ⊂ G has resolvable singularities, applied to the finite collection
of germs {γx : x ∈ Σ} and to the compact subset K = Y . We obtain that there exists ϕ ∈ F (G) such
that

(a) for every x ∈ Σ we have [ϕ]xγx ∈ H,

(b) for every x ∈ Y \ Σ we have [ϕ]x ∈ H.

Property (a) can be rewritten as [ϕ−1]ϕ(x)H = γxH for x ∈ Σ. Moreover if x ∈ Y \ (E ∪Σ) property
(b) implies that [ϕ−1]ϕ(x)H = 1xH, which is equal to γxH since x /∈ Σ. This concludes the proof of
the claim.

Claim 4. All singular points of ϕΓϕ−1 are contained in ϕ(E).

Proof of claim. Let y /∈ ϕ(E) and let us show that for every g ∈ Γ the germ of ϕgϕ−1 at y belongs
to H. Since ϕΓϕ−1 is supported on ϕ(Y ), we can assume that y = ϕ(x) for some x ∈ Y \E and the
claim is equivalent to:

[ϕ]g(x)[g]x[ϕ−1]ϕ(x) ∈ H ∀x ∈ Y \ E,

which is equivalent to
[ϕ−1]ϕ(g(x))H = [g]x[ϕ−1]ϕ(x)H,

which by Claim 3 is equivalent to
γg(x)H = [g]xγxH

which is exactly (1).

It follows that all the singular points of ϕΓϕ−1 are contained in the finite ϕΓϕ−1-invariant subset
ϕ(E). This concludes the proof of Proposition 2.6.

2.3 Countably many singularities

The purpose of the remainder of this section is to study a more general situation where we allow
group actions with a countable set of singularities with respect to a given groupoid of germs H. We
work in the following setting.

Definition 2.7. Let H be a groupoid of germs over X. We let ΩH be the groupoid of all germs γ
that admit a representative (h, s(γ)) with the property that [h]y ∈ H for all but at most countably
many points y in the domain of definition of h.

It is easy to check that ΩH is a well-defined groupoid of germs. Given an element g ∈ F (ΩH),
we will say that a point x ∈ X is singular for g if [g]x /∈ H.

Lemma 2.8. For every g ∈ F (ΩH), the set of singular points of g is countable and closed.

Proof. Recall that every element g ∈ F (ΩH) has compact support, by the definition we use of the
full group. Countability follows from a compactness argument. The fact that the complement of the
set of singular points of g is open is a consequence of condition (iii) in Definition 2.1.
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Our aim is to prove a result analogous to Proposition 2.6 that applies to the pair H ⊂ ΩH. In
order to state it we first need to give an alternative point of view on the groupoid ΩH via the notion
of Cantor–Bendixson rank of a compact space (see [22, Sec. 6]). Let us recall here its definition
in the special case of countable compact spaces, that will be enough for our purposes. Let C be a
countable compact space. If such as space is non-empty, then it must contain isolated points by
Baire’s theorem. Its Cantor–Bendixson derivative, denoted C ′, is defined as the complement of
the subset of isolated points in C. Given a countable ordinal α define a compact countable subset
Cα ⊂ C by transfinite induction by setting C0 = C, and

Cα =
{
C ′β if α = β + 1,⋂
β<αCβ if α is a limit ordinal.

The family Cα is a decreasing ordered family of closed subsets of C. Using the fact that C is
countable, it follows that there exists a smallest countable ordinal ρ such that Cρ = ∅. The ordinal ρ
will be called the Cantor–Bendixson rank of C. Note also that, as a consequence of compactness
of C, the ordinal ρ is of the form ρ = β + 1 and Cβ is a finite subset (the reader should be warned
that sometimes its predecessor β is called the Cantor–Bendixson rank of C).

Now let H be a groupoid of germs over X. We denote by SH the groupoid of germs consisting of
all germs γ that admit a representative (h, s(γ)) such that [h]y ∈ H for all y 6= s(γ) in the domain
of definition of h. Note that the pair H ⊂ SH is co-discrete, by definition. For every countable
ordinal α we define a groupoid Hα by setting:

Hα =
{
SHβ if α = β + 1,
S(
⋃
β<αHβ) if α is a limit ordinal.

Lemma 2.9. Assume X is compact. Let g ∈ F (ΩH), and let C ⊂ X be the set of singular points
of g. Let ρ be the Cantor–Bendixson rank of C. Then g ∈ F (Hρ).

Note that C is countable and compact by Lemma 2.8.

Proof. Let Cα be the transfinite sequence as in the definition of Cantor–Bendixson rank. We show
by induction on α ≤ ρ that if x ∈ C \Cα then [g]x ∈ Hα. First assume that α = 1. Then x ∈ C \C1
is an isolated point in C, and therefore x has a neighbourhood U in X that does not intersect C,
i.e. such that [g]y ∈ H for every y ∈ U , y 6= x. It follows that [g]x ∈ SH = H1. For the induction
step, assume first that α is a limit ordinal. This implies that x ∈ C \ Cβ for some β < α and by
the inductive hypothesis we have [g]x ∈ Hβ ⊂ Hα. Assume now that α = β + 1 is a successor.
We can assume that x ∈ Cβ \ Cα, or we are done again by the inductive hypothesis. Note that
Cβ \ Cα consists of isolated points in Cβ, and therefore we can find a neighbourhood U of x such
that (U \ {x})∩C ⊂ (C \Cβ) and it follows by inductive hypothesis that for every y ∈ U ∩C, y 6= x,
we have [g]y ∈ Hβ, from which we conclude that [g]x ∈ Hα = SHβ.

Definition 2.10. We say that H has countably resolvable singularities if for every countable ordinal
α the following holds:

(i) if α = β + 1 is a successor, then the pair Hβ ⊂ Hα has resolvable singularities;

(ii) if α is a limit ordinal, then the pair
⋃
β<αHβ ⊂ Hα has resolvable singularities.

Once again, the reader can have in mind the example of the groupoid of germs of all partially
defined diffeomorphisms of the circle (Proposition 3.5). We are now ready to state the final result of
this section:
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Proposition 2.11. Let H be a groupoid of germs over X with countably resolvable singularities. Let
Γ ⊂ F (ΩH) be a finitely generated subgroup with property FW. Then one of the following possibilities
holds.

(i) The action of the group Γ on its support has a finite orbit.

(ii) The group Γ is conjugate in F (ΩH) to a subgroup of F (H).

Proof of Proposition 2.11. We assume that (i) does not hold and show that (ii) holds. Note that the
support of the action of Γ is compact (contained in the union of the supports of its generators). Using
Lemma 2.9 we obtain that Γ ⊂ F (Hρ) for some countable ordinal ρ (it is enough to take the largest
such ordinal over a finite generating subset of Γ). We show by induction on ρ that Γ is conjugate in
F (Hρ) to a subgroup of F (H). Assume first that ρ = β + 1 is a successor, so that Hρ = SHβ . Then
the pair Hβ ⊂ Hρ is co-discrete by definition, and it has resolvable singularities by Definition 2.10.
As we are assuming that the action of Γ has no finite orbit in its support, Proposition 2.6 yields that
Γ is conjugate in F (Hρ) to a subgroup of F (Hβ), and since the assumption that Γ does not have
finite orbits in its support is invariant under conjugacy, we are reduced to the inductive hypothesis.
Next, assume that ρ is a limit ordinal, so that Hρ = S(

⋃
β<ρHβ). The pair

⋃
β<ρHβ ⊂ Hρ is

co-discrete and has resolvable singularities, and using again Proposition 2.6 we obtain that there
exists ϕ ∈ F (Hρ) such that ϕΓϕ−1 ⊂ F (

⋃
β<ρHβ) =

⋃
β<ρ F (Hβ). Using again that ϕΓϕ−1 is

finitely generated, it cannot be written as an increasing union of proper subgroups. Therefore it
must be contained in F (Hβ) for some β < ρ. By the inductive hypothesis, this concludes the proof
of the proposition.

3 Singular actions on manifolds

Throughout the section we fix d ≥ 1 and let G be a groupoid of germs over Rd. Let M be a
topological manifold of dimension d (all topological manifolds will be assumed to be Hausdorff and
second countable). We will say that M is a G-manifold if it endowed with an atlas such that the
corresponding changes of charts have all germs in the groupoid G. See Thurston’s book [37, Ch. 3] for
more details. Whenever M,N are G-manifolds, a homeomorphism ϕ : M → N between G-manifolds
will be called a G-homeomorphism if in coordinate charts, all the germs of ϕ belong to G. An
ΩG-homeomorphism (or a countably singular G-homeomorphism) ϕ : M → N between G-manifolds
is a homeomorphism of topological manifolds which is moreover a G-homeomorphism in restriction
to an open subset of M whose complement is countable. We will denote by HomeoG(M) the group
of self G-homeomorphism of a G-manifold M , and by ΩHomeoG(M) the group of countably singular
ones.

As the main example, fix r ≥ 1 and let Dr be the groupoid of germs of all local diffeomorphisms
of class Cr of Rd. Then a Dr-manifold M is simply a Cr-differentiable manifold, and a Dr-
homeomorphism is a diffeomorphism of class Cr. By a classical theorem of Whitney [39], every Cr-
differentiable manifold admits a unique compatible C∞-differentiable structure up to diffeomorphism,
therefore in this case we simply say that M is a differentiable manifold. We will say that a
differentiable manifold is an exotic sphere if it is homeomorphic to a euclidean sphere Sd (in
particular, we use the convention that the standard euclidean sphere is itself an exotic sphere).

As another example that will be relevant, let DrLeb be the set of Cr-diffeomorphisms of Rd whose
Jacobian at every point has determinant 1 (that is, those that preserve the Lebesgue volume form
dx1 ∧ · · · ∧ dxd). Then a G-manifold M is an oriented Cr-manifold endowed with a volume form ω
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(see [37, Ex. 3.1.12]), and G-homeomorphisms are homeomorphisms that preserve the corresponding
volume forms.

We are now ready to state the main theorem of this section, which implies Theorem 1.1.

Theorem 3.1. Let G be a groupoid of germs of Rd, and let M be a closed G-manifold. Let Γ be a
finitely generated group with property FW. For every homomorphism ρ : Γ→ ΩHomeoG(M), one of
the following holds:

(i) the action of ρ(Γ) on M has a finite orbit;

(ii) there exist a closed G-manifold N and an ΩG-homeomorphism ϕ : M → N such that ϕρ(Γ)ϕ−1 ⊂
HomeoG(N).

If moreover G = Dr (so that M is a differentiable manifold) and if the dimension d is such that the
euclidean sphere Sd is the unique exotic d-sphere up to diffeomorphism, then in part (ii) one can
choose N = M .

Remark 3.2. In [13], Cornulier obtains results in similar spirit but in a different setting, namely by
considering partially defined actions where the action of each element is defined on the complement
of a finite set and preserves the G-structure on its domain of definition. The main differences are
that while [13] only treats actions with finitely many singularities, in dimension one the results
of [13] can be applied to discontinuous actions with finitely many discontinuity points, while we
only treat actions that are globally continuous. Another difference is that [13] works more generally
with modelled spaces in the sense of Ehresmann (not necessarily manifolds), i.e. spaces with charts
taking values in a given model space X (not necessarily homeomorphic to Rd) with changes of charts
prescribed by a given pseudogroup of transformations of X. Here we consider only manifolds, but
we point out that this is not essential. Theorem 3.1 (except for the last sentence) extends with the
same proof if Rd is replaced by any model space X satisfying mild local conditions (more precisely,
any Hausdorff space which does not contain open countable subsets).

In the proof we will use the following lemma, whose proof is an elementary cut-and-paste
argument.

Lemma 3.3. Let M be a G-manifold of dimension d, and x1, . . . , x` ∈M be distinct points in M .
Assume that U1, . . . , U` are pairwise disjoint open neighbourhoods of x1, . . . , x`, and that for every
i = 1, . . . , ` we are given an ΩG-homeomorphism hi : Ui → Vi, where Vi is a G-manifold. Then there
exists a G-manifold N such that the following hold.

1. As topological manifolds, N and M are homeomorphic.

2. There exists an ΩG-homeomorphism τ : M → N such that for every i = 1, . . . , ` there exist an
open neighbourhood Wi ⊂ Ui of xi, and G-homeomorphic embeddings λi : hi(Wi) ↪→ N such
that

(i) the set of singular points of τ is compactly contained in W1 ∪ · · · ∪W`;
(ii) for every i = 1, . . . , ` the restriction τ |Wi coincides with λi ◦ hi|Wi.

3. Assume further G ⊂ Dr for some r ≥ 1 (in particular M and N also inherit a structure of
differentiable manifolds). Then, seen as a differentiable manifold, N is diffeomorphic to a
connected sum of M with finitely many exotic spheres. In particular if the dimension d is
such that the standard sphere Sd is the unique exotic d-sphere up to diffeomorphism, then N is
diffeomorphic to M .
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For a definition of the connected sum of differentiable manifolds and its basic properties, we refer
the reader to [23, §1].

Proof. Since every hi is a G-homeomorphism on the complement of a countable closed subset of
Ui, using compactness we can choose disjoint neighbourhoods Wi ⊂ Ui of the xi’s such that the
following properties are satisfied for every i = 1, . . . , `:

(a) the closure W i is a G-manifold with boundary, topologically homeomorphic to a closed ball and
is contained in Ui;

(b) hi is a G-homeomorphism in restriction to some open neighbourhood Li of ∂W i in Ui.

Set Zi = hi(Wi), and let Zi be its closure in Vi, i = 1, . . . , `. Consider the open subset M0 =
M \

(
W 1 ∪ · · · ∪W `

)
of M , and let M0 be its closure in M . We have ∂M0 = ∂W 1 ∪ · · · ∪ ∂W `.

Let N be the space obtained by gluing M0 to Z1 t · · · t Z`, by identifying every ∂W i with ∂Zi
via the map hi, for every i = 1, . . . , `. We denote by λ0 : M0 ↪→ N and λi : Zi ↪→ N, i = 1 . . . , ` the
canonical inclusions. Define the (topological) homeomorphism τ : M → N given by

τ(x) =
{
λ0(x) x ∈M0,
λi ◦ hi(x) x ∈W i, i = 1, . . . , `.

In particular M and N are homeomorphic as topological manifolds. Let us endow N with the
structure of a G-manifold as follows. Write Li = L+

i ∪L
−
i , where L

+
i = Li \Wi and L−i = Li∩W i, so

that L+
i ⊂M0, L−i ⊂W i, and L+

i ∩ L
−
i = ∂W i. The subset Ki = τ(Li) is an open neighbourhood

in N of ∂W i 'hi
∂Zi. We transport the structure of G-manifold of Li to Ki via the homeomorphism

τ |Li : Li → Ki, i = 1, . . . , `. Moreover we transport the G-manifold structures of M0, Z1, . . . , Z` to
λ0(M0), λ1(Z1), . . . , λ`(Z`) via the identifications λ0, . . . , λ`. Note that the corresponding structures
are compatible on the intersections Ki, because every hi is a G-homeomorphism on the interior
of L−i . Therefore this defines uniquely a structure of G-manifold on N . By construction, the
homeomorphism τ defined above satisfies the conclusion of part 2.

It remains to check part 3. To this end, recall that by (a) the sets Wi above are such that W i

is a differentiable manifold with boundary homeomorphic to a closed ball. For i = 1, . . . , `, let Ri
be the differentiable manifold obtained by gluing W i and Zi by identifying ∂W i with ∂Zi using
the diffeomorphism hi|∂W i

. Since both W i and Zi are homeomorphic to disks, and Ri is an exotic
sphere, it readily follows from the construction of N that it is diffeomorphic to a connected sum of
M with R1, . . . , R`. The last sentence in part 3 follows from the fact that taking a connected sum
with standard spheres does not change the diffeomorphism class of a manifold.

Given a closed G-manifold M we denote by GM the groupoid consisting of all germs of G-
homeomorphisms between open subsets of M . Observe that, keeping the notations introduced in the
previous section, we have F (GM ) = HomeoG(M) and F (ΩGM ) = ΩHomeoG(M). The groupoid GM ,
however, needs not satisfy the requirements for Proposition 2.11. In order to get around this, we will
instead view it as a subgroupoid of a larger groupoid, consisting of all germs of G-homeomorphims
between G-manifolds of dimension d. More precisely, let Bd be a set of closed compact G-manifolds
of dimension d that contains infinitely many representatives for each G-homeomorphism class (one
representative would be enough, but taking infinitely many will slightly simplify the discussion).

We define a space Xd as the disjoint union Xd =
⊔
M∈Bd

M . We let GXd
be the groupoid of germs

over the space Xd consisting of all germs of all G-homeomorphisms defined from an open subset of
some manifold in Bd to an open subset of some (perhaps different) manifold in Bd.
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For a fixed G-manifold M ∈ Bd, the group ΩHomeoG(M) is naturally a subgroup of F (ΩGXd
)

supported on M . In particular, it acts on the groupoid ΩGXd
by post-composition whenever the

target of the element of the groupoid lies in M , and as the identity otherwise.

Proposition 3.4. The groupoid GXd
has countably resolvable singularities.

Proof. To simplify the notations set H = GXd
and let Hα be the transfinite sequence as in the

previous section. Assume that α = β + 1 is a successor, and let us show that the pair Hβ ⊂ Hα
has resolvable singularities (the case of a limit ordinal is totally analogous and we omit it). To
this end take γ1, . . . , γ` ∈ Hα and let K ⊂ Xd be a compact subset as in Definition 2.4. Setting
xi = t(γi), i = 1, . . . `, we can assume that x1, . . . , x` belong to a closed G-manifold M ⊂ Xd
(equal to the union of all the connected G-manifolds that contain x1, . . . , x`). Choose representatives
(h1, x1), . . . , (h`, x`) of γ−1

1 , . . . , γ−1
` whose domains of definitions are open neighbourhoods U1, . . . , U`

of x1, . . . , x` respectively, that we can assume to be pairwise disjoint and contained in M . Moreover,
by definition of Hα = SHβ, upon reducing the Ui’s we can assume that [hi]y ∈ Hβ for every
y ∈ Ui \ {xi}.

We apply Lemma 3.3 to this data, and let N be the G-manifold and τ : M → N and Wi ⊂ Ui and
λi : hi(Wi) ↪→ N be as in the conclusion of the lemma. Without loss of generality, we can suppose
that N belongs to Bd, so that N ⊂ Xd. Moreover, since we assume that Bd contains infinitely
many representatives of every G-homeomorphism class, we can assume that N ∩K = ∅ and that
N ∩M = ∅ in Xd. Let ϕ ∈ F (Hα) be the element given by:

ϕ(x) =


τ(x) x ∈M,
τ−1(x) x ∈ N,
x x /∈M ∪N.

We claim that ϕ satisfies the conclusions (i,ii) of Definition 2.4. To see this, observe that for every
i = 1, . . . , ` we have

[ϕ]xiγi = [λi]hi(xi)[hi]xiγi = [λi]hi(xi)γ
−1
i γi = [λi]hi(xi) ∈ H ⊂ Hβ.

In a similar way one checks that for every x ∈ M \ {x1, . . . , x`} we have [ϕ]x ∈ Hβ. Since ϕ is
supported on M ∪ N and N ∩K = ∅, this shows that [ϕ]x ∈ Hβ for every x ∈ K \ {x1, . . . , x`}.
This concludes the proof.

Note that in the above proof, we have not used part 3 of Lemma 3.3. Taking it into account, the
same proof yields the following when G = Dr, r ≥ 1. (In the statement, DrM denotes the groupoid
consisting of all germs of Cr diffeomorphisms between open subsets of M .)

Proposition 3.5. Let M be a closed differentiable manifold of dimension d, and assume that d is
such that the standard sphere Sd is the unique standard exotic d-sphere up to diffeomorphism. Then
the groupoid DrM has countably resolvable singularities.

Proof of Theorem 3.1. Let M be a closed manifold and ρ : Γ→ ΩDiffr(M) be as in the statement,
and assume that Γ has no finite orbit. Since property FW passes to quotients, we can identify Γ with
its image. We identify M with a subset of Xd, where d is the dimension of M , and Γ with a subgroup
of F (ΩDrd) supported on M . By Proposition 3.4 we are in position to apply Proposition 2.11 and
we obtain that either Γ has a finite orbit in M , or that there exists an element ϕ ∈ F (ΩDrd) such
that ϕΓϕ−1 ⊂ F (Drd). Note that ϕΓϕ−1 is supported on the manifold N = ϕ(M), which is the
manifold in the statement. If the dimension d is as in the last sentence, then we may repeat the
same reasoning using the groupoid DrM by Proposition 3.5 and we obtain that M = N .
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If we restrict the attention to actions with finitely many singularities, the conclusion can be made
more precise in the finite-orbit case. Given a G-manifold M we denote SHomeoG(M) = F (SGM )
the group of finitely singular G-homeomorphisms of M , i.e. those that are G-homeomorphisms in
restriction to the complement of a finite set. It is naturally a subgroup of the topological full group
F (SGXd

) (with the notations of the previous section). It follows from Proposition 3.4 that the pair
SGd ⊃ Gd satisfies the requirements for Proposition 2.6. Using this, one obtains:

Theorem 3.6. Let M be a closed G-manifold. Let Γ be a finitely generated group with property FW.
For every homomorphism ρ : Γ→ SHomeoG(M), there exists a closed G-manifold N and a finitely
singular G-homeomorphism ϕ : M → N such that the set of singular points of ϕρ(Γ)ϕ−1 is finite and
consists of points with a finite ϕρ(Γ)ϕ−1-orbit.

Again, if G = Dr and if the dimension d is such that Sd is the unique exotic d-sphere up to
diffeomorphism, then we can choose M = N .

Let us now explain the applications related to Zimmer’s conjecture.

Corollary 3.7. Let G be a connected Lie group of real rank r ≥ 2, whose Lie algebra is simple
and with finite centre. Let Γ ⊂ G be a cocompact lattice, or Γ = SL(r + 1,Z). Let Md be a closed
manifold of dimension d, and let ρ : Γ→ ΩDiff2(M). Then

(i) If d < r, then the action of ρ(Γ) on M has a finite orbit.

(ii) If there is a volume form ω on M such that ρ(Γ) preserves the measure associated to ω, and if
d ≤ r, then ρ(Γ) has a finite orbit.

Remark 3.8. Note that the condition that ρ(Γ) preserve the measure associated to ω is equivalent
to say that for every γ ∈ Γ, the element ρ(γ) preserves the form ω outside its singular set (as the
singular set of ρ(γ) is countable, it has measure zero).

Proof of Corollary 3.7. Both facts follow by combining the main results in [6, 7] with Theorem 3.1,
applied to the groupoids G = D2 and G = D2

Leb respectively.

4 Singular actions on the circle

This section is devoted to the more precise results that we can obtain in the case of actions on
the circle.

4.1 Piecewise differentiable homeomorphisms

Definition 4.1. A homeomorphism g : S1 → S1 is said to be piecewise differentiable of class Cr
if there exists a finite subset BP(g) ⊂ S1 such that g is a Cr-diffeomorphism in restriction to
S1 \ BP(g), and for every x ∈ BP(g) the right and left derivatives of g exist up to order brc at x,
and the derivative D(brc)g is (r − brc)-Hölder continuous. The subset BP(g) will be called the set
of breakpoints of g. The group of all piecewise differentiable homeomorphisms of S1 of class Cr is
denoted by PDiffr(S1).

In the following, we will simply denote by Dr the groupoid of diffeomorphic germs DrS1 over S1,
and by PDr the groupoid of piecewise-Cr germs over S1. The difference between SDr and PDr is
that in the latter case we require that every germ is represented by a local homeomorphism having
left and right first brc derivatives defined at every point of the domain of definition, and with the
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brc-th left and right derivatives (r − brc)-Hölder continuous. Observe that the pair of groupoids
PDr ⊃ Dr is co-discrete, and it is not difficult to show that it has resolvable singularities.

We let PDr+ be the subgroupoid consisting of orientation preserving germs. For every x ∈ X we
let (PDr+)x be the isotropy group at x of this groupoid, which consists of all γ ∈ PDr+ such that
s(γ) = t(γ) = x. We first settle the following special case of Theorem 4.3.

Proposition 4.2. Let Γ be a countable property FW subgroup of PDiff1(S1) that has a finite orbit.
Then Γ is finite.

Proof. Assume by contradiction that Γ is infinite, and note that it is finitely generated because of
property FW. Since property FW passes to finite index subgroups, we can assume that Γ preserves
orientation and fixes a point x ∈ S1, and using that Γ is finitely generated, without loss of generality
we can assume that there exists an element g ∈ Γ such that g is not the identity in restriction to
a right neighbourhood of x. Hence we obtain a non-trivial group homomorphism Γ → (PD1

+)x.
The image of this homomorphism is a non-trivial finitely generated subgroup of (PD1

+)x, and
therefore admits a non-trivial homomorphism to R by the Thurston’s stability theorem [36]. Hence
so does Γ. This contradicts property FW, since FW passes to quotients, and an abelian infinite
finitely generated group never has FW.

Theorem 4.3. Fix r ∈ [1,∞]. Every countable subgroup of PDiffr(S1) with property FW is conjugate
in PDiffr(S1) to a subgroup of Diffr(S1).

Proof. Let Γ ⊂ PDiffr(S1) be a subgroup with property FW. As the pair PDr ⊂ Dr is co-discrete,
with resolvable singularities, we can invoke Proposition 2.6 and claim that the action of Γ on S1

has a finite orbit, or Γ is conjugate in F (SDr) = PDiffr(S1) to a subgroup of F (Dr) = Diffr(S1).
However, because of Proposition 4.2, the former is possible only if Γ is finite.

Proof of Corollary 1.3. Let Γ be a subgroup of PDiff3/2(S1), with property (T) and hence property
FW. (We again identify Γ with its image.) After Theorem 4.3, there exists a homeomorphism
ϕ : S1 → S1 such that ϕΓϕ−1 is a group of Cr circle diffeomorphisms. Navas’ theorem (Theorem 1.2)
gives that Γ is finite.

4.2 PL circle homeomorphisms and isometric actions

In this subsection we will give an alternative and more elementary proof of Corollary 1.3 for
groups of piecewise linear homeomorphisms, that we state below. For simplicity, we will always
assume that homeomorphisms do preserve the orientation.

Definition 4.4. A homeomorphism h : S1 → S1 is piecewise linear if, when seeing S1 as the flat
torus R/Z (so with its quotient affine structure), for all but finitely many points x ∈ S1 there exists
an open neighbourhood I(x) such that the restriction h|I(x) is an affine map, that is of the form
y 7→ ay + b. A point x ∈ S1 where this condition is not verified is a breakpoint of h. We write BP(h)
for the set of breakpoints of h. We denote by PL+(S1) the group of piecewise linear homeomorphisms
of S1.

Theorem 4.5. If Γ is a Kazhdan group, every homeomorphism ρ : Γ→ PL+(S1) has finite image.

We consider the Hilbert space H = `2(S1). If a group Γ acts on S1, the action induces an
isometric action on H, just by permutation of the basis: h · (ax)x∈S1 =

(
ah−1(x)

)
x∈S1

. We write

15



π : Γ→ O(H) for this (left) representation. Given an element h ∈ PL+(S1), we write D−h and D+h
for its left and right derivatives (which are well-defined at every point). The map

b : PL+(S1)× S1 → R
(h, x) 7→ log D+h(x)

D−h(x)

is a cocycle (i.e. b(gh, x) = b(g, h(x)) + b(h, x)), as one sees by applying the chain rule. Observe
that we have b(h−1, x) = −b(h, h−1(x)). As h is a piecewise linear homeomorphism, for fixed h, the
function b(h,−) is zero at all but finitely many points (the breakpoints of h). This allows to define
an isometric affine action ρ : Γ→ Isom(H), with linear part π and translation part b:

Lemma 4.6. Let Γ be a subgroup of PL+(S1). The map ρ, defined for h ∈ Γ and (ax) ∈ `2(S1) by

ρ(h)(ax)x∈S1 :=π(h)(ax)x∈S1 + (b(h−1, x))x∈S1

=
(
ah−1(x) + b(h−1, x)

)
x∈S1

,

defines a homomorphism ρ : Γ→ Isom(H).

Proof. One needs a few simple verifications. First, we check that the map ρ actually defines a
homomorphism. This is guaranteed by the fact that b is a cocycle (over π):

ρ(g)ρ(h)(ax)x∈S1 = ρ(g)
(
ah−1(x) + b(h−1, x)

)
x∈S1

=
(
ah−1g−1(x) + b(h−1, g−1(x)) + b(g−1, x)

)
x∈S1

=
(
a(gh)−1(x) + b(h−1g−1, x)

)
x∈S1

= ρ(gh)(ax)x∈S1 .

Secondly, we have to verify that if a sequence (ax)x∈S1 is in H, then also its ρ(h)-image is. This is
because for a fixed element h ∈ PL+(S1), the cocycle b(h−1,−) is zero at all but finitely many points.
Finally, we have to verify that for fixed h ∈ PL+(S1), the map ρ(h) is an isometry. This is because
ρ(h) is the composition of the isometry π(h) with the translation b(h−1,−).

Lemma 4.7. Let f ∈ PL+(S1) be a non-trivial element acting with a fixed point on S1, then
ρ(f) : H → H has an unbounded orbit.

Proof. We reproduce an argument appearing in [28, §C]. Let I = (x0, x1) be a connected component
of the open support {x ∈ S1 : f(x) 6= x} (possibly x0 = x1). Without loss of generality, we can
assume that f is contracting on I, i.e. f(y) < y for every y ∈ I.

Claim 1. The set of values S = {b(fn, x) : n ∈ N, x ∈ I} is finite.

Proof of claim. Choose x0 < z < x1 such that the restriction of f to I0 = (x0, z) is linear. Given
x ∈ I and n ∈ N, the logarithm of the jump of derivatives b(fn, x) can be written as the sum

b(fn, x) =
n−1∑
k=0

b(f, fk(x)).

Notice that only points fk(x) that are breakpoints of f contribute to the sum above. As f is
a contraction, the sequence {fk(x)}k∈N is strictly decreasing to x0, so the forward orbit of x
visits any breakpoint of f at most once. Therefore b(fn, x) can only take values in the finite set
{
∑
c∈E b(f, c)}E⊂BP(f).
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Claim 2. Let Mn denote the number of breakpoints of fn. Then Mn is unbounded as n→∞.

Proof of claim. Suppose, by way of contradiction, that every fn has at most M breakpoints. Fix
n ∈ N and set λn = infx∈I D+fn(x). By the previous claim, the set S is finite, hence C :=
(maxσ∈S eσ)M is finite. As the derivative D+fn can change only when passing through breakpoints,
we have the upper bound D+fn(y) ≤ Cλn for every y ∈ I. By averaging over I, using the fact that∫
I D

+fn(x) dx = |I|, we obtain the inequality 1 ≤ Cλn. As f is a contraction, λn → 0 as n→ +∞.
This gives the desired contradiction.

Take β = minσ∈S\{0} |σ|. The image ρ(f−n)~0 of the vector ~0 is exactly the vector (b(f−n, x))x∈S1 .
Its `2-norm is at least Mnβ. As the sequence Mn is unbounded, also the sequence ‖ρ(fn)(0)‖ is
unbounded.

Remark 4.8. In the proof of Claim 2, the fact that elements are piecewise linear is fundamental for
the proof. Indeed, every non-trivial piecewise linear homeomorphism of an interval has at least one
breakpoint. This is no longer true, even for Möbius transformations.

We next recall a classical result due to Hölder [33, Theorem 2.2.32]. For its statement, recall
that a group action is free if every point has trivial stabiliser.

Theorem 4.9 (Hölder). Let Γ be a subgroup of Homeo+(S1), whose action on S1 is free. Then Γ
is isomorphic to a group of rotations. More precisely, if Φ : Γ → Φ(Γ) ⊂ SO(2) denotes the
isomorphism, there exists a monotone continuous degree 1 map h : S1 → S1 such that hg = Φ(g)h
(i.e. Γ is semi-conjugate to a group of rotations).

We can now prove the main result of the section:

Proof of Theorem 4.5. As the quotient of a Kazhdan group is also a Kazhdan group, it is enough to
prove that every subgroup of PL+(S1) which has property (T) is actually finite. So let Γ ⊂ PL+(S1)
be an infinite subgroup. We consider the representation ρ : Γ → Isom(H) of Lemma 4.6. Even if
property (T) is not inherited by subgroups, we can however restrict to subgroups to show that a
particular isometric affine action has unbounded orbits. If Γ contains a non-trivial element acting
with a fixed point, then Lemma 4.7 implies that the ρ has an unbounded orbit, disproving property
(T). Otherwise, Theorem 4.9 implies that Γ is isomorphic to a group of rotations (in fact, by Denjoy’s
theorem, which holds for piecewise linear homeomorphisms [20], it is topologically conjugate), which
is abelian, and hence cannot have property (T).

A direct application of the work of Minakawa on exotic circles of PL+(S1) [31] (not to be
confused with exotic spheres in the sense of differentiable topology) gives a more precise statement
for Corollary 1.3 in the PL case. For this, we set some notations. A topological circle in PL+(S1)
is a one-parameter subgroup S = {gα;α ∈ S1} ⊂ PL+(S1) which is topologically conjugate to the
group of rotations SO(2). The topological circle is called exotic, if the conjugating map cannot be
taken in PL+(S1). For A > 1 one sets IA = [1/(A− 1), A/(A− 1)], which is an interval of length 1,
and defines

h : IA → [0, 1]
x 7→ log(A−1)x

logA

which naturally extends to a homeomorphism h̃A commuting with the translation by 1 and hence
defines, by quotient, a homeomorphism hA of S1. Set SA = h−1

A SO(2)hA. When A < 1, we set
SA = ιSAι

−1, where ι : S1 → S1 is the order-reversing involution defined by ι(x) = −x. These are
exotic circles. For A = 1, SA will simply stay for SO(2). The circles SA are contained in PL+(S1)
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(these examples had previously appeared in [5,20]) and Minakawa shows that every topological circle
in PL+(S1) is PL conjugate to one of the exotic circles SA (and vice versa). More precisely, he proves
that the only irrational rotations for which 1) the number of breakpoints of iterates is bounded and
2) the set of jumps is finite, are contained in a topological circle (see also [27]). Relying on this, one
can prove:

Theorem 4.10. Let Γ be an infinite discrete subgroup of PL+(S1). The following statements are
equivalent:

1. the affine isometric action ρ : Γ→ Isom(H) defined in Lemma 4.6 has bounded orbits;

2. the subgroup Γ is PL conjugate into a topological circle of rotations SA.

Remark 4.11. Exotic circles were one of the main reasons for suspecting that PL+(S1) might have
contained subgroups with property (T) (cf. [4]). The statement in Theorem 4.10 clearly gives a
negative answer, and at the same time explains the rôle of exotic circles in this problem.
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