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FEEDBACK STABILIZATION OF A TWO-DIMENSIONAL FLUID-STRUCTURE
INTERACTION SYSTEM WITH MIXED BOUNDARY CONDITIONS

FOURNIE MICHEL*, NDIAYE MOCTAR*, AND RAYMOND JEAN-PIERRE*

Abstract. We study the stabilization of a fluid-structure interaction system around an unstable stationary solution.
The system consists of coupling the incompressible Navier-Stokes equations, in a two dimensional polygonal domain with
mixed boundary conditions, and a damped Euler-Bernoulli beam equations located at the boundary of the fluid domain.
The control acts only in the beam equations. The feedback is determined by stabilizing the projection of the linearized
model onto a finite dimensional invariant subspace. Here we have resolved two important challenges for applications in
this field. One is the fact that we prove a stabilization result around a non zero stationary solution, which is new for such
fluid-structure interaction systems. The other one is that the feedback laws that we determine do not depend on the Leray
projector used to get rid of the algebraic constraints of partial differential equations. This is essential for numerical aspects.

Key words. Fluid-structure interaction, feedback control, stabilization, Navier-Stokes equations, beam equation.

AMS subject classifications. 93B52, 93C20, 93D15, 76D55, 76D05, 74F10.

1. Introduction. We are interested in stabilizing, around a non-zero stationary solution, a fluid-
structure interaction system coupling beam equations and the Navier-Stokes equations. The initial con-
figuration for the fluid domain is denoted by 2, and is refered as the reference configuration. Its boundary
I is split into different parts ' =T, UT'; UT, UT,,, where I, is a flat part of the boundary occupied by
elastic structures satisfying Euler-Bernoulli damped beam equations. For the fluid, Neumann boundary
conditions are prescribed on I',,, Navier type boundary conditions are prescribed on I'¢, and Dirichlet
boundary conditions are prescribed on I';. The assumptions that are essential in our analysis are listed
in Section 2. A particular configuration satisfying these assumptions corresponds to the right hand side
of a wind tunnel, see Figure 1.1, in which a fluid flows around a thick plate, and two beams are located in
the upper and lower boundaries of the plate. In Figure 1.1, the domain €2 is polygonal but the results of
the paper can be easily extended to other geometrical configurations, see Remark 2.1. The stabilization
problem for the associated semi-discrete model is studied in [8].

We assume that the inflow boundary condition in the computational domain € is a perturbed Blasius
type profile, which is used to determine the stationary solution around which we want to stabilize the
fluid-structure system. The goal is to use a force term as control in the beam equations in order to
stabilize the full fluid-structure system. Since the structure is deformed under the action of the fluid, the
domain occupied by the fluid at time ¢ depends on the displacement 7n(t) of the structure, see Figure 1.2.
The fluid domain at time ¢ is denoted by €, ) and the fluid-structure interface by I'; ;). We use the
notations

Qr= U (8 xu), == U {}xTyp), QF=(0.0)x0,
t€(0,00) te(0,00)
Y° =(0,00) x Ty, X =(0,00) xI, X2 =(0,00) xTe, X =(0,00)x7T,.
The Eulerian-Lagrangian system describing the evolution of the fluid-structure system is

ug —divo(u,p) + (u-V)u=0, dive=0in Q;°,
u=mnon X°, wu=gs+g,on¥X, wu-n=0ande(u)n-7=0o0n ¥,
o(u,p)n =0o0n X,  u(0)=u" on Q,
N — BA = ¥As + alAln = —o(w,p)Ir, ) nyy VT + 02 -n+ fo+ f on 5,
n=0on (0,00) x 5, 7, =0 on (0,00) x s,
§0)=0onTs 7(0) =78 on Ty,

(1.1)

where u and p stand for the fluid velocity and pressure, o(u, p) is the Cauchy stress tensor
1
o(u,p) =2ve(u) —pl, e(u)= §(Vu + (Vu)T),
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Fig. 1.1: Configuration of the wind tunnel.

v is the fluid viscosity, o > 0, 8 > 0 and v > 0 are parameters of the structure, f; is a stationary force
precisely defined below after (1.2), and n,,4) (resp. n) is the unit normal to I, (resp. I's) exterior to
Q) (resp. Q). Here A, = 0., stands for the Laplace-Beltrami operator on I's. Clamped boundary
conditions are imposed at the extremities of the beams, and 7 is a vector valued function representing
the displacements of the upper and lower beams. The inflow boundary condition g, € H?(T;;R?) is
independent of time and g, is a time dependent perturbation of g5, taking into account the fact that
the inflow boundary condition of the computational domain €2 is not precisely known. The precise
assumptions on g, are stated in Section 2.2. The function f is also assumed to be time independent,
and the control function f is taken in the form

f(te,) = 3 fOwite.y)

where the functions w; € L?(Ts) are chosen in (8.4), so that some stabilizability condition stated in (8.7)
is satisfied.
Let (us,ps) be a solution of the stationary Navier-Stokes equations

—divo(us,ps) + (us - V)us =0, divus =0 in £, 19

us=0onTy, wus=gsonly, wus-n=0ande(us)n-7=00onT,, o(us,ps)n=0onT),. (1.2)
We choose fs = —ps|p, in (1.1)5. Thus, (u,p,n) = (us,ps,0) is a stationary solution of system (1.1).
We assume that it is an unstable stationary solution of that system. The goal of the paper is to find a
control variable f = (f1,---, fn.), in feedback form, able to stabilize system (1.1) around the stationary
solution (us, ps,0), with any prescribed exponential decay rate —w < 0, provided that g,, u® — ug and 79
are small enough in appropriate functional spaces.

We follow a classical approach consisting of finding a feedback control law, stabilizing a linearized
model, that is next applied to the nonlinear system. Let us explain why implementing this approach is
not obvious and leads to new difficulties. In (1.1) the main nonlinearities come from the fact that the
Navier-Stokes system is written in a time-dependent geometrical domain depending on the displacement
of elastic structures. Therefore, before linearizing the system, we have to rewrite it in the reference
configuration (0, 00) x € (see Section 3). For the stability analysis of our linearized fluid-structure system
and for stabilization issues, we have to study the direct and adjoint eigenvalue problems. These problems
are not standard because the algebraic constraints of the direct eigenvalue problem are

diveo = Agmy in Q, v =mngn on [y,
(see system (5.1)), while the algebraic constraints of the adjoint eigenvalue problem are
divp=01in Q, ¢ =~E&n on [y,

(see system (6.2)). It is a consequence of the fact that the system is linearized around a non zero stationary
solution. Because the algebraic constraints are different, studying the spectrum and performing a Jordan
decomposition of the linearized operator is not standard. In order to study the spectrum of the linearized
operator and to establish its link with the direct and adjoint eigenvalue problems in PDE formulation, we
have to rewrite them into equivalent forms with eigenfunctions belonging to the same state space. This can
be done by using the so-called Leray projector to transform the direct and adjoint eigenvalue problems.
This approach leads to direct and adjoint eigenvalue problems in the form of operator equations. Let
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us emphasize that operator formulation is needed to justify the eigenvalue analysis, and that the PDE
formulation will be needed in [8] for numerical simulations. For that, we have to establish the equivalence
between these two formulations. This is done in Section 7.

To the best of our knowledge, the results of the present paper are the first ones dealing with the
stabilization of a fluid-structure system involving mixed boundary conditions in the fluid equations. The
analysis of such a system seems also to be new in the literature.

Feedback stabilization of strong solutions of such a system around the null solution, by controls acting
only in the equations of the structure, is treated in [24]. In [1], the authors obtained stabilization results
by means of Dirichlet boundary controls acting in the fluid equations. Several existence results of strong
and weak solutions, and some uniqueness results, have been proved in [6, 10, 2, 16, 11].

The plan of the paper is as follows. The functional setting and the assumptions are given in Section
2. The main result is stated in Section 3. The analysis of Oseen operator and the characterization of
the pressure in the Oseen system are done in Section 4. In Section 5, we characterize the infinitesi-
mal generator (A, D(A)) of the semigroup corresponding to the linearized system. We prove that this
semigroup is analytic with compact resolvent. The adjoint of (A, D(A)) is characterized in Section 6.
The equivalences between eigenvalue problems are established in Section 7. In Section 8, we prove that
the bi-orthogonality condition satisfied by the families of eigenfunctions of the direct and adjoint partial
differential equations implies another bi-orthogonality condition satisfied by the families of eigenfunctions
of the direct and adjoint operator equations. This new relationship is used to define a feedback control
law independent of the Leray projector, and which can be easily calculated (see [8]).

I’ r,
I I
F,\‘ rw t)
— Q Iy, — Qn(t) r,
r F\ l rml‘“
T, I

Fig. 1.2: Reference configuration (left) and deformed configuration (right).

2. Functional setting.
2.1. Notations. The geometrical domain € and I'y, see Figure 1.2, are defined by

Q= ([0, L] x [\ ([0, 6] x [=ese]),  Ts = (0,£5) x {e} U (0,£5) x {—e},

where L > 0 is the length of the computational domain, 2¢ is its height, 5 is the length of the thick plate,
and 2e is the thickness of the plate. Thus equations (1.1)5_7 describe the displacement of the upper
beam located at (0,¢5) x {e} and the lower beam located at (0,¢;) x {—e}. We also have

I = Fi}l @] Fi’g @] Fi’g with FiJ = {O} X (—f, —6), Fiyg = {0} X (e,f), Fi,3 = {ES} X (—6,6),
Fe = ((OvL) X {7€}> U ((OaL) X {€}>a Fi,e = Fi U Fe7 Fn = {L} X (*év 6)7 1_\O = 1_\s Uri,e-
We introduce the functional spaces

L2(Q) = L?(Q;R?), H3(Q) = H*([R?), Vs >0,
H () ={veH Q) |v=00onT,Ul,v-n=0o0nT.}, Vs> 1,

VD, (@) ={veL?Q)|divi=00nQ,v-n=0o0nTo},
Vo, (@) =H(@Q) NV} (Q), Vs>0,

Vi (@) ={veH(Q)|divi=0inQ,v=00nT;,v-n=00nTl}, Vs>3.
We also introduce the product spaces

H=L%9Q) x H3(T,) x L*(Ty) and Z=V9. () x H3(T,) x L*(T,).
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The space V9 1 () is equipped with the L*mnorm, the spaces Hp (Q), V§ (Q) and V3 . (Q) are
equipped with the H*-norm. The inner product in HZ(T',) is chosen at the beginning of Section 5.2, and
the inner product in H and Z is defined in (5.2).

The space of boundary displacements. We consider displacements of the beams located on I'; belonging to
3 3
the space denoted by HZ (I',), which is identified with (HZ (0,£,))? = (H2(0,£,)NHL(0,£,))?. By writing

3
Hg (T's), we emphasize the fact that 7 is a vector function with one component defined on (0, ¢s) x {e}
and the other one defined on (0,4,) x {—e}.

The space of inflow boundary conditions. On the boundary I'; = I'; ; UT'; o UT; 3, we consider inflow
conditions g belonging to the space

H(T;) = {g =(91,92) 1 92 =0, o1
g1(=0) = g1(£) =0, gi(—e) = gi(e) = 0}.

Tia € HQ(_& _6)7 g1

Tis = Oa g1 T2 S H2(67‘€)a

The space H(T';) is equipped with the norm (g1, g2) = |91/l z2 (=, —e)U(e,0))-

We denote by C = (C})1<j<s the set of the corners of Q. For all -1 <§ <1, s € N, and for n =1 or
n = 2, we introduce the norms

2
ol = 2 [ 710wl

jal<s

where r stands for the distance to C, a = (a1, az) € N? denotes a two-index, o] = a; + ay is its length,
Oq denotes the corresponding partial differential operator. We denote by H$(£2;R™) the closure of C*>°(Q)
in the norm ||| 7z .gny- We set
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L2(Q) = HY (4 R?), H(Q) = H;(;R?) for alls > 0,
Hs = H%(Q) X H;(Q) x (H4(Fs) N Hg(rs)) X Hg(rs)

We also introduce the following spaces of time dependent functions

H2H(Q™) = L%(0,00; H2(Q)) N H'(0,00; L2(Q)),  Hy' (Q) = L2(0, 00; HF(2)) N H* (0, 005 L2(R2)),
HY'(22°) = L2(0,00; H3(T's)) M H' (0,005 L3(Ty)),  Hy(£°) = Ho (55°) N HY2(55°),

Y = L?(0,00; L2(Q)) x H>1(Q>) x L?(0, 00; L*(Ts)),

X5 = H3'(Q) x L*(0,00; H} () x Hy*(S3°) x H (£9).

2.2. Assumptions.

ASSUMPTION 1. We assume that gs € H(T';), and that the system (1.2) admits a solution (us,ps) €
H3 (Q) x Hj () for some 0 < by < 1 specified in (4.4).

ASSUMPTIONS 2 AND 3. These assumptions are stated in Section 8.2, see (8.5) and (8.7).

In Assumption 2, we state that the parts of spectrum of the Oseen operator and that of the elastic
structure contained in the half plane {A € C | ReA > —w} are disjoint. In Assumption 3, we state a
unique continuation property sufficient to verify the Hautus stabilization test for the linearized system.

REMARK 2.1. The main results of the paper, Theorems 3.2 and 3.3, are proved for the geometrical
configuration described in Section 2.1 and under Assumptions 1, 2 and 3. As mentioned in the intro-
duction, Theorems 3.2 and 3.3 remain valid for geometrical configurations for which the regularity result
stated in Theorem 4.1 is true. (See e.g. [21] where other geometrical configuration are considered.)

3. System in the reference configuration and main results. We denote by £ a contin-
uous linear operator from Hy?(¥%°) into Hy” ((0,00) x (0,L) x {e, —e}) such that En(t,z) = 0 for
(t,x) € (0,00) x ((£s + L)/2,L). For beam displacements n € Hy*(E2°) small enough, we define a
C!-diffeomorphism T, from Q, into Q, by setting

(£ —e)y — Len(t, =, 8(2/)6))
L—e—s(y)én(t,z,s(y)e) )’
4

T (@) = (2, 2) = (w (3.1)



where the sign function s is defined by s(y)=—-1ify<0 and s(y)=1ify>0.

REMARK 3.1. To simplify the notation, in all the transformations, the nonlinear terms and the
operators involving En for some n € Hg72(E§°), we shall simply write n in place of En. We shall do the
same abuse of notation when the partial derivatives of En appear in some erpression.

For a given 1 € HS’Z(EEO) such that the mapping 7, is a C*-diffeomorphism from €, into Q for
all £ > 0, we say that u belongs to Hg’l(Q%O) (resp. p belongs to L?(0,00; H}(£2,))) if and only if

u(:, T()) belongs to H (Q) (resp. p(-T,}) belongs to L*(0, 003 H}(2)).

The main result of the paper is the following theorem.

THEOREM 3.2. Let w be positive. We assume that Assumptions 1, 2 and 3 are satisfied. There
exists 1 > 0 such that, for all u® € HY(Q), 0y € H}(Ts), and e*tg, € H(0,00;H(I;)) satisfying
u’ —us € Vi, (), (u® —ug)|r, =ndn and

[0 = usllm @) + 1990 2 sy + 1€ 9ol 12 0,005m1(0s)) < 7
we can find £ = (f1,-+, fn.) € HY(0,00;R™), in feedback form, for which the nonlinear system (1.1)
admits a solution (u,p,n) in Hgo’l(Qflo) x L2(0,00; Hy () X H¥2(E°), for 6o defined in (4.4), sat-
isfying

—1 _ R < —wt
H(“ (t’ n<t>) ”S’”(t)’"t(t))HH%%(Q)stws)le(rs) =Ce™, Vi>0, and

e m|lLe(nx) <e,

where C' > 0 depends on r and 0 < gg < %
In order the prove that theorem, we make the change of unknowns

t,2,2) = e ult, T (@,2)) — (@, 2)], Pltiw,2) = et p(t, T (2, 2)) — p(a, 2))

M(t,o) = et a), Mat,x) = en(t,z), E(0) = (FiO)izizn, = E (D), (32)
Gp(t,m,2) = e“g,(t,z,z) and 1% =ul — us.

o~~~

The quadruplet (u,p, 71, 72) satisfies the system
Uy — divo(U,p) + (us - V)a + (@ V)us — Ayt — Aot — wtt = e~ ' Fy[u, p, 1, 2] in @,
divu = Asm + e “tdiv Faip[u, 1] in Q®°, U =1pnon X, U =g, on X,
u-n=0o0nX¥, e@n-7r=0o0nx¥, oupn=0onx>,
M, — 72 —why = 0 on Xg°, (3.3)
Tot — BAGT — VAT + A2 — Ayl — wily = vsp + e ' Fy[a, 7] + f on £,
m =0on (0,00) X s, 71, =0 on (0,00) x I,
1(0)=u"inQ, 7N1(0)=0o0nT, 72(0)=n) on Ty,

where 7, is the trace operator on Iy, the nonlinear terms F; and Fs are given in Appendix A, Faiv[W, 1],
and the linear differential operators Ay, As, A3 and A, are defined by

Faiv[U, ] = 7 i c (s(z)miirer + (0 — s(2)2)10lre2), e = (1,007, ey =(0,1)7,
A = sg(z_)ﬁel (Ps,z€2 + Us 2Us z — 20U 2o + VU1 z2€1 + Vs 1 22€2)
+% (Ds,261 — 2VUsg g2 + Ug 1 Us 2 — Vs 1 222 — VU 1,22€1)
+Zﬁ_12 (.02 =t ger) — L Z(j):)ﬁl’m (tts,2 + us,1,2€1), 4
Aoy = wusm Asi = 5 i S (810 + (0= 5(2)2)T0us,1.2),
A = v (sg(z_)ﬁ; Us2,2 — N,zUs 1,2 — 2%(143771))
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We notice that we have used the condition diva = Azf; +e~“!div Faiv [@, 1], and the boundary condition
1|z = 0 to replace 20y -, which appears in equation (3.3)s, by

2v7, (Agﬁl + e “tdiv fdiv[a7 ﬁl]) .

The term 2vv (Ashy) appears in A47, while the term 2vv, (div Faiy[@, 71]) is involved in the nonlinear
term F; of the equation.
In the nonlinear terms Fy, Fs and Fqiv, the functions 7; and 72, which are a priori defined over

[0, 4], are extended by using the operator £, see Remark 3.1. We can easily check that, if ©-n = 0 and
e(@)n -7 =0 on X2, then Fyg;v = Faiv[u, 1] satisfies the following boundary conditions

Faiv=0o0n X, Faiv =0o0n X, Fgiv-n=0on X,

e(Fai)n-7=0o0n X2, e(Fgiv)n =0 on X°.
Moreover Fqiy|t—o = 0 since 7 |t=¢p = 0. Theorem 3.2 is a direct consequence of the following result.

THEOREM 3.3. Let Nmax be in (0,€) and w be positive. We assume that Assumptions 1, 2 and 8 are
satisfied. There exists r > 0 such that, for all 0° € VL. (), n) € Hg(Ts), and g, € Hj(0,00; H(T;))

satisfying u°|r, = nn and
||?70||H1(Q) + H778||H3(F5) + 19 212 (0,00 () S 7

we can find a control f € H(0,00;R™), in feedback form, for which the nonlinear system (3.3) admits a
solution (U, p,n1,m2) € Xs,, where 0q is introduced in (4.4), obeying

||€7wt?]1(t)”L°°(Fs) < Nmax and H(a(t)’ﬁ(t)’ﬁt(t))HH%JrETO(Q)><H3(FS)><H1(FS) <C, Vt>0,

where C' > 0 depends on r and 0 < g9 < %

REMARK 3.4. The estimate [|e”“"N1(t)| poo(r,) < max guarantees that, for all t > 0, the change of
variables To—wig(y) 15 a Cl—diffeomorphism from Qe-wiq into 2.

REMARK 3.5. In Theorems 3.2 and 8.3, we assume that n1(0), the initial displacement of the
beam, is zero, see (3.3). As in [24], the initial displacement can be considered to be non zero. In that
case, the compatibility conditions are more complicated (see [24] for compatibility conditions stated when

m(0) #0).

4. The Oseen system. The goal of this section is to study the non-homogeneous Oseen system

Mow —dive(w,m) + (us - VIw + (w- V)us =F, divw=hin Q,

(4.1)
w=nmnonly, w=0onT;, w-n=0and e(w)n-7=00onT,, o(w,m)n=0o0nT,,

where F € L%(Q), n € H(;% (Ts), h € HY(Q2). We choose Ao > 0 such that
)\0/ \v|2+2u/ |e(v)\2+/[(us-V)u+(v.V)us}-vz llme, YoeHNQ).  (42)
Q Q Q

We shall say that (w,7) € HY(Q) x L?(Q) is a weak solution of (4.1) if and only if it satisfies the following
mixed variational formulation

Find (w,7) € HY(Q) x L?(Q) such that
a(w, @) —b(e,m) = / F-¢ forall ¢ €HL (Q), bw)= / hap  for all o € L*(), (4.3)
w=mnnon 'y, w:QOonFi, w-n=0onTl,, ’

where

a(w,d) = /Q()\Owgb + 2ve(w) : e(¢)) dx + /Q((uS NV)w + (w- V)us)pdz, blw,) = /Qdiv(w)w dz.
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In the case when uy, = 0, that is for the Stokes system, if (F,h,n) € L*(Q) x HY(Q) x HO% (Ty),
far from the set C, that is in Q\ Uj—1 sB(Cj,¢), the solution (w, ) to system (4.1) belongs to H%(Q\
Uj—1,8B(Cj,e)) x HY(Q\ Uj=1 8B(Cj,¢€)) for all € > 0 (B(C}, ) is the ball centered at C; of radius ).
In the neighborhood of C, we can study the regularity of the solution to system (4.1) in weighted Sobolev
spaces. According to [20, Theorem 9.4.5], there exists dp < 1/2 such that, if (F,h,n) € L2(2) x H'(Q) x

3
H§ (D) and us = 0, the solution (w, ) to system (4.1) belongs to Hj (Q) x Hj (Q). In particular
Jp < 1/2 can be chosen so that
1 1

5 <0< (4.4)

The regularity result for the Oseen system is stated in the following theorem.

THEOREM 4.1. For all (F,h,n) € L*(Q) x H'(Q) x HO% (Ts), system (4.1) admits a unique solution
(w,m) € H} (Q) x Hj (Q) satisfying the estimate

lwllesz @) + I7llzzy @) < C (1FllLa@) + Al @) + [0l me2e,))-

Proof. As mentioned above, if us = 0, the existence of a unique solution to system (4.1) belonging to
Hj (Q)x Hj (Q) is already proved in [20, Theorem 9.4.5]. However, we have to notice that the variational
formulation (4.3) is different from that in [20, (9.1.7)-(9.1.9)]. It is different because equation (4.1); is
written in terms of —divo(w, ), while in [20] equation (9.1.1) is written in terms of —vAw + Vp. But
the results stated in [20, Theorem 9.4.5] can be applied here to the Oseen system stated in (4.1).

The adaptation from the Stokes system to the Oseen system can be performed as in [21, Proof of
Theorem 2.17, Step 2]. |

REMARK 4.2. If in system (4.1) the boundary condition w = 0 on T'; is replaced by w = g, on T';, we

can prove that, for (F,h,n,g,) € L*(Q) x H'(Q) x Ho% (T's) x H(T';), the solution to system (4.1) satisfies

||w||H§O(Q) + ||7T||H;O(Q) < C([IF Iz + 1Rl g @) + 10l mere e,y + lgpllae,))-

LEMMA 4.3. We set g9 = & — 8o. Then go >0, HZ (Q) C H20(Q) and H} (Q) C H20(Q), with
continuous embeddings.
Proof. Tt follows from [20, Lemma 6.2.1]. d

4.1. The Leray projector. From [21, Lemma 2.2, we know that L*(Q) = V] . (Q) ® VH{ (),
where Hf. (Q) = {p € H(Q) | p|r, = 0}. We introduce the orthogonal projection P from L*(Q2) onto
Vg,ro (92), called the Leray projector. For all v in L2(£2), we have

Pv=v-Vq. - Vg,
where ¢} and ¢? are the solutions to the equations
ql € HY(Q), Aq¢l=divvinQ, ¢! =0ondQ,
2 (4.5)

@ cHY(Q), A¢=0inQ, %q”:(v—Vq}))~nonFo, @ =0onT,.
n

PROPOSITION 4.4. If v belongs to H'(Q), then Pv and (I — P)v belong to Hz 0 (Q). Moreover, we
have (I — P)v = Vq, where q is the solution to the equation

q€ H'(Q), Aq=divvinQ, %:wnonfo, g=0onTl,. (4.6)

Proof. We have to prove that the solution ¢ to equation (4.6) belongs to H2%<0(Q). Since v belongs
to H(€2), we know that v - n|p, belongs to Hz(I'g). Thus, far from the corners of the domain 2, the
solution ¢ is of class H?. We have to analyze the regularity at the corners corresponding either to a
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junction between two Neumann boundary conditions or to a junction between a Neumann and Dirichlet
boundary condition. At the two corners corresponding to a Neumann-Dirichlet junction, the angle is equal
to 5, the condition on I';, is ¢ = 0 and the condition on Iy is g—z € H%(FO). Using an odd symmetry
with respect to I'g, we have to deal with a pure Neumann boundary condition on a flat boundary with
the extension of g—fl belonging to H2< forall e > 0, on that flat boundary. Thus g is of class H2~¢, for
all € > 0, close to a Neumann-Dirichlet junction.

We may use the results in [12] to analyze the regularity at the corners corresponding to a Neumann-
Neumann junction. From [12, Corollary 2.4.4, Remark 2.4.6, and Theorem 2.3.7 (iii)], it follows that

g€ H5(Q) for all s <1+ % In particular ¢ € H 3 €0 (©2). This completes the proof. d

4.2. Expression of the pressure. The goal of this section is to express the pressure 7 in equation
(4.1) in terms of w, F, n and h. The method used in [24] consists in calculating the divergence of
equation (4.1); in order to get an elliptic equation for 7. This method does not work here. Indeed,
formally 7 is the solution to the equation

Ar = =Xoh —div ((us - V)w + (w - V)ug) +div F in Q, 7 =2ve(w)n-n on Ty,

on . (4.7)
n =2vdive(w) -n— Aw-n — ((us - VIw + (w- V)us) -n+ F -n on Ty.

Since div e(w) ¢ L%(Q), the boundary condition (4.7)s is not well-posed. Thus, we cannot use the classical
transposition method because the Green formula needed for that is not valid (see [12, Theorem 1.5.3]).
We are going to use a variant of the classical transposition method to define an equation for the pressure
7. First, we consider the equation

0
Ax =(in Q, 8—2:0011%, x=0onT,. (4.8)

LEMMA 4.5. For all ¢ € L*(Q), equation (4.8) admits a unique solution x belonging to HZ(SY), for
all % < <1, and satisfying

IxXllz2(0) < CsllClz2(0),

where Cs depends on 6. In particular, this estimate is valid for 6 = &g.
Proof. Tt follows from [20, Theorem 6.5.4], [20, Lemma 6.2.1] and [15, Chapter 2]. d
Let us notice that

1
HI Q) — L25() forall0<d< 3 (4.9)

Indeed, from [19, page 399], it follows that H} (D) — H€ ;(D) for a dihedral domain D, when 1—6 = £+§

and € > 0. Thus we have H}(Q) < H4(Q) for all 0 < § < 3 and ¢ = 1 — 26. That proves (4.9), since
HE 5(9) = 12 ,(0).

Using (4.9), we can define k € £(L?(Q2),R) by

k() = )\0/ nX — Ao hX—/F'VX+2v(E(w)7V2X>L2_5 (),L2 (2)

r, Q Q 0 ’ (4.10)

—2u/ e(w)n - Vx +/ [(us -V)w + (w - V)us] -Vx, forall ¢ € L*(9),

To Q

where x € Hj (Q) is the solution to equation (4.8).
LEMMA 4.6. Let (w, F,n, h) belong to H () x L*(Q) x L*(I'y) x H'(Q). The operator k belongs to
L(L*(Q),R) and we have

k() <C (||77HL2(FS) +Ihllz2 ) + [ FllL2 o) + Hw”HgO(Q)) [¢llp2g) for all ¢ € L*(€).



Proof. The lemma follows from the following estimates

/ nx’ < Clnllze(r.)
s

| | < Clhlliagey ey < Clbllzagoy 6l

Xllzzr,) < Clnllzz@o) 1K) 220

/QF . VX’ S ONF L2 ol VX2 < ClF L2 @llCliz2 ),

/F s(w)n-VX’ < COlle(w)|l2 o) I VXL (rg) < C||wHH%+EO(Q)||<||L2(Q),
0

/Q (s D)+ (w- T ] - x| < Cllwlen oIV xlez0) < Cllwle o€l o,

<5(w)aV2X>L350(Q),L§O(Q)’ < Clle)llle, @ V*xlez @) < Cllwlleso @) I<laz, -
The last inequality comes from [20, Lemma 6.2.1]. d
We introduce the following operators:

o N, € L(L?(Ty), H(Q)) is defined by Nyn = ¢ where ¢ is the solution to the equation

Ag=0in Q, %:nonFs, %:OOHFO\FS7 qg=0onT,. (4.11)
o Ngiy € L(L2(Q2), HY(Q)) is defined by Ngivh = g where ¢ is the solution to the equation
: 9q
Aqg=hin Q, a—zOonl"o, g=0onT,. (4.12)
n

o N, € L(L?(2), H'(Q)) is defined by N,F = g} +q% where ¢}. and ¢% are the solutions to equations
(4.5); and (4.5)2 respectively, with v = F.
e N, € L(Hj (Q),L*()) is defined by N,w = ¢ where ¢ is the solution to the variational problem

Find ¢ € L*(Q) such that

/qu = 2u{e(w), v2X>L350(Q),L§0(Q) — 21// e(w)n - Vx—i—/ﬂ {(uS Vw4 (w - V)us] -V,
o

for all ¢ € L*(Q), where x € Hj () is the solution to equation (4.8).

Thanks to the Lax-Milgram Theorem, we can easily prove that the operators N, Naiv, Np and N,
are well-defined.

REMARK 4.7. We notice that VN, =1 — P.

THEOREM 4.8. If (w,n) € Hj (Q) x Hj () is a solution to system (4.1), where &y obeys (4.4), then
7 is the unique solution to the problem

Find © € L*(Q) such that / 7 ¢dr =k(¢), Y(¢eL*Q). (4.13)
Q

As a consequence, w is determined by

T ==X Nsn — Ao Naivh + NpF + Nyw.

Proof. Let (w,m) € Hj (Q) x Hj (€2) be the solution to system (4.1) and let ¢ belong to L*(Q).
Multiplying the first equation of the system by Vy, where y is the solution to equation (4.8), we obtain

)\O/Qw-Vx—/Qdiva(w,ﬂ)-Vx—l—/ﬂ[(us~V)w+(w-V)us]~Vx—/QF-VX20. (4.14)

By using integration by parts, we get

)\o/w~sz—)\0/divw~x+/ w'nxz—)\o/hx—k)\o/ NX, (4.15)
Q Q 29 Q r
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and

divo(w,m)Vx = ~{o(w.m). VN, @@+ [ olwmn-Vx
Q 0 0 o0 (416)

= _2V<5(w)7V2X>L‘25 (©Q),L2 (Q) +/7T-C+/ o(w,m)n - Vy.
0 0 Q To

Let us notice that (4.16); can be first obtained for y € C>(Q) and next by density for x € H3 (€2). From
equations (4.14)-(4.16), it follows that 7 is a solution of equation (4.13). Thanks to Lemma 4.6 and to
the Lax-Milgram Lemma in L?(Q), we prove that (4.13) admits a unique solution.

To prove the last part of the theorem, it is sufficient to verify that

ON,
/nx=/ 877X=—/4Ns77»
T T, n Q

/hX:/ANdthX:/CNdivh and /F~VX:/CNPF.
Q Q Q Q Q
O

LEMMA 4.9. Let (w,m) € Hj (Q) x Hj (Q) be the solution of system (4.1), where &y obeys (4.4).

Then Nyw belongs to Hz1e0(Q).
Proof. We start from the identity

(4.17)

™= —)\oNsn — XoNgivh + NpF + N,yw.
We know that N,F, Ngiyh and Nen belong to H'(Q2) and that 7 belongs to Hj (€2) C Hz%e0(Q) (see

Lemma 4.3). Hence N,w belongs to Hz <0 (Q). O
4.3. The Oseen operator. We introduce the Oseen operator (A, D(A)) in V(TJLTO (Q) defined by

D(A) = {v € VE—;ZO(Q) | 3¢ € H2=0(Q) such that dive (v, q) € L2(Q),

e()n-T=0o0nT,, o(v,q)n =0 on Fn} and (4.18)

Av = Pdive(v,q) — Pl(us - V)v + (v - V)ug].
THEOREM 4.10. The operator (A, D(A)) is the infinitesimal generator of an analytic semigroup on
V0 1, (Q) and its resolvent is compact.

Proof. The proof is similar to that of [21, Theorem 2.8]. |
PROPOSITION 4.11. The adjoint of (A, D(A)) in VY . () is defined by

D) ={ve VZI0(Q) | 3g € H3+0(Q) such that divo(v, q) € LA(Q),
e(w)n-7=0o0nT,, o(v,q)n + us -nv =0 on Fn} and

A*v = Pdivo(v,p) + P(us - V)v — P(Vug)Tv.

Proof. See [21, Theorem 2.11]. |
3 3
Finally, we introduce the lifting operators L € L(Hg (I's) x H'(Q),Hj () and L, € L(Hg (T) x
H'(Q), Hy, (Q)) defined by

L(n,h) =w and Ly(n,h)=m, (4.19)

where (w,7) is the solution to system (4.1) for F' = 0.
THEOREM 4.12. A pair (w,w) € Hj (Q) x Hj (Q) is solution to system (4.1) if and only if

Aol — A)Pw+ (A — NI)PL(n,h) = PF, (I —P)w=VNyn+ VNqih, (4.20)
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Proof. Let (w,m) € Hj (Q) x Hj (Q) be a solution of system (4.1). We set
w=w-—L(nh) and T=m—Ly(nh).

The couple (w, ) is solution to system (4.1) with (n, h) = (0,0). Thus, @ belongs to D(A) and \gPw —
APw = PF. Hence (A\gI — A)Pw+ (A— XoI)PL(n,h) = PF. The last two equations in (4.20) come from
Proposition 4.4 and Theorem 4.8.

Now, we suppose that (w,7) € Hj (Q) x Hj (Q) is solution to system (4.20). Since (I — P)w =
V N1+ VNaivh = (I — P)L(n, h), we have

w=w — L(n,h) € D(A). (4.21)
Thus, there exists 7, € H2+<0(Q) such that
Aw = Pdivo(w,m) — P(us - V)W — P(w-V)us and o(w,m)n =0 on [, (4.22)
From the first equation of system (4.20), it follows that
P MW —divo(w,m) + (us - V)W + (@0 - V)us — F] = 0.
Thus, there exists mo € Hf\ (€2) such that
AW — divo(w, m + m2) + (us - V)W + (0 - V)us = F. (4.23)
With equations (4.21), (4.22)2 and (4.23), we obtain the system

AW — dive(w,m + m2) + (us - V)W + (W - V)us =F, divw =0 in €,

w=0onT,, w=0onT;, wW-n=0ande(@)n-7=0o0nT., o(W,m+m)n=0o0nT,.
We deduce that (w, ), with
T =71+ T2 + LP(T], h) = 7)\0NST] — A()Ndjvh + NpF + va,

is the solution to system (4.1). d

5. Reformulation of the linearized system. For all (Fy, F}, F?) belonging to H = L?() x
HZ(T,) x L*(Ty), we consider the system

M —divo(v,q) + (us - V)o+ (v V)us — Ay — Aonp = Fy,  dive = Azmy in Q,

v=mnmonTly, v=0onT;, v-n=0ande(v)n-7T=00onT,, o(v,q)n=0o0nT,,

Ay —m2 = Flon Ty, (5.1)
Mz — BAG — YA + A2y — Ay = vsq + F2 on Ty,

m =0ondl'y, m,=0o0ndls.

5.1. Properties of the operators A;, Ay, A3 and Ajy.
PRrROPOSITION 5.1. The differential operators Ay, As, As and Ay obey

Ay € L(HZ(T,),L2(Q)), As € L(L*(T,),L3(Q)),
As € L(HZ(T,), HY(Q)) and Ay € L(HZ(T,), Ho(T,)).

Proof. For Ay, As and As, the proposition follows from Lemmas 5.2 and 5.3 below, and for Ay, it
follows from [13, Proposition B.1]. d

LEMMA 5.2. There exists C > 0 such that, for all (n,w) belonging to L*(Ts) x Hz+eo (), nw belongs
to L?(Q) and

InwllLzy < Clnllzze,)llwl|

11
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Proof. Thanks to the continuous embeddings Hz 720 ((4e, £0) x (0, £,)) < L2(%e, +¢; L°°(0,£,)), and
using the continuity of the extension operator £ (see Remark 3.1), it follows that

—e ls 14 L
C'/ / In(z, —e)w(z, z)|* de dz + C'/ / In(z, e)w(z, z)|* dz dz
e JO

Clnliza

IN

2
|
Q

IN

e 012

|
LEMMA 5.3. There exists C > 0 such that, for all (n,w) belonging to Hg(T's) x L (Q), nw belongs
to L2(Q2) and

[nwllrz@) < Cllnllm 2,(9)

Proof. Let us denote by (C’ )1<j<2, the four corners corresponding to the boundary of I'y, and by
(x]i, ]i) the coordinates of C;. Here the exponent + refers to the upper and lower beams. Since 17

(5)ds| < Imallaaqe,y |o — 2],

belongs to H{ (T's), using an appropriate corner, we have |n*(z)| =

Hence

+
£+ 12 2 "’3 Zj ’ +£(2\6 2
w < z—z;|"+|z— 7 ‘w(z,z)| drdz
/Q|77 ” < ||TlmHLz(rs)/Q (o — 2P + ]z — Z[2)% I{ TP+ 1w (e, 2)|

IN

2
||77IH%2(F /(|1‘ — xi|2 + |z — zj:,t|2)1_260 |(|$ _ x;l:‘Q + ‘Z N z;t|2)5°w(.%',z)‘ dadz.

Since 0 < dg < %7 it follows that  [[nw||2(q) < CHn”H(}(FS) ()" 1]

We denote by A} € L(L*(Q),H 2(Ty)), A5 € L(L*(Q), L2( s)), A € E(L2(Q) ~2(I'y)) and
A} € L(LA(T,), H %(T,)) the adjoints of Ay, As, Az and Ay respectively, where H~2(T') is the dual of
HE (L)

5.2. Definition of the unbounded operator (A, D(A)). For the beam, we introduce the un-
bounded operator (A g, D(Aq ) in HZ(T's) defined by

D(A,p) = HYT)NHZ(T,) and A,p = A, —alAZ

We equip the space HZ(T's) with the norm

) mzry) = (—Aa8)?n, (—Aap)?E)12(r,) = / (BVan - Vi€ + ol nAE),

s

and the spaces H = L2(Q) x HZ(Ts) x L*(Ts) and Z = V!

.o (§2) X H2(T'y) x L*(T,) with the inner
product

((v;m,m2), (0,61,62)) i = (v, B)r2(0) + (M, &) w2 (r,) + (M2, €2)L2(r,)- (5.2)

As in [24, Lemma 3.2], we can show that I + 4N, is an automorphism in L?(T'y), and we can introduce
M € L(Z) and M € L(Z) two automorphisms in Z defined by

I 0 0 I 0 0
M,= |0 I 0 and M;'= 10 I 0
0 ’YsNdiVA3 I+rYst 0 _(I+75Ns)_173NdivA3 (I+75Ns)_1

REMARK 5.4. We notice that, in M, vsNs corresponds to the so-called added mass effect (see [5]).
Here, the added mass operator M is not symmetric.
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We are going to define the infinitesimal generator (A, D(A)) in Z of the linearized system around
(0,0,0,0) associated with (3.3). For that we first introduce

DA) = {(Pv,m,m2) € VT (@) x (HA(T,) 0 HZ(T)) x H3(T) | Po— PL(ne, Azm) € D(A) }.

n,l_‘o

LEMMA 5.5. If (Pv,n1,n2) belongs to D(A), then Ny, (Pv+V Ngna+V Naiv Asmr ) belongs to H%“LEO(Q).

Proof. Let (Pv,n1,72) belong to D(A). Then, there exists F' € V{ . (€2) such that
()\0] - A)P’U + (A — )\of)PL(n27 Ag’lh) =F.

We set v = Pv+ VINgna + VNgivAsn:  and  p = —A\gNgne — AgNaivAzn + Nyv. Then, according to
Theorem 4.12, we know that (v, p) is the unique solution of the equation

Aov —divo (v, p) + (us - VYo + (v-V)u, = F, dive = Asny in Q,

(5.3)
v=mnonly, v=0onT;, v-n=0ande(w)n-7=00nT,, o(v,p)n=0o0nT,.

According to Lemma 4.9, we conclude that N,(Pv + VNgne + V NgiyAsnr) belongs to H%J“SO(Q). ]
We are now in position to introduce the unbounded operator (A, D(A)) in Z where D(A) is defined
above and
A PAy+ (M — A)PL(0,A3-) PAs+ (Aol — A)PL(-,0)
A=M;1] 0 0 I + M;1A,, (5.4)
0 Aa,ﬁ + ’YszAl + Ay 'YA + '7sz142

where (A,, D(A,)) is the unbounded operator in Z defined by D(A,) = D(A) and
Ap(Pv,m1,m2)" = (0,0,7:Ny(Pv+ VNen2 + VNaiwAsm )",V (P, mi,m2) € D(A). (5.5)

5.3. Resolvent of A in Z. In what follows, we are going to consider system (5.1) either when
A € C and (Fy, F!, F?) are complex valued functions (in which case the solutions are also complex valued
functions), or when A € R and (Fy, F}, F2) are real valued functions (in which case the solutions are also
real valued functions). The context will clearly indicate in which case we shall be.

The goal is to prove that the unbounded operator (A, D(A)) has a compact resolvent.

PROPOSITION 5.6. Let (Fy, F}, F2) belong to H and X belong to C. A quadruplet (v,q,m1,m2) € Hs,
is solution to system (5.1) if and only if

A(Pv,n,m2)" = A(Pv,nu,m2)" + MgV (PFy, FLFZ + o NyFp)T
(I — P)v = VNgna + V Naiv A3y, (5.6)
q = —ANsn2 — ANaivAzni + NpAimy + Ny Aang + Ny (Pv + VNgng + VINaiy Azm ) + NpFy.

Proof. 1t follows from Theorem 4.12. ]
PROPOSITION 5.7. Let (Fy, F}, F?) belong to Z. If A € R is large enough, then system (5.1) admits
a unique solution (v,q,n1,12) € Hs, satisfying the estimate

vllez, (@) + llallmy @) + lImllmw.) + [n2llaze.) < Cll(Fy, Fi, F2)|lz.

Proof. Step 1. Lifting of the divergence condition. We are going to rewrite system (5.1) in the form
of a system with divergence free condition. For that, we make the change of unknowns

iJ\Z (61,62) Z’U—L(O,Ag’lh) and ﬁzp—Lp (O,Ag?h), (57)
where L and L, are introduced in (4.19). We have ¥ = non on I'y, which gives

~ 1. 1
Ne=vyonly and n = ng + XFsl on I',.
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We introduce the operator Ly in HZ(T's) defined by
Ly =M — (B+7\)As +alA2 — Ay —~,L,(0, Az -).

We choose A large enough so that L satisfies a coercivity condition in HZ(Ts). From Proposition 5.1, it
follows that Ly € L(HZ(Ts), H 2(Ts)), and with the Lax-Milgram Theorem, we can prove that Ly is an
isomorphism from HZ(Ts) into H~2(T's). The operator Ly is also an isomorphism from H*(I's) N H3(Ts)
into L?(T). The system satisfied by (7, p,n1,72) can be rewritten in the form

A —dive(v,D) + (us - V)U+ (0 V)us — A5t = Gy in Q,
divi=0inQ, v= AL;lvsﬁn +Gynonl,, v=0o0nT}y,
v-n=0onTl,, e@n-r=0onTl., o@0,pn=0onTl,, (5.8)
A —ma=FlonTy, Lym =vsp+ Gson Ty,
m=0on0dl's, m,=0ondly,
where

1 =N =R Ao — A =N 1 .
AsD = ~AyysDs + Agysla + 22 L(0, A3y502) — ~ Lp(0, A37y502),

A A
1 — 1
Gf=F+ XAIF,; + AOA AL(O,ABF;) - XLP(O,ASFQ),
Gs=F2+ \F! —~yAF!, G, =\L,'G, - F}.

From Theorem 4.1 and Proposition 5.1, it follows that there exists C' > 0 such that

| A58l < Clivstallmger,) for all 6 € H(T,),
and
1GfllLz) + 1Gsllze ) + 1Gollmzr.y < CIN(Fy ES FD)l 2

Step 2. Fuxistence of weak solutions for system (5.8). We introduce the space

E= {az (B1,05) € HY(Q) [ div=0in Q, 5=0o0n s, v-n=0on Ty, 3 =0on Iy, Galp, € Hg(l“s)},

1

L2(I‘s)) 5. We set

1
equipped with the norm  |[7||g = <||ﬁ||H1(Q) + || L3 vap,

0r@.0) = [

Q

5‘¢+2’//5(5)55(¢)+/((Us'v)ﬁJr@'V)us)-gb—/A56~¢>+§/ LitoL 6o,
Q Q Q T,

L[ et
and ék(qﬁ)— QGf'Qﬁ—‘r)\/FSLAGbL/\(bQ.

If (0,p) € Hj () x Hj (Q) is a solution to system (5.8);_3, then 7 is solution to the variational problem
Find ¥ € E such that ay (0, ¢) = lr(¢), Vo € E. (5.9)

Thanks to the Lax-Milgram Theorem, problem (5.9) admits a unique solution. Moreover it can be shown
that if ¥ € E is the solution to (5.9), then there exists a pressure p € L?() such that the pair (7,p) is a
variational solution to the system

Ao® — div (3, ) + (us - V)T + (3 V)ug = (Ao — NT+ Gy — A55, dive =0in Q,

o ~ _ A o (5.10)
v=wvanonly, =0onT;, v-n=0ande(@®n-7=0onT,, o(0,p)n=0o0nT,,.

By variational solution, we understand a solution to the mixed variational problem associated with (5.10),
as introduced in (4.3). Since ¥ belongs to V1(Q), (A — A\)0 + G — A5¥ belongs to L?(Q) and 02 belongs

to HO% (T's). Thus, from Theorem 4.1, it follows that (v, p) belongs to HgO(Q) X HgO(Q) and
||5||H§O(Q) + ||15||Hg0(sz) < C([[(Ao =N+ Gy = AsV||L2(0) + ||52|\Hg(F )) < C|(Fy, FY, F2)|lz.
0

s
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Step 8. From equations (5.8)4_¢, we get

Inillzse.) + el 2.y < CIEY, FSL )| 2.

We deduce that system (5.8) admits a unique solution (v, p,n1,72) € Hs, satisfying
[0llsz, () + 1Pl g @) + Il + In2lla2 e, < C|(Fy, F},F2)| 2. (5.11)

Step 4. FEuistence of solutions for system (5.1). According to Theorem 4.1 and Proposition 5.1,
(L (0, Asm), Ly (0, Asny)) belongs to Hgo () x Hgo (©) and we have

12 (0, Asm)llz (@) + 1L (0 Asmi)ll gy o) < CllAsmllme) < Cl(Fy, F F2)ll 2
Thus, thanks to (5.7) and (5.11), system (5.1) admits a unique solution (v, q,71,72) in Hg, satisfying
vllesz ) + llallzy @) + Imllmse.) + Inellaze,) < CIF, F F) 2.

O
THEOREM 5.8. The resolvent of the unbounded operator (A, D(A)) is compact.
Proof. Let A > 0 large enough, and let (Fy, F}, F?) belong to Z. There exists (Pv,n;,72) € Z such
that

(M — A)(Pv,m,m2)" = MY (Fy, FH F2)T.
Thanks to Proposition 5.6, (v, g, 71,72) with

v=Pv+ VNSTIQ + deivA37717
g = —ANn2 — ANgivAsn + Np A + NpAana + Ny (Pv 4+ VNgn2 + VN Az ),

is solution of system (5.1). Due to Proposition 5.7, (v, q,71,72) belongs to Hs, and
vllesz @) + llallzy @) + Imllmse.) + Inellmze,) < CIF, F F) 2.

From Lemma 4.3 and Proposition 4.4, it follows that (Pv,nm1,72) belongs to
Hzt50(Q) x (HY(Ts) N H3(Ts)) x H3(T), and

[P +lmllase. + lmllaaw. < CI(Fr, FLLF2)lz.

H3 50 (Q)

Since the imbedding H2 70 (£2) x (H*(s) N H3(T)) x H3(T's) < Z is compact, the proof is complete. O

5.4. Analyticity.

THEOREM 5.9. The unbounded operator (A, D(A)) is the infinitesimal generator of an analytic

semigroup of class C° on Z. R R R
Proof. First, we introduce the unbounded operator (A, D(A)) in Z defined by D(A) = D(A) and

A (Mol —A)PL(0,As-) (Al — A)PL(-,0)
0 0 I
0 Aa,ﬁ ’}/A

We set K, := (I +v:Ns)~!.  We decompose A in the form A = A+ /Tl + VZQ + .23 + A,, where the
operators A;, Ay and Aj are defined in D(A) by

Ai(Po,m1,m2)T = (0,0, (Ko = D Aa,gni)”,  As(Pv,n1,m2) = (0,0,7(Ks — I)Any)T,
A3(PU,7717T}2)T = (PAim + PAans, 0, Ksys NpAim + KsAami + KovsNpAang — Ks’YsNdivAsTIQ)T,

-~

for all (Pv,n1,1m2) € D(A), and A, is given in (5.5). The theorem will be a direct consequence of Theorem
5.10, Propositions 5.11, 5.14 and 5.7. O
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THEOREM 5.10. The unbounded operator (.%T,D(.»Zl\)) is the infinitesimal generator of an analytic
semigroup of class C° on Z.

Proof. The proof is similar to that in [24, Theorem 3.6]. O

PROPOSITION 5.11. There exist 0 < 0y, 0y < 1 such that A; and Ay belong to L(D((—A)"), Z) and
L(D((—A)%), Z) respectively.

Proof. See [24, Lemma 3.9]. 0

-~

LEMMA 5.12. There exists C > 0 such that, for all (Pv,n1,m2) € D(A), we have the estimate

1Ny (Pv + VNsnz + V Naiv Azl 4 4o ) < Cl PO 12) | b 29

-~

Proof. Let A be positive and (Pv,n1,72) be in D(A). We set
(Ff7Fslv FE)T = (/\Ms - MS.Z)(PU, 7717772)T'
As in Proposition 5.6, we can prove that (v, q,n1,72) with

v = Pv+ VNgna + VNaiv Az,
q = —ANsn2 — ANaivAzn1 + Ny (Pv 4+ V Nz + VNaivAzn),

is a solution of system (5.1). As in the proof of Proposition 5.7, we can show that, for A large enough,
system (5.1) admits a unique solution (v, q,n1,m2) € Hs, satisfying the estimate

lvllz @) + llallay @) + Imllmsw.) + Inllaze,) < CIE, F F) |-
With this estimate and Lemma 4.3, we obtain
Il 300 gy < Clalliry @) < CUEs, FL )< Cll(Po 1, 1)l o 2y
Using Proposition 5.1, we deduce that
| Ny(Pv+ VNgna2 + VNdivA?)??l)HH%JrEO(Q) < C’||(Pv,771,772)||D(2),

]

LEMMA 5.13. The operator K belongs to L(H®(T'y)).

Proof. Let g belong to H*(T's). Since I + vsNs) € isom(L?(T)), there exists a unique h € L*(Ty)
such that h 4+ vsNsh = g. Since vsNsh belongs to He°(T'y), we deduce that h belongs to H*°(I's). Thus,
the operator I + 74N, is an automorphism in H®° (T'). d

PROPOSITION 5.14. The operator A, € L(D(A), L3(T,)) is compact.

Proof. Thanks to Proposition 5.1, Lemmas 5.12 and 5.13, we prove that the operator A, belongs to
L(D(A), H*(T,)). From the compact embedding H® (I'y) — L2(T,), it follows that A, is a compact

operator from D(A) into L?(T). 0
PROPOSITION 5.15. The operators As is A-bounded with relative bound zero.
Proof. Tt is sufficient to argue by contradiction as in [24, Lemma 3.8]. |

PROPOSITION 5.16. We have

[Z, D(A)]

1
3 n,I'o

= {(Pv,nl,ng) S V§+E°(Q) x (H3N HE)(Ts) x HY(Ts) | Pv— PL(n2, Asn1) € V}O(Q)}

Proof. The result can be established by proving that the mapping

T: (PU77717772) — (P’U - PL(7727A3771)77717772)7
is an isomorphism from D(A) into D(A) x (H*(I's) N H3(T's)) x HZ(Ts), and from [Z,D(.A)]%

Vi, (92)x (H*(Ts) N H§(Ts)) x Hg (Ts), and by using that [Z, D(A)]; C VE}EO (Q)x (H3(Ts) N H(Ls)) x
H(T,). 0
16
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6. Adjoint of (A, D(A)).

Using (4.9), we introduce the operator N, € L(H3 (€2), L*(Q)) defined
by  N.p =1,

where 1 is the solution of the variational problem
Find v € L?(Q) such that

/ ¢ = 2y(5(¢)7VgX)Lzéo(Q),Lgo(Q) - 21// e(@)n - Vx +/ [— (us - V)¢ + (V“s)Td -V X,
Q To Q

for all ¢ € L?(Q), and where x € Hj, () is the solution of equation (4.8).

3
2

We also introduce the lifting operators D € L(H¢ ('), H3 (€2)) and D), € E(HO% (Ts), Hy () defined by

Dg=¢ and Dpg=1,
where (¢,1)) is the solution of the system

)\0¢ - leU(¢71/J) - (us ' V)¢ + (VUS)T¢ = 07 d1V¢ =0in Q7 ¢ = gn on Fsa 6.1
p=0onl;, ¢-n=0ande(@)n-7T=00nTl,, o(d,¥)n+us -np=0onT,. (6.1)

Finally, we introduce the unbounded operator (A%, D(A*)) in Z defined by

D(A#) = {(Po,&1. &) e VELY

2o (@) x (HY(L) N HR(T)) x H3(T) | P(6 — DE&) € D(A") |,
and
A* 0 (Aol — A*)PD
A# = ((—Aaﬁ)—lA;k 0 —I + (—Aap) YA + 2v(ysA3)* + AWNS)) + A%
VsNu + A3 —Aag YA + 74N, VN, + A;VN,

The operator A¥ is defined in D(A#) by

Po 0
AZ;# (51 ) = <_(_Aa,,8)_1A§’YSN*(P¢+ Vngl)) ) V(P¢v£17£2) € D(A#)
&2 VSN*(PQS“‘VNS@)

LEMMA 6.1. The adjoint of the operator My in Z and its inverse are defined by

I 0 0 I 0 0
M: =|0 I _(_Aaﬁ)_lA;)Ns ) (Ms*)_l =0 I (_Aaﬁ)_lA;,NS(I'i"VsNS)_l .
0 0 I+ ~vsNg 0 0

(I + ’Yst)_l

Proof. The proof follows from the fact that (I + vsN,) € autom(L?(T,)). It is left to the reader.

O
PROPOSITION 6.2. Let A belong to C and let (Gy, GL,G?) belong to H. A quadruplet (¢,v,&1,&2) €

Hs, is solution of system

Ap —div o (¢, ) — (us - V)¢ + (Vus)'¢ = Gy,

divp=01inQ, ¢==E&nonly,
op=0o0onT;y, ¢-n=0ande(@)n-7=0 onT,,

a(@,)n+us-np =0 on Ty,

A1+ & — (—Aap) (AL +20(7543) )6 — (= Aap) TATG + (—Aap) 1AW =Gy oon Ty, (6.2)
Ay + A — YA — aAl& — Ashp — v = GF on T,

& =00n0ly, & ,,=0o0n0dl,,

if and only if

AM:(P¢7 51752)’11 = A#(P¢7 51752)T + (PGf7 G;v G?)Tv (I - P)¢ = VNS§27 (6 3)
= —ANy& + No(VN.& + Po) + NG '
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Proof. Let (¢,1,£1,&2) € Hs, be a solution of system (6.2). As in Theorem 4.12, we can prove that
(¢,1) is a solution of system

(M — A*)P¢p + (A* — X\oI)PD&; = PGy, (I — P)¢p = VN&,
) = =AN&a + N.(Pd + VNs&2) + NGy

Replacing the pressure ¢ by the above expression in the equations satisfied by &; and &3, we obtain

My = AM(=Aap) TASNE = =& + (—Aap) (AL + 20(75A3)* + ATVN, )b + (= Aap) T AT PG
—(=Aap) L ALY N (P + VNLE) + G,

and

MI + v5sNg)ég = —Ay g€ + 7As&s + Vs NV N&o + A3 Pd + s No (P + VN&o) + G2

The proof is complete. ]
PROPOSITION 6.3. The adjoint of (A, D(A)) in Z is defined by

D(A) = { M7 (P, 1,6) € 7| (Po,&1,6) € D(A*)} and A" = A#M ",

Proof. We set D(A*) = {M;(P,&1,&) € Z | (P6,61,6) € D(A#)}, and A = A#M_*. With a

Green’s formula, we can prove that the solution (v, g, 11, n2) of system (5.1) and the solution (¢,, &1, &)
of system (6.2) satisfy the identity

((Fy, FlFHT, (¢»§1,§2)T)H = ((v,m,m2)", (Gf,G;,Gg)T)H. (6.4)
This identity can be interpreted as follows. According to Proposition 5.6, (Pv, 71,7 ) satisfies
(AM — MA)(Pv,m,m2)" = (PFy, ), F2)T.
Thanks to Proposition 6.2, (P¢,&1,£2) satisfies
(AM} — A%) (P, &1,6)" = (PGy, Gy, G)T.
Thus, identity (6.4) is equivalent to

(()‘I - A)(Pv,nlan2)TaMs*(P¢v flan)T)H = ((PU77]177’2)T7 ()‘I - A\*)M:(Pd)a 51352)T)H'

From that, we deduce that D(.,Z*) C D(A*). The reverse inclusion can be proved by standard arguments.
Therefore, (A*, D(A*)) is the adjoint of (A, D(A)) in Z, and the proof is complete. O

PROPOSITION 6.4. Let A belong to C and let (Gf,GL,G?) belong to H. A quadruplet (¢,v,&1,&s) €
Hs, is solution of system (6.2) if and only if

P¢ P¢ PGy
AM: | & =AM | & + | GE—(—Aap) tA5v:N,Gs |, (I —P)p= VN, 65
&2 &2 G? + 5N, Gy (6.5)

P = =ANy&s + Nu(Pp + VN &) + NG

Proof. Tt is a direct consequence of Proposition 6.2 and of definition of (A*, D(A*)). O

7. Eigenvalue problems. The goal of this section is to find relationships between the eigenvalue
problem associated to 4 and the eigenvalue problem associated to the linearized system associated to
(3.3), i.e.

A€ Ca (PU77717772) € D(A)7 A(vanhTIQ)T = A(P/U’TthD)T? (71)
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and
AG(C, (U7Qanl7n2) €H507
A —divo(v,q) 4+ (us - V)v+ (v-V)us — Ay — Agnp =0, dive = Azn; in Q,
v=mnmonTly, v=0onT;, v-n=0ande(v)n-7T=00onT,, o(v,q)n=0o0nT,,

7.2
A —n2 =0on T, (7:2)
Nip = BAG — Az + @l — Agn —75¢ =0 on Iy,
m =0ondl'y, m,=0o0ndls.
We also consider both the adjoint eigenvalue problems
A€ C7 (P¢7£17§2) € D(A*)’ A(P¢7£17£2)T = A*(Pd)a 61752)T7 (73)
and
)‘E(C7 (¢a1/),§1,§2) EH&(M
)‘¢ - diVO'((b, ¢) - (U’S : V)(b =+ (vus)T(b = 0) le(b =0in Qa ¢ = §2n on FS7
¢p=0onl;, ¢-n=0ande(@)n-7=0o0nTl., o(d,¢¥Y)n+us -np=0onT,, (7.4)

A&+ & — (_Aa,ﬁ)_l(AZ + 2”('78A3)*)§2 - (_Aa,ﬂ)_lAT(b + (_Aa,ﬁ)_lAgw =0onT,
Ao + /BAsgl - VAS€2 - O‘Aigl - A;QS —9s¥ =0onTIYy,
&1 =00n0ls, &5 =00ndls.

DEFINITION 7.1. A triplet (Pvg,m1.,k,m2,k) € D(A) is a generalized eigenfunction for problem (7.1) of

order k > 1 associated to a solution (A, (Pvo,m1,0,m2,0)) of (7.1) if (Pvk, 1 k,N2,k) s obtained by solving
the chain of equations

(AT = A)(Pvj,m jym25)" = =(Poj_1,mj-1,m25-1)",  for1<j <k

A quadruplet (vi, gk, Mk, N2.x) € Hs, is a generalized eigenfunction for problem (7.2) of order k > 1
associated to a solution (X, (vo,q0,M1,0,M2,0)) of (7.2) if (Vk, k. Mk,M2,k) is obtained by solving, for 1 <
7 <k, the chain of systems

Av; —divo(vy, g;) + (us - V)v; + (v - VIus — Aimj — Aanaj = —vj—1 in Q,

diveo; = Asni; in Q, vy=mna,nonls, v; =0o0nly,

vi-n=0o0onl. evy)n-1=00nT., o(vj,qg)n=0o0nT,,

A, = N2, = —mij—1 on L,

Az j = BA1j —YAsnj + aldnj — Agmyj — 7sq; = —12,5-1 on T,

M, =0o0n0ls, M =0 ondl,.

We have similar statements for the adjoint eigenvalue problems (7.3) and (7.4).

7.1. Equivalence between direct eigenvalue problems.

THEOREM 7.2. A couple (X, (v,q,m1,m2)) € C x Hys, is a solution of eigenvalue problem (7.2) if and
only if (A, (Pv,m1,m2)) € C x D(A) is a solution of (7.1) and

(I — P)v = VN2 + V Naiy Aznn,
q = —ANgn2 — ANaivAsm + NpAiny + NpAana + Ny (Pv + VNgng + V Naiy Asnn ).

Proof. 1t follows from Proposition 5.6. O

THEOREM 7.3. A quadruplet (vi,qr, M.k, N2.k) € Hs, is a generalized eigenfunction associated with a
solution (A, (vo,q0,M1,0,M2,0)) of (7.2) if and only if (Pvk, m k, n2,x) € D(A) is a generalized eigenfunction
for (7.1) associated with a solution (X, (Pvo,m1,0,72,0)) and

(I — P)vy = VNsn2x + VNaivAsm ,
Q. = —ANsn2,k — ANaivAsn ke + NpAini gk + NpAono k + No(Pok + VNgn2 i + V Naiv Az k)

—Ngn2.k—1 — NaivAsni k—1.
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Proof. Thanks to Proposition 5.6, (vk, gk, M1k, M2,k) is & generalized eigenfunction of order k > 1
associated with a solution (A, (vo, g0, M1,0,72,0)) of (7.2) if and only if

APk, Mg 12,8) T = APV, 0110 M20) — M (Por—1, 01— 1, 2,8-1 + Vs Npve-1) 7,

(I — P)vy, = VNsn2 i, + VNaivAsni i,

qr = —ANsn2,k — ANaiv Az, + NpAim k + NpAanz i + No(Pog + VNgn2 i + V Naiy Azt k)
—Npvg_1,

where (vVg—1,qk—1,M k—-1,M2,k—1) is a generalized eigenfunction of order k — 1. Since
Npvg—1 = Ngna -1 + NaivAsmi k-1,

it follows that

APk, ks 2,0) " = APk, M1k M2.k) T — (POk—1, 11515 M2,6—1) 7 5

(I — P)vi, = VN2 1 + V Naiv Az i,

qk = —ANgn2 1 — ANaiv Az i + NpAini g + NpAans i + Ny(Pog + VNgtj2 ) + V- Naiv Asni i)

—Nsn2 k-1 — NaivAzN k—1-

We deduce, by induction, that (vk, gk, 71k, 72,k) is & generalized eigenfunction of order k£ > 1 associated

with a solution (A, (vo, o, 71,0,72,0)) of (7.2) if and only if (Pvg, 1k, 72.%) is a generalized eigenfunction
of order k > 1 associated with a solution (A, (Pvo, 1,0, 72,0)) of (7.1). ad

7.2. Equivalence between adjoint eigenvalue problems.

THEOREM 7.4. A couple (A, (¢,,&1,&2)) € C x Hys, is a solution of eigenvalue problem (7.4) if and
only if (A, M*(Pg¢,&1,&2)) € C x D(A*) is a solution of (7.3) and

(I_P)¢ZVNS§27 @/J:—)\N552+N*(P¢+VNS§2)

Proof. Tt follows from Proposition 6.4. ]

THEOREM 7.5. A quadruplet (¢x, Vi, &1k, &2.k) € Hs, s a generalized eigenfunction of order k > 1
associated with a solution (X, (¢o, Yo, &1,0,82,0)) of (7.4) if and only if MY (P, &1k, E2k) € D(A*) is a
generalized eigenfunction of order k > 1 associated with a solution (A, (P, &1,0,€2,0)) of (7.3) and

(I — P)¢r, = VN o1, Y = —ANs&a i + Nu(Pdr + VN i) + Noo i—1.

Proof. Tt is similar to that of Theorem 7.3 and relies on Proposition 6.4. a0
8. Stabilization of the linearized system.

8.1. Projected systems. Let ();)jen+ be the spectrum of A. We denote by Gr(\;) the real
generalized eigenspace of A, that is the space generated by Re Ge(A;) UIm Ge (), where Ge()\)) is the
complex generalized eigenspace of A, and Gx();) is the real generalized eigenspace of A* associated to
the eigenvalue A;. Let w > 0 be such that —w ¢ {Re ); | j € N*}. We define the unstable subspaces

= @jeJ,uGR()\j) and Z; = @jeJuGD*Q(/\j), (8.1)

where J,, is a finite subset of N* such that ReA; > —w for all j € J,, and Re\; < —w for all j &€ J,.
There exist two subspaces Z, and Z, invariant under (e*4);>¢ and (e**");>0, such that

Z2=Z,87Z, and Z=2 &2

We have identified Z* with Z. We denote by m, the projection from Z onto Z, along Z, and by 74 the
projection from Z onto Z, along Z,. We denote by d, the dimension of the subspace Z,,. We characterize
7, in Proposition 8.2.
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LEMMA 8.1. Let (Pv,m,n2) belong to Z, and (P¢,&1,&) belong to Z*. Let us set v = Pv +
V Ngne ‘tVNdivA?)nl and ¢ = P+ V Ns&s. Then Pv = Pv, (I — P)U = VN2 + VNaiwAsm, Po = Po,
(I — P)p = VN, and we have

((5a 7717772)T7 (QZ, 61’52)T)H = ((PU,771:772)T7M;(P¢ §1a€2))H' (82)

Proof. It is clear that P¥ = Pv, (I — P)o = VNys + VNaivAsny, P = Pg, and (I — P)¢ = VN,&.
Using the definitions of v and ¢, we have

(3, P)r2 () = (P, PO)vo () + (12,75 Ns€2) L2(r.) + (1, —(—Aa,p) T AENE) p2(r,)-

We obtain (8.2) by adding (m1,&1)gz(r,) + (12,€2) £2(r,) in both sides of the above identity. O
PROPOSITION 8.2. There exist two families (v;, M i, M2.i)1<i<d, ond (@i, &1.4,82.i)1<i<d, of real valued

functions satisfying the following statements:

(1) The family (Pvi,m 4, M2,i)1<i<d, 1S @ basis of Z,.

(ii) The family (M} (Pi,&1,4,82,:))1<i<d, 1S a basis of Z7.

(iii) We have the bi-orthogonality conditions

((Wismism2,i) " (05, &1.5:625)" )y = 6iy and  (Pvg,misma) s ME (P, 615,&2.5)" )y = 0iys

forall1 <i,5<d,.
(iv) The projector , 1is characterized by

dy
(0,m1,m2)" =Y ((v,m1,m2)", MZ (Pi, 1.6, €24) ")y (Puis i mai) sV (v,m,me) " € 2.

i=1

(v) The matriz A, defined by
Ay =[Aijli<ij<d, Wwith A;; = (-A(Pviv"71,1’7772,1')T7M;(P(ijfl,jagQ,j)T)Ha

is constituted of real Jordan blocks.
(vi) For all 1 < i < d,, there exists q; € H5 (Q) such that (v“ql,nl isM2.i) € Hs, is a real or imaginary
part of a generalized eigenfunction of (7.2), and there exists 1; € Hé (Q) such that (¢;,:,&1,4,82,:) € Hs,
is a real or imaginary part of a generalized eigenfunction of (7.4).

Proof. Arguing as in [9, Lemma 6.2] or in [25], since A is the infinitesimal generator of an analytic
semigroup with compact resolvent, there exist a basis (U;,71,i,72,i)1<i<a, Of Z, constituted of real or

imaginary parts of eigenfunctions and generalized eigenfunctions of A and a basis (M7 (51, &1, 82.0))1<i<d,
of Z! constituted of the real or imaginary parts of eigenfunctions and generalized eigenfunctions of A*,
such that

(@5, m,m2.4)" MZ(05,61,5,825)" )y = 0ijr V1<, j < dy,
dy w/ L ~
7Tu(%771,772)T = 21:1 ((7)77717772)T,M5 (¢i7fl,i»f2,i))H(Ui,771,i,n2,i)T7

and the matrix A, is constituted of real Jordan blocks. }
We set v; = v; + VNgn2 i + VI NaivAsn; and ¢; = ¢ + VN ;. Thus, we have Pv; = 0, P, = ¢,
and assertions (i), (ii) and (v) are proved. Assertion (iii) follows from Lemma 8.1.

Assertion (vi) comes from Theorems 7.3 and 7.5. |
We introduce the matrix B,, defined by

By, = [Bijli<i<d,1<j<n.  With  Bij = (w;,&2,5)r2(r.)- (8.3)
We set As , = ms(A+wl) and By = 7m,B. We notice that
e g2y < Ce™®! ¥t >0, with 0 < e, < dist(Reo(As),0).

As in [21], we shall see that the stabilization of the linearized system is reduced to the stabilization
of the pair (A, +wl, B,).
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8.2. Stabilizability of the pair (A, + wl, B,). First, we introduce the unbounded operator
(As, D(Ay)) in H3(Ts5) x L3(T'y) defined by

— (g4 2 2 _ 0 1
D(AS) - (H (FS) n HO (FS)) x HO (FS) and As - (Aa,ﬁ + A4 4 QVWSAB ’7A5> .

Let A be in C. We introduce the unbounded operator (L. , D(L..)) defined on L?*(Ts) by D(L. ) =
HZ(T) and

Loy =1+ (—Aap) (A2 —yAA, — A} — 20(y543)").

LEMMA 8.3. If A does not belong to spect(As), then L. is an isomorphism from H*(I's) N H3(Ts)
into L*(T's) and we have

(~Aap) TA=AAILTY (~Aa) IO = PAA)LTA (~Aas) T - <Aa,g>1> |

)

M — A= ( z _ "
( ) L*;\ )\L*;\(_AOC’B) !

For all j € J, (J, appears in (8.1)), we introduce the space E()\;) defined by

E(\;) = {((b, ¥, &1,&) € Hsy | (Nj, (9,9,&1,62)) is solution to the eigenvalue problem (7.4)}.
We choose the family (w;)1<i<n, such that

Vect{w; | 1 <i < nc} = Vect{Re&l ;,Im&} ;| j € Ju,1 <k <d;}, (8.4)

where ( ;?, f,gfj,ggj)lggdj is a basis of E();) and ”Vect” stands for the vector space spanned by

the family within the brackets. The number d; is the dimension of E();). It also corresponds to the
geometrical multiplicity of the eigenvalue \; of A.
ASSUMPTION 2. We assume that —w ¢ spect(A), 0 ¢ spect(A) and

{\ € spect(A) | Re A > —w} N {X € spect(As) | Re A > —w} = 0. (8.5)
We consider the following eigenvalue problem

AeC*, Rel> —w,
Ao —divo(g,¥) — (us - V)p+ (Vus)To=0inQ, divg=0inQ, ¢=0onT,.

AssuMPTION 3. All solution (A, ¢,%) to (8.6) obeys the following unique continuation property:
If A(A30 +vs1p) = Agip — Ajg,  then (4,¢) = (0,0). (8.7)

REMARK 8.4. When us = 0 (i.e. in the case of the Stokes system), the unique continuation property
stated in (8.7) is proved in [22] and [23]. Unfortunately, the proofs given in these two papers cannot be
adapted to the case us # 0. Indeed, a necessary and may be not sufficient condition to adapt those proofs
should be to assume that us is analytic. However, this property can be verified numerically, see [8].

THEOREM 8.5. We assume that Assumptions 1, 2, and 8 are satisfied, and that (w;)1<i<n, 5 given
by (8.4). Then, the pair (Ay + wlgnc, By) is stabilizable.

Proof. Thanks to [4, Part III, Chapter 1, Proposition 3.3], the pair (A, + wlgn., B,) is stabilizable
if and only if

Ker(AI — A*) NKer(B*) = {0} for all A € C such that ReA > —w.

Let M¥(P¢,&1,&2) belong to Ker(AI — A*) NKer(B*). We set (I — P)¢ = VNy&,. From Proposition 6.4,
it follows that there exists ¥ € H(%O(Q) such that (X, (¢,%,&1,&2)) € C x Hs, is solution to the eigenvalue
problem (7.4). Since B*M? (P, &1, &))" = 0, we have

s 1<i<n,
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We are going to prove that (¢,1,&1,&) = (0,0,0,0). From equation (8.8) and due to the construction of
(wi)1<i<n,, it follows that & = 0. Next, we can distinguish two cases.

Case 1. X ¢ spect(A). Then, we have (¢,1) = (0,0) and, by using equation (7.4)4, we also have & = 0.
Case 2. )\ € spect(A). In that case, A does not belong to spect(Ag). Therefore, we have

(£1a§2)T = ()\I - A:)_l(_Aa,,B)_l(A>{¢ - Agw)a A§¢ + sz)Ta

which implies that &, = L;%\(—Aa,g)_l(A*{¢—A§2/J+)\A§¢+)\75w). Since & = 0, we have A\(A5d+7s¢) =
A% — Aj¢. Thus, thanks to Assumption 3, we have (¢,) = (0,0). Equation (7.4)4 gives & = 0. 0

8.3. The feedback law. We are going to determine a feedback law of finite dimension able to
stabilize the linearized system associated to (3.3). For that, it is sufficient to find a feedback law stabilizing
the pair (A, +wl, B,). Since (A, +wl, B,) is stabilizable and —A,, —w] is stable, the following Algebraic
Riccati Equation

P, e R&uxdu P =PI >0, P,(A, +wlga,)+ (AL + wlge,)P, — P,B,BI'P, =0,

admits a unique solution P,. Moreover, the operator K, = [Ki’jhgigncggjgdu defined by K, = —BZPU
provides a stabilizing feedback law for (A, + wlga., By). We introduce the operator Ky € L(Z,R™)
defined by

dy,
’CO(PUﬂhﬂh)T = (ZKZ;’j((Pvanlun2>Ta (P¢j7§1,j7§2,j)T)H)

ot 1<i<n.

THEOREM 8.6. We assume that Assumptions 1, 2, and 3 are satisfied. Then, the operator Ky
provides a stabilizing feedback for (A + wl,B). Moreover, the operator A + wl + BKy, with domain
D(A+ wil 4+ BKy) = D(A), is the infinitesimal generator of an exponentially stable analytic semigroup
on Z.

Proof. The proof is similar to that of [14, Theorem 3]. d

PROPOSITION 8.7. Let (Pv,n1,m2) belong to Z. If we choose (I — P)v = VNgne + VINgivAsn €
L2(Q), then we have

ICO(PUanlaUQ)T = IC(PU + (I_ P)Ua7717772)T7

where the operator K € L(H,R™) is defined by

dy,
K(v,mi,m2)" = (ZKZL’J ((vsm,m2)", (¢j751,j,€2,j)T)H)1<i<n ; V(v,m,m2) € H. (8.9)
=1 Sisne
Proof. Tt is a consequence of Lemma 8.1. 0

9. Stabilization of the non-homogeneous linearized system. We are going to prove that IC,
defined in (8.7), stabilizes the following non-homogeneous closed-loop system

vy —divo(v,q) + (us - V)v+ (v - V)us — Ay — Aanp —wv = Fy in Q°,

dive = Asny +div Fgiy in Q®°, v=mnon X, v=g,on X,

v.n=00n%X¥, ewn-7=00n%, o(v,¢)n=0on XL,

Mt — N2 —wnm =0 on X, (9.1
N2t — BAG — YA + a2y — wiy = veq + Fs + Y21 [K(v, 1, m2) " Jsw; on X2,

m =0on (0,00) X s, N1, =0 on (0,00) x I,

v(0)=2"inQ, 7(0)=0o0nT, n2(0)=n) on Ty,

where [K(v,n1,m2)]; is the i-th component of the vector K(v,n1,m2)T € R™.
REMARK 9.1. The feedback law K does not depend on the Leray projector P.
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THEOREM 9.2. We assume that Assumptwns 1, 2, and 3 are satisfied. Let (Fy, Fuiv, Fs) belong to
Y, gp belong to H}(0,00; H(T;)) and (v°,n3) belong to Vi (Q) x Hj(Ty) such that v°|p, = nIn. We
assume that Fgi, satisfies the following boundary conditions

Faiv =0 on X°,  Faivy =0 on 2°,  Fgiv -n =0 on X°,

e(Fav)n-7=0 on X, &(Fgiv)n =0 on X5°. (92)
The solution (v,q,m,n2) of system (9.1) satisfies the estimate
(v, q,m1,m2)lx,, < O || (0%, 05 gp, By Faiv, F)||
where (0%, 08, 9p, Fy, Faivs Fo)|| = 10° ey + 198 | r e,y + 199 | £13 0,001 (1)) + [|(Ffs Fativs Fs)lly -

Proof. Step 1. Reformulation of the system. Due to Remark 4.2, the solution (w, ) of the system

Aow —dive(w, ) + (us - V)w+ (w- V)us =0, divw =0 in £,

(9.3)
w=0onTl,, w=gyonl;, w-n=0ande(w)n-7=0onT., o(w,m)n=0onT,.

satisfies
||w|\H3(o,oo;H§0(Q)) + ||7T||L2(o,oo;Hg0(Q)) < Cllgpll 30,00 (T, ))- (9.4)
We set U =v — Fgiy —w and ¢ = q — 7. The quadruplet (v,q,71,72) is solution to the system
—divo(D,q) + (us - V)T + (0 - V)us — Ay — Agig — w0 = Ff in Q°,

divo = Asn; in Q°, U=mnon X, v=0on X,

v-n=00n%X®, e®n-7=00n%, o(@¢n=0onX,

M —1n2 —wn =0 on X, (9.5)

Mot — BAs — YAsn2 + al2n; —wny = vsq+ Fs + Z?;l[lC(ﬁ, n1,m2) T )iw; on X,

m =0on (0,00) x I, 714 =0o0n (0,00) x I,

9(0) =" in Q, 7(0)=0o0nTs, 712(0) =73 on Ty,

where
ﬁf = Ff — Fdiv,t + 2vdiv 5(Fdiv) — (us . V)Fdiv — (Fdiv . V)’LLS + wFyiy + Aow + wy,
and F,=F, + S [K(Faiv +w, 0,0)T]w; + .

We can verify that (0,m1,72) = (Pv,n1,m2) + (I — P)0,0,0) is solution to the system

d R I -
dt(PU 771,772) (A+WI+BICO)(PU,7717T]2)T + (PFf,O,FS +'73NFf)a

(PO, m1,m2)"(0) = (Pv°,0,99)", (I = P)0 = VNyn2 + VNaiv A

(9.6)

This is the analogue of Proposition 5.6 for time dependent problems.

Step 2. Regularity of solutions to system (9.5). Thanks to Propositions 5.16 and 5.1, we prove that
(Pv°,0,719) belongs to [D(A), 21, (PF},0, Fs+7,N,Ff) belongs to L2(0, 00; Z) and we have the estimate

H(P“ 0,75 ||[D(.A)Z 11 + H PFf’O Fo+7sNp Ff)‘ < CH|(7)077787gp»FfvFdinS)m' (9.7)
2

L2(0,00;2)

Since (A +wl + BKoy, D(A+ wI + BKy)) is the infinitesimal generator of an exponentially stable analytic
semigroup on Z, it follows that

K

[(PV, 71, 772)”LQ(O,OO;D(A))OHI(O,OO;Z) <C |||(UO7 7787 9p: Fr, Faiv, Fs)

(see [3, Chapter 1, Theorem 3.1]). In particular, we have

1P| 111 (0,00i.2(02)) + Ml a2(s00) + [Im2ll 21 sy < C || (0%, 09, gp, Fy, Fai, Fs) || - (9.8)
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From (9.6) and (9.8), it follows that (I — P)v belongs to H'(0, 00; L(£2)). It implies that © = Pv + (I —
P)o € H(0,00; L?(9)) and

||/17||H1(0700;L2(Q)) < C H|(UO, 77(2)3 9p; Ffa Fdiva Fs)m . (99)

For all ¢ > 0, (v(¢),q(t)) is solution to the system

A0(t) — dive(U(¢), q(t)) + (us - V)O(t) + (0(¢) - V)us = G(t) in Q,

divo(t) = Asm(t) in Q, 0(t) =n2(t)non Ty, 0(t) =0on Ty, (9.10)

v(t)-n=0onT,, e@)n-T=0o0nT., o(v(t),q(t))n=0o0nT,,
where

G ==+ (Mo +w)0 — (us - V)T — (T V)us + Aymy + Agny + F.

From (9.7), (9.8) and (9.9), it follows that G belongs to L*(0, 00; L?(£2)) and

G £2(0,00L2(0)) < C H‘ (U0777(2),9p7Ff=Fdiv,Fs)W .

Thus, thanks to Theorem 4.1, (0(t), q(t)) belongs to H () x Hj (Q) and

a2 @ + 18Oz @ < CUGH ) + ||772(t)||HOg . [ Az (8[| 21 22))- (9-11)

We deduce that (7, p) belongs to L*(0, 00; H (92)) x L*(0, 00; Hj () and
||6HL2(O,OO;H§O(Q)) + HQA]|L2(0,<>0;H(§O(Q)) < C|(0°, 03, gp, Fr, Faiv, Fo) |- (9.12)
By combining inequalities (9.4), (9.8) and (9.12), we finally prove that
||(’U7 q,M1, 772)”)(50 S C |||(U07 77879;), Ff7 FdiV7 FS)H|

|

10. Stabilization of the nonlinear system. The goal of this section is to prove Theorems 3.3 and
3.2. For that, we are going to show that the feedback law K, stabilizing the linearized system associated
to (3.3), is also able to locally stabilize the nonlinear system (3.3). We consider the nonlinear closed-loop
system

ﬂt — diVO'(’/LL\,]/?\) + (US . V)ﬂ—i— (ib\ V)us - Alﬁl - Agﬁg — Wi = }"f[ﬁ,ﬁ, ﬁlﬂ/’]\g] in Qoo?

divu = Az + div Faie [0, 1] in Q°°, T =7n on 3°, 0 =g, on L:°,

u-n=0o0nX¥, e@wn-7r=00nx¥, o(upn=0onx>,

Mt — T2 —wi =0 on X,

Mot — BAGTH — YAsT + a2l — Ayt — wip = vsp + Fs[U, ) + >ove IK@, 71, 72) T ];w; on B,

m =0on (0,00) x s, 71, =0on (0,00) x I,

1(0)=u"inQ, 7N1(0)=0o0nT,, 72(0)=n) onT,.

(10.1)

Due to the compatibility condition @°|r, = u® — us|r, = n9n, and since 7;(0) = 0, the intial condition
1(0) = 1" is equivalent to Pu(0) = Pu°.

We are going to use the results on the non-homogeneous linear system (9.1) and a fixed point argument

to prove that system (10.1) is locally exponentially stable. For that, we introduce the mapping G from
X5, into itself, defined by

g(ga E]Vv ﬁla 772) = ('U, q,M1, 772),
where (v, ¢, m1,72) is the solution of system (9.1) with right hand side

(Ff7FdiV7E9) = eiwt(ff[aa Zlv’ ﬁla ﬁ?]?fdiv[fﬁy 771]7-/_':@[57 771])7
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initial data (a%,7n9) in Vi (€) x Hj(Ts) such that 4% = n9n on Ty and boundary perturbation g, in

H}(0,00; H(T';)). We are going to prove that there exists R > 0 such that G is a contraction in

B50,R = {(’Uvq’ 7717772) € X50 | ||(U7Q77717772)||X50 <R and ||€_w'771||L°°(2;>°) < Umax},

where 0 < Npax < €.
LEMMA 10.1. There ezists C > 0 such that, for all n be H*?(X°), we have

HnHCb([O,oo);Cl(fs)) + H77m||L°°(E§°) < CHUHH‘”(E?)a

10ell £2(0,00;1.50 (1)) F 10t | 22 (0,00;50 (1)) + 1Nz | 22 (0,00, (1)) < Cllnll ra2(s50)-

Proof. The results are standard, and their proofs are left to the reader. ]
PROPOSITION 10.2. There exists C > 0 such that, for all (v,q,m1,12) € Bs,.r, we have

H(]:f[v7p7 7717772]a]:div[vy nl]yfs[vvnl])”y S C(l + R)R2 (102)
If (v,q,m,m2) and (v, q, 71, 72) belong to Bs, r, then we have

H(‘Ff[vvpanh?b]afdiv[va771]7-/_'.3[”,771]) - (./.'.f[:tj, Zjaﬁhﬁﬂafdiv[:ﬁaﬁl]afs[gaﬁl])“y

U 10.3
S CR(l + R) ||(’U7 q, 7717772> - (Ua C]77]1»772)||X50 . ( )
The mapping G is well-defined. For all (v,q,m1,m2) and (V,q,h,72) in Bs, r, we have
||g(v7Q77717772)HX50 <C (HGOHI_F(Q) + Hng”HI(Fs) + H./g\PHHé(Opo;H(Fi)) + (1 + R>R2) ) (10 4)
||g(U7Qa7717772) - g(ﬁ, 67 ﬁhﬁQ)”X(;o < CR(l + R) H(Ua q,M, 772) - (57 aa 517772)“X50 .
Proof. Estimate of Faiv[v,m]. The estimates of Faiv[v,m] = —mivie1 + 211 zv1€2 may be obtained

by computing Faiv,z, Fdiv,zs Fdiv,zzs Fdiv,zz, and Fgiv.¢, and by using Lemma 10.1.
Estimate of F¢[v,p,n1,m2]. To prove that F¢[v, p,n1,m2] belongs to L?(Q>), we are going to show that all

its terms belong to L?(Q*°). By using Lemma 10.1, we can prove that all the nonlinear terms involving
either 7, or 72 and v belong to L?(Q*°). For example, we have

||n1,xxvz||L2(Q00) < ||771,xx||Loo(230) HUZHL2(QOC) < O(l + R)Rz'

Let us prove that 7 ,v,, belongs to L?(Q%). We have 11, € H'(0,00; H}(Ts)) < L*(0,00; H}(T's))
and v,. € L*(0,00; L3 (2)). Therefore, thanks to Lemma 5.3, we have

2022l 22 (@) < Cllm el Lo (0,00im3 () V22l L2 (0,002 () < C(1 + R)R*.

Similarly, we can prove that the involving 7; and second order derivatives of v belong to L?(Q).
Now, we estimate (v - V)v. Since v € L2(0, 00; H3+<0(0)) N H(0, 00; L2(R)), v belongs to L (0, oo;
Hit7 (Q)) and Vo belongs to L2(0,00; H2+<0(Q)). Thanks to [13, Proposition B.1], we have
[(v - V)ollLz gy < C ]|

Vol <C(1+ R)R%

7 L2(0,00H2T90(Q)) =

3
Lo (0,00;H1T 2 (Q))

Thus, F¢[v,p, n1,n2] belongs to L*(Q>) and  [|F¢[v, p,m,72] 2oy < C (1 + R)R?.

Estimate of Fs[v,m]. We can easily prove that Fs[v,n] belongs to L*(X%°) when v belongs to
H?'(Qs) and 71 belongs to H2(X2°).

The Lipschitz estimates in (10.3) can be obtained with the same arguments as above. They follow from
the fact that all the terms involved in the calculations are at least quadratic with respect to (v, q, 71, 12)
and (67 aa ﬁlv 772)

The estimates in (10.4) follows from estimates (10.2) and (10.3), and from Theorem 9.2. d
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THEOREM 10.3. Let nmax be in (0,e) and w be positive. There exists v > 0 such that, for all
(@, n9) € Vllai e(Q) x H}(Ts) and gp € H} (0,00, H(T;)) satisfying 1° = nIn on T, gp € H(0,00; H(T,))
and Y

HGOHHI(Q) + HngHHl(FS) + H/g\;DHH[}(O,oo,H(FL)) <,

system (10.1) admits a solution (u,p,n1,72) € Xs, satisfying the estimates

—wt

He nl(t)”Lm(F;) S 77max a‘nd ||( ( ) ( ) 772(t))||H4+ P] (Q)XHS(F )XHI(F ) —_ C Vt > 0

Proof. We choose Ry > 0 small enough such that

% + O(l + RO)RO < Ry, CRo(l + RO) <1, and CRy < Thmax

and we set 7 = 2C' Ry, where C is the constant appearing in (10.4). Due to (10.4), with such a choice,
G is a contraction in Bj, gr,, and system (10.1) admits a unique solution (@, q,71,72) € Bs,,r, satisfying
the estimates

le™ MllLe(se) < max  and  [[(@, D, 71, 72)[| x5, < Ro.
From [18, Theorem 2.1] and Lemma 4.3, it follows that
@l gg+ep o) T 1Ml + lR@Olm e, < CRo.

|

Proof of Theorem 3.2. Thanks to Theorem 10.3, we have to check that, for all n € H%?(3%°) such
that [|7]| Lo (z2) < Nmax, and all ¢ € (0,00), Ty is a C'-diffeomorphism from €2,y into Q. For that, it
is enough to use the continuous embedding H4 2(X2°) < Cp([0,00);CH(Ty)) (see Lemma 10.1) and the
estimate [|7]| Lo (52¢) < Tmax-
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Appendix A. Nonlinear terms. The nonlinear terms Fy and F; in system (3.3) are defined by

o s = () el 2000 ()2t
‘Ff[u? 7771a772]_ /—_e /—_e /—_e
9 o~ _ ~
+ VS(Z)nluzz — vVdiv ]_-div[a7 ,;7\1] + (Z S( ) )771 wpzel . ( )77 b€
{—e {—e {—e
(6 —s(2)z)e ' cunt, (0 —s(2)2)Nstits . (0 — 8(2)2)1 pUs 1T,
, + , 2y aUs,
{—e {—e {—e
_e""ts(z)ﬁlﬂgﬂz _s(2)mugus:  s(2)huspu. | (0 s(2)z)s(z Y2 (e, + us, )
{—e {—e {—e (L—e)(l—e—s(z)e )
n v(l — 5(2)2)s(2)Mza(e™ M, +uss)  20(0— 5(2)2)07 (e Uy + us 2)
—e—s —wipy —e—s(z)e~wip
(L—e)t (z)e=«') (¢ (z)e=«')?
20(f = 5(2)2)s(2) e (e as + Uswz) | V(0= 8(2)2)°0F  — 07) (€7 Mz + U 22)
(£ —e)(l —e—s(z)etn) (£ —e—s(z)e ' )?
0l —e—s(2)e” ' )i (e oz + usz2) | (€= 8(2)2)s(2) e (e”' D2 + ps.2)er
(—e)(l—e—s(z)ewth)? (L—e)(l—e—s(z)e )
- ﬁ%(e_‘”fpz + Ds Z)e2 (f - 5(2)2)8(2)7717/7\1,95(6_“”"171 + US,I)(e_wtaz + US,Z)
(L—e)l —e—s(z)e i) (L—e)(l —e—s(z)e )

~2/(,—wt> —wto
Cmi(eT U dus o) (6T s Fuss) s o
(L—e)(l—e—s(z)e ) e (u- Vg,
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N PR PR 2s(z 7/’]\1@\2, 1/7/’]\17/7\1, e vy , +u 1,
]:S[u7771] =v (nl,mul,z + Mol g + ( ) z N I( 1,z s Z)

(e [ e sy
21/7/7\%(67‘”@2 2T Us2 z) y(ﬂ - 6)’7% z(e_wtalz + us,2,z) . SN
N ’ iy : -~ -2 s div F, iv |, .
(L—e)(l—e—s(z)e~wtn) l(—e—s(z)e“'n, vys (div Faiy [, 11])

In the definition of the nonlinear terms, as indicated in Remark 3.1, the extension operator £ is implicitly
present in front of all the terms involving 7; or 7.
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