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Plants in aquatic canopies deform when subjected to a water flow and so, unlike a
rigid bluff body, the resulting drag force FD grows sub-quadratically with the flow
velocity Ū . In this article, the effect of density on the canopy reconfiguration and the
corresponding drag reduction is experimentally investigated for simple 2D synthetic
canopies in an inclinable, narrow water channel. The drag acting on the canopy, and
also on individual sheets, is systematically measured via two independent techniques.
Simultaneous drag and reconfiguration measurements demonstrate that data for dif-
ferent Reynolds numbers (400–2200), irrespective of sheet width (w) and canopy
spacing (`), collapse on an unique curve given by a bending beam model which re-
lates the reconfiguration number and a properly rescaled Cauchy number. Strikingly,
the measured Vogel exponent V and hence, the drag reduction via reconfiguration is
found to be independent of the spacing between sheets and the lateral confinement;
only the drag coefficient decreases linearly with the sheet spacing since a strong shel-
tering effect exists as long as the spacing is smaller than a critical value depending
on the sheet width.

Keywords: fluid-structure interaction, reconfiguration, sheltering effect, submerged
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I. INTRODUCTION

Vegetation in rivers is often considered as a source of water resistance which slows down
the water conveyance1. It is also one of the main component for river equilibrium, insofar as
it prevents body erosion by providing bed stabilization, it plays a vital role during floods.
It is crucial for sediment transport, water quality and also shelter to provide the necessary
habitat for the biodiversity of aquatic species2. It is then useful to understand the mechanical
behaviour of aquatic canopies resulting from the interaction between vegetation and a water
flow. From land-use planning to river management3, such a knowledge would also shed light
upon plant biomechanics4,5 and improve bio-inspired engineering6,7.

Traditionally, studies on aquatic vegetation explored its influence on flow properties,
like velocity distribution, wake dynamics, turbulence8–10, water conveyance and sediment
transport11–13 by considering it simply as a rigid or flexible roughness element. So far,
such works describe qualitatively and quantitatively the role of real plants1,14 and rigid15 or
flexible16–18 artificial canopies as an active element on flow friction losses. Recent investiga-
tions also explore various mechanically-activated phenomena in plants or plant canopies that
arise from interaction between the fluid flow (air or water) and vegetation19. For example,
flow-induced vibration and the origin of coherent structures on crop canopies20–23, dissipa-
tion of wave energy24,25, population growth and ecological consequences26, flow-triggered
pruning27, seed–dispersal28,29 were studied.

For many such investigations one of the key ingredient in the analysis is the drag force
experienced by a canopy, a plant and its parts. The profile drag exerted by a flow on a bluff
body (rigid or flexible) is proportional to the frontal area As exposed to the flow, and to
the square of the flow velocity Ū . For rigid objects, As is independent of the flow velocity.
For flexible objects, however, the frontal area As can reduce drastically due to bending
and/or twisting. In this context, Vogel31–33 studied the deformation of tree leaves subjected
to air flow and elucidated the resulting drag reduction mechanism. In fact, the shape of
a tree leaf (or any flexible object) is the result of an equilibrium between drag FD and
elastic restoring forces FE. Thereby, the reconfiguration of a flexible body is, in general, a
function of non-dimensional Cauchy number (CY = FD/FE) and the boundary conditions34.
Thus, the drag reduction can be understood by introducing the Vogel exponent V so that
the drag force is simply proportional to Ū2+V , where V = 0 for a rigid body and usually
V < 0, for a flexible body4,35–38. Numerous experimental and numerical investigations
then considered such reconfiguration effects in various systems. The effect of wind velocity
on drag was measured on real trees and leaves32,39–42. Analogous artificial systems were
studied, including numerical models which reproduce experimental measurements on a fibre
subjected to a soap film36,43, a flexible plate in air44 or water38,45 flow and artificial leaves37,46.
Experimental data are observed to collapse on a single reconfiguration curve.

However, in rivers, canopies are sets of plants close to each other, giving rise to a
strong screening effect, so that plants in canopies do not behave like single plants47,48.
There is also an increasing interest in theoretical models for drag force acting on poro-
elastic systems19,21,49–52. Few studies make explicit the influence of canopy density on drag.
Through theoretical modelling, Gosselin & de Langre (2011)53 investigated the effect of sur-
face density on the Vogel exponent of a synthetic poro-elastic system. They considered a
ball covered-up by filaments analogous to coniferous trees to understand its reconfiguration
due to a fluid flow through a porous medium. Depending on the number of filaments per
unit length, the Vogel exponent is shown to vary between −2/3 and −1. In Thom (1971)47
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the effective drag force is measured on an artificial canopy in a wind channel and it is found
to be much smaller than the expected value obtained by adding individual drag forces on
each roughness element taken separately. This sheltering effect is also observed in other
configurations: flexible stalks54 or rigid cylinders and trees55 in air. In water, the trend is
not so obvious (see Peterson et al. (2004)56). Nepf (1999)15 and Poggi et al. (2004)57 show
opposite trends for the drag coefficients evolution with density. Therefore it is not straight-
forward how plant density and confinement would affect deformation of individual plants in
a canopy. In addition, to the authors’ knowledge, there exists no simultaneous experimental
measurements of drag and reconfiguration in submerged canopies as a function of different
canopy densities.

In this context, it is the objective of this article to investigate the drag force acting on
an aquatic canopy with respect to flow velocity, canopy densities and lateral confinement.
The focus is put on a simple quasi 2D porous media made up of an array of flexible flat
plates aligned in the direction of the flow and confined laterally by channel walls. Drag
reduction via reconfiguration and sheltering effects will be explored experimentally, in order
to understand first the relationship between the global drag and canopy reconfiguration and
then, to elucidate the role of the canopy density.

II. SIMULTANEOUS RECONFIGURATION AND DRAG
MEASUREMENTS

A. Experimental set-up

The experimental set up consists of a narrow open channel (length L = 2 m and width
b = 40 mm). Its slope β is adjustable from horizontal (0◦) to 2.7◦ with a precision of about
0.1mm/m. The flow rate Q at the channel entrance can be controlled using a variable area
flow meter (200−1400 L.h−1). Thus, by measuring the mean water height hw with a stream
gauge, the mean flow velocity Ū = Q/bhw is known. The canopy consists of thin PVC
transparent strips (thickness e = 0.1 mm, height h = 60 mm, width w = 10, 15 or 20 mm)
embedded on LEGO R©bricks so that the spacing between each sheet, `, can systematically be
varied (about 10 different spacings were tested for each sheet width, from ` = 8 to 160 mm).
This canopy of PVC sheets is fixed to the bottom of the hydraulic channel as illustrated
in the schematic (fig. 1). The canopy occupies the entire channel length. The mechanical
properties of each PVC sheet, namely, the physical dimensions, density (ρ = 1.41·103 kg.m−3)
and elasticity modulus (E = 3.78 GPa) are measured before hand using a digital calliper,
analytical scales and the tensile tests on Dynamic mechanical Analysis machine Q800 from
TA instruments, respectively.

The aim of the set-up is to simultaneously measure drag force and the sheet deflection for
various canopy densities as a function of the water velocity. The former is accomplished by
two independent techniques : (1) via the pressure drop across the channel & (2) via direct
observation of individual sheet reconfiguration.

B. Sheet drag via deflection measurement

At any chosen flow rate, the water height can be maintained a constant at the canopy
top level by carefully adjusting the outlet valve and channel inclination β. Once a steady

3



Outlet

valve

Water

tank

Pump

Flow

meter

Flow

control

Inclinometer

Inlet

s

l

D( )

( )
Coordinate

& Angle

FIG. 1. The experimental set-up. The open channel has an adjustable water flow Q and inclination

angle β. An array of PVC sheets representing an aquatic canopy is fixed all along the channel.

The outlet valve is set to adjust the water height hw.
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FIG. 2. Comparison between individual sheet deflection (thick white line) and non-linear bending

beam model (dashed black line) for different mean flow velocities Ū . The Cauchy number CY (eqn.

2) is adjusted until a close fit is obtained. Thus, an equivalent drag coefficient is calculated: the

local drag coefficient C lD.

flow is established in the channel, all sheets are observed to bend in the same manner. For
each sheet, the restoring bending force should then be balanced by the normal drag force
on the sheet44,58

−EI ∂
3ϕ

∂s3
= FD, (1)

where FD(s) = 1
2
CDρAsŪ

2 sin2 ϕ(s) is the normal component of the drag force on the sheet,
I = we3/12 is the sheet quadratic moment, s is the coordinate along the beam and ϕ(s) the
local beam deflection (see left inset fig. 1). Here, CD is the drag coefficient of the individual
PVC sheet in a canopy. The boundary conditions are applied at the extremities, embedded
for s = 0 and free for s = h, respectively ϕ(0) = π/2 and ∂sϕ(h) = ∂2sϕ(h) = 0. If s̃ = s/h
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is the non-dimensional coordinate along the beam, eqn. (1) becomes

∂3ϕ

∂s̃3
= −CY sin2 ϕ(s̃), (2)

where CY = CDρwh
3Ū2/2EI is the Cauchy number.

Using a planar LASER sheet we can visualize the deflection of individual PVC sheets in
the canopy (see thick white lines in fig. 2). Thus, the sheet deflection δ and height hs are
directly measured with an accuracy of 1 mm. Using δ and hs in the solution of the bending
beam model, an equivalent Cauchy number CY can be computed, so that the computed
sheet profile (dashed black lines) matches with the observed sheet reconfiguration as shown
in fig. 2. Knowing the sheet physical properties and the mean flow velocity, the individual
sheet drag force coefficient is then determined. This is referred to as the local sheet drag
coefficient.

(mN)

FD

(ms-1)U (ms-1)U

FIG. 3. Sheet drag force FD = C lD ×
1
2ρŪ

2whs (in mN) as a function of the water velocity Ū

(ms−1) for various canopy density. The sheet drag is deduced from the force required to produce

the measured sheet deflection. The dashed line where all data above a critical sheet spacing collapse

is a quadratic fit (FD ∝ Ū2) to the data listed in the inset.

Figures 3a & 3b show typical variations of the sheet drag force FD with respect to flow
velocity Ū when the sheet width w = 10 mm and 20 mm, respectively. Each data point is
an average drag force over 9 to 12 sheets in the canopy (depending on the run considered).
Different symbols represent various measurements for a wide range of sheet spacings `. For
any given canopy density, FD is observed to increase, in general, monotonically with water
velocity Ū . At a fixed velocity Ū , the drag force is observed to be smaller for a denser
canopy. In fact, fig. 3b shows that FD can be stronger by an order of magnitude if the
distance between sheets ` is much larger than the sheet width w. When the sheet spacing
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is sufficiently large i.e. ` > 32 mm and ` > 56 mm for sheet widths w = 10 mm and
w = 20 mm, respectively, the measured drag force data collapse onto a leading curve given
by FD ∝ Ū2. On the other hand, if the canopy is dense, the drag force data does not
collapse and in particular, they show a sub-quadratic variation, as inferred by Vogel for
isolated elements31–33. This can be verified on figure 4a where the same data as figure 3b are
shown in a log-log plot. Two regimes appear, namely, ‘rigid’ (small Ū , FD ∝ Ū2, continuous
line) and ‘elastic’ (large Ū , FD ∝ Ū2+V , dashed line). The power laws are given by the
deflected beam model (see section III and figure 5c for details).

C. Sheet drag via an inclinometer

Once a steady flow is established in the channel, the drop in pressure across the channel
must be entirely compensated by wall friction losses and the global drag force experienced
by the canopy. Moreover, the contribution of the channel skin friction is small compared to
the net profile drag for the Reynolds numbers studied here (see for example, Temple et al.
(1987)59 or Nepf & Vivoni (2000)48). Therefore, the gravity force should balance the head
loss due to the presence of a canopy. Thereby, a global measure of the canopy drag can be
obtained as done in Wu et al. (1999)16. If β is the channel inclination angle and Ac = bhw is
the channel cross-sectional area, the pressure drop should be ρgL sin βAc. Since the canopy
spacing is uniform and it occupies the entire channel length, it is appropriate to consider
that the canopy drag force is uniformly distributed over its length. Thus, for equilibrium,

F canopy
D = NFD = ρgL sin βAc, (3)

where FD is referred to as the global drag force experienced by individual sheets in the
canopy and N = L/` is the number of sheets in the canopy, which is about 250 for the
densest canopy. It is pointed out here that this is a straightforward drag measurement as
long as the canopy is sufficiently dense. However, when the sheets are sparsely distributed,
the measurement is less accurate as the corresponding channel pressure drop is negligibly
small.

This independent drag measurement is also studied for various flow velocities Ū and
canopy densities `. The results are presented in figure 4b which compares the drag force
deduced by both methods (local, open symbols; global, closed symbols). As observed before,
the drag force increases steadily with increasing water velocity Ū while it decreases when
the distance between sheets ` is decreased. Both measurements are of the same order of
magnitude until Ū ' 0.06 m/s, beyond which a transition probably occurs in the water
channel (Re > 1200) and the global measurement is no longer relevant.

In the following, index ‘g’ and ‘l’ are used to distinguish the values obtained from the
global and local measurements, respectively. Depending on the two techniques, one can
compute C l

D the local drag coefficient based on the drag force measured via the sheet deflec-
tion and Cg

D is the global drag coefficient. If the drag coefficient is to be independent of the
water velocity then hs, the height of the reconfigured sheet subjected to a water flow (see
right inset fig. 1) should be a function only of Ū and the sheet spacing `. Therefore, in the
following, the effect of canopy density on the sheet reconfiguration is studied to determine
the relation between the Vogel exponent V and the canopy properties.
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FIG. 4. Log-log representation of the data from 20 mm wide canopies. (a) Same data as figure

3(b). The black continuous line shows the trend FD ∝ Ū2 for small Ū and the red dashed line

FD ∝ Ū2+V for large Ū . (b) Comparison with the global profile drag measured from the pressure

loss across the channel (closed symbols). Open symbols represent the local data from individual

sheet deflections measurements.

III. CANOPY RECONFIGURATION

To study the reconfiguration of the canopy, it is convenient to use the non-dimensional
Cauchy number CY which measures the sheet deformation as a response for a given incident
stress (see eqn. 2) and the reconfiguration number R which measures the drag–reduction
ratio, as given by the ratio of the drag on a flexible object to the drag on the same object if
it were rigid. As the drag force is proportional to the frontal area of the sheet that is facing
the flow, the reconfiguration number is then

R =
hs
h

=

∫ 1

0

sinϕ(s̃)ds̃. (4)

Using the global drag measurements and the local deflection measurements, the Cauchy
number CY = F g

Dh
2/EI = Cg

Dρwh
3Ū2/2EI and the reconfiguration number can be inde-

pendently calculated. They are displayed in figure 5(a) for a range of particle Reynolds
numbers ReP = 400 − 2200 (ReP = wŪ/ν, where ν is the water kinematic viscosity) and
canopy configurations corresponding to three different sheet spacings and two sheet widths.

It is clear from figure 5 that the reconfiguration data collapse on a unique curve for
all experimental conditions considered here. Note that the Cauchy numbers used in the
experimental points are obtained by estimating the “global” drag force via the inclinometer.
The good collapse of experimental data shows that the drag measurement via an inclinometer
is sufficiently accurate to obtain the bending force acting on a flexible sheet in a submerged
dense canopy. It confirms the assumption of negligibly influent shear on the channel walls.
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When the Cauchy number is small (CY � 1), there is very little sheet reconfiguration.
However, when the Cauchy number is aboutO(1), there is a steep decrease in reconfiguration
number R. For given elastic properties, the Cauchy number is simply proportional to
the drag force. Thus, at small CY, the drag force is not sufficiently large to produce any
remarkable bending of the PVC sheets in a canopy. In this case, it can be easily shown from
the bending beam model that (1−R) ∝ C2Y as depicted in fig. 5(b) where all data collapse
on a power-law for CY � 1 (even for CY ∼ O(1)). On the other hand, at large CY, the
drag force overtakes the elastic rigidity of the PVC sheets and the reconfiguration number
R decreases rapidly.
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FIG. 5. (a) Reconfiguration curve depicting the reconfiguration number, R, as a function only

of the Cauchy number, CY = CgDρwh
3Ū2/2EI. The closed and open symbols represent two sheet

widths (w = 10 and 20 mm, respectively) in canopies with various sheet spacings ` = 32 mm (�),

16 mm (©) and 8 mm (4). For the sake of simplicity, the error bars are shown for only one data

series. The broken and continuous lines denote rigid and flexible bending models, respectively.

(b) Evolution of (1−R) against CY wherein the solid line is the trend for small Cauchy numbers,

(1−R) ∝ C2Y. (c) Deflected beam model showing the trend R ∝ CαY at CY � 1.

In figure 5(a), the experimental data is compared to the non linear flexible model (eqn.
2) and to the rigid model proposed by de Langre (2008)4, where sheets are modelled by
rigid cylinders mounted on torsional springs. Both models provide good predictions for
the reconfiguration of a sheet. The rigid model4 fits the data for small deflections but it
over-predicts sheet reconfiguration at large Cauchy numbers, i.e. when the canopy bends
sharply. The flexible model which accounts for local sheet bending matches well with data
when CY ∼ O(1) or greater.

The reconfiguration curve fig. 5(c) indicates a power law R ∝ CαY at CY � 1. As
suggested by Gosselin et al. (2010)44, it is, thus, possible to compute the Vogel exponent
V = 2α. For all canopy configurations considered here, V ' −0.6, which is larger than
that for a single fibre under large deformation (V = −2/3)36,43 or an artificial leaf folding
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up in an air flow (V = −4/3)37. Data corresponding to various canopy density fall on the
same reconfiguration curve in figure 5(a). Thus, it can be concluded that the canopy density
does not influence the Vogel exponent V . Note that this result for a 2D laterally confined
canopy is fundamentally different from that obtained for poro-elastic models of coniferous
trees53. In the latter case, the filaments upstream are strongly deformed so that they are
almost perpendicular to the incoming flow while the filaments downstream align themselves
with the downstream flow. Whereas in the present case, the canopy is distributed evenly
throughout the channel’s length and so, no particular sheet is exposed differently from the
others once a uniform (steady and fully-developed) flow is established after the first few
sheets. Thus, the porous media seen by a fluid flow over a ball covered-up by flexible
filaments is not similar to that of a series of flexible flat plates perpendicular to the flow.

It is not straightforward to deduce the effect of sheet spacing on reconfiguration number
in figure 5. As inferred in section II, for a given sheet (or a canopy) subjected to a water
velocity Ū , the sheet drag force is smaller for a denser canopy configuration. Thus, at a
given velocity, the canopy density plays an indirect role of reducing sheet reconfiguration
via a reduced drag force.

IV. CANOPY DENSITY & CONFINEMENT

The drag force on a sheet is FD = CD
1
2
ρŪ2whs, where hs = Rh ∝ ŪV is independent of

the canopy spacing ` (see previous section III on reconfiguration). It is therefore expected
that the form drag coefficient CD should be a function of the canopy density. Hence, to
further study the effect of canopy density on the drag force and canopy reconfiguration,
the effect of the former on the drag coefficient should be explored. Figure 6a displays C l

D

in different canopy configurations. Here, for each configuration, the length of the canopy
L ' 2 m is fixed and only the spacing between each PVC sheet `, is modified over a range
of about 8 − 160 mm. The error bars for the local drag coefficient come from standard
error between C l

D of the ten measured sheet in the canopy. Note that the drag coefficients
are much larger than the commonly known values (about 2, see Vogel33) at these Reynolds
numbers. This is simply due to large confinement effects36.

Consider the case when the sheet width is w = 20 mm. C l
D vary first linearly with

respect to the canopy spacing ` before it reaches approximately a constant maximum when
` > 10 cm. The same trend is observed for the other two sheet widths displayed in figure
6a while the critical spacing `c at which C l

D saturates is different for each sheet width
w : `c ≈ 6 cm for w = 15 mm and `c ≈ 4 cm for w = 10 mm. These data are now
plotted (see figure 6b) in terms of the normalized drag coefficient C l

D/CD
l,∞ against the non-

dimensional canopy spacing ε = `/w. Here, C l,∞
D corresponds to the local drag coefficient

of an isolated sheet as ` � w. Note that this single sheet drag coefficient depends on the
lateral confinement and then, on the sheet width w. It is striking that all data fall almost
along an unique curve. Two dominant features are observed : (1) C l

D ∝ (`/w)CD
l,∞ as long

as the spacing between sheets is smaller than the critical spacing `c (dense regime) and (2)
C l

D is independent of the canopy spacing ` and is equal to that of an isolated sheet (isolated
sheet regime). Therefore, a sheet inside a canopy should experience a smaller drag force FD

than its rigid counterpart via two drag reduction techniques: on the one hand, the elastic
reconfiguration which results in a sub-linear speed-drag dependence (FD ∝ Ū2+V) and on the
other hand, the sheltering effect due to its neighbours wherein the drag force FD decreases
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` > 4w.

linearly with the spacing between sheets `, as long as ` 6 `c.

Since the length of the recirculation zone behind a flat plate is about 4-5 times its width,
it is expected that the presence of a sheet influences its neighbours as long as ` 6 4w. In fact,
figures 6 indicate that the critical canopy spacing is indeed `c ≈ 4w. When ` < `c individual
sheets are, thus, expected to be sheltered so effectively by their neighbours’ recirculation
zone that they are not exposed to the incoming water velocity Ū but to a very negligible
water flow perpendicular to them. This implies that, in the dense regime, due to the low
momentum wake between the sheets, the canopy behaves like a single continuous flexible
media. The force acting on such a canopy should then be equal to the product of the drop
in pressure across the channel ∆P and the reconfigured frontal area of the canopy As. For
an inviscid flow, the former is proportional to the dynamic pressure 1

2
ρŪ2 whereas the latter

is dependent on water velocity via the Vogel exponent as ŪV . Therefore, the total drag
F can on the whole canopy must be F can ∝ Ū2+V . But the net force F can on the canopy is
equal to the sum of all the forces acting on each sheet in it. Given that the sheets occupy
the entire length of the channel and, also, the canopy is quasi two dimensional, the force
per unit length should be homogeneous across the canopy when the flow rate is constant
across it. So, F can = NFD where FD is the sheet and N = (L/`) is the number of sheets
in the canopy configuration. Therefore, the drag force FD should be linearly proportional
to the spacing, `. On the other hand, if the sheets are not exposed to their neighbours’
recirculation zone ` > `c, each one of them is left alone to face the incoming water flow at
about Ū . In this case, only drag reduction via reconfiguration occurs and the drag force is
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simply independent of the sheet spacing.

V. CONCLUSION

A 2 meter long canopy of PVC sheets subjected to a laterally confined open channel
flow is studied, in order to determine the effect of sheet density on the drag reduction
mechanisms. The canopy is observed to behave as a continuous flexible object where all the
sheets show approximatively the same deflection when an uniform water flow is maintained.
Two independent methods were performed to make drag measurements on various canopy
configurations: (1) a local drag coefficient C l

D is measured from the deflection of individual
sheets in the canopy; (2) a global drag coefficient Cg

D of a sheet in a canopy is computed via
the global force balance on an inclinable water channel. It is observed that C l

D and Cg
D are

about the same order of magnitude over various Reynolds numbers and canopy densities.
The global behaviour is thus closely linked to the shape of each sheet inside the canopy. This
is confirmed by the reconfiguration study whereby the dimensionless reconfiguration number
representing the canopy deflection is shown to be a function only of the Cauchy number,
independent of the spacing between the sheets. It is, therefore, concluded that each sheet in
a canopy behaves like a single flexible object provided that an appropriate drag coefficient is
defined, which takes into account the canopy density : the Vogel exponent V is independent
of the canopy density.

For a given sheet width w, if the sheet spacing ` ≤ 4w, the drag coefficient C l
D of an

individual sheet decreases when the canopy becomes denser. Measurements indicate that
C l

D varies linearly with the spacing between the sheet ` so that C l
D ∝ (`/w)CD

l,∞ where
CD

l,∞ is the drag coefficient of an isolated sheet (measured from its deflection). Within this
limit, the drag force FD is simply proportional to `. Beyond this limit (` ≥ 4w), the drag
force does not depend on the canopy density and is equal to that of an isolated flexible
sheet. This observation is substantially different from common assumptions in theoretical
models21,23,49 that try to describe coherent structures arising from fluid-structure interactions
in submerged vegetation canopies. Most canopies are not as simple as the ones considered
here. Therefore, it is hoped that these new results for an array of flexible plates perpendicular
to the flow would encourage further investigations on the role of canopy density in more
complex flexible, porous media analogous to aquatic vegetation.
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