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Abstract. We present the new combinatorial class of product-coproduct prographs
which are planar assemblies of two types of operators: products having two inputs
and a single output and coproducts having a single input and two outputs. We show
that such graphs are enumerated by the 3-dimensional Catalan numbers. We present
some combinatorial bijections positioning product-coproduct prographs as key objects
to probe families of objects enumerated by the 3-dimensional Catalan numbers.
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1 Introduction

This story begins with computer explorations. Recall that planar rooted binary trees
are planar structures freely generated by a formal operator having one output (a single
father per node) and two inputs (left and right children); this single operator can be
viewed as a non-associative product. Now, if we add a non-coassociative coproduct with
a single input and two outputs, what will be the set of planar structures built from these
two formal operators? To bound this problem, we restrict the enumeration to structures
having globally a single input and a single output, thus each enumerated element will
contain as many products as coproducts.

Such an element is called a prograph with one input and one output.

Figure 1: The five prographs with two coproducts, two products, and having a single
input and a single output.
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We implemented a Sage [2] program enumerating prographs with n products and n
coproducts and the first values were 1, 1, 5, 42, 462, 6006, 87516. This is the beginning of
Sequence A005789 of the OEIS [8], the 3-dimensional Catalan numbers. Figure 1 displays
the 5 prographs containing two coproducts (circles) and two products (squares). We will
see how one can show that prographs containing n products and coproducts are counted
by the nth 3-dimensional Catalan numbers. Moreover, we will show that prographs are
relevant structures on which a lot of combinatorics can be expressed.

In this paper, we present four combinatorial classes enumerated by the 3-dimensional
Catalan numbers and we show how their combinatorics are related to product-coproduct
prographs. In the following section, we recall the definitions and some properties of
3-dimensional Catalan numbers, standard Young tableaux with three rows and product-
coproduct prographs. In Section 3, we present a well-chosen labeling of edges of pro-
graphs which can be extended to an isomorphism of Hopf algebras. Section 4 presents
up-down permutations of even size that avoid the pattern (1234). Trying to establish
another combinatorial bijection with prographs, we also present in the same section a
bijection between permutations avoiding (123) and binary trees (to the best of our knowl-
edge, this bijection is not present in the literature). Finally, in Section 5, we show that a
labeling of operators of prographs gives another Hopf isomorphism with weighted Dyck
paths having some constraints; such paths are also Laguerre histories. This will allow us
to build a partial combinatorial bijection between prographs and up-down permutations
of even size that avoid the pattern (1234).

2 Preliminaries

Definition 2.1. For n a non-negative integer, the nth 3-dimensional Catalan number counts the
number of paths from (0, 0, 0) to (n, n, n) using steps (+1, 0, 0), (0,+1, 0) and (0, 0,+1) such
that each point (x, y, z) on the path satisfies x > y > z.

It is obvious that the nth 3-dimensional Catalan number also counts the number of
standard tableaux of shape (n, n, n): from a 3-dimensional path, read from left to right,
assign a number from 1 to 3n to each step and fill the tableau by inserting labels of step
(+1, 0, 0) on the first row, (0,+1, 0) on the second row and (0, 0,+1) on the third row.
The following example uses the French convention for tableaux.

(0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (2, 1, 0) → (2, 1, 1) → (2, 2, 1) → (2, 2, 2)
+ (1, 0, 0) + (0, 1, 0) + (1, 0, 0) + (0, 0, 1) + (0, 1, 0) + (0, 0, 1)

1 2 3 4 5 6

4 6
2 5
1 3

(2.1)

We denote by ST〈n3〉 the set of standard Young tableaux of shape (n, n, n). The hook-
length formula for standard tableaux gives the following nice expression.
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Proposition 2.2. The nth 3-dimensional Catalan number C(3)
n is given by:

|ST〈n3〉| =
2 · (3n)!

n! · (n + 1)! · (n + 2)!
. (2.2)

Although it is complicated to describe in general, the Schützenberger involution of
rectangular standard Young tableaux can be obtained with an easy algorithm.

Proposition 2.3 (See [9, 7] for details). The Schützenberger involution S has a simple descrip-
tion on rectangular standard Young tableaux: it consists in reversing the alphabet {1, 2, . . . , n}
and rotating the tableaux by 180◦.

Formalized by category theory [6], PROs are often viewed as the natural generaliza-
tion of operads. These are still planar assemblies of formal operators, but now, formal
operators have not necessarily a single output. The product over objects remains graft-
ing, however objects are not trees anymore but graphs.

Free PROs over a finite set of generators constitute a nice example of PRO to appre-
hend this object. Given a finite set of operators G, the free PRO generated by G is the
set of all finite planar graphs (called prographs) freely built using elements in G (each
operator can appear several times). As “free” means also formal, a generator inside G
can just be described by its number of inputs and outputs.

Definition 2.4. A product-coproduct prograph is a connected directed graph having a single
input and a single output and composed with two types of nodes: coproduct nodes having a single
input and two outputs and product nodes having two inputs and a single output.

As each coproduct introduces a new output and each product suppresses an output,
a product-coproduct prograph must contain as many products as coproducts. For n a
non-negative integer, we will denote by PC(n) the set of product coproduct prographs
containing n coproducts and n products.

Let V be a formal module, let ∆ : V → V ⊗ V be a coproduct and · : V ⊗ V → V
a product. Encoding the operator having a single entry and two outputs with ∆ and
encoding with the product ·, we can associate an algebraic expression with each pro-
graph. The associated expression models a map from V to V and is a composition of
layers which are mainly tensor products of some ∆, · and the identity map Id. With-
out any operator, the only product-coproduct prograph is the unique empty prograph.
Doing nothing (or do not change anything) corresponds to the map Id.

There is a single prograph with one coproduct and one product: · ◦ ∆.
With two coproducts and two products, we get the five following expressions associ-

ated with the five prographs of Figure 1 from left to right:

· ◦ ∆ ◦ · ◦ ∆, · ◦ (· ⊗ Id) ◦ (Id⊗ ∆) ◦ ∆, · ◦ (· ⊗ Id) ◦ (∆⊗ Id) ◦ ∆,
· ◦ (Id⊗ ·) ◦ (Id⊗ ∆) ◦ ∆, · ◦ (Id⊗ ·) ◦ (∆⊗ Id) ◦ ∆.

(2.3)



4 Nicolas Borie

Definition 2.5. Rotating by 180◦ naturally defines an involution S on prographs which we will
call the Schützenberger involution.

We will see in Proposition 3.2 that it is equivalent to the classical Schützenberger
involution, hence the name.

The example of Figure 2 is a little bigger one with seven layers on the graph, and thus,
the expression describing the product coproduct prograph has seven blocks of operators.

· ◦ (· ⊗ Id) ◦ (· ⊗ ∆) ◦ (Id⊗ ∆) ◦ (Id⊗ ·) ◦ (∆⊗ Id) ◦ ∆

· ◦ (Id⊗ ·) ◦ (∆⊗ Id) ◦ (· ⊗ Id) ◦ (· ⊗ ∆) ◦ (Id⊗ ∆) ◦ ∆

Figure 2: A prograph, its image by the Schützenberger involution and their algebraic
expressions.

Reading the expression from left to right (respectively from right to left) corresponds
to scanning the prograph from top to bottom (respectively from bottom to top). On the
algebraic expression, the Schützenberger involution consists in switching coproducts ∆
and products ·, and reversing the obtained expression.

As our product-coproduct prographs have a single input and a single output, we
can assemble prographs by stacking them: the output of the first one grafted with the
input of the second one. This operation defines a product making the disjoint union
PC :=

⋃
n∈N PC(n) a monoid. The algebra of this monoid, coupled with the proper

coproduct, turns out to be a Hopf algebra.

3 Labeling edges of product-coproduct prographs

A well-chosen labeling of the edges of prographs gives a first bijection, which strongly
motivated our investigations on these objects.

Theorem 3.1. The set PC(n) of product-coproduct prographs of size n has as cardinality the nth

3-dimensional Catalan number.
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Proof. We build a bijection le (labeling edges)

le :
⋃

n∈N

PC(n)→
⋃

n∈N

ST〈n3〉

and its inverse using a depth-left first search numbering of wires on prographs (See
Figure 3). The first row of the tableau will contain the labels of the inputs of coproducts,
the second row will contain the left inputs of products, and the third row will contains
right inputs.

Proposition 3.2. The bijection le preserves the Schützenberger involution. That is, we have:

S(p) = le−1(S(le(p))).

Proof. The depth-left first labeling forms a covering path from bottom to top of the pro-
graph (with indices from 1 to 3n). On the rotated version, we take the same path in its
reverse way, labeling with i instead 3n− i.

1

2

3

4
5

6

7

8

9

10

11

12

Sch.
←→

1

2
3

4

5

6

7

8

9
10

11

12

Figure 3: Labeling of the edges of a prograph and its rotated version.

The filling of Young tableaux of prographs of Figure 3 and the Schützenberger invo-
lution give

5 7 10 12
3 4 8 11
1 2 6 9

reverse
alphabet
→

8 6 3 1
10 9 5 2
12 11 7 4

rotation
by 180◦

→

4 7 11 12
2 5 9 10
1 3 6 8

. (3.1)

The shifted concatenation product • gives a monoid structure over three-row stan-
dard Young tableaux. For instance,

5 8 9
3 4 7
1 2 6

•
5 6
2 4
1 3

=
5 8 9 14 15
3 4 7 11 13
1 2 6 10 12

. (3.2)
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Proposition 3.3. For K a field, the bijection le extended by linearity on the monoid algebra
K[

⋃
n∈N PC(n)] with values inside the monoid algebra K[

⋃
n∈N ST〈n3〉] becomes an isomor-

phism of graded Hopf algebras.

4 Up-down permutations of 2n avoiding (1234)

An up-down permutation of 2n avoiding (1234) is a permutation of size 2n whose
descents set is {2, 4, 6, . . . } with no four letters that form an increasing subsequence. We
denote by A2n(1234) the set formed by all these permutations.

Here are the 42 up-down permutations of size 6 avoiding (1234):

A6(1234) =



563412, 562413, 562314, 561423, 561324, 463512, 462513,
462315, 461523, 461325, 453612, 452613, 452316, 451623,
451326, 364512, 362514, 362415, 361524, 361425, 354612,
352614, 352416, 351624, 351426, 342615, 341625, 264513,
263514, 261534, 261435, 254613, 253614, 251634, 251436,
243615, 241635, 164523, 163524, 154623, 153624, 143625


. (4.1)

Lewis proved that the nth 3-dimensional Catalan numbers count the cardinality of
A2n(1234) and gives in [4, 5] two bijections between up-down permutations of 2n avoid-
ing (1234) and standard Young tableaux of shape (n, n, n). However, using these two bi-
jections, we did not manage to prove that up-down permutations of 2n avoiding (1234)
deploy the same combinatorics as standard Young tableaux or prographs. At first glance,
these results appear to us mainly as counting results.

On permutations, we also have the classical Schützenberger involution (and we will
once more denote it by S) which consists in reversing the alphabet, then reversing the
reading direction. For example, S(631278594) = 615238974. As the Schützenberger
involution preserves appearance and avoidance of patterns, S stabilizes the set of up-
down permutations of 2n avoiding (1234).

Definition 4.1. We define a shifted concatenation product • on
⋃

n∈N A2n(1234) as⋃
n∈N

A2n(1234) ⊗
⋃

n∈N

A2n(1234) −→
⋃

n∈N

A2n(1234)

( σ , τ ) 7−→ (shiftlength(σ)(τ)) · σ
(4.2)

Here are some examples:

12 • 12 = 3412,
2143 • 1324 = 57682143,

12•n = (2n− 1)(2n)(2n− 3)(2n− 2) · · · 563412.
(4.3)
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Not only having the same cardinality, we think that up-down permutations avoiding
(1234) present the same combinatorics as prographs. This is formulated in the following
conjecture.

Conjecture 4.2. There exists a bijection between up-down permutations of 2n avoiding (1234)
and prographs of PC(n) preserving the Schützenberger involution that can be extended to an
isomorphism of Hopf algebras.

For σ an up-down permutation of 2n avoiding (1234), we will denote by Peaks(σ) the
subsequence of values at even positions and Vals(σ) the subsequence of values at odd
positions inside σ.

Proposition 4.3. For n a non-negative integer and σ a permutation of size 2n, σ is an up-down
permutation of 2n avoiding (1234) if and only if the following four conditions are verified:

• the sequence Peaks(σ) avoids (123), and

• the sequence Vals(σ) avoids (123), and

• each value of Peaks(σ) lower than a valley k appears to the right of k in σ, and

• if a valley k has a lower valley to its left, all peak values greater than k to its right must be
ordered in σ decreasingly.

Proof. By exhaustion of all possible positions of values that would form a 1234 pattern.

Proposition 4.3 gathers conditions not very handy for describing up-down permu-
tations of 2n avoiding (1234). However, since permutations avoiding (123) are counted
by (classical) Catalan numbers and thus, are in bijection with binary trees, this proposi-
tion presents the remaining conditions we will need to build special product-coproduct
prographs from a pair of binary trees (the second being reversed over the first one).

Let us now build a bijection between binary trees and permutations avoiding (123)
compatible with the depth-left labeling algorithm. Let σ be a permutation of size n− 1
avoiding (123). The possible positions of a new value n to be inserted in σ such that
it still avoids (123) are constrained. Let τ the maximal prefix of σ whose values are
decreasing. If σ begins by a rise, τ contains only the first value of σ. If σ is entirely
decreasing, then τ = σ. The possible positions to insert n in σ are before τ, just after
τ or inside τ. By inserting n farther, we would get a new permutation τσ1nσ2 where
τσ1σ2 = σ and σ1 6= ε. Such a permutation would contain for sure a pattern (123) where
the smallest value can be in τ, the middle one in σ1 and the value n for the greatest one.
At each insertion of the largest value, the number of values after the first rise (or zero
if the permutation is entirely decreasing) is a non-decreasing statistic bounded by the
size of the permutation minus one. This gives a way to identify a permutation avoiding
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1

2
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6
•
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• •
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6
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7
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•
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2

3 4
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6
•

7

• •

•
8

•
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(0,0,0,2,2,3,6,7,7)
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3 4
• •

5

6
•

7

• •

•
8

•

9

Figure 4: Insertion algorithms for permutations avoiding (123), non-decreasing park-
ing functions and binary trees labeled by depth-left first traversal.

(123) with a non-decreasing parking function (we mean here a non-decreasing function
from {1, . . . , n} to {0, . . . , n− 1} such that f (i) 6 i− 1).

On the other side, when one labels a planar tree (drawn from bottom to top) from
the root with a depth-left first algorithm, at each insertion (or new label), the number of
insertion positions left free on the left is non-decreasing and bounded by the number of
nodes, and therefore, forms a non-decreasing parking function. The construction of the
tree associated with the permutation 958732641 is presented Figure 4.

Figure 5 presents our bijection between the 14 permutations of size 4 avoiding (123)
and the 14 binary trees having 4 nodes.

5 Labeling boxes of product-coproduct prographs

After having labeled the edges of prographs and recovered the three-row standard
Young tableaux, it seems natural to investigate what we obtain when we label operators
(boxes in the prographs). For n a non-negative integer, a prograph of PC(n) contains
n coproducts and n products, therefore, the labels will run from 1 up to 2n. We will
still use depth-left first algorithm to label operators of prographs since it preserves the
Schützenberger involution.

Figure 6 displays the labeling of operators for a prograph having 4 products and
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4321 (0,0,0,0) ••
••

3214 (0,0,0,1) ••
• •

4213 (0,0,1,1) ••
••

4312 (0,1,1,1) • •
••

3241 (0,0,0,2) ••
• •

2143 (0,0,1,2) ••
• •

3142 (0,1,1,2) • •
• •

4231 (0,0,2,2) ••
• •

4132 (0,1,2,2) •

• ••

3421 (0,0,0,3) ••
• •

2413 (0,0,1,3) ••
• •

3412 (0,1,1,3) •
•• •

2431 (0,0,2,3) ••
••

1432 (0,1,2,3) •

•••

Figure 5: The 14 permutations of size 4 avoiding (123), their corresponding non-
decreasing parking functions and binary trees.

coproducts, and its reverse.

Proposition 5.1. After having labeled product-coproduct prographs with the depth-left first
algorithm, we can associate a step (1, 1) with values labeling coproducts and a step (1,−1) with
values labeling products. With such substitutions, the word 123 . . . (2n) becomes a Dyck path.

Proof. The current height of the path is the number of active outputs minus one as
the prograph is partially filled. Therefore the path remains over the horizontal axis.
A primitive prograph (in the sense of an Hopf algebra element) is a prograph whose
associated Dyck path returns to the horizontal axis only at the end.

Definition 5.2. Let n be a non-negative integer, we define a map dw from prographs PC(n) to
weighted Dyck paths of length 2n. We scan the prograph with depth-left first search labeling the
operator from 1 to 2n and starting a Dyck path at (0, 0) and reading the operator labeled by i we
build the weighted Dyck path with the following rules.

• If i labels a coproduct, we count the number d of open outputs left free to the left of the
grafting position of coproduct i. We add a step (1, 1) at the end of the Dyck path and we
label this step with the integer d.

• If i labels a product, we count the number e of open outputs left free to the right of the
grafting position of product i (right from the right input of product labeled by i). We add a
step (1,−1) at the end of the Dyck path and we label this step with the integer e.
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1
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7
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1

2

43

5

6

7

8

Figure 6: Labeling the operators of a prograph and its rotation.

0

0 0 1 1 1 1

0 0

1 1 1 1 0 0

0

Figure 7: Weighted Dyck paths associated with the prographs of Figure 6.

Proposition 5.3. The map dw is a bijection from PC(n) to weighted Dyck paths of length 2n
whose weight satisfies the following assertions:

• All weights of step (1, 1) are non-negative integers smaller than or equal to the starting
height.

• All weights of step (1,−1) are non-negative integer smaller than or equal to the ending
height.

• Weight are non decreasing on successive rises.

• Weight are non increasing on successive descents.

• On peaks of height h where d is the weight of a step (1, 1) just followed by a descent (1,−1)
labeled by e, we have: e + d 6 h.

• On valleys at height h where e is the weight of a step (1,−1) just followed by a rise (1, 1)
labeled by d, we have: d + e > h.
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3 6 2 5 1 4 3 4 2 6 1 5 3 5 2 6 1 4 3 6 2 4 1 5 3 5 2 4 1 6

2 6 1 5 3 4 2 4 1 6 3 5 2 5 1 6 3 4 2 6 1 4 3 5 2 5 1 4 3 6

3 6 1 5 2 4 3 4 1 6 2 5 3 5 1 6 2 4 3 6 1 4 2 5 3 5 1 4 2 6

2 6 3 5 1 4 2 4 3 6 1 5 2 5 3 6 1 4

1 6 3 5 2 4 1 4 3 6 2 5 1 5 3 6 2 4

Figure 8: The 21 prographs associated with their up-down permutations of size 6
avoiding (1234) such that coproducts are labeled by 1, 2 and 3 and products are labeled
by 4, 5 and 6 (eq. Vals(σ) = {1, 2, 3} and Peaks(σ) = {4, 5, 6} on permutations).

Since our weighted Dyck paths in Proposition 5.3 are Laguerre histories, we try in
a first approach a customization of the Françon-Viennot bijection [3] to obtain up-down
permutations. All the variants we tested give up-down permutations which do not
necessarily avoid (1234), therefore we need more to solve Conjecture 4.2.

Nevertheless, we have a bijection for prographs of PC(n) such that Vals = {1, 2, . . . n}
and Peaks = {n + 1, n + 2, . . . , 2n} by using twice the bijection displayed in Figure 4 and
Proposition 4.3 applied with these special conditions. Figure 8 presents this bijection in
size 3.

We are currently working on primitive prographs whose associated weighted Dyck
paths contain more than one peak. For all partitions of {1, 2, . . . , 2n} into two sets V and
P, computer exploration shows that the number of up-down permutations having for
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valleys V and peaks P is equal to the number of prographs whose labels of coproducts
are V and labels of products are P. Therefore, we hope to extend our bijection on
product-coproduct prographs making this new combinatorial class central for the study
of objects counted by the 3-dimensional Catalan numbers.
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