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We provide a smoothening criterion for group actions on manifolds by singular diffeomorphisms. We prove that if a countable group Γ has the fixed point property FW for walls (e.g. if it has property (T)), every aperiodic action of Γ by diffeomorphisms that are of class C r with countably many singularities is conjugate to an action by diffeomorphisms of class C r on a homeomorphic (possibly non-diffeomorphic) manifold. As applications, we show that Navas's rigidity result for actions of Kazhdan groups on the circle, as well as the recent solutions to Zimmer's conjecture, generalise to aperiodic actions by diffeomorphisms with countably many singularities.

Introduction

Let Γ be a countable group acting by homeomorphisms on a compact differentiable manifold M . Assume that every g ∈ Γ acts as a diffeomorphism on the complement of some finite subset of points, called the singularities of g. We are interested in the following question: when is such a singular action smoothable, i.e. conjugate to an action by honest diffeomorphisms? The purpose of this paper is to show that this is always the case provided Γ has Kazhdan's property (T) and the action has no finite orbit. More generally, the same holds true for actions with a countable set of singularities (in a sense made precise below).

Recall that a countable group Γ is a Kazhdan group (or has Kazhdan's property (T)) if every isometric affine action of Γ on a Hilbert space has a fixed point. Even if this is not the original definition, it is equivalent after the Delorme-Guichardet theorem. (See [START_REF] Bekka | Kazhdan's property (T)[END_REF] as a general reference on property (T).) In fact, our results are based on a property weaker than property (T), namely the fixed point property for walls FW, named after Barnhill-Chatterji [START_REF] Barnhill | Property (T) versus Property FW, Section 5 in Guido's book of conjectures[END_REF] and extensively studied by Cornulier [START_REF] De Cornulier | Irreducible lattices, invariant means, and commensurating actions[END_REF][START_REF]Group actions with commensurated subsets, wallings and cubings[END_REF] (see also [START_REF] Cantat | Commensurating actions of birational groups and groups of pseudoautomorphisms[END_REF] for a recent application to birational dynamics). To recall its definition, let Γ be a countable group acting on a set X. A subset A ⊂ X is said to be commensurated if the symmetric difference g(A) A is finite for every g ∈ Γ. It is said to be transfixed if there exists a Γ-invariant subset B ⊂ X such that A B is finite. A group Γ has property FW if for every Γ-action, every commensurated subset is transfixed. Property FW is equivalent to a fixed point property for actions on CAT(0) cube complexes, and admits various other equivalent definitions, for which we refer to [START_REF]Group actions with commensurated subsets, wallings and cubings[END_REF]. Property (T) implies property FW.

For any real r ∈ [1, ∞] we will denote by Diff r (M ) the group of C r diffeomorphisms of a manifold M , with the convention that when r is not integer, this means functions whose r -th derivative exists and is (r -r )-Hölder continuous. We further let ΩDiff r (M ) be the group of countably singular diffeomorphisms of class C r , defined as the group of all homeomorphisms g of M such that there exists a dense open subset U g ⊂ M whose complement is countable and such that g is of class C r in restriction to U g .

It can happen that two manifolds M and N are homeomorphic through a countably singular diffeomorphism, yet they are are not diffeomorphic. This famous discovery is due to Milnor [START_REF] Milnor | On manifolds homeomorphic to the 7-sphere[END_REF], who showed that there are manifolds homeomorphic to the 7-sphere, but not diffeomorphic to it. Manifolds homeomorphic to spheres are now known as exotic spheres. In fact, every exotic sphere of dimension d ≥ 7 admits a singular diffeomorphism to S d with just one singular point. On the other hand if M and N are as above, then the groups ΩDiff r (M ) and ΩDiff r (N ) are isomorphic. For this reason, exotic differentiable structures arise naturally in the context studied in this paper.

We prove the following theorem.

Theorem 1.1. Let M be a closed differentiable manifold, and fix r ∈ [1, ∞]. Let Γ be a finitely generated group with property FW. For every homomorphism ρ : Γ → ΩDiff r (M ), one of the following holds:

(i) the action of ρ(Γ) on M has a finite orbit;

(ii) there exist a closed differentiable manifold N and a countably singular diffeomorphism ϕ : M → N such that ϕρ(Γ)ϕ -1 ⊂ Diff r (N ). This is a special case of Theorem 3.1, which deals with more general geometric structures on manifolds.

In the second case, the manifold N delivered by the proof is a connected sum of M with finitely many exotic spheres. In particular, it is homeomorphic to M , but not necessarily diffeomorphic. If the dimension d of M is such that the d-sphere admits a unique differentiable structure, then it is possible to choose N = M (see Theorem 3.1). It is known that the differentiable structure on S d is unique for d = 1, 2, 3, 5, 6, 12, 56, 61 [START_REF] Kervaire | Groups of homotopy spheres. I[END_REF][START_REF] Hill | On the nonexistence of elements of Kervaire invariant one[END_REF][START_REF] Wang | The triviality of the 61-stem in the stable homotopy groups of spheres[END_REF], and never unique for odd d = 1, 3, 5, 61 [START_REF] Hill | On the nonexistence of elements of Kervaire invariant one[END_REF][START_REF] Wang | The triviality of the 61-stem in the stable homotopy groups of spheres[END_REF], while a general answer is unknown in even dimension. This is a widely open problem for d = 4, known as the 4-dimensional smooth Poincaré conjecture.

In the particular case of representations of Γ into groups of singular diffeomorphisms with finitely many singularities, we obtain a more precise statement in the finite-orbit case (i), namely that the action is conjugate to an action that is of class C r away from a finite invariant subset (Theorem 3.6).

Let us discuss applications of Theorem 1.1 in dimension n = 1, namely when M = S 1 . It is an open problem whether every action of a Kazhdan group on the circle by homeomorphisms factors through a finite quotient. Andrés Navas proved that the answer is affirmative for actions by diffeomorphisms of class C 3/2 [START_REF] Navas | Actions de groupes de Kazhdan sur le cercle[END_REF]. (More precisely, this result is proven in [START_REF] Navas | Actions de groupes de Kazhdan sur le cercle[END_REF] for C r -actions with r > 3/2, but according to [START_REF]Groups of circle diffeomorphisms[END_REF]Rmk. 5.2.24] it can be extended to C 3/2 -actions, relying on work by Bader-Furman-Gelander-Monod [START_REF] Bader | Property (T ) and rigidity for actions on Banach spaces[END_REF], by means of an L p -analogue of property (T) due to Fisher-Margulis.) Theorem 1.2 (Navas). If Γ is a Kazhdan group, every homomorphism ρ : Γ → Diff 3/2 (S 1 ) has finite image.

Motivated by a question asked by him (cf. [START_REF] Bonatti | Hyperbolicity as an obstruction to smoothability for one-dimensional actions[END_REF]Question 4.8], [START_REF]Groups of circle diffeomorphisms[END_REF]Rmk. 5.2.24] and [34, §1]), it is natural to study this problem for actions by countably singular diffeomorphisms. A relevant special case is the one of actions by piecewise diffeomorphisms (or piecewise differentiable homeomorphisms), i.e. those for which the singular set is finite, and moreover at every singular point the right and left derivatives exist up to the required order of regularity. We denote by PDiff r (S 1 ) the group of all piecewise differentiable homeomorphisms of the circle of class C r . Well-studied examples of groups of piecewise differentiable homeomorphisms of the circle include groups of piecewise linear and piecewise projective homeomorphisms, and the existence of infinite Kazhdan groups was an open question even in this case. Since Kazhdan's property (T) implies property FW, the combination of Theorem 1.1 with Navas' theorem allows to answer to this question for actions by piecewise differentiable homeomorphisms. In the case of actions by countably singular diffeomorphisms, it allows to reduce the question to actions on the real line. (ii) For every homomorphism ρ : Γ → ΩDiff 3/2 (S 1 ), the action of ρ(Γ) on S 1 has a finite orbit.

In an independent preprint [START_REF]Commensurated actions for groups of piecewise continuous transformations[END_REF], Yves de Cornulier has obtained part (i) of Corollary 1.3 also allowing the presence of finitely many points of discontinuity for actions by piecewise linear or projective homeomorphisms (see Question 1.16 below and the remark following it).

Remark 1.4. The relevant difference between parts (i) and (ii) in Corollary 1.3 is that Thurston's stability theorem holds in piecewise C 1 regularity. Remark 1.5. Corollary 1.3 cannot be strengthened to obtain that every subgroup of PDiff r (S Remark 1.6. There exist finitely generated subgroups of the group PDiff ∞ (S 1 ) that are not smoothable, and even not isomorphic to groups of C 1 -diffeomorphisms [START_REF] Bonatti | Hyperbolicity as an obstruction to smoothability for one-dimensional actions[END_REF][START_REF] Lodha | A finitely presented infinite simple group of homeomorphisms of the circle[END_REF].

Remark 1.7. If we allow an uncountable closed set of singularities (of empty interior), then every group of circle homeomorphisms is isomorphic to a group of singular diffeomorphisms. Blowing up an orbit, it is possible to obtain any desired level of regularity on the complement of a Cantor set.

It is a classical leitmotiv that Kazhdan groups should behave like lattices in higher-rank simple Lie groups, which are the primary source of examples of Kazhdan groups. This is certainly far from true in full generality (e.g. there are Kazhdan groups that are hyperbolic), and it is an interesting problem to see how far one can go with this comparison. That is, what are the rigidity properties of Kazhdan groups? For higher-rank lattices, beyond the classical rigidity theorems by Mostow, Margulis and Zimmer, one of the most interesting rigidity properties is described by the so-called Zimmer's program. An important conjecture in this program states that a lattice in a higher rank simple Lie group has only (virtually) trivial actions on closed manifolds of dimension < d, where d is an explicit constant depending on the ambient Lie group (bounded below by its real rank). This conjecture has been (partially) solved recently with the breakthrough work of Brown, Fisher and Hurtado [START_REF] Brown | Zimmer's conjecture: Subexponential growth, measure rigidity, and strong property (T)[END_REF][START_REF]Zimmer's conjecture for actions of SL(m, Z)[END_REF][START_REF] Damjanovic | C 1 actions on manifolds by lattices in Lie groups with sufficiently high rank[END_REF]. For what concerns actions on one-dimensional manifolds, earlier and more precise results were obtained by Ghys, Burger-Monod, and Witte Morris [START_REF] Burger | Bounded cohomology of lattices in higher rank Lie groups[END_REF][START_REF] Ghys | Actions de réseaux sur le cercle[END_REF][START_REF] Witte | Arithmetic groups of higher Q-rank cannot act on 1-manifolds[END_REF]. In relation to our work, the main result of [START_REF] Burger | Bounded cohomology of lattices in higher rank Lie groups[END_REF][START_REF] Ghys | Actions de réseaux sur le cercle[END_REF] implies that any morphism from a lattice in a simple Lie group of rank ≥ 2 to the group PDiff 1 (S 1 ) has finite image.

It is a well known open problem whether Zimmer's conjecture holds for action by homeomorphisms that are not diffeomorphisms. In combination with the aforementioned results of Brown-Fisher-Hurtado [START_REF] Brown | Zimmer's conjecture: Subexponential growth, measure rigidity, and strong property (T)[END_REF][START_REF]Zimmer's conjecture for actions of SL(m, Z)[END_REF], Theorem 1.1 yields the following. Corollary 1.8. Let M d be a closed manifold of dimension d. Let G be a connected Lie group, whose Lie algebra is simple and with finite centre. Assume that the real rank of G is r > d and let Γ ⊂ G be a cocompact lattice, or Γ = SL(r + 1, Z). For any morphism ρ : Γ → ΩDiff 2 (M ), the action of ρ(Γ) on M has a finite orbit.

Using a more general version of Theorem 1.1 (namely Theorem 3.1), we also establish an analogous statement in the case of actions preserving a volume form, see Corollary 3.7.

Remark 1.9. Here we have simplified the statement for avoiding introducing unnecessary notations. The interested reader will be able to improve the above statement from the results appearing in [START_REF] Brown | Zimmer's conjecture: Subexponential growth, measure rigidity, and strong property (T)[END_REF][START_REF]Zimmer's conjecture for actions of SL(m, Z)[END_REF][START_REF] Cantat | Progrès récents concernant le programme de Zimmer[END_REF][START_REF] Damjanovic | C 1 actions on manifolds by lattices in Lie groups with sufficiently high rank[END_REF]. Note also that Theorem 3.6 gives a stronger result for actions by elements with finitely many singularities.

Remark 1.10. For the particular classes of groups of elementary matrices, and automorphism groups of free groups (and some relatives) questions related to Zimmer's program have been largely investigated by Ye, with no restrictions on regularity (see e.g. [START_REF] Ye | Low-dimensional representations of matrix groups and group actions on CAT(0) spaces and manifolds[END_REF][START_REF]Euler characteristics and actions of automorphism groups of free groups[END_REF][START_REF]Symmetries of flat manifolds, Jordan property and the general Zimmer program[END_REF]).

Let us give an outline of the paper and of the proof of Theorem 1.1. The core of our argument has purely topological dynamical nature (no manifolds are involved, only group actions on locally compact spaces), and is contained in Section 2. We consider an action of a countable group Γ on a locally compact space X whose germs at every point belong to a given groupoid of germs H, except for a finite set of singular points for every group element (all the necessary terminology will be defined in Section 2). We provide a criterion on H that implies, when Γ has property FW, that the action is conjugate to an action whose germ at every point belongs to H. To do so we construct a commensurating action of Γ inspired from work of Juschenko-Nekrashevych-de la Salle on amenability of groups of homeomorphisms [START_REF] Juschenko | Extensions of amenable groups by recurrent groupoids[END_REF]. We then extend this to the case of countably many singularities by transfinite induction on the Cantor-Bendixson rank of the set of singular points of the generators of Γ.

In Section 3 we apply this criterion to singular actions on manifolds. In fact, the set of diffeomorphisms of class C r do not play any special role in the proof of Theorem 1.1. We shall work in a more general setting (see Theorem 3.1), by allowing actions that are countably singular with respect to an arbitrary given groupoid of germs G of local homeomorphisms of R d , provided M has the structure of a G-manifold, i.e. admits an atlas whose changes of charts have germs in G (see Thurston's book [START_REF]Three-dimensional geometry and topology[END_REF]Ch. 3] as a standard reference on G-manifolds). In the course of the proof, we are faced to the problem of extending a finite collection of germs of singular diffeomorphisms to the whole ambient manifold, without introducing new singularities. Such an extension does not always exist. In the case of actions by diffeomorphisms the obstruction to its existence is measured by the group of twisted n-spheres Γ n = π 0 (Diff + (S n-1 ))/π 0 (Diff + (D n )), which is is in one-to-one correspondence with the differentiable structures of S n (for n = 4). Taking a connected sum with exotic spheres allows to eliminate this obstruction by producing another manifold, homeomorphic to the original one, on which the action can be regularised.

In Section 4 we discuss the case of piecewise differentiable circle diffeomorphisms, and then focus on the example of groups of piecewise linear (PL) homeomorphisms of the circle. In this case, we provide a more elementary proof of the fact that they do not have property (T), which only relies on Hölder's theorem. Namely, we will exhibit an isometric action of PL + (S 1 ) on the Hilbert space 2 (S 1 ), with linear part defined by the action of the groups on S 1 : we twist the linear action with a cocycle that measures the failure of elements to be affine. This cocycle has been widely used (implicitly or explicitly) for understanding many properties of groups of piecewise linear homeomorphisms [START_REF] Ghys | Sur un groupe remarquable de difféomorphismes du cercle[END_REF][START_REF] Guelman | Distortion in groups of affine interval exchange transformations[END_REF][START_REF] Liousse | PL Homeomorphisms of the circle which are piecewise C 1 conjugate to irrational rotations[END_REF][START_REF] Minakawa | Classification of exotic circles in P L(S 1 )[END_REF] (just to cite a few). This is to be compared to the result by Farley and Hughes [START_REF] Farley | A proper isometric action of Thompson group V on Hilbert space[END_REF][START_REF] Hughes | Local similarities and the Haagerup property[END_REF] that Thompson's group V has the Haagerup property, which is also proved by exhibiting an explicit proper action of V on a Hilbert space (Farley's proof of this result in [START_REF] Farley | A proper isometric action of Thompson group V on Hilbert space[END_REF] had a gap and has been fixed by Hughes [START_REF] Hughes | Local similarities and the Haagerup property[END_REF]).

Let us end this introduction with a list of problems. Questions 1.15 and 1.16 (that were written in a preliminary version of this paper) have been answered by Yves de Cornulier in [START_REF]Commensurated actions for groups of piecewise continuous transformations[END_REF]. His answer to Question 1.16 makes use of the classification of projective one-manifolds and their automorphism groups: using the fact that PSL(2, Z[ √ 2]) has property FW (Remark 1.5) and is dense in PSL(2, R), he concludes that the action of a topological PSL(2, R) must preserve a projective structure on S 1 .

Property FW and singular actions on locally compact spaces 2.1 Groupoids of germs

Throughout the section, we let X be a locally compact Hausdorff space (not necessarily a manifold). We will be primarily interested in the case where the space X is compact. However, in the course of the proofs, it will be useful to consider non-compact spaces as well.

Recall that the support of a homeomorphism h of X is the subset supp(h) = {x ∈ X : h(x) = x} of X, which is the closure of the set of points which are moved by h. A germ (on the space X) is the equivalence class of a pair (h, x), where x ∈ X and h is a homeomorphisms defined from a neighbourhood of x to a neighbourhood of h(x) ∈ X, where (h 1 , x 1 ) and (h 2 , x 2 ) are equivalent if x 1 = x 2 and h 1 and h 2 coincide on a neighbourhood of x 1 . We denote by [h] x the equivalence class of (h, x). If γ = [h] x is a germ, where (h, x) is a representative pair of γ, the points s(γ) = x and t(γ) = h(x) are called the source and the target of γ. Two germs γ 1 , γ 2 can be multiplied provided t(γ 2 ) = s(γ 1 ), and in this case

γ 1 γ 2 = [h 1 h 2 ] s(γ 2 )
, where (h 1 , s(γ 1 )) and (h 2 , s(γ 2 )) are any choice of representatives of γ 1 , γ 2 . They are inverted according to the rule

[h] -1 x = [h -1 ] h(x)
. Given a point x ∈ X, we will denote by 1 x the germ of the identity homeomorphism at x. Definition 2.1. A groupoid of germs (over X) is a set G of germs on X which verifies the following properties:

(i) if γ 1 , γ 2 ∈ G are such that s(γ 1 ) = t(γ 2 ), then γ 1 γ 2 ∈ G,
and we have γ -1 ∈ G for every γ ∈ G;

(ii) we have 1 x ∈ G for every x ∈ X;

(iii) every γ ∈ G admits a representative pair (h, s(γ)) with the property that [h] y ∈ G for every y in the domain of definition of h.

The topological full group of G is the group F (G) of all compactly supported homeomorphisms g of X with the property that [g] x ∈ G for every x ∈ X.

Finitely many singularities

In this subsection we study group actions on locally compact spaces whose germs at every point belong to a given groupoid of germs, except for finitely many isolated "singularities". To formalise this idea, we will work in the following setting. Definition 2.2. Let H ⊂ G be groupoids of germs over X. We say that the pair H ⊂ G is co-discrete if every γ ∈ G admits a representative (h, s(γ)) with the property that [h] y ∈ H for every y = s(γ) in the domain of definition of h. We will say that γ ∈ G is singular if it does not belong to H, and that it is regular otherwise.

Similarly given g ∈ F (G), we will say that a point x ∈ X is singular for g if [g] x / ∈ H, and regular otherwise.

The terminology "co-discrete" comes from the fact that a groupoid of germs is naturally endowed with a topology (the so-called sheaf topology), and the condition above is equivalent to the fact that the complement G \ H is discrete with the induced topology (however we will not take this point of view). A simple compactness argument yields the following lemma: Lemma 2.3. Assume that H ⊂ G is a co-discrete pair. Then every g ∈ F (G) has finitely many singular points.

Proof. This follows from the fact that elements of F (G) are compactly supported, and from a simple compactness argument.

We also give the following definition. Definition 2.4. Let H ⊂ G be a co-discrete pair. We say that it has resolvable singularities if the following holds. For every choice of finitely many germs γ 1 , . . . , γ ∈ G such that t(γ 1 ), . . . , t(γ ) are distinct points, and every compact subset K ⊂ X there exists an element ϕ ∈ F (G) with the following properties.

(i) We have [ϕ] t(γ i ) γ i ∈ H for every i = 1, . . . , . (ii) We have [ϕ] y ∈ H for every y ∈ K \ {t(γ 1 ), . . . t(γ )}.
Intuitively, this means that any finite family of singular germs γ 1 , . . . γ ∈ G can be "resolved" (i.e. brought back to H) by post-composing them with an element ϕ ∈ F (G) that can be chosen without any additional singularities in any arbitrarily large compact subset. Note that if X is compact, the compact subset K is redundant in the definition as we can choose K = X.

The reader can have in mind the following example: H is the groupoid of all germs of partially defined diffeomorphisms of the circle, and G is defined similarly by allowing isolated singularities for the derivatives. In this situation, the fact that the pair H ⊂ G has resolvable singularities is easy to verify (and will follow from Proposition 3.5).

We consider now subgroups of the topological full group F (G).

Remark 2.5. If a group Γ is countable, then property FW implies automatically that it is finitely generated (this is already a consequence of property FA of Serre, which is implied by FW, see [START_REF]Group actions with commensurated subsets, wallings and cubings[END_REF]).

Given a subgroup Γ ⊂ F (G), its support supp(Γ) = h∈Γ supp(h) is the closure in X of the set of points of X that are moved by some element of Γ. When the subgroup is finitely generated, as it is the case for countable subgroups with property FW, the support of Γ is just the union of the supports of elements in a symmetric generating system. We also say that a point x ∈ X is singular for Γ if there exists g ∈ Γ such that x is singular for g. Proposition 2.6. Let H ⊂ G be a co-discrete pair of groupoids of germs over X with resolvable singularities. Let Γ ⊂ F (G) be a countable subgroup, with property FW. Then there exists ϕ ∈ F (G) such that the set of singular points of the group ϕΓϕ -1 is finite and consists of points with a finite ϕΓϕ -1 -orbit.

In particular, if the action of Γ on its support has no finite orbits, then Γ is conjugate in F (G) to a subgroup of F (H).

In the proof, we will use the following terminology. Given a pair of groupoids of germs H ⊂ G, there is a well-defined coset space G/H. The latter is defined as the set of equivalence classes of the equivalence relation on

G that identifies γ 1 , γ 2 ∈ G if t(γ 1 ) = t(γ 2 ) and γ -1 1 γ 2 ∈ H.
The equivalence class of γ is denoted by γH. Note that the target map t : G → X descends to a well-defined map t : G/H → X, t(γH) = t(γ).

Proof. We let the group Γ act on the coset space G/H by the rule

g • γH = [g] t(γ) γH, g ∈ Γ, γH ∈ G/H.
Observe that the target map t : G/H → X is equivariant for this action. Let Y = supp(Γ) ⊂ X be the support of Γ. The action of Γ is trivial in restriction to fibres t -1 (x), x / ∈ Y . Therefore, the subset

t -1 (Y ) = {γH ∈ G/H : t(γ) ∈ Y } is a Γ-invariant subset of G/H. Consider the trivial section A = {1 x H : x ∈ Y } ⊂ t -1 (Y ) in G/H. Claim 1. The subset A is commensurated. Proof of claim. Take g ∈ Γ. For every 1 x H ∈ A, the condition that g • 1 x H = [g] x H / ∈ A is equivalent to the fact that [g] x /
∈ H, and there are only finitely many points x ∈ Y with this property by Lemma 2.3. This shows that g(A) \ A is finite. The same reasoning applied to g -1 shows that A \ g(A) is also finite. Hence A is commensurated.

Since we are assuming that Γ has FW, it follows that

A is transfixed. Let B ⊂ t -1 (Y ) in G/H, be a Γ-invariant subset such that A B is finite. Claim 2. There exists a finite subset E ⊂ Y which is Γ-invariant and such that for every x ∈ Y \ E, we have |t -1 (x) ∩ B| = 1.

Proof of claim.

We set E = {x ∈ Y : |t -1 (x) ∩ B| = 1}. Then, by invariance of B and equivariance of t, it follows that E is Γ-invariant. Since B A is finite, and A ∩ t -1 (x) = {1 x H} for every x ∈ Y , we deduce that E must be finite.

For every x ∈ Y \ E, denote by γ x H the unique element of t -1 (x) ∩ B (where we fix arbitrarily a representative γ x of the coset for every x ∈ Y \ E). Note that, since B A is finite, we have γ x H = 1 x H for all but finitely many x. Note also that t(γ x ) = x for every x ∈ Y . Invariance of B reads as follows.

γ g(x) H = [g] x γ x H, ∀x ∈ Y \ E, ∀g ∈ Γ. ( 1 
)
Claim 3. There exists ϕ ∈ F (G) with the property that

[ϕ -1 ] ϕ(x) H = γ x H ∀x ∈ Y \ E. Proof of claim. Let Σ ⊂ Y \ E be the finite subset of points x ∈ Y \ E such that γ x H = 1 x H.
We use the assumption that the pair H ⊂ G has resolvable singularities, applied to the finite collection of germs {γ x : x ∈ Σ} and to the compact subset K = Y . We obtain that there exists ϕ ∈ F (G) such that (a) for every x ∈ Σ we have

[ϕ] x γ x ∈ H, (b) for every x ∈ Y \ Σ we have [ϕ] x ∈ H.
Property (a) can be rewritten as

[ϕ -1 ] ϕ(x) H = γ x H for x ∈ Σ. Moreover if x ∈ Y \ (E ∪ Σ) property (b) implies that [ϕ -1 ] ϕ(x) H = 1 x H, which is equal to γ x H since x / ∈ Σ.
This concludes the proof of the claim. Claim 4. All singular points of ϕΓϕ -1 are contained in ϕ(E).

Proof of claim. Let y /

∈ ϕ(E) and let us show that for every g ∈ Γ the germ of ϕgϕ -1 at y belongs to H. Since ϕΓϕ -1 is supported on ϕ(Y ), we can assume that y = ϕ(x) for some x ∈ Y \ E and the claim is equivalent to:

[ϕ] g(x) [g] x [ϕ -1 ] ϕ(x) ∈ H ∀x ∈ Y \ E, which is equivalent to [ϕ -1 ] ϕ(g(x)) H = [g] x [ϕ -1 ] ϕ(x) H,
which by Claim 3 is equivalent to

γ g(x) H = [g] x γ x H
which is exactly [START_REF] Bader | Property (T ) and rigidity for actions on Banach spaces[END_REF].

It follows that all the singular points of ϕΓϕ -1 are contained in the finite ϕΓϕ -1 -invariant subset ϕ(E). This concludes the proof of Proposition 2.6.

Countably many singularities

The purpose of the remainder of this section is to study a more general situation where we allow group actions with a countable set of singularities with respect to a given groupoid of germs H. We work in the following setting. Definition 2.7. Let H be a groupoid of germs over X. We let ΩH be the groupoid of all germs γ that admit a representative (h, s(γ)) with the property that [h] y ∈ H for all but at most countably many points y in the domain of definition of h.

It is easy to check that ΩH is a well-defined groupoid of germs. Given an element g ∈ F (ΩH), we will say that a point x ∈ X is singular for g if [g] x / ∈ H.

Lemma 2.8. For every g ∈ F (ΩH), the set of singular points of g is countable and closed.

Proof. Recall that every element g ∈ F (ΩH) has compact support, by the definition we use of the full group. Countability follows from a compactness argument. The fact that the complement of the set of singular points of g is open is a consequence of condition (iii) in Definition 2.1.

Our aim is to prove a result analogous to Proposition 2.6 that applies to the pair H ⊂ ΩH. In order to state it we first need to give an alternative point of view on the groupoid ΩH via the notion of Cantor-Bendixson rank of a compact space (see [START_REF] Kechris | Classical descriptive set theory[END_REF]Sec. 6]). Let us recall here its definition in the special case of countable compact spaces, that will be enough for our purposes. Let C be a countable compact space. If such as space is non-empty, then it must contain isolated points by Baire's theorem. Its Cantor-Bendixson derivative, denoted C , is defined as the complement of the subset of isolated points in C. Given a countable ordinal α define a compact countable subset C α ⊂ C by transfinite induction by setting C 0 = C, and

C α = C β if α = β + 1, β<α C β if α is a limit ordinal.
The family C α is a decreasing ordered family of closed subsets of C. Using the fact that C is countable, it follows that there exists a smallest countable ordinal ρ such that C ρ = ∅. The ordinal ρ will be called the Cantor-Bendixson rank of C. Note also that, as a consequence of compactness of C, the ordinal ρ is of the form ρ = β + 1 and C β is a finite subset (the reader should be warned that sometimes its predecessor β is called the Cantor-Bendixson rank of C). Now let H be a groupoid of germs over X. We denote by SH the groupoid of germs consisting of all germs γ that admit a representative (h, s(γ)) such that [h] y ∈ H for all y = s(γ) in the domain of definition of h. Note that the pair H ⊂ SH is co-discrete, by definition. For every countable ordinal α we define a groupoid H α by setting:

H α = SH β if α = β + 1, S( β<α H β ) if α is a limit ordinal.
Lemma 2.9. Assume X is compact. Let g ∈ F (ΩH), and let C ⊂ X be the set of singular points of g. Let ρ be the Cantor-Bendixson rank of C. Then g ∈ F (H ρ ).

Note that C is countable and compact by Lemma 2.8.

Proof. Let C α be the transfinite sequence as in the definition of Cantor-Bendixson rank. We show by induction on α ≤ ρ that if x ∈ C \ C α then [g] x ∈ H α . First assume that α = 1. Then x ∈ C \ C 1 is an isolated point in C, and therefore x has a neighbourhood U in X that does not intersect C, i.e. such that [g] y ∈ H for every y ∈ U , y = x. It follows that [g] x ∈ SH = H 1 . For the induction step, assume first that α is a limit ordinal. This implies that x ∈ C \ C β for some β < α and by the inductive hypothesis we have [g] x ∈ H β ⊂ H α . Assume now that α = β + 1 is a successor. We can assume that x ∈ C β \ C α , or we are done again by the inductive hypothesis. Note that C β \ C α consists of isolated points in C β , and therefore we can find a neighbourhood U of x such that (U \ {x}) ∩ C ⊂ (C \ C β ) and it follows by inductive hypothesis that for every y ∈ U ∩ C, y = x, we have [g] y ∈ H β , from which we conclude that [g] x ∈ H α = SH β . Definition 2.10. We say that H has countably resolvable singularities if for every countable ordinal α the following holds:

(i) if α = β + 1 is a successor, then the pair H β ⊂ H α has resolvable singularities;

(ii) if α is a limit ordinal, then the pair β<α H β ⊂ H α has resolvable singularities.

Once again, the reader can have in mind the example of the groupoid of germs of all partially defined diffeomorphisms of the circle (Proposition 3.5). We are now ready to state the final result of this section: Proposition 2.11. Let H be a groupoid of germs over X with countably resolvable singularities. Let Γ ⊂ F (ΩH) be a finitely generated subgroup with property FW. Then one of the following possibilities holds.

(i) The action of the group Γ on its support has a finite orbit.

(ii) The group Γ is conjugate in F (ΩH) to a subgroup of F (H).

Proof of Proposition 2.11. We assume that (i) does not hold and show that (ii) holds. Note that the support of the action of Γ is compact (contained in the union of the supports of its generators). Using Lemma 2.9 we obtain that Γ ⊂ F (H ρ ) for some countable ordinal ρ (it is enough to take the largest such ordinal over a finite generating subset of Γ). We show by induction on ρ that Γ is conjugate in F (H ρ ) to a subgroup of F (H). Assume first that ρ = β + 1 is a successor, so that H ρ = SH β . Then the pair H β ⊂ H ρ is co-discrete by definition, and it has resolvable singularities by Definition 2.10. As we are assuming that the action of Γ has no finite orbit in its support, Proposition 2.6 yields that Γ is conjugate in F (H ρ ) to a subgroup of F (H β ), and since the assumption that Γ does not have finite orbits in its support is invariant under conjugacy, we are reduced to the inductive hypothesis. Next, assume that ρ is a limit ordinal, so that H ρ = S( β<ρ H β ). The pair β<ρ H β ⊂ H ρ is co-discrete and has resolvable singularities, and using again Proposition 2.6 we obtain that there exists ϕ ∈ F (H ρ ) such that ϕΓϕ -1 ⊂ F ( β<ρ H β ) = β<ρ F (H β ). Using again that ϕΓϕ -1 is finitely generated, it cannot be written as an increasing union of proper subgroups. Therefore it must be contained in F (H β ) for some β < ρ. By the inductive hypothesis, this concludes the proof of the proposition.

Singular actions on manifolds

Throughout the section we fix d ≥ 1 and let G be a groupoid of germs over R d . Let M be a topological manifold of dimension d (all topological manifolds will be assumed to be Hausdorff and second countable). We will say that M is a G-manifold if it endowed with an atlas such that the corresponding changes of charts have all germs in the groupoid G. See Thurston's book [START_REF]Three-dimensional geometry and topology[END_REF]Ch. 3] for more details. Whenever M, N are G-manifolds, a homeomorphism ϕ : M → N between G-manifolds will be called a G-homeomorphism if in coordinate charts, all the germs of ϕ belong to G. An ΩG-homeomorphism (or a countably singular G-homeomorphism) ϕ : M → N between G-manifolds is a homeomorphism of topological manifolds which is moreover a G-homeomorphism in restriction to an open subset of M whose complement is countable. We will denote by Homeo G (M ) the group of self G-homeomorphism of a G-manifold M , and by ΩHomeo G (M ) the group of countably singular ones.

As the main example, fix r ≥ 1 and let D r be the groupoid of germs of all local diffeomorphisms of class C r of R d . Then a D r -manifold M is simply a C r -differentiable manifold, and a D rhomeomorphism is a diffeomorphism of class C r . By a classical theorem of Whitney [START_REF] Whitney | Differentiable manifolds[END_REF], every C rdifferentiable manifold admits a unique compatible C ∞ -differentiable structure up to diffeomorphism, therefore in this case we simply say that M is a differentiable manifold. We will say that a differentiable manifold is an exotic sphere if it is homeomorphic to a euclidean sphere S d (in particular, we use the convention that the standard euclidean sphere is itself an exotic sphere).

As another example that will be relevant, let D r Leb be the set of C r -diffeomorphisms of R d whose Jacobian at every point has determinant 1 (that is, those that preserve the Lebesgue volume form

dx 1 ∧ • • • ∧ dx d ).
Then a G-manifold M is an oriented C r -manifold endowed with a volume form ω (see [START_REF]Three-dimensional geometry and topology[END_REF]Ex. 3.1.12]), and G-homeomorphisms are homeomorphisms that preserve the corresponding volume forms.

We are now ready to state the main theorem of this section, which implies Theorem 1.1.

Theorem 3.1. Let G be a groupoid of germs of R d , and let M be a closed G-manifold. Let Γ be a finitely generated group with property FW. For every homomorphism ρ : Γ → ΩHomeo G (M ), one of the following holds:

(i) the action of ρ(Γ) on M has a finite orbit;

(ii) there exist a closed G-manifold N and an ΩG-homeomorphism ϕ : M → N such that ϕρ(Γ)ϕ -1 ⊂ Homeo G (N ).

If moreover G = D r (so that M is a differentiable manifold) and if the dimension d is such that the euclidean sphere S d is the unique exotic d-sphere up to diffeomorphism, then in part (ii) one can choose N = M . Remark 3.2. In [START_REF]Commensurated actions for groups of piecewise continuous transformations[END_REF], Cornulier obtains results in similar spirit but in a different setting, namely by considering partially defined actions where the action of each element is defined on the complement of a finite set and preserves the G-structure on its domain of definition. The main differences are that while [START_REF]Commensurated actions for groups of piecewise continuous transformations[END_REF] only treats actions with finitely many singularities, in dimension one the results of [START_REF]Commensurated actions for groups of piecewise continuous transformations[END_REF] can be applied to discontinuous actions with finitely many discontinuity points, while we only treat actions that are globally continuous. Another difference is that [START_REF]Commensurated actions for groups of piecewise continuous transformations[END_REF] works more generally with modelled spaces in the sense of Ehresmann (not necessarily manifolds), i.e. spaces with charts taking values in a given model space X (not necessarily homeomorphic to R d ) with changes of charts prescribed by a given pseudogroup of transformations of X. Here we consider only manifolds, but we point out that this is not essential. Theorem 3.1 (except for the last sentence) extends with the same proof if R d is replaced by any model space X satisfying mild local conditions (more precisely, any Hausdorff space which does not contain open countable subsets).

In the proof we will use the following lemma, whose proof is an elementary cut-and-paste argument.

Lemma 3.3. Let M be a G-manifold of dimension d, and x 1 , . . . , x ∈ M be distinct points in M . Assume that U 1 , . . . , U are pairwise disjoint open neighbourhoods of x 1 , . . . , x , and that for every i = 1, . . . , we are given an ΩG-homeomorphism h i : U i → V i , where V i is a G-manifold. Then there exists a G-manifold N such that the following hold.

As topological manifolds, N and M are homeomorphic.

2. There exists an ΩG-homeomorphism τ : M → N such that for every i = 1, . . . , there exist an open neighbourhood W i ⊂ U i of x i , and G-homeomorphic embeddings λ i :

h i (W i ) → N such that (i) the set of singular points of τ is compactly contained in W 1 ∪ • • • ∪ W ; (ii) for every i = 1, . . . , the restriction τ | W i coincides with λ i • h i | W i .
3. Assume further G ⊂ D r for some r ≥ 1 (in particular M and N also inherit a structure of differentiable manifolds). Then, seen as a differentiable manifold, N is diffeomorphic to a connected sum of M with finitely many exotic spheres. In particular if the dimension d is such that the standard sphere S d is the unique exotic d-sphere up to diffeomorphism, then N is diffeomorphic to M .

For a definition of the connected sum of differentiable manifolds and its basic properties, we refer the reader to [23, §1].

Proof.

Since every h i is a G-homeomorphism on the complement of a countable closed subset of U i , using compactness we can choose disjoint neighbourhoods W i ⊂ U i of the x i 's such that the following properties are satisfied for every i = 1, . . . , :

(a) the closure W i is a G-manifold with boundary, topologically homeomorphic to a closed ball and is contained in

U i ; (b) h i is a G-homeomorphism in restriction to some open neighbourhood L i of ∂W i in U i . Set Z i = h i (W i ), and let Z i be its closure in V i , i = 1, . . . , . Consider the open subset M 0 = M \ W 1 ∪ • • • ∪ W of M
, and let M 0 be its closure in M . We have

∂M 0 = ∂W 1 ∪ • • • ∪ ∂W .
Let N be the space obtained by gluing M 0 to Z 1 • • • Z , by identifying every ∂W i with ∂Z i via the map h i , for every i = 1, . . . , . We denote by λ 0 : M 0 → N and λ i : Z i → N, i = 1 . . . , the canonical inclusions. Define the (topological) homeomorphism τ : M → N given by

τ (x) = λ 0 (x) x ∈ M 0 , λ i • h i (x) x ∈ W i , i = 1, . . . , .
In particular M and N are homeomorphic as topological manifolds. Let us endow N with the structure of a G-manifold as follows. Write

L i = L + i ∪ L - i , where L + i = L i \ W i and L - i = L i ∩ W i , so that L + i ⊂ M 0 , L - i ⊂ W i , and L + i ∩ L - i = ∂W i . The subset K i = τ (L i ) is an open neighbourhood in N of ∂W i h i ∂Z i . We transport the structure of G-manifold of L i to K i via the homeomorphism τ | L i : L i → K i , i = 1, . . . , .
Moreover we transport the G-manifold structures of M 0 , Z 1 , . . . , Z to λ 0 (M 0 ), λ 1 (Z 1 ), . . . , λ (Z ) via the identifications λ 0 , . . . , λ . Note that the corresponding structures are compatible on the intersections K i , because every h i is a G-homeomorphism on the interior of L - i . Therefore this defines uniquely a structure of G-manifold on N . By construction, the homeomorphism τ defined above satisfies the conclusion of part 2.

It remains to check part 3. To this end, recall that by (a) the sets W i above are such that W i is a differentiable manifold with boundary homeomorphic to a closed ball. For i = 1, . . . , , let R i be the differentiable manifold obtained by gluing W i and Z i by identifying ∂W i with ∂Z i using the diffeomorphism h i | ∂W i . Since both W i and Z i are homeomorphic to disks, and R i is an exotic sphere, it readily follows from the construction of N that it is diffeomorphic to a connected sum of M with R 1 , . . . , R . The last sentence in part 3 follows from the fact that taking a connected sum with standard spheres does not change the diffeomorphism class of a manifold.

Given a closed G-manifold M we denote by G M the groupoid consisting of all germs of Ghomeomorphisms between open subsets of M . Observe that, keeping the notations introduced in the previous section, we have F (G M ) = Homeo G (M ) and F (ΩG M ) = ΩHomeo G (M ). The groupoid G M , however, needs not satisfy the requirements for Proposition 2.11. In order to get around this, we will instead view it as a subgroupoid of a larger groupoid, consisting of all germs of G-homeomorphims between G-manifolds of dimension d. More precisely, let B d be a set of closed compact G-manifolds of dimension d that contains infinitely many representatives for each G-homeomorphism class (one representative would be enough, but taking infinitely many will slightly simplify the discussion).

We define a space X d as the disjoint union X d = M ∈B d M . We let G X d be the groupoid of germs over the space X d consisting of all germs of all G-homeomorphisms defined from an open subset of some manifold in B d to an open subset of some (perhaps different) manifold in B d .

For a fixed G-manifold M ∈ B d , the group ΩHomeo G (M ) is naturally a subgroup of F (ΩG X d ) supported on M . In particular, it acts on the groupoid ΩG X d by post-composition whenever the target of the element of the groupoid lies in M , and as the identity otherwise.

Proposition 3.4. The groupoid G X d has countably resolvable singularities.

Proof. To simplify the notations set H = G X d and let H α be the transfinite sequence as in the previous section. Assume that α = β + 1 is a successor, and let us show that the pair H β ⊂ H α has resolvable singularities (the case of a limit ordinal is totally analogous and we omit it). To this end take γ 1 , . . . , γ ∈ H α and let K ⊂ X d be a compact subset as in Definition 2.4. Setting x i = t(γ i ), i = 1, . . . , we can assume that x 1 , . . . , x belong to a closed G-manifold M ⊂ X d (equal to the union of all the connected G-manifolds that contain x 1 , . . . , x ). Choose representatives (h 1 , x 1 ), . . . , (h , x ) of γ -1 1 , . . . , γ -1 whose domains of definitions are open neighbourhoods U 1 , . . . , U of x 1 , . . . , x respectively, that we can assume to be pairwise disjoint and contained in M . Moreover, by definition of H α = SH β , upon reducing the U i 's we can assume that [h i ] y ∈ H β for every y ∈ U i \ {x i }.

We apply Lemma 3.3 to this data, and let N be the G-manifold and τ : M → N and W i ⊂ U i and λ i : h i (W i ) → N be as in the conclusion of the lemma. Without loss of generality, we can suppose that N belongs to B d , so that N ⊂ X d . Moreover, since we assume that B d contains infinitely many representatives of every G-homeomorphism class, we can assume that N ∩ K = ∅ and that

N ∩ M = ∅ in X d . Let ϕ ∈ F (H α )
be the element given by:

ϕ(x) =      τ (x) x ∈ M, τ -1 (x) x ∈ N, x x / ∈ M ∪ N.
We claim that ϕ satisfies the conclusions (i,ii) of Definition 2.4. To see this, observe that for every i = 1, . . . , we have

[ϕ] x i γ i = [λ i ] h i (x i ) [h i ] x i γ i = [λ i ] h i (x i ) γ -1 i γ i = [λ i ] h i (x i ) ∈ H ⊂ H β .
In a similar way one checks that for every

x ∈ M \ {x 1 , . . . , x } we have [ϕ] x ∈ H β . Since ϕ is supported on M ∪ N and N ∩ K = ∅, this shows that [ϕ] x ∈ H β for every x ∈ K \ {x 1 , . . . , x }.
This concludes the proof.

Note that in the above proof, we have not used part 3 of Lemma 3.3. Taking it into account, the same proof yields the following when G = D r , r ≥ 1. (In the statement, D r M denotes the groupoid consisting of all germs of C r diffeomorphisms between open subsets of M .) Proposition 3.5. Let M be a closed differentiable manifold of dimension d, and assume that d is such that the standard sphere S d is the unique standard exotic d-sphere up to diffeomorphism. Then the groupoid D r M has countably resolvable singularities.

Proof of Theorem 3.1. Let M be a closed manifold and ρ : Γ → ΩDiff r (M ) be as in the statement, and assume that Γ has no finite orbit. Since property FW passes to quotients, we can identify Γ with its image. We identify M with a subset of X d , where d is the dimension of M , and Γ with a subgroup of F (ΩD r d ) supported on M . By Proposition 3.4 we are in position to apply Proposition 2.11 and we obtain that either Γ has a finite orbit in M , or that there exists an element ϕ ∈ F (ΩD r d ) such that ϕΓϕ -1 ⊂ F (D r d ). Note that ϕΓϕ -1 is supported on the manifold N = ϕ(M ), which is the manifold in the statement. If the dimension d is as in the last sentence, then we may repeat the same reasoning using the groupoid D r M by Proposition 3.5 and we obtain that M = N .

If we restrict the attention to actions with finitely many singularities, the conclusion can be made more precise in the finite-orbit case. Given a G-manifold M we denote SHomeo G (M ) = F (SG M ) the group of finitely singular G-homeomorphisms of M , i.e. those that are G-homeomorphisms in restriction to the complement of a finite set. It is naturally a subgroup of the topological full group F (SG X d ) (with the notations of the previous section). It follows from Proposition 3.4 that the pair SG d ⊃ G d satisfies the requirements for Proposition 2.6. Using this, one obtains: Theorem 3.6. Let M be a closed G-manifold. Let Γ be a finitely generated group with property FW. For every homomorphism ρ : Γ → SHomeo G (M ), there exists a closed G-manifold N and a finitely singular G-homeomorphism ϕ : M → N such that the set of singular points of ϕρ(Γ)ϕ -1 is finite and consists of points with a finite ϕρ(Γ)ϕ -1 -orbit.

Again, if G = D r and if the dimension d is such that S d is the unique exotic d-sphere up to diffeomorphism, then we can choose M = N .

Let us now explain the applications related to Zimmer's conjecture. (ii) If there is a volume form ω on M such that ρ(Γ) preserves the measure associated to ω, and if d ≤ r, then ρ(Γ) has a finite orbit.

Remark 3.8. Note that the condition that ρ(Γ) preserve the measure associated to ω is equivalent to say that for every γ ∈ Γ, the element ρ(γ) preserves the form ω outside its singular set (as the singular set of ρ(γ) is countable, it has measure zero).

Proof of Corollary 3.7. Both facts follow by combining the main results in [START_REF] Brown | Zimmer's conjecture: Subexponential growth, measure rigidity, and strong property (T)[END_REF][START_REF]Zimmer's conjecture for actions of SL(m, Z)[END_REF] with Theorem 3.1, applied to the groupoids G = D 2 and G = D 2 Leb respectively.

Singular actions on the circle

This section is devoted to the more precise results that we can obtain in the case of actions on the circle.

Piecewise differentiable homeomorphisms

Definition 4.1. A homeomorphism g : S 1 → S 1 is said to be piecewise differentiable of class C r if there exists a finite subset BP(g) ⊂ S 1 such that g is a C r -diffeomorphism in restriction to S 1 \ BP(g), and for every x ∈ BP(g) the right and left derivatives of g exist up to order r at x, and the derivative D ( r ) g is (r -r )-Hölder continuous. The subset BP(g) will be called the set of breakpoints of g. The group of all piecewise differentiable homeomorphisms of S 1 of class C r is denoted by PDiff r (S 1 ).

In the following, we will simply denote by D r the groupoid of diffeomorphic germs D r S 1 over S 1 , and by PD r the groupoid of piecewise-C r germs over S 1 . The difference between SD r and PD r is that in the latter case we require that every germ is represented by a local homeomorphism having left and right first r derivatives defined at every point of the domain of definition, and with the r -th left and right derivatives (r -r )-Hölder continuous. Observe that the pair of groupoids PD r ⊃ D r is co-discrete, and it is not difficult to show that it has resolvable singularities.

We let PD r + be the subgroupoid consisting of orientation preserving germs. For every x ∈ X we let (PD r + ) x be the isotropy group at x of this groupoid, which consists of all γ ∈ PD r + such that s(γ) = t(γ) = x. We first settle the following special case of Theorem 4.3. Proposition 4.2. Let Γ be a countable property FW subgroup of PDiff 1 (S 1 ) that has a finite orbit. Then Γ is finite.

Proof. Assume by contradiction that Γ is infinite, and note that it is finitely generated because of property FW. Since property FW passes to finite index subgroups, we can assume that Γ preserves orientation and fixes a point x ∈ S 1 , and using that Γ is finitely generated, without loss of generality we can assume that there exists an element g ∈ Γ such that g is not the identity in restriction to a right neighbourhood of x. Hence we obtain a non-trivial group homomorphism Γ → (PD 1 + ) x . The image of this homomorphism is a non-trivial finitely generated subgroup of (PD 1 + ) x , and therefore admits a non-trivial homomorphism to R by the Thurston's stability theorem [START_REF] Thurston | A generalization of the Reeb stability theorem[END_REF]. Hence so does Γ. This contradicts property FW, since FW passes to quotients, and an abelian infinite finitely generated group never has FW. Proof. Let Γ ⊂ PDiff r (S 1 ) be a subgroup with property FW. As the pair PD r ⊂ D r is co-discrete, with resolvable singularities, we can invoke Proposition 2.6 and claim that the action of Γ on S 1 has a finite orbit, or Γ is conjugate in F (SD r ) = PDiff r (S 1 ) to a subgroup of F (D r ) = Diff r (S 1 ). However, because of Proposition 4.2, the former is possible only if Γ is finite.

Proof of Corollary 1.3. Let Γ be a subgroup of PDiff 3/2 (S 1 ), with property (T) and hence property FW. (We again identify Γ with its image.) After Theorem 4.3, there exists a homeomorphism ϕ : S 1 → S 1 such that ϕΓϕ -1 is a group of C r circle diffeomorphisms. Navas' theorem (Theorem 1.2) gives that Γ is finite.

PL circle homeomorphisms and isometric actions

In this subsection we will give an alternative and more elementary proof of Corollary 1.3 for groups of piecewise linear homeomorphisms, that we state below. For simplicity, we will always assume that homeomorphisms do preserve the orientation.

Definition 4.4.

A homeomorphism h : S 1 → S 1 is piecewise linear if, when seeing S 1 as the flat torus R/Z (so with its quotient affine structure), for all but finitely many points x ∈ S 1 there exists an open neighbourhood I(x) such that the restriction h| I(x) is an affine map, that is of the form y → ay + b. A point x ∈ S 1 where this condition is not verified is a breakpoint of h. We write BP(h) for the set of breakpoints of h. We denote by PL + (S 1 ) the group of piecewise linear homeomorphisms of S 1 . Theorem 4.5. If Γ is a Kazhdan group, every homeomorphism ρ : Γ → PL + (S 1 ) has finite image.

We consider the Hilbert space H = 2 (S 1 ). If a group Γ acts on S 1 , the action induces an isometric action on H, just by permutation of the basis: h • (a x ) x∈S 1 = a h -1 (x) x∈S 1 . We write π : Γ → O(H) for this (left) representation. Given an element h ∈ PL + (S 1 ), we write D -h and D + h for its left and right derivatives (which are well-defined at every point). The map

b : PL + (S 1 ) × S 1 → R (h, x) → log D + h(x) D -h(x)
is a cocycle (i.e. b(gh, x) = b(g, h(x)) + b(h, x)), as one sees by applying the chain rule. Observe that we have b

(h -1 , x) = -b(h, h -1 (x)).
As h is a piecewise linear homeomorphism, for fixed h, the function b(h, -) is zero at all but finitely many points (the breakpoints of h). This allows to define an isometric affine action ρ : Γ → Isom(H), with linear part π and translation part b: Lemma 4.6. Let Γ be a subgroup of PL + (S 1 ). The map ρ, defined for h ∈ Γ and (a x ) ∈ 2 (S 1 ) by

ρ(h)(a x ) x∈S 1 := π(h)(a x ) x∈S 1 + (b(h -1 , x)) x∈S 1 = a h -1 (x) + b(h -1 , x) x∈S 1 ,
defines a homomorphism ρ : Γ → Isom(H).

Proof. One needs a few simple verifications. First, we check that the map ρ actually defines a homomorphism. This is guaranteed by the fact that b is a cocycle (over π):

ρ(g)ρ(h)(a x ) x∈S 1 = ρ(g) a h -1 (x) + b(h -1 , x) x∈S 1 = a h -1 g -1 (x) + b(h -1 , g -1 (x)) + b(g -1 , x) x∈S 1 = a (gh) -1 (x) + b(h -1 g -1 , x) x∈S 1 = ρ(gh)(a x ) x∈S 1 .
Secondly, we have to verify that if a sequence (a x ) x∈S 1 is in H, then also its ρ(h)-image is. This is because for a fixed element h ∈ PL + (S 1 ), the cocycle b(h -1 , -) is zero at all but finitely many points. Finally, we have to verify that for fixed h ∈ PL + (S 1 ), the map ρ(h) is an isometry. This is because ρ(h) is the composition of the isometry π(h) with the translation b(h -1 , -).

Lemma 4.7. Let f ∈ PL + (S 1 ) be a non-trivial element acting with a fixed point on S 1 , then ρ(f ) : H → H has an unbounded orbit.

Proof. We reproduce an argument appearing in [28, §C]. Let I = (x 0 , x 1 ) be a connected component of the open support {x ∈ S 1 : f (x) = x} (possibly x 0 = x 1 ). Without loss of generality, we can assume that f is contracting on I, i.e. f (y) < y for every y ∈ I.

Claim 1. The set of values

S = {b(f n , x) : n ∈ N, x ∈ I} is finite.
Proof of claim. Choose x 0 < z < x 1 such that the restriction of f to I 0 = (x 0 , z) is linear. Given x ∈ I and n ∈ N, the logarithm of the jump of derivatives b(f n , x) can be written as the sum

b(f n , x) = n-1 k=0 b(f, f k (x)).
Notice that only points f k (x) that are breakpoints of f contribute to the sum above. As f is a contraction, the sequence {f k (x)} k∈N is strictly decreasing to x 0 , so the forward orbit of x visits any breakpoint of f at most once. Therefore b(f n , x) can only take values in the finite set { c∈E b(f, c)} E⊂BP(f ) .

Claim 2. Let M n denote the number of breakpoints of f n . Then M n is unbounded as n → ∞.

Proof of claim. Suppose, by way of contradiction, that every f n has at most M breakpoints. Fix n ∈ N and set λ n = inf x∈I D + f n (x). By the previous claim, the set S is finite, hence C := (max σ∈S e σ ) M is finite. As the derivative D + f n can change only when passing through breakpoints, we have the upper bound D + f n (y) ≤ Cλ n for every y ∈ I. By averaging over I, using the fact that I D + f n (x) dx = |I|, we obtain the inequality 1 ≤ Cλ n . As f is a contraction, λ n → 0 as n → +∞. This gives the desired contradiction.

Take β = min σ∈S\{0} |σ|. The image ρ(f -n ) 0 of the vector 0 is exactly the vector (b(f -n , x)) x∈S 1 . Its 2 -norm is at least M n β. As the sequence M n is unbounded, also the sequence ρ(f n )(0) is unbounded.

Remark 4.8. In the proof of Claim 2, the fact that elements are piecewise linear is fundamental for the proof. Indeed, every non-trivial piecewise linear homeomorphism of an interval has at least one breakpoint. This is no longer true, even for Möbius transformations.

We next recall a classical result due to Hölder [START_REF]Groups of circle diffeomorphisms[END_REF]Theorem 2.2.32]. For its statement, recall that a group action is free if every point has trivial stabiliser. Theorem 4.9 (Hölder). Let Γ be a subgroup of Homeo + (S 1 ), whose action on S 1 is free. Then Γ is isomorphic to a group of rotations. More precisely, if Φ : Γ → Φ(Γ) ⊂ SO(2) denotes the isomorphism, there exists a monotone continuous degree 1 map h : S 1 → S 1 such that hg = Φ(g)h (i.e. Γ is semi-conjugate to a group of rotations).

We can now prove the main result of the section:

Proof of Theorem 4.5. As the quotient of a Kazhdan group is also a Kazhdan group, it is enough to prove that every subgroup of PL + (S 1 ) which has property (T) is actually finite. So let Γ ⊂ PL + (S 1 ) be an infinite subgroup. We consider the representation ρ : Γ → Isom(H) of Lemma 4.6. Even if property (T) is not inherited by subgroups, we can however restrict to subgroups to show that a particular isometric affine action has unbounded orbits. If Γ contains a non-trivial element acting with a fixed point, then Lemma 4.7 implies that the ρ has an unbounded orbit, disproving property (T). Otherwise, Theorem 4.9 implies that Γ is isomorphic to a group of rotations (in fact, by Denjoy's theorem, which holds for piecewise linear homeomorphisms [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF], it is topologically conjugate), which is abelian, and hence cannot have property (T).

A direct application of the work of Minakawa on exotic circles of PL + (S 1 ) [START_REF] Minakawa | Classification of exotic circles in P L(S 1 )[END_REF] (not to be confused with exotic spheres in the sense of differentiable topology) gives a more precise statement for Corollary 1.3 in the PL case. For this, we set some notations. A topological circle in PL + (S 1 ) is a one-parameter subgroup S = {g α ; α ∈ S 1 } ⊂ PL + (S 1 ) which is topologically conjugate to the group of rotations SO(2). The topological circle is called exotic, if the conjugating map cannot be taken in PL + (S 1 ). For A > 1 one sets I A = [1/(A -1), A/(A -1)], which is an interval of length 1, and defines h :

I A → [0, 1]
x → log(A-1)x log A which naturally extends to a homeomorphism h A commuting with the translation by 1 and hence defines, by quotient, a homeomorphism h A of S 1 . Set S A = h -1 A SO(2)h A . When A < 1, we set S A = ιS A ι -1 , where ι : S 1 → S 1 is the order-reversing involution defined by ι(x) = -x. These are exotic circles. For A = 1, S A will simply stay for SO [START_REF] Barnhill | Property (T) versus Property FW, Section 5 in Guido's book of conjectures[END_REF]. The circles S A are contained in PL + (S 1 ) (these examples had previously appeared in [START_REF] Boshernitzan | Dense orbits of rationals[END_REF][START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF]) and Minakawa shows that every topological circle in PL + (S 1 ) is PL conjugate to one of the exotic circles S A (and vice versa). More precisely, he proves that the only irrational rotations for which 1) the number of breakpoints of iterates is bounded and 2) the set of jumps is finite, are contained in a topological circle (see also [START_REF] Liousse | PL Homeomorphisms of the circle which are piecewise C 1 conjugate to irrational rotations[END_REF]). Relying on this, one can prove: Theorem 4.10. Let Γ be an infinite discrete subgroup of PL + (S 1 ). The following statements are equivalent:

1. the affine isometric action ρ : Γ → Isom(H) defined in Lemma 4.6 has bounded orbits; 2. the subgroup Γ is PL conjugate into a topological circle of rotations S A . Remark 4.11. Exotic circles were one of the main reasons for suspecting that PL + (S 1 ) might have contained subgroups with property (T) (cf. [START_REF] Bonatti | Hyperbolicity as an obstruction to smoothability for one-dimensional actions[END_REF]). The statement in Theorem 4.10 clearly gives a negative answer, and at the same time explains the rôle of exotic circles in this problem.

Corollary 1 . 3 .

 13 Let Γ be a Kazhdan group. Then the following hold.(i) Every homomorphism ρ : Γ → PDiff 3/2 (S 1 ) has finite image.

Corollary 3 . 7 .

 37 Let G be a connected Lie group of real rank r ≥ 2, whose Lie algebra is simple and with finite centre. Let Γ ⊂ G be a cocompact lattice, or Γ = SL(r + 1, Z). Let M d be a closed manifold of dimension d, and let ρ : Γ → ΩDiff 2 (M ). Then (i) If d < r, then the action of ρ(Γ) on M has a finite orbit.

Theorem 4 . 3 .

 43 Fix r ∈ [1, ∞]. Every countable subgroup of PDiff r (S 1) with property FW is conjugate in PDiff r (S 1 ) to a subgroup of Diff r (S 1 ).

Question 1.11. Which

  subgroups of PDiff r (S 1 ) have the Haagerup property? Consider the renormalised linear action of SL(n + 1, Z) on the sphere S n , with n ≥ 7. For which differentiable structures on S n is this action topologically conjugate to a smooth action?

	Question 1.12. Does the group ΩDiff r (R) of countably singular diffeomorphisms of the real line
	contain infinite property (T) subgroups?
	Question 1.13. Study Zimmer's conjecture for piecewise differentiable (or PL) actions of higher
	rank lattices on manifolds of small dimension. (cf. the work of Ye [43].)
	Question 1.14.

Question 1.15. Extend Corollary 1.3 to groups of discontinuous transformations, such as AIET, the group of affine interval exchange transformations. (The group of isometric interval exchange transformations does not contain infinite Kazhdan subgroups

[START_REF] Dahmani | Free groups of interval exchange transformations are rare[END_REF]

.) Question 1.16 (cf.

[START_REF] Sergiescu | Versions combinatoires de Diff(S 1 ). Groupe de Thompson[END_REF]

). Classify the subgroups of the group of piecewise projective circle homeomorphisms PP + (S 1 ) that are topologically conjugate to PSL(2, R), up to PP conjugacy.
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