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NUMERICAL STABILIZATION OF A FLUID-STRUCTURE INTERACTION SYSTEM

FOURNIÉ MICHEL∗, NDIAYE MOCTAR∗, AND RAYMOND JEAN-PIERRE∗

Abstract. We study the numerical stabilization of a fluid-structure interaction system in a wind tunnel, around an
unstable stationary solution. The goal is to find a feedback control, acting only in the structure equation, able to stabilize
locally the full coupled nonlinear system. The Finite Element Approximation of this coupled system leads to a Differential
Algebraic Equation (D.A.E.) for the fluid velocity, the structure displacement and its velocity, and a Lagrange multiplier
taking into account together the incompressibility condition and the equality of the fluid velocity and the displacement
velocity of the structure at the fluid-structure interface. We determine a feedback control law based on a spectral decompo-
sition of the D.A.E. But the D.A.E. is not standard because the operator acting on the Lagrange multiplier in the differential
equation is not the transpose of the operator involved in the algebraic constraints. We overcome these difficulties by proving
new relationships between eigenvalue problems involving Lagrange multipliers and those without Lagrange multipliers. In
numerical simulations, we show how the calculation of the degree of stabilizability of different invariant subspaces (gener-
alized eigenspaces) may be helpful to determine an efficient control strategy. In particular, the determined feedback law is
able to reject a perturbation (leading to a complete stabilization of the nonlinear fluid-structure system) whose magnitude
is of order 15% of the inflow velocity.

Key words. Fluid-structure interaction, feedback control, stabilization, Navier-Stokes equations, beam equations,
Finite element approximation.

AMS subject classifications. 93B52, 37M99, 37N10, 76D55, 74F10, 76D05

1. Introduction. We are interested in stabilizing a fluid-structure interaction model in a wind
tunnel whose geometrical configuration is represented in Figure 1.1. The inflow velocity U∞ generated
by a powerful fan system is assumed to be constant and horizontal U∞ = (u∞, 0)T , with u∞ > 0. A
thick plate, with a straight base, is located in the center of the wind tunnel, and the fluid flows around
this obstacle. The wind tunnel is formally divided into two subdomains. In the left hand side of the wind
tunnel (LHS for short), the fluid flow is not precisely modeled. At the inflow boundary of the right hand
side of the wind tunnel (RHS for short), the flow is assumed to be a known Blasius type profile gs plus
an unknown perturbation gp. This unknown perturbation, relatively small with respect to gs, takes into
account the fact that the fluid flow in the LHS of the wind tunnel is not precisely known.

U∞

computational domain

LHS RHS

Fig. 1.1: Configuration of the wind tunnel.

In the absence of perturbation, that is when gp = 0, assuming that the fluid flow is governed by the
Navier-Stokes equations with some boundary conditions, the flow in the RHS is a stationary solution
(us, ps). For a Reynolds number Re = 200, for which the numerical simulations are done, the stationary
solution us is unstable. When gp 6= 0, we observe a shedding of vortices behind the thick plate, see
the vorticity profile in Figure 1.2. Our goal is to use a control device able to stabilize the fluid flow
around the stationary solution us, in the presence of perturbations. This type of problem has been
studied theoretically in [4, 21, 22] and numerically in [1, 2]. Here the novelty is that we would like to use
the displacement of elastic structures, located at the upper and lower boundaries of the thick plate, to
stabilize the coupled fluid-structure interaction system. Let us describe our model more precisely. The
geometrical domain Ω, corresponding to the RHS of the wind tunnel, is defined by

Ω = ([0, L]× [−`, `]) \ ([0, `s]× [−e, e]),
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Fig. 1.2: Vorticities of the steady flow (left) and the perturbed flow (right).

where L > 0 is the length of the domain, 2` is its height, `s is the length of the thick plate in the
computational domain, and 2 e is the thickness of the plate. The boundary of Ω, denoted by Γ, is split
into different parts Γ = Γs ∪ Γi ∪ Γe ∪ Γn where

Γs = (0, `s)× {−e} ∪ (0, `s)× {e}, Γe = (0, L)× {−`} ∪ (0, L)× {`} and Γn = {L} × (−`, `),

Γi = Γi,1 ∪ Γi,2 ∪ Γi,3 with Γi,1 = {0} × (−`,−e), Γi,2 = {0} × (e, `), Γi,3 = {`s} × (−e, e).

We also set Γ0 = Γs ∪ Γi ∪ Γe and Γi,e = Γi ∪ Γe. The two elastic beams, used to stabilize the fluid
flow, are located on Γs. The displacement η of the beams is assumed to be normal to Γs, and it satisfies
an Euler-Bernoulli damped beam equation with clamped boundary conditions. Since the structure is
deformed, the domain occupied by the fluid at time t depends on the displacement η(t) of the structure,
see Figure 1.3.

Γi

Γi

Γn
Γs

Γs

Ω

Γe

Γe

Γi

Γi

Γn
Γη(t)

Γη(t)

Ωη(t)

Γe

Γe

Fig. 1.3: Reference configuration (left) and deformed configuration (right).

The fluid domain at time t is denoted by Ωη(t) and the fluid-structure interface by Γη(t). We use the
notations

Q∞η =
⋃

t∈(0,∞)

(
{t} × Ωη(t)

)
, Σ∞η =

⋃
t∈(0,∞)

(
{t} × Γη(t)

)
, e1 = (1, 0) e2 = (0, 1),

Q∞ = (0,∞)× Ω, Σ∞s = (0,∞)× Γs,Σ
∞
i = (0,∞)× Γi, Σ∞e = (0,∞)× Γe, and Σ∞n = (0,∞)× Γn.

The Eulerian-Lagrangian system describing the evolution of the fluid-structure system [21] is

ut − div σ(u, p) + (u · ∇)u = 0 in Q∞η ,

div u = 0 in Q∞η , u = ηtn on Σ∞η , u = gs + gp on Σ∞i ,

u · n = 0 on Σ∞e , ε(u)n · τ = 0 on Σ∞e , σ(u, p)n = 0 on Σ∞n ,

ηtt − β∆sη − γ∆sηt + α∆2
sη = −σ(u, p)|Γη(t) nη(t)

√
1 + η2

x · n+ fs + f on Σ∞s ,

η = 0 on (0,∞)× ∂Γs, ηx = 0 on (0,∞)× ∂Γs,

u(0) = u0 on Ω, η(0) = 0 on Γs, ηt(0) = η0
2 on Γs,

(1.1)

where u and p stand for the fluid velocity and pressure, σ(u, p) is the Cauchy stress tensor

σ(u, p) = 2 νε(u)− pI, ε(u) =
1

2
(∇u+ (∇u)T ),
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ν is the fluid viscosity, α > 0, β ≥ 0 and γ > 0 are parameters of the structure, nη(t) (resp. n) is the unit
normal to Γη(t) (resp. Γs) exterior to Ωη(t) (resp. Ω), and u0, η0

2 are initial data. Here ∆s = ∂xx stands for

the Laplace-Beltrami operator on Γs, the term −σ(u, p)|Γη(t)nη(t)

√
1 + η2

x ·n represents the force exerted
by the fluid on the structure, fs is a stationary force defined below, gs is a stationary boundary condition
and f is the control function which will be used to stabilize the fluid-structure interaction system.

We notice that a Neumann boundary condition is prescribed on Σ∞n while a Navier boundary condi-
tion is prescribed on Σ∞e . What is done in the present paper can be also adapted without any difficulty
to the case where a Neumann boundary condition is imposed on Σ∞e . In that case, the transformation
used to rewrite the system in the reference configuration must be defined differently. Other geometries
could also be considered.

Let (us, ps) be a stationary solution of the Navier-Stokes equations in the reference configuration Ω

−div σ(us, ps) + (us · ∇)us = 0 in Ω,

div us = 0 in Ω, us = 0 on Γs, us = gs on Γi,

us · n = 0 on Γe, ε(us)n · τ = 0 on Γe, σ(us, ps)n = 0 on Γn.

(1.2)

We choose fs = −ps|Γs in (1.1). Thus, (u, p, η) = (us, ps, 0) is an unstable stationary solution of sys-
tem (1.1), and it is the solution around which we want to stabilize (1.1). We choose the function f of the
form

f(t, x, y) =

nc∑
i=1

fi(t)wi(x, y), (1.3)

where the functions wi belongs to L2(Γs) and f(·) = (f1(·), · · · , fnc(·)) is the control variable. The
functions wi must be appropriately chosen so that the linearized system around (us, ps, 0) is stabilizable,
see Section 7.3, where the stabilizability is studied. The goal of the paper is to find a control f , in
feedback form, able to stabilize system (1.1) around the stationary solution (us, ps, 0), with any prescribed
exponential decay rate−ω < 0, provided that gp, u

0−us and η0
2 are small enough in appropriate functional

spaces.
The analysis of this stabilization problem has been done in [11]. Here we would like to develop a

similar strategy for the semi-discrete system obtained by approximating by a finite element method the
system (1.1) rewritten in the reference configuration.

To rewrite system (1.1)1−4 in the reference configuration Q∞, for all t ≥ 0, we introduce the mapping

Tη(t) : (x, y) 7−→ (x, z) =

(
x,

(`− e)y − `Eη(t, x, s(y)e)

`− e− s(y)Eη(t, x, s(y)e)

)
,

where the sign function s is defined by s(y) = −1 if y < 0, s(y) = 1 if y ≥ 0 and E is a continuous linear
operator such that Eη(t, x) = 0 for (t, x) ∈ (0,∞)× ((`s +L)/2, L), see [11]. In the following, to simplify
the notation, we write η in place of Eη.

For all t ≥ 0, Tη(t) transforms Ωη(t) into Ω. We make the change of unknowns

ũ(t, x, z) := u(t, T −1
η(t)(x, z)), p̃(t, x, z) := p(t, T −1

η(t)(x, z)),

η1(t, x) := η(t, x), η2(t, x) := ηt(t, x), and ũ0 = u0.
(1.4)

The quadruplet (ũ, p̃, η1, η2) satisfies the system

ũt − div σ(ũ, p̃) + (ũ · ∇)ũ = Ff [ũ, p̃, η1, η2] in Q∞,

div ũ = divFdiv[ũ, η1] in Q∞, ũ = η2n on Σ∞s , ũ = gp + gs on Σ∞i ,

ũ · n = 0 on Σ∞e , ε(ũ)n · τ = 0 on Σ∞e , σ(ũ, p̃)n = 0 on Σ∞n ,

η1,t − η2 = 0 on Σ∞s ,

η2,t − β∆sη1 − γ∆sη2 + α∆2
sη1 = −σ(ũ, p̃)n · n+ Fs[ũ, η1] + f + fs on Σ∞s ,

η1 = 0 on (0,∞)× ∂Γs, η1,x = 0 on (0,∞)× ∂Γs,

ũ(0) = ũ0 in Ω, η1(0) = 0 on Γs, η2(0) = η0
2 on Γs,

(1.5)
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where the nonlinear terms Ff , Fdiv and Fs are given in Appendix A. The linearization of system (1.5)
around the stationary solution (us, ps, 0, 0) is

vt − div σ(v, q) + (us · ∇)v + (v · ∇)us −A1η1 −A2η2 = 0 in Q∞,

div v = A3η1 in Q∞, v = η2n on Σ∞s , v = gp on Σ∞i ,

v · n = 0 on Σ∞e , ε(v)n · τ = 0 on Σ∞e , σ(v, q)n = 0 on Σ∞n ,

η1,t − η2 = 0 on Σ∞s ,

η2,t − β∆sη1 − γ∆sη2 + α∆2
sη1 −A4η1 = −σ(v, q)n · n+ f on Σ∞s ,

η1 = 0 on (0,∞)× ∂Γs, η1,x = 0 on (0,∞)× ∂Γs,

v(0) = v0 in Ω, η1(0) = 0 on Γs, η2(0) = η0
2 on Γs.

(1.6)

The linear differential operators A1, A2, A3 and A4 are defined in Appendix A.
For the finite element approximation of systems (1.5) and (1.6), we shall take into account the

Dirichlet boundary condition of the fluid flow on Γs, Γi and Γe by Lagrange multipliers. We introduce
finite-dimensional subspaces Xh ⊂ H1(Ω;R2) for the velocity, Ph ⊂ L2(Ω) for the pressure, Sh ⊂ H2

0 (Γs)
for the displacement and its velocity, Dh ⊂ {g = (g1, g2) ∈ L2(Γ0;R2), g = 0 on Γs ∪ Γi, g2 = 0 on Γe}
for the multiplier associated to the Dirichlet boundary conditions on Γ0 = Γs ∪ Γi ∪ Γe.

The finite dimensional approximation of the linearized system (1.6) is

Find v ∈ H1
loc((0,∞);Xh), q ∈ L2

loc((0,∞);Ph), τ ∈ L2
loc((0,∞);Dh),

η1 ∈ L2
loc((0,∞);Sh), η2 ∈ L2

loc((0,∞);Sh), such that

d

dt

∫
Ω

v(t)φdx = af (v(t), η1(t), η2(t), φ) + b(φ, q(t)) + 〈τ(t), φ〉Γ0
, ∀φ ∈ Xh,

b(v(t), ψ) =

∫
Ω

A3η1(t)ψ dx, ∀ψ ∈ Ph,

〈µ, v(t)〉Γ0
=

∫
Γi

gp · µdx+

∫
Γs

η2(t)n · µdx, ∀µ ∈ Dh,

d

dt

∫
Γs

η1(t)ζ dx =

∫
Γs

η2(t)ζ dx, ∀ζ ∈ Sh,

d

dt

∫
Γs

η2(t)ζ dx = as(η1(t), η2(t), ζ)− 〈τ(t), ζ n〉Γs , ∀ζ ∈ Sh,

(1.7)

where

af (v, η1, η2, φ) =

∫
Ω

(
−2νε(v) : ε(φ)− (us · ∇)φ · v − (φ · ∇)us · v +

∫
Ω

A1η1 · φ+

∫
Ω

A2η1 · φ
)
dx,

b(φ, q) =

∫
Ω

divφ q dx, 〈µ, φ〉Γ0
=

∫
Γs∪Γi

µ · φdx+

∫
Γe

µ2 φ2 dx,

as(η1, η2, ζ) =

∫
Γs

(−β∇η1 · ∇ζ + α∆η1 ·∆ζ +A4η1 ζ − γ∇η2 · ∇ζ) dx.

System (1.7) has to be completed by initial conditions. The Lagrange multiplier τ is introduced to
take into account the boundary conditions v = η2n on Γs, v = gp on Γi and v · n = 0 on Γe.

In order to construct a linear feedback law, which is easy to compute, able to locally stabilize the
nonlinear system (1.5), with any prescribed exponentially decay rate −ω < 0, we are going to follow a
strategy similar to that used in [11] for the continuous model. It can be summarized in several steps
corresponding to each section.
– In section 2, we present the matrix formulation of the semi-discrete Finite Element approximations.
– In section 3, we reformulate the finite-dimensional linear system as a control system by eliminating the
multiplier from the equations using a projector which plays a role similar to that of the Leray projector
for the infinite-dimensional system.
– In section 4, we study the relationships between the eigenvalue problems involving Lagrange multipliers
and those without Lagrange multipliers. Using these relationships, we are able to construct the feedback
law without having to call the projector which is difficult to construct numerically.
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– In section 5, we use the spectral decomposition to bring back the stabilization problem to the stabi-
lization of a finite-dimensional linear system. Then, the feedback law is obtained by solving an Algebraic
Riccati Equation of small dimension and then easy to solve.
– Finally, in section 6, thanks to numerical tests, we prove that the linear feedback law is able to stabilize
the discrete nonlinear system. By choosing conveniently different parameters used to determine the
feedback control law, we are able to stabilize perturbation amplitudes that are of order 15% of the
stationary inflow boundary condition.

2. Semi-discrete approximations. In this section, we show that the matrix formulation of system
(1.7) corresponds to system (2.3).

We denote by (φi)1≤i≤nv a basis of Xh, (pi)1≤i≤nq a basis of Ph, (ζi)1≤i≤ns a basis of Sh, (µi)1≤i≤nτ
a basis of Dh. We set

v =
∑nv
i=1 viφi, v0 =

∑nv
i=1 v

0
i φi, η1 =

∑ns
i=1 η

i
1ζi, η2 =

∑ns
i=1 η

i
2ζi, η0

2 =
∑ns
i=1 η

i
2,0ζi,

q =
∑nq
i=1 qipi, gp =

∑nτ
i=1 g

i
pµi, τ =

∑nτ
i=1 τiµi, wj =

∑ns
i=1 w

i
jζi.

If we denote with boldface letters the corresponding coordinate vectors, we have

v = (v1, · · · , vnv )T , v0 = (v0
1 , · · · , v0

nv )T , η1 = (η1
1 , · · · , η

ns
1 )T , η2 = (η1

2 , · · · , η
ns
2 )T ,

η0
2 = (η1

2,0, · · · , η
ns
2,0)T , f = (f1, · · · , fnc)T , gp = (g1

p, · · · , gn
τ

p )T , q = (q1, · · · , qnq )T ,

τ = (τ1, · · · , τnτ )T , θ = (q1, · · · , qnq , τ1, · · · , τnτ )T , wj = (w1
j , · · · , w

ns
j )T , W = [w1 · · · wnc ].

For the fluid, we introduce the stiffness matrices Avv, Avq, Avτ , Avθ, Aθg and the mass matrix Mvv

defined for all 1 ≤ i ≤ nv, 1 ≤ j ≤ nv, 1 ≤ k ≤ nq, 1 ≤ l ≤ nτ , 1 ≤ m ≤ nτ by

(Avv)ij = −2ν

∫
Ω

ε(φi) : ε(φj)−
∫

Ω

(us · ∇)φj · φi −
∫

Ω

(φj · ∇)us · φi, (Mvv)ij =

∫
Ω

φj · φi,

(Avq)ik =

∫
Ω

pkdiv φi, (Avτ )il =

∫
Γs∪Γi

µl · φi +

∫
Γe

µl,2φl,2, (Mττ )ml =

∫
Γm

τl · τm,

Avθ =
[
Avq Avτ

]
, Aθg =

[
0

Mττ

]
.

For the structure, we introduce the stiffness matrices Aη1η2 , Aη2η1 , Aη2η2 and the mass matrix Mηη de-
fined for all 1 ≤ i ≤ ns and 1 ≤ j ≤ ns by

(Aη1η2)ij = (Mηη)ij =

∫
Γs

ζj · ζi, (Aη2η1)ij = −
∫

Γs

(β∇ζj · ∇ζi + α∆ζj ·∆ζi) +

∫
Γs

A4ζj · ζi

(Aη2η2)ij = −γ
∫

Γs

∇ζj · ∇ζi,

We also introduce the coupling matrices Avη1 , Avη2 , Aη1q, Aη2τ , Aη1θ and Aη2θ defined for all 1 ≤ i ≤ nv,
1 ≤ j ≤ ns, 1 ≤ k ≤ ns, 1 ≤ l ≤ nq, 1≤ m ≤ nτ by

(Avη1)ij =

∫
Ω

A1ζj · φi, (Avη2)ij =

∫
Ω

A2ζj · φi, (Aη1q)kl = −
∫

Ω

A3ζk · pl, (Aη2τ )km = −
∫

Γs

ζkn · µm,

Aη1θ =
[
Aη1q 0 0

]
, Aη2θ =

[
0 Aη2τ 0

]
.

We set

nz = nv + 2ns, nθ = nq + nτ and n = nz + nθ.

We introduce the mass matrix M , the stiffness matrix A, and the control operator B ∈ L(Rnc ,Rnz )

M =

[
Mzz 0

0 0

]
, A =

[
Azz Ãzθ

ÂTzθ 0

]
and B =

 0
0

MηηW

 , (2.1)

where

Mzz =

Mvv 0 0
0 Mηη 0
0 0 Mηη

 , Azz =

Avv Avη1 Avη2
0 0 Aη1η2
0 Aη2η1 Aη2η2

 , Ãzθ =

Avθ0
Aη2θ

 , Âzθ =

AvθAη1θ
Aη2θ

 . (2.2)
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Thus, the matrix formulation of system (1.7) is

M
d

dt


v
η1

η2

θ

 = A


v
η1

η2

θ

+


0
0

MηηWf
0

+


0
0
0

−Aθggp

 ,
 vη1

η2

 (0) =

v0

0
η0

2

 , (2.3)

or, equivalently

Mzz
d

dt

 vη1

η2

 = Azz

 vη1

η2

+ Ãzθθ +Bf , ÂTzθ

 vη1

η2

 = Aθggp,

 vη1

η2

 (0) =

v0

0
η0

2

 , (2.4)

where v, η1, η2, v0, η0
2 and gp are the coordinate vectors of v, η1, η2, v0, η0

2 and gp respectively,
θ = (q, τ )T , q and τ are the coordinate vectors of q and τ respectively. The initial conditions v0 and η0

2

are such that (v0, 0,η0
2) belongs to Ker(ÂTzθ).

3. Reformulation of the finite-dimensional linear system.

3.1. The stationary finite-dimensional linear system. The goal of this subsection is to rewrite
the system

(λM −A)


v
η1

η2

θ

 =


Ff
Fs,1
Fs,2

0

 , (3.1)

as a system satisfied by (v,η1,η2) in which the multiplier θ is eliminated, and to characterize the
multiplier θ in terms of the solution (v,η1,η2) and of the data (Ff , Fs,1, Fs,2). We are going to consider
system (3.1) either when λ ∈ C and (Ff , Fs,1, Fs,2) ∈ Cnz , in which case the solution (v,η1,η2) and the
multiplier θ respectively belong to Cnz and Cnθ , or when λ ∈ R and (Ff , Fs,1, Fs,2) ∈ Rnz , in which case
the solution (v,η1,η2) and the multiplier θ respectively belong to Rnz and Rnθ . In order to collect both
the results stated for either real or complex solutions, below we state results valid for Kn where either
K = C or K = R. Let us notice that the matrices involved in system (2.3) have real coefficients.

We first consider the following system involving only the velocity v and the multiplier θ

λMvvv = Avvv +Avθθ + Ff , ATvθv = g. (3.2)

To eliminate the multiplier θ from equation (3.2)1, we are going to introduce the projection into Ker(ATvθ)
parallel to Im(M−1

vv Avθ).
Proposition 3.1. 1. The projector PTv in Knvonto Ker(ATvθ) parallel to Im(M−1

vv Avθ) is defined by

PTv = I −M−1
vv Avθ(A

T
vθM

−1
vv Avθ)

−1ATvθ.

2. The projector Pv in Knv onto Ker(ATvθM
−1
vv ) parallel to Im(Avθ) is

Pv = I −Avθ(ATvθM−1
vv Avθ)

−1ATvθM
−1
vv .

Moreover, we have

PvAvθ = 0, P2
v = Pv, PvMvv = MvvPTv , PvMvv = P2

vMvv = PvMvvPTv , M−1
vv Pv = PTvM−1

vv .

Proof. It is similar to that of [1, Proposition 3.1].
Remark 3.1. From the Inf-Sup condition (6.4), it follows that Avθ is of rank nθ. Thus, the matrix

ATvθA
−1
vv Avθ is invertible. We set

A = PTvM−1
vv Avv, Aθθ = (ATvθA

−1
vv Avθ)

−1, Mθθ = (ATvθM
−1
vv Avθ)

−1 and L = A−1
vv AvθAθθ.
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Lemma 3.1. We have (I − PTv )L = M−1
vv AvθMθθ.

Proof. The proof follows from the fact that I − PTv = M−1
vv AvθMθθA

T
vθ.

Lemma 3.2. Let Ff belong to Knv and g belong to Knθ . The couple (v,θ) is a solution of system
(3.2) if and only if

λPTv v = APTv v − APTv Lg + PTvM−1
vv Ff , (I − PTv )v = M−1

vv AvθMθθg,

θ = −Mθθ

(
−λg +Nθθg +ATvθM

−1
vv AvvPTv v +ATvθM

−1
vv Ff

)
,

(3.3)

where Nθθ = ATvθM
−1
vv AvvM

−1
vv AvθMθθ.

Proof. The proof is similar to that of [1, Proposition 3.2].
In order to eliminate the multiplier θ in system (3.1), we introduce the following operators

P =

Pv 0 0
0 IKns 0
0 0 IKns

 , Azθ =

Avθ0
0

 and Ms =

Mvv 0 0
0 Mηη 0
0 Nη2η1 Mηη +Nη2η2

 , (3.4)

where

Nη2η2 = Aη2θMθθA
T
η2θ and Nη2η1 = Aη2θMθθA

T
η1θ. (3.5)

We have

M−1
s =

M−1
vv 0 0
0 M−1

ηη 0
0 −(Mηη +Nη2η2)−1Nη2η1M

−1
ηη (Mηη +Nη2η2)−1

 .
Proposition 3.2. The operator PT is the projector in Knz onto Ker(ATzθ) parallel to Im(M−1

s Azθ)
and the operator P is the projector in Knz onto Ker(ATzθM

−1
s ) parallel to Im(Azθ). Moreover, we have

PAzθ = 0, P2 = P, PMs = MsPT , PMs = P2Ms = PMsPT , M−1
s P = PTM−1

s .

Proof. It follows from Proposition 3.1.
We introduce the matrix A in Rnz×nz defined by

A = PTM−1
s Ãzz, (3.6)

where

Ãzz =

Avv Avη1 +AvvPTv LATη1θ Avη2 +AvvPTv LATη2θ
0 0 Aη1η2

Aη2v Ãη2η1 Ãη2η2

 , (3.7)

and

Aη2v = −Aη2θMθθA
T
vθM

−1
vv Avv,

Ãη2η1 = Aη1η2 −Aη2θMθθ(A
T
vθM

−1
vv Avη1 −NθθATη1θ),

Ãη2η2 = Aη2η2 −Aη2θMθθ(A
T
vθM

−1
vv Avη2 −NθθATη2θ).

(3.8)

Proposition 3.3. Let (Ff , Fs,1, Fs,2) be in Knz . A quadruplet (v,η1,η2,θ) ∈ Kn is solution of the
equation

(λM −A)


v
η1

η2

θ

 =


Ff
Fs,1
Fs,2

0

 , (3.9)
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if and only if

(λMs −MsA)PT
 vη1

η2

 = P

 Ff
Fs,1

Fs,2 −Aη2θMθθA
T
vθM

−1
vv Ff

,
(I − PTv )v = −M−1

vv AvθMθθA
T
η1θ
η1 −M−1

vv AvθMθθA
T
η2θ
η2,

θ = −Mθθ(λA
T
η1θ
η1 + λATη2θη2 −Nθθ(ATη1θη1 +ATη2θη2))

−MθθA
T
vθM

−1
vv AvvPTv v −MθθA

T
vθM

−1
vv (Avη1η1 +Avη2η2 + Ff ).

(3.10)

If in addition,

ATvθM
−1
vv Ff +ATη1θM

−1
ηη Fs,1 +ATη2θM

−1
ηη Fs,2 = 0,

then

(λMs −MsA)PT
 vη1

η2

 = MsPTM−1
zz

 FfFs,1
Fs,2

,
and θ in (3.10) satisfies

θ = −Mθθ(λA
T
η1θ
η1 + λATη2θη2 −Nθθ(ATη1θη1 +ATη2θη2))

−MθθA
T
vθM

−1
vv (AvvPTv v +Avη1η1 +Avη2η2) +MθθA

T
η1θ
M−1
ηη Fs,1 +MθθA

T
η2θ
M−1
ηη Fs,2.

Proof. Step 1. Let (v,η1,η2,θ) be a solution of (3.9). The couple (v,θ) is solution of the system

λMvvv = Avvv +Avθθ +Avη1η1 +Avη2η2 + Ff , ATvθv = −(ATη1θη1 +ATη2θη2).

Thanks to Lemma 3.2, we have

λPTv v = APTv v + APTv L(ATη1θη1 +ATη2θη2) + PTvM−1
vv (Avη1η1 +Avη2η2) + PTvM−1

vv Ff ,

(I − PTv )v = −M−1
vv AvθMθθA

T
η1θ
η1 −M−1

vv AvθMθθA
T
η2θ
η2,

θ=−Mθθ(λA
T
η1θ
η1+λATη2θη2−Nθθ(ATη1θη1+ATη2θη2))−MθθA

T
vθM

−1
vv (AvvPTv v+Avη1η1+Avη2η2+Ff ).

The system on η1 and η2 is given by

λMηηη1 = Aη1η2η2 + Fs,1 and λMηηη2 = Aη2θθ +Aη2η1η1 +Aη2η2η2 + Fs,2.

We have

Aη2θθ = −Aη2θMθθ(λA
T
η1θ
η1 + λATη2θη2 −Nθθ(ATη1θη1 +ATη2θη2))

−Aη2θMθθA
T
vθM

−1
vv (AvvPTv v +Avη1η1 +Avη2η2 + Ff ).

Or equivalently

Aη2θθ = −λAη2θMθθ(A
T
η1θ
η1 +ATη2θη2) + (Aη2θMθθNθθA

T
η1θ
−Aη2θMθθA

T
vθM

−1
vv Avη1)η1

+(Aη2θMθθNθθA
T
η2θ
−Aη2θMθθA

T
vθM

−1
vv Avη2)η2 −Aη2θMθθA

T
vθM

−1
vv AvvPTv v

−Aη2θMθθA
T
vθM

−1
vv Ff .

Replacing the above expression of Aη2θθ in the system satisfied by (η1,η2), we obtain

λMηηη1 = Aη1η2η2 + Fs,1,

λ(Mηη +Aη2θMθθA
T
η2θ

)η2 + λAη2θMθθA
T
η1θ
η1

= (Aη2η1 +Aη2θMθθNθθA
T
η1θ
−Aη2θMθθA

T
vθM

−1
vv Avη1)η1

+(Aη2η2 +Aη2θMθθNθθA
T
η2θ
−Aη2θMθθA

T
vθM

−1
vv Avη2)η2

+Fs,2 −Aη2θMθθA
T
vθM

−1
vv AvvPTv v −Aη2θMθθA

T
vθM

−1
vv Ff .
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Thus we have

(λMs −MsPTM−1
s Ãzz)PT

 vη1

η2

 = P

 Ff
Fs,1

Fs,2 −Aη2θMθθA
T
vθM

−1
vv Ff

,
and (3.10) is proved. The converse can be proved by similar arguments.
Step 2. If in addition

ATvθM
−1
vv Ff +ATη1θM

−1
ηη Fs,1 +ATη2θM

−1
ηη Fs,2 = 0,

then

−MθθA
T
vθM

−1
vv Ff = MθθA

T
η1θ
M−1
ηη Fs,1 +MθθA

T
η2θ
M−1
ηη Fs,2 and

Fs,2 −Aη2θMθθA
T
vθM

−1
vv Ff = Fs,2 +Aη2θMθθA

T
η1θ
M−1
ηη Fs,1 +Aη2θMθθA

T
η2θ
M−1
ηη Fs,2.

Hence

(λMs −MsPTM−1
s Ãzz)PT

 vη1

η2

 = P

 Ff
Fs,1

Fs,2 +Aη2θMθθA
T
η1θ
M−1
ηη Fs,1 +Aη2θMθθA

T
η2θ
M−1
ηη Fs,2

,
θ = −Mθθ(λA

T
η1θ
η1 + λATη2θη2 −Nθθ(ATη1θη1 +ATη2θη2))

−MθθA
T
vθM

−1
vv (AvvPTv v +Avη1η1 +Avη2η2) +MθθA

T
η1θ
M−1
ηη Fs,1 +MθθA

T
η2θ
M−1
ηη Fs,2.

We notice that

M−1
s

 Ff
Fs,1

Fs,2 +Aη2θMθθA
T
η1θ
M−1
ηη Fs,1 +Aη2θMθθA

T
η2θ
M−1
ηη Fs,2

 = M−1
zz

 FfFs,1
Fs,2

 .
Thus we can conclude because

(λ− PTM−1
s Ãzz)PT

 vη1

η2

 = PTM−1
zz

 FfFs,1
Fs,2

.
3.2. Instationary systems.

Proposition 3.4. Let (v0,η0
2 , gp) ∈ Rnv ×Rns ×Rnτ such that (v0, 0,η0

2) belongs to Ker(ÂTzθ) and
gp(0) = 0. System (2.3) or (2.4) is equivalent to the system

d

dt
PT
 vη1

η2

 = APT
 vη1

η2

+ Bf , PT
 vη1

η2

 (0) = PT
v0

0
η0

2

 ,
(I − PTv )v = −M−1

vv AvθMθθA
T
η1θ
η1 −M−1

vv AvθMθθA
T
η2θ
η2 +M−1

vv AvθMθθAθggp,

θ = −MθθA
T
η1θ
η′1 −MθθA

T
η2θ
η′2 −Mθθ(A

T
vθM

−1
vv Avη1 −NθθATη1θ)η1

−Mθθ(A
T
vθM

−1
vv Avη2 −NθθATη2θ)η2 −MθθA

T
vθM

−1
vv AvvPTv v +MθθAθgg

′
p −MθθNθθAθggp,

(3.11)

where

B = M−1
s B. (3.12)

Proof. The proof follows from Proposition 3.3.
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3.3. Adjoint stationary systems. The goal of this section is to study the adjoint system

(λM −AT )


ψ
κ1

κ2

ρ

 =


Gf
Gs,1
Gs,2

0

 , (3.13)

and to establish results similar to those established for the direct system (3.9) in Proposition 3.3. For
that we introduce the operator A# defined by

A# = PTM−Ts ÃTzz.

Proposition 3.5. Let (Gf , Gs,1, Gs,2) be in Knz . The quadruplet (ψ,κ1,κ2,ρ) ∈ Kn is solution of
equation (3.13) if and only if

(λMT
s −MT

s A#)PT
ψκ1

κ2

 = P

 Gf
Gs,1 −Aη1θMθθA

T
vθM

−1
vv Gf

Gs,2 −Aη2θMθθA
T
vθM

−1
vv Gf

 ,
(I − PTv )ψ = −M−1

vv AvθMθθA
T
η2θ
κ2,

ρ = −λMθθA
T
η2θ
κ2 +MθθN

#
θθA

T
η2θ
κ2 −MθθA

T
vθM

−1
vv A

T
vvPTv ψ −MθθA

T
vθM

−1
vv Gf ,

(3.14)

where the operator N#
θθ ∈ L(Knθ ,Knv ) is defined by

N#
θθ = ATvθM

−1
vv A

T
vvM

−1
vv AvθMθθ. (3.15)

If in addition,

ATvθM
−1
vv Gf +ATη2θM

−1
ηη Gs,2 = 0,

then, we have

(λMT
s −MT

s A#)PT
ψκ1

κ2

 = MT
s PTM−1

zz

 GfGs,1
Gs,2

 ,
and

ρ = −λMθθA
T
η2θκ2 +MθθN

#
θθA

T
η2θκ2 −MθθA

T
vθM

−1
vv A

T
vvPTv ψ +MθθA

T
η2θGs,2.

To prove the proposition, we will establish two preliminary results, Lemmas 3.3 and 3.4. We introduce
the operator L# ∈ L(Knθ ,Knv ) defined by

L#h = ψ, (3.16)

where (ψ,ρ) is the solution of the equation

ATvvψ +Avθρ = 0, ATvθψ = h.

As in Lemma 3.2, we can prove that

L# = A−Tvv AvθA
T
θθ and (I − PTv )L# = M−1

vv AvθMθθ. (3.17)

We introduce the operator A# ∈ L(Knv ) defined by

A# = PTvM−1
vv A

T
vv. (3.18)

Lemma 3.3. Let Gf ∈ Knv and h ∈ Knθ . The couple (ψ,ρ) is a solution of system

λMvvψ = ATvvψ +Avθρ+Gf , ATvθψ = h, (3.19)
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if and only if

λPTv ψ = A#PTv ψ − A#PTv L#h+ PTvM−1
vv Gf , (I − PTv )ψ = M−1

vv AvθMθθh,

ρ = −Mθθ

(
−λh+N#

θθh+ATvθM
−1
vv A

T
vvPTv ψ +ATvθM

−1
vv Gf

)
.

(3.20)

Proof. It is similar to that of Lemma 3.2.
Now, we introduce the matrix

C :=


ATvv 0 ATvvPTv L#ATη2θ

ATvη1 + Cη1v 0 ATη2η1 + Cη1η2

ATvη2 + Cη2v ATη1η2 ATη2η2 + Cη2η2

 ,
where

Cη1η2 := Aη1θMθθN
#
θθA

T
η2θ
−ATvη1M

−1
vv AvθMθθA

T
η2θ
, Cη1v := −Aη1θMθθA

T
vθM

−1
vv A

T
vv,

Cη2η2 := Aη2θMθθN
#
θθA

T
η2θ
−ATvη2M

−1
vv AvθMθθA

T
η2θ
, Cη2v := −Aη2θMθθA

T
vθM

−1
vv A

T
vv.

Lemma 3.4. We have PTM−Ts CPT = A#PT .
Proof. We have

ÃTzz =


ATvv 0 ATη2v

ATη1v + (AvvPTv LATη1θ)
T 0 ÃTη2η1

ATvη2 + (AvvPTv LATη2θ)
T ATη1η2 ÃTη2η2

 .
Hence

(ÃTzz − C)PT =


0 0 ATη2v −A

T
vvPTv L#ATη2θ

((AvvPTv LATη1θ)
T − Cη1v)PTv 0 ÃTη2η1 −A

T
η2η1 − Cη1η2

((AvvPTv LATη2θ)
T − Cη2v)PTv 0 ÃTη2η2 −A

T
η2η2 − Cη2η2

 . (3.21)

Thanks to equation (3.17), we obtain

ATvvPTv L#ATη2θ = ATvvL#ATη2θ −A
T
vv(I − PTv )L#ATη2θ = AvθA

T
θθA

T
η2θ
−ATvvM−1

vv AvθMθθA
T
η2θ

= AvθA
T
θθA

T
η2θ

+ATη2v,

(3.22)

AvvPTv LATη1θ = AvvLATη1θ −Avv(I − PTv )LATη1θ = AvθAθθA
T
η1θ
−AvvM−1

vv AvθMθθA
T
η1θ

= AvθAθθA
T
η1θ

+ CTη1v,
(3.23)

and

AvvPTv LATη2θ = AvvLATη2θ −Avv(I − PTv )LATη2θ = AvθAθθA
T
η2θ
−AvvM−1

vv AvθMθθA
T
η2θ

= AvθAθθA
T
η2θ

+ CTη2v,
(3.24)

(the operator Aη2θ is defined in Section 2). It follows that

ATη2v −A
T
vvPTv L#ATη2θ = −AvθATθθATη2θ,

((AvvPTv LATη1θ)
T − Cη1v)PTv = Aη1θA

T
θθA

T
vθPTv = 0,

((AvvPTv LATη2θ)
T − Cη2v)PTv = Aη2θA

T
θθA

T
vθPTv = 0,

(3.25)
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because PvAvθ = 0, see Proposition 3.1. We recall that

Nθθ = ATvθM
−1
vv AvvM

−1
vv AvθMθθ and N#

θθ = ATvθM
−1
vv A

T
vvM

−1
vv AvθMθθ,

then, we can easily prove that

Aη1θMθθN
#
θθA

T
η2θ = Aη1θN

T
θθMθθA

T
η2θ and Aη2θMθθN

#
θθA

T
η2θ = Aη2θN

T
θθMθθA

T
η2θ.

Hence

ÃTη2η1 −A
T
η2η1 − Cη1η2 = Aη1θN

T
θθMθθA

T
η2θ
−Aη1θMθθN

#
θθA

T
η2θ

= 0,

ÃTη2η2 −A
T
η2η2 − Cη2η2 = Aη2θN

T
θθMθθA

T
η2θ
−Aη2θMθθN

#
θθA

T
η2θ

= 0.
(3.26)

From equations (3.21), (3.25) and (3.26), we obtain

(ÃTzz − C)PT =


0 0 −AvθMθθA

T
η2θ

0 0 0

0 0 0

 . (3.27)

We deduce that

PTM−Ts (ÃTzz − C)PT =


0 0 −PTvM−1

vv AvθMθθA
T
η2θ

0 0 0

0 0 0

 = 0, (3.28)

because PTvM−1
vv Avθ=MvvPvAvθ=0, see Proposition 3.1. Thus, we have PTM−Ts CPT =PTM−Ts ÃTzzPT .

Proof of Proposition 3.5.
Step 1. Let (ψ,κ1,κ2,ρ) ∈ Cn be a solution of (3.13). Then, (ψ,ρ) is solution of the system

λMvvψ = ATvvψ +Avθρ+Gf , ATvθψ = −ATη2θκ2. (3.29)

Thanks to Lemma 3.3, we have

λPTv ψ = A#PTv ψ + A#PTv L#ATη2θκ2 + PTvM−1
vv Gf , (I − PTv )ψ = −M−1

vv AvθMθθA
T
η2θ
κ2,

ρ = −λMθθA
T
η2θ
κ2 +MθθN

#
θθA

T
η2θ
κ2 −MθθA

T
vθM

−1
vv A

T
vvPTv ψ −MθθA

T
vθM

−1
vv Gf .

(3.30)

The couple (κ1,κ2) is a solution to the system

λMηηκ1 = ATη2η1κ2 +ATvη1ψ +Aη1θρ+Gs,1,

λMηηκ2 = ATη1η2κ1 +ATη2η2κ2 +ATvη2ψ +Aη2θρ+Gs,2.

We have

Aη2θρ = −λAη2θMθθA
T
η2θκ2 +Aη2θMθθN

#
θθA

T
η2θκ2 −Aη2θMθθA

T
vθM

−1
vv A

T
vvPTv ψ −Aη2θMθθA

T
vθM

−1
vv Gf ,

Aη1θρ = −λAη1θMθθA
T
η2θκ2 +Aη1θMθθN

#
θθA

T
η2θκ2 −Aη1θMθθA

T
vθM

−1
vv A

T
vvPTv ψ −Aη1θMθθA

T
vθM

−1
vv Gf .

Replacing these two expressions in the system satisfied by (κ1,κ2), we obtain

λMηηκ1 + λAη1θMθθA
T
η2θ
κ2 = (ATη2η1 +Aη1θMθθN

#
θθA

T
η2θ
−ATvη1M

−1
vv AvθMθθA

T
η2θ

)κ2

+(ATvη1 −Aη1θAθθA
T
vθM

−1
vv A

T
vv)PTv ψ +Gs,1 −Aη1θMθθA

T
vθM

−1
vv Gf ,

λ(Mηη +Aη2θMθθA
T
η2θ

)κ2 = ATη1η2κ1 + (ATη2η2 +Aη2θMθθN
#
θθA

T
η2θ
−ATvη2M

−1
vv AvθMθθA

T
η2θ

)κ2

+(ATvη2 −Aη2θMθθA
T
vθM

−1
vv A

T
vv)PTv ψ +Gs,2 −Aη2θMθθA

T
vθM

−1
vv Gf .
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Thus, thanks to Lemma 3.4, we have

(λMT
s −MT

s A#)PT
ψκ1

κ2

 = P

 Gf
Gs,1 −Aη1θMθθA

T
vθM

−1
vv Gf

Gs,2 −Aη2θMθθA
T
vθM

−1
vv Gf

 ,
(I − PTv )ψ = −M−1

vv AvθMθθA
T
η2θ
κ2,

ρ = −λMθθA
T
η2θ
κ2 +MθθN

#
θθA

T
η2θ
κ2 −MθθA

T
vθM

−1
vv A

T
vvPTv ψ −MθθA

T
vθM

−1
vv Gf .

The equivalence between (3.13) and (3.14) is proved.
Step 2. If in addition ATvθM

−1
vv Gf+ATη2θM

−1
ηη Gs,2 =0, we have MθθA

T
vθM

−1
vv Gf =−MθθA

T
η2θ
M−1
ηη Gs,2.

Hence

Gs,1 −Aη1θMθθA
T
vθM

−1
vv Gf = Gs,1 +Aη1θMθθA

T
η2θ
M−1
ηη Gs,2

and Gs,2 −Aη2θMθθA
T
vθM

−1
vv Gf = Gs,2 +Aη2θMθθA

T
η2θ
M−1
ηη Gs,2.

Moreover ρ = −λMθθA
T
η2θ
κ2 +MθθN

#
θθA

T
η2θ
κ2 −MθθA

T
vθM

−1
vv A

T
vvPTv ψ +MθθA

T
η2θ
M−1
ηη Gs,2, and

(λMT
s −MT

s A#)PT
ψκ1

κ2

 = P

 Gf
Gs,1 +Aη1θMθθA

T
η2θ
M−1
ηη Gs,2

Gs,2 +Aη2θMθθA
T
η2θ
M−1
ηη Gs,2

 .
Notice that

M−Ts

 Gf
Gs,1 +Aη1θMθθA

T
η2θ
M−1
ηη Gs,2

Gs,2 +Aη2θMθθA
T
η2θ
M−1
ηη Gs,2

 = M−1
zz

 GfGs,1
Gs,2

 .
The proof is complete. 2

4. Equivalence between eigenvalue problems. We are going to study the links between the
eigenvalue problems associated to the operator A and the eigenvalue problem associated to the pair
(A,M), i.e.

λ ∈ C, (u, δ1, δ2) ∈ Ker(ATzθ), A

uδ1

δ2

 = λ

uδ1

δ2

 , (4.1)

and

λ ∈ C, (u, δ1, δ2,θ) ∈ Cn, A


u
δ1

δ2

θ

 = λM


u
δ1

δ2

θ

 . (4.2)

We will also study the links between the adjoint eigenvalue problems

λ ∈ C, (ψ,κ1,κ2) ∈ Ker(ATzθ), A#

ψκ1

κ2

 = λ

ψκ1

κ2

 , (4.3)

and

λ ∈ C, (ψ,κ1,κ2,ρ) ∈ Cn, AT


ψ
κ1

κ2

ρ

 = λM


ψ
κ1

κ2

ρ

 . (4.4)

We recall that Azθ is defined in (3.4) and that Ker(ATzθ) = Im(PT ).
Definition 4.1. A vector (ui, δi1, δ

i
2) ∈ Ker(ATzθ) is a generalized eigenvector of order i for prob-

lem (4.1) associated with a solution (λ, (u0, δ0
1 , δ

0
2)) of (4.1) if (ui, δi1, δ

i
2) is obtained by solving the chain

of equations

(λI −A)

ujδj1
δj2

 = −

uj−1

δj−1
1

δj−1
2

 , for 1 ≤ j ≤ i.
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A vector (ui, δi1, δ
i
2,θ

i) ∈ Cn is a generalized eigenvector of order i for problem (4.2) associated with a
solution (λ, (u0, δ0

1 , δ
0
2 ,θ

0)) of (4.2) if it is obtained by solving the chain of equations

(λM −A)


uj

δj1
δj2
θj

 = −M


uj−1

δj−1
1

δj−1
2

θj−1

 , for 1 ≤ j ≤ i.

We have similar definitions for the problems (4.3) and (4.4).

4.1. Equivalence between the direct eigenvalue problems.

Theorem 4.1. A pair (λ, (u, δ1, δ2,θ)) is a solution of the eigenvalue problem (4.2) if and only if
(λ, (PTv u, δ1, δ2)) ∈ C∗ ×Ker(ATzθ) is a solution of the eigenvalue problem (4.1) and

(I − PTv )u = −M−1
vv AvθMθθA

T
η1θ
δ1 −M−1

vv AvθMθθA
T
η2θ
δ2,

θ = −λMθθA
T
η1θ
δ1 − λMθθA

T
η2θ
δ2 −Mθθ(A

T
vθM

−1
vv Avη1 −NθθATη1θ)δ1

−Mθθ(A
T
vθM

−1
vv Avη2 −NθθATη2θ)δ2 −MθθA

T
vθM

−1
vv AvvPTv u.

(4.5)

Proof. It follows from Proposition 3.3.

Theorem 4.2. A quadruplet (ui, δi1, δ
i
2,θ

i) is a generalized eigenvector of order i associated with
the solution (λ, (u0, δ0

1 , δ
0
2 ,θ

0)) of problem (4.2) if and only if (PTv ui, δi1, δi2) ∈ Ker(ATzθ) is a generalized
eigenvector of order i associated with the solution (λ, (PTv u0, δ0

1 , δ
0
2)) ∈ C∗ ×Ker(ATzθ) of (4.1) and

(I − PTv )ui = −M−1
vv AvθMθθA

T
η1θ
δi1 −M−1

vv AvθMθθA
T
η2θ
δi2,

θi = −λMθθA
T
η1θ
δi1 − λMθθA

T
η2θ
δi2 −Mθθ(A

T
vθM

−1
vv Avη1 −NθθATη1θ)δ

i
1

−Mθθ(A
T
vθM

−1
vv Avη2 −NθθATη2θ)δ

i
2 −MθθA

T
vθM

−1
vv AvvPTv ui −MθθA

T
η1θ
δi−1

1 −MθθA
T
η2θ
δi−1

2 ,

where the vector (PTv ui−1, δi−1
1 , δi−1

2 ) ∈ Ker(ATzθ) is a generalized eigenvector of order i − 1 associated
with (λ, (PTv u0, δ0

1 , δ
0
2)).

Proof. Thanks to Proposition 3.3, it follows that (ui, δi1, δ
i
2,θ

i) is a generalized eigenvector of order
i associated with the solution (λ, (u0, δ0

1 , δ
0
2 ,θ

0)) of problem (4.2) if and only if

(λI −A)PT
uiδi1
δi2

 = −PT
ui−1

δi−1
1

δi−1
2

,
(I − PTv )ui = −M−1

vv AvθMθθA
T
η1θ
δi1 −M−1

vv AvθMθθA
T
η2θ
δi2,

θi = −λMθθA
T
η1θ
δi1 − λMθθA

T
η2θ
δi2 −Mθθ(A

T
vθM

−1
vv Avη1 −NθθATη1θ)δ

i
1

−Mθθ(A
T
vθM

−1
vv Avη2 −NθθATη2θ)δ

i
2 −MθθA

T
vθM

−1
vv AvvPTv ui −MθθA

T
η1θ
δi−1

1 −MθθA
T
η2θ
δi−1

2 .

We deduce the theorem by induction.

4.2. Equivalence between the adjoint eigenvalue problems. Now, we are going to prove the
equivalence between the adjoint eigenvalue problems.

Theorem 4.3. A pair (λ, (ψ,κ1,κ2,ρ)) is a solution of the eigenvalue problem (4.4) if and only if
(λ, (PTv ψ,κ1,κ2)) ∈ C∗ ×Ker(ATzθ) is a solution of the eigenvalue problem (4.3) and

(I − PTv )ψ = −M−1
vv AvθMθθA

T
η2θ
κ2,

ρ = −λMθθA
T
η2θ
κ2 +MθθN

#
θθA

T
η2θ
κ2 −MθθA

T
vθM

−1
vv AvvPTv ψ.

Proof. It follows from Proposition 3.5
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Theorem 4.4. A quadruplet (ψi,κi1,κ
i
2,ρ

i) is a generalized eigenvector of order i associated with
the solution (λ, (ψ0,κ0

1,κ
0
2,ρ

0)) of problem (4.4) if and only if (PTv ψi,κi1,κi2) ∈ Ker(ATzθ) is a generalized
eigenvector of order i associated with the solution (λ, (PTv ψ0,κ0

1,κ
0
2)) ∈ C∗ ×Ker(ATzθ) of (4.3) and

(I − PTv )ψi = −M−1
vv AvθMθθA

T
η2θ
κi2,

ρi = −λMθθA
T
η2θ
κi2 +MθθN

#
θθA

T
η2θ
κi2 −MθθA

T
vθM

−1
vv AvvPTv ψi +MθθA

T
η2θ
κi−1

2 ,

where the vector (PTv ψi−1,κi−1
1 ,κi−1

2 ) ∈ Ker(ATzθ) is a generalized eigenvector of order i− 1.
Proof. It relies on Proposition 3.5 and is similar to the proof of Theorem 4.2.

5. Stabilization of the finite-dimensional linear system.

5.1. Spectral decomposition of the operator APT . We are looking for a decomposition of
Rnz into a sum of the generalized eigenspaces of the operator APT . It is convenient to assume that
0 /∈ spect(A). If it is not the case, we can replace A by A− λ0I with λ0 /∈ spect(A) before the analysis.
We can decompose Rnz as follows

Rnz = Ker(ATzθ)⊕ Im(M−1
s Azθ),

with Ker(ATzθ) = Im(PT ) and Im(M−1
s Azθ) = Ker(PT ).

Since 0 /∈ spect(A), we have Ker(APT ) = Ker(PT ) = Im(M−1
s Azθ). Therefore, 0 is an eigenvalue of the

operator APT and Im(M−1
s Azθ) is the corresponding eigenspace. In order to decompose Ker(ATzθ) into

the other eigenspaces of the operator APT , we consider the eigenvalue problem (4.1) and the adjoint
problem (4.3). We are going to prove that the spectral decomposition of the operators APT and A#PT
can be deduced from the study of the eigenvalue problems (4.2) and (4.4). First, we show the following
result.

Lemma 5.1. Let (u, δ1, δ2) ∈ Cnz and (ψ,κ1,κ2) ∈ Cnz be such that

ATvθu+ATη1θδ1 +ATη2θδ2 = 0 and ATvθψ +ATη2θκ2 = 0.

Then, we have

(u, δ1, δ2)T (PMT
s −Mzz)(ψ,κ1,κ2) = 0.

Proof. We have

PMT
s −Mzz =


(Pv − I)Mvv 0 0

0 0 NT
η2η1

0 0 Nη2η2

 =


−AvθMθθA

T
vθ 0 0

0 0 NT
η2η1

0 0 Nη2η2

 ,
because Pv − I = −Avθ(ATvθM−1

vv Avθ)
−1ATvθM

−1
vv = −AvθMθθA

T
vθM

−1
vv , see Proposition 3.1. It follows

that
(u, δ1, δ2)T (PMT

s −Mzz)(ψ,κ1,κ2) = −uTAvθMθθA
T
vθψ + δT1 Aη1θMθθA

T
η2θ
κ2 + δT2 Aη2θMθθA

T
η2θ
κ2

= −uTAvθMθθA
T
vθψ − δT1 Aη1θMθθA

T
vθψ − δT2 Aη2θMθθA

T
vθψ

= −(uTAvθ + δT1 Aη1θ + δT2 Aη2θ)MθθA
T
vθψ = 0

We set

n0 = dim(Ker(ATzθ)). (5.1)

Theorem 5.1. There exist two families (ui, δi1, δ
i
2,θ

i
c)1≤i≤nz and (ψi,κi1,κ

i
2,ρ

i
c)1≤i≤nz of Cnz

constituted of eigenvectors and generalized eigenvectors of (4.2) and (4.4) respectively, such that
• The union of the families (PTv ui, δi1, δi2)1≤i≤n0

and (ui, δi1, δ
i
2)n0+1≤i≤nz is a basis of Cnz ,

(PTv ui, δi1, δi2)1≤i≤n0
is constituted of eigenvectors and generalized eigenvectors of problem (4.1) and

(ui, δi1, δ
i
2)n0+1≤i≤nz is a family of vectors belonging to Ker(PT ).
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• The union of the families (PTv ψi,κi1,κi2)1≤i≤n0 and (ψi,κi1,κ
i
2)n0+1≤i≤nz is a basis of Cnz ,

(PTv ψi,κi1,κi2)1≤i≤n0 is constituted of eigenvectors and generalized eigenvectors of problem (4.3)
and (ψi,κi1,κ

i
2)n0+1≤i≤nz is a family of vectors belonging to Ker(PT ).

• We have the decompositions

ΛC = F−1APTF and ΛTC = Φ−1A#PTΦ,

where ΛC is a decomposition of APT into complex Jordan blocks. The matrices F and Φ are in the
form F = [PTF1|F0] and Φ = [PTΦ1|Φ0] where F1, F0, Φ1, Φ0 are the matrices whose columns
are (ui, δi1, δ

i
2)1≤i≤n0

, (ui, δi1, δ
i
2)n0+1≤i≤nz , (ψi,κi1,κ

i
2)1≤i≤n0

, (ψi,κi1,κ
i
2)n0+1≤i≤nz respectively.

Moreover, we have the following bi-orthogonality conditions

F ∗MT
s Φ = ICnz and F ∗1 MzzΦ1 = IRnz ,

where F ∗ is the complex transpose conjugate of F .
Proof. Step 1. Decomposition of APT and A#PT . Using the complex Jordan decomposition of real

matrices, we know that there exists a matrix F̂ ∈ Cnz×nz constituted of eigenvectors and generalized
eigenvectors of Problem (4.1) such that ΛC = F̂−1APT F̂ . We set Φ̂ = M−Ts F̂−∗, where M−Ts = (MT

s )−1,

F̂−∗ = (F̂ ∗)−1 and F̂ ∗ is the conjugate transpose of F̂ . Thus, the matrices F̂ and Φ̂ satisfy the bi-

orthogonality condition F̂ ∗MT
s Φ̂ = ICnz .

Now, we are going to prove that Λ∗C = Φ̂−1A#PT Φ̂.

From the identities M−1
s Φ̂−∗ = F̂ and F̂ΛC = APT F̂ = PTM−1

s ÃzzPT F̂ , we deduce that M−1
s Φ̂−∗ΛC =

PTM−1
s ÃzzPTM−1

s Φ̂−∗ and ΛCΦ̂∗ = Φ̂∗MsPTM−1
s ÃzzPTM−1

s . Since MsPT = PMs and PTM−1
s =

M−1
s P, we have ΛCΦ̂∗ = Φ̂∗PÃzzM−1

s P. Taking the complex conjugate transpose,

we obtain Φ̂Λ∗C = PTM−Ts ÃTzzPT Φ̂ = A#PT Φ̂. Hence Λ∗C = Φ̂−1A#PT Φ̂.

Step 2. Construction of F and Φ. We denote by (ûi, δi1, δ
i
2)i (resp. (ψ̂i,κi1,κ

i
2)i) the columns of the

matrix F̂ (resp. Φ̂). Without loss of generality, we assume that (ûi, δi1, δ
i
2)1≤i≤n0

and (ψ̂i,κi1,κ
i
2)1≤i≤n0

belong to Im(PT ). We denote by F0 (resp. Φ0) the matrix whose columns are (ûi, δi1, δ
i
2)n0+1≤i≤nz (resp.

(ψ̂i,κi1,κ
i
2)n0+1≤i≤nz ). Finally, we denote by λi the eigenvalue of APT associated to (ûi, δi1, δ

i
2). Thanks

to Theorem 4.2, (ui, δi1, δ
i
2,θ

i
c) with

ui = ûi −M−1
vv AvθMθθA

T
η1θ
δi1 −M−1

vv AvθMθθA
T
η2θ
δi2,

θic = −λiMθθA
T
η1θ
δi1 − λiMθθA

T
η2θ
δi2 −Mθθ(A

T
vθM

−1
vv Avη1 −NθθATη1θ)δ

i
1

−Mθθ(A
T
vθM

−1
vv Avη2 −NθθATη2θ)δ

i
2 −MθθA

T
vθM

−1
vv AvvPTv ûi −MθθA

T
η1θ
δi−1

1 −MθθA
T
η2θ
δi−1

2 ,

is a generalized eigenvector of problem (4.2). From Theorem 4.4, (ψi,κi1,κ
i
2,ρ

i) with

ψi = ψ̂i −M−1
vv AvθMθθA

T
η2θ
κi2,

ρi = −λiMθθA
T
η2θ
κi2 +MθθN

#
θθA

T
η2θ
κi2 −MθθA

T
vθM

−1
vv AvvPTv ψ̂i +MθθA

T
η2θ
κi−1

2 ,

is a generalized eigenvector of problem (4.4). We denote by F1 (resp. Φ1) the matrix whose columns are
(ui, δi1, δ

i
2)1≤i≤n0

(resp. (ψi,κi1,κ
i
2)1≤i≤n0

). By construction, we have

F := [PTF1 |F0] = F̂ and Φ := [PTΦ1 |Φ0] = Φ̂.

Step 3. Bi-orthogonality conditions. We have to show that F ∗MT
s Φ = ICnz and F ∗1 MzzΦ1 = ICnz .

Due to the bi-orthogonality condition satisfied by F̂ and Φ̂, we have

F ∗MT
s Φ = ICnz and (PTF1)∗MT

s PTΦ1 = F ∗1 PMT
s PTΦ1 = ICnz . (5.2)

Since PMT
s PT = PMT

s , we have F ∗1 MzzΦ1 = F ∗1 PMT
s Φ1 + F ∗1 (Mzz − PMT

s )Φ1 = F ∗1 PMT
s PTΦ1 +

F ∗1 (Mzz − PMT
s )Φ1. Therefore, thanks to Lemma 5.1 and equation (5.2), we get F ∗1 MzzΦ1 = ICnz .
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Theorem 5.2. There exist two families (vi,ηi1,η
i
2,θ

i)1≤i≤nzand (φi, ζi1, ζ
i
2,ρ

i)1≤i≤nzof Rnsuch that
• The union of the families (PTv vi,ηi1,ηi2)1≤i≤n0

and (vi,ηi1,η
i
2)n0+1≤i≤nz is a basis of Rnz .

• The union of the families (PTv φi, ζi1, ζi2)1≤i≤n0
and (φi, ζi1, ζ

i
2)n0+1≤i≤nz is a basis of Rnz .

• We have the decompositions

Λ = E−1APTE and ΛT = Ξ−1A#PTΞ,

where Λ is a decomposition of APT into real Jordan blocks. The matrices E and Ξ are in the form
E = [PTE1 |E0] and Ξ = [PTΞ1 |Ξ0] where E1, E0, Ξ1, Ξ0 are the matrices whose columns are
(vi,ηi1,η

i
2)1≤i≤n0 , (vi,ηi1,η

i
2)n0+1≤i≤nz , (φi, ζi1, ζ

i
2)1≤i≤n0 , (φi, ζi1, ζ

i
2)n0+1≤i≤nz respectively. Moreover,

we have the following bi-orthogonality conditions

ETMT
s Ξ = IRnz and ET

1 MzzΞ1 = IRnz .

Proof. We denote by (λj)j the eigenvalues of the pair (M,A). To construct (vi,ηi1,η
i
2,θ

i)1≤i≤nz and
(φi, ζi1, ζ

i
2,ρ

i)1≤i≤nz , we proceed in the following way.
Case 1. λj is real. If (ui, δi1, δ

i
2,θ

i
c) and (ψi,κi1,κ

i
2,ρ

i
c) are generalized eigenvectors associated to λj ,

we can assume that they are real vectors. Thus, we set

(vi,ηi1,η
i
2,θ

i) = (ui, δi1, δ
i
2,θ

i
c) and (φi, ζi1, ζ

i
2,ρ

i) = (ψi,κi1,κ
i
2,ρ

i
c).

Case 2. λj is complex. There exists k such that λk = λ̄i is also an eigenvalue of (M,A). If (ui, δi1, δ
i
2,θ

i
c)

and (ψi,κi1,κ
i
2,ρ

i
c) are generalized eigenvectors associated to λi, (um, δm1 , δ

m
2 ,θ

m
c ) and (ψm,κm1 ,κ

m
2 ,ρ

m
c )

are eigenvectors or generalized eigenvectors associated to λk, then we may assume that (ūi, δ̄i1, δ̄
i
2, θ̄

i
c) =

(um, δm1 , δ
m
2 ,θ

m
c ) and (ψ̄i, κ̄i1, κ̄

i
2, ρ̄

i
c) = (ψm,κm1 ,κ

m
2 ,ρ

m
c ). We set

(vi,ηi1,η
i
2,θ

i) =
√

2Re(ui, δi1, δ
i
2,θ

i
c) and (φi, ζi1, ζ

i
2,ρ

i) =
√

2Re(ψi,κi1,κ
i
2,ρ

i
c),

(vm,ηm1 ,η
m
2 ,θ

m) =
√

2Im(ui, δi1, δ
i
2,θ

i
c) and (φm, ζm1 , ζ

m
2 ,ρ

m) =
√

2Im(ψi,κi1,κ
i
2,ρ

i
c).

The two families (vi,ηi1,η
i
2,θ

i)1≤i≤nz and (φi, ζi1, ζ
i
2,ρ

i)1≤i≤nz of Rn satisfying the bi-orthogonality con-
ditions ETMT

s Ξ = IRnz and ET
1 MzzΞ1 = IRnz , and such that Λ = E−1APTE and ΛT = Ξ−1A#PTΞ.

Corollary 5.3. We have the following decompositions of APT and A#PT

Λ = ΞTMsAPTE and ΛT = ETMT
s A#PTΞ.

Proof. It follows from the bi-orthogonality of E and Ξ.

5.2. Projected systems. Let (λj)j∈N be the eigenvalues of the operator APT . We denote by
GR(λj) the real generalized eigenspace of APT and G∗R(λj) the real generalized eigenspace of A#PT
associated to the eigenvalue λj . We choose αs > 0 and Ju a finite subset of N such that {j ∈ N |
Re(λj) ≥ −αs} ⊂ Ju. We define the unstable subspaces

Zu = ⊕j∈JuGR(λj) and Z∗u = ⊕j∈JuG∗R(λj).

Without loss of generality, we assume that

Zu = Vect
{

(PTv vi,ηi1,ηi2) | 1 ≤ i ≤ du
}

and Zs = Vect
{

(PTv vi,ηi1,ηi2) | du + 1 ≤ i ≤ n0

}
,

where du is the dimension of Zu. Introducing

Z0 = Ker(APT ) = Vect
{

(vi,ηi1,η
i
2) | n0 + 1 ≤ i ≤ nz

}
,

we have

Rnz = Zu ⊕ Zs ⊕ Z0.
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We introduce the subspaces

Z̃u = Vect
{

(vi,ηi1,η
i
2) | 1 ≤ i ≤ du

}
and Z̃s = Vect

{
(vi,ηi1,η

i
2) | du + 1 ≤ i ≤ n0

}
.

Proposition 5.4. We have the decomposition Rnz = Z̃u ⊕ Z̃s ⊕ Z0.
Proof. It follows from the fact that

Zu ⊕ Zs ⊕ Z0 = Rnz , dim(Z̃u) = dim(Zu) and dim(Z̃s) = dim(Zs).

We set ds = n0 − du and d0 = nz − n0. We denote by
• Eu ∈ Rnz×du the matrix whose columns are (vi,ηi1,η

i
2)1≤i≤du ,

• Es ∈ Rnz×ds the matrix whose columns are (vi,ηi1,η
i
2)du+1≤i≤n0

,
• E0 ∈ Rnz×d0 the matrix whose columns are (vi,ηi1,η

i
2)n0+1≤i≤nz ,

• Ξu ∈ Rnz×du the matrix whose columns are (φi, ζi1, ζ
i
2)1≤i≤du ,

• Ξs ∈ Rnz×ds the matrix whose columns are (φi, ζi1, ζ
i
2)du+1≤i≤n0

,
• Ξ0 ∈ Rnz×d0 the matrix whose columns are (φi, ζi1, ζ

i
2)n0+1≤i≤nz ,

• Θu ∈ Rnθ×du the matrix whose columns are (θi)1≤i≤du ,
• Θs ∈ Rnθ×ds the matrix whose columns are (θi)du+1≤i≤n0 ,
• χu ∈ Rnθ×du the matrix whose columns are (ρi)1≤i≤du ,
• χs ∈ Rnθ×ds the matrix whose columns are (ρi)du+1≤i≤n0

.
Lemma 5.2. We have the relationships

ET
u PMT

s PTΞu = IRdu , ET
s PMT

s PTΞu = 0Rdu×ds , ET
0 PMT

s PTΞu = 0Rdu×d0 ,

ET
u PMT

s PTΞs = 0Rds×du , ET
s PMT

s PTΞs = IRds , ET
0 PMT

s PTΞs = 0Rds×d0 ,

ET
u PMT

s PTΞ0 = 0Rd0×du , ET
s PMT

s PTΞ0 = 0Rd0×ds , ET
0 M

T
s Ξ0 = IRd0 .

Proof. It follows from the fact the matrices E = [PTEu |PTEs |E0] and Ξ = [PTΞu |PTΞs |Ξ0]
satisfy the bi-orthogonality condition ETMT

s Ξ = IRnz .
Lemma 5.3. We have

Λ =


Λu 0Rdu×ds 0Rdu×d0

0Rds×du Λs 0Rds×d0

0Rd0×du 0Rd0×ds 0Rd0

 and ΛT =


ΛTu 0Rdu×ds 0Rdu×d0

0Rds×du ΛTs 0Rds×d0

0Rd0×du 0Rd0×ds 0Rd0

 ,
where Λu = ΞT

uPMsAPTEu, ΛTu = ET
u PMT

s A#PTΞu,

Λs = ΞT
s PMsAPTEs, ΛTs = ET

s PMT
s A#PTΞs.

(5.3)

Proof. It follows from Corollary 5.3.
Lemma 5.4. We have the relationships

ET
uMzzΞu = IRdu , ET

s MzzΞs = IRds , ET
uMzzΞs = 0Rdu×ds , ET

s MzzΞu = 0Rds×du .

Proof. It follows from the fact the matrices E1 = [Eu |Es] and Ξ1 = [Ξu |Ξs] satisfy the bi-
orthogonality condition ET

1 MzzΞ1 = IRnz .
Proposition 5.5. We have

Λu = ΞT
uAzzEu, ΛTu = ET

uA
T
zzΞu, Λs = ΞT

s AzzEs, ΛTs = ET
s A

T
zzΞs.

Proof. By construction of the matrices Eu, Ξu, Θu and χu, we have[
Azz Ãzθ
ÂTzθ 0

] [
Eu
Θu

]
=

[
Mzz 0

0 0

] [
Eu
Θu

]
Λu i.e. AzzEu + ÃzθΘu = MzzEuΛu, ÂTzθEu = 0,

[
ATzz Âzθ
ÃTzθ 0

] [
Ξu

χu

]
=

[
Mzz 0

0 0

] [
Ξu

χu

]
ΛTu i.e. ATzzΞu + Âzθχu = MzzΞuΛTu , ÃTzθΞu = 0.
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We deduce that

ΞT
uMzzEuΛu = ΞT

uAzzEu + ΞT
u ÃzθΘu = ΞT

uAzzEu + (ÃTzθΞu)TΘu = ΞT
uAzzEu,

ET
uMzzΞuΛTu = ET

uA
T
zzΞu +ET

u Âzθχu = ET
uA

T
zzΞu + (ÂTzθEu)Tχu = ET

uA
T
zzΞu.

From Lemma 5.4, it follows the relations for (Λu,Λ
T
u ) and similarly for (Λs,Λ

T
s )

Λu = ΞT
uAzzEu, ΛTu = ET

uA
T
zzΞu, and Λs = ΞT

s AzzEs, ΛTs = ET
s A

T
zzΞs.

We introduce the operators Πu ∈ L(Rnz , Z̃u) and Πs ∈ L(Rnz , Z̃s) defined by

Πu = EuΞ
T
uMzz and Πs = EsΞ

T
sMzz.

Proposition 5.6. The operator Πu is the projection of Rnz onto Z̃u parallel to Z̃s ⊕ Z0 and the
operator Πs is the projection of Rnz onto Z̃s parallel to Z̃u ⊕ Z0.

Proof. We have

Π2
u = Eu(ΞT

uMzzEu)ΞT
uMzz = EuΞ

T
uMzz = Πu,

because ΞT
uMzzEu = IRdu , see Lemma 5.4. Therefore, Πu is the projection onto Im(Πu) parallel to

Ker(Πu). Thus, to prove that Πu is the projection onto Z̃u parallel to Z̃s ⊕ Z0, we have to show that

Im(Πu) = Z̃u and Ker(Πu) = Z̃s ⊕ Z0. It is immediate that Im(Πu) = Z̃u and Z̃s ⊕ Z0 ⊂ Ker(Πu), and

since dim(Z̃s ⊕ Z0) = dim(Ker(Πu)), we have Ker(Πu) = Z̃s ⊕ Z0. We prove similarly that Πs is the

projection of Rnz onto Z̃s parallel to Z̃u ⊕ Z0.
Proposition 5.7. The operator PTEuΞT

uPMs is the projection of Rnz onto Zu parallel to Zs ⊕ Z0

and the operator PTEsΞT
s PMs is the projection of Rnz onto Zs parallel to Zu ⊕ Z0. Moreover, we have

the relationships

PTEuΞT
uPMs = PTΠuM

−1
zz MsPT and PTEsΞT

s PMs = PTΠsM
−1
zz MsPT .

Proof. It is similar to that of Proposition 5.6.
Proposition 5.8. If (v,η1,η2,θ) is solution of system (2.4), then the triplets (vu,η1,u,η2,u) and

(vs,η1,s,η2,s) defined by

(vu,η1,u,η2,u)T = ΞT
uMzz(v,η1,η2)T and (vs,η1,s,η2,s)

T = ΞT
sMzz(v,η1,η2)T ,

obey the system

d

dt

 vuη1,u

η2,u

 = Λu

 vuη1,u

η2,u

− χTu ÂTzθAθggp + Buf ,

 vuη1,u

η2,u

 (0) = ΞT
uMzz

v0

0
η0

2

 ,
d

dt

 vsη1,s

η2,s

 = Λs

 vsη1,s

η2,s

− χTs ÂTzθAθggp + Bsf ,

 vsη1,s

η2,s

 (0) = ΞT
sMzz

v0

0
η0

2

 ,
(5.4)

where Bu = ΞT
uB and Bs = ΞT

s B. (5.5)

Conversely, if the pair ((vu,η1,u,η2,u), (vs,η1,s,η2,s)) is solution to system (5.4), then (v,η1,η2,θ), with

PT
 vη1

η2

 = PTEu

 vuη1,u

η2,u

+ PTEs

 vsη1,s

η2,s

 ,
(I − PTv )v = −M−1

vv AvθMθθA
T
η1θ
η1 −M−1

vv AvθMθθA
T
η2θ
η2 +M−1

vv AvθMθθAθggp,

θ = −MθθA
T
η1θ
η1,t −MθθA

T
η2θ
η2,t −Mθθ(A

T
vθM

−1
vv Avη1 −NθθATη1θ)η1

−Mθθ(A
T
vθM

−1
vv Avη2 −NθθATη2θ)η2 −MθθA

T
vθM

−1
vv AvvPTv v +MθθAθgg

′
p −MθθNθθAθggp,

is solution of system (2.4).
Proof. The proof can be done as in [1, Proof of Proposition 3.8].
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5.3. Linear feedback law and degree of stabilizability. The goal is to find a feedback law able
to stabilize system (2.3) or equivalently (2.4) with a prescribed exponential decay rate −ω. Then after
fixing Zu and due to Proposition 5.8, it is necessary and sufficient to find a feedback law able to stabilize
the equation satisfied by (vu,η1,u,η2,u). That is why we make the following assumption.

For all ω > −Re spect(Λu) the pair (Λu + ωIRdu ,Bu) is stabilizable. (5.6)

Let us recall that Bu defined in (5.5) depends to the choice of the family (wi)1≤i≤nc . Therefore, the choice
of this family is crucial to check the condition (5.6) which is satisfied if and only if the stabilizability
Gramian of the pair (Λu + ωIRdu ,Bu) is positive definite. In that case, the stabilizability Gramian is
nothing but P−1

u,ω, where Pu,ω is the solution of the Algebraic Riccati Equation

Pu,ω ∈ L(Rdu), Pu,ω = PTu,ω > 0,

Pu,ω(Λu + ωIRdu ) + (ΛTu + ωIRdu )Pu,ω − Pu,ωBuBTuPu,ω = 0.
(5.7)

We could define the degree of stabilizability as the lowest eigenvalue of P−1
u,ω. Moreover, we recall that Bu

depends on the basis chosen for Z∗u. Thus Pu,ω and P−1
u,ω also depend on this basis. In order to obtain a

degree of stabilizability du,ω independent of the basis chosen for Z∗u, as in [1], we define it by

du,ω = max(spect(MuPu,ωMu))−1 with Mu = (ΞT
uMzzΞu)

1
2 .

Different choices of Zu may give different degrees of stabilizability. Among different possible choices, we
choose the subspace Zu with the greatest degree of stabilizability. Next, we choose the feedback law able
to stabilize the pair (Λu + ωIRdu ,Bu) equal to

Ku,ω = −BTuPu,ω. (5.8)

5.4. Stability of the closed-loop linear system. Let us set Kω = −BTΞuPu,ωΞT
uMzz where

Pu,ω is the solution of (5.7). We are going to prove that the linear closed-loop system

Mzz
d

dt

 vη1

η2

 = (Azz +BKω)

 vη1

η2

+ Ãzθθ,

 vη1

η2

 (0) =

v0

0
η0

2

 , ÂTzθ

 vη1

η2

 = Aθggp, (5.9)

is exponentially stable.
Proposition 5.9. If Pu,ω is solution of (5.7) then Pu,ω = MzzΞuPu,ωΞT

uMzz is the solution of

Pu,ω ∈ L(Z̃u), Pu,ω = PT
u,ω > 0,

Pu,ω(Au + ωΠu) + (AT
u + ωΠT

u )Pu,ω −Pu,ωBuB
T
uPu,ω = 0,

(5.10)

with Au = ΠuM
−1
zz AzzΠu and Bu = ΠuM

−1
zz B.

Proof. Let Pu,ω be a solution of (5.7). Using the identities

ΞT
uAzzEu = Λu, ET

uA
T
zzΞu = ΛTu , ΞT

uMzz = ΞT
uMzzΠu, MzzΞu = ΠT

uMzzΞu,

we get

MzzΞuPu,ωΛuΞ
T
uMzz = MzzΞuPu,ωΞT

uAzzEuΞ
T
uMzz = Pu,ωAu,

and MzzΞuΛTuPu,ωΞT
uMzz = MzzΞuE

T
uA

T
zzΞuPu,ωΞT

uMzz = AT
uPu,ω.

(5.11)

We also have

MzzΞuPu,ωIduΞT
uMzz = Pu,ωΠu and MzzΞuIduPu,ωΞT

uMzz = ΠT
uPu,ω. (5.12)

Finally, we have MzzΞuPu,ωBuBTuPu,ωΞT
uMzz = MzzΞuPu,ωΞT

uBB
TΞuPu,ωΞT

uMzz = Pu,ωBuB
T
uPu,ω,

combined with the equations (5.11), (5.12), we prove that Pu,ω is solution of (5.10).
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Remark 5.1. Since Pu,ω does not depend on the choice of the basis of Z∗u, the feedback law Kω does
not depend on the basis of Z∗u. Indeed, we have

Kω = −BTM−1
zz MzzΞuPu,ωΞT

uMzz = −BTM−1
zz Pu,ω.

Theorem 5.10. Let ω > −Re spect(Λu), (v0,η0
2 , gp) ∈ Rnv × Rns × Rnτ be such that (v0, 0,η0

2)

belongs to Ker(ÂTzθ) and eωtgp ∈ H1
0 (0,∞;Rnτ ). For all t > 0, the solution (v,η1,η2,θ) of system (5.9)

satisfies the following estimates for some C > 0

‖Πu(v(t),η1(t),η2(t))‖Rnz ≤ Ce−ωt(‖v0‖Rnv + ‖η0
2‖Rns + ‖eωtgp‖L2(0,∞;Rnτ )),

‖Πs(v(t),η1(t),η2(t))‖Rnz ≤ Ce−min(αs,ω)t(‖v0‖Rnv + ‖η0
2‖Rns + ‖eωtgp‖L2(0,∞;Rnτ )),

‖(I − PTv )v(t)‖Rnv ≤ Ce−min(αs,ω)t(‖v0‖Rnv + ‖η0
2‖Rns + ‖eωtgp‖H1(0,∞;Rnτ )).

Proof. Setp 1. From Proposition 5.8, eωt(vu,η1,u,η2,u)T = eωtΞT
uMzz(v,η1,η2)T is the solution of

d

dt
eωt

 vuη1,u

η2,u

 = (Λu + ωIRdu + BuKu,ω)eωt

 vuη1,u

η2,u

− eωtχTu ÂTzθAθggp,
 vuη1,u

η2,u

 (0) = ΞT
uM

v0

0
η0

2

 .
Since Λu + ωIRdu + BuKu,ω is exponentially stable, there exists C > 0 such that

‖(vu(t),η1,u(t),η2,u(t))‖Rdu ≤ Ce−ωt(‖v0‖Rnv + ‖η0
2‖Rns + ‖eωtgp‖L2(0,∞;Rnτ )).

Setp 2. The triplet (vs,η1,s,η2,s)
T = ΞT

sMzz(v,η1,η2)T obeys the system

d

dt

 vsη1,s

η2,s

 = Λs

 vsη1,s

η2,s

+ BsKu,ω

 vuη1,u

η2,u

− χTs ÂTzθAθggp,
 vsη1,s

η2,s

 (0) = ΞT
sMzz

v0

0
η0

2

 .
Since Re(spect(Λs)) < −αs, there exists C > 0 such that

‖(vs(t),η1,s(t),η2,s(t))‖Rds ≤ Ce−min(αs,ω)t(‖v0‖Rnv + ‖η0
2‖Rns + ‖eωtgp‖L2(0,∞;Rnτ )).

Setp 3. Finally, we have

‖(I − PTv )v(t)‖Rnv ≤ Ce−min(αs,ω)t(‖v0‖Rnv + ‖η0
2‖Rns + ‖eωtgp‖H1(0,∞;Rnτ )).

6. Numerical simulations. Numerical simulations for fluid-structure interaction problems remain
a challenge, see the review [14, 6]. A broad spectrum of methods exists and can be adapted to the present
work. There are mainly two approaches to numerically solve fluid-structure interaction systems. The
first one, called the monolithic approach, consists of solving the coupled system as a unique problem, see
[8, 24, 13]. The second one, called the partitioned approach, uses two different codes to solve separately
the equations of the fluid and of the structure, see [9, 10]. The monolithic approach is generally stable
contrary to the partitioned approach.

In most of numerical codes, the equations of the fluid are rewritten in an Arbitrary Lagrangian
Eulerian (ALE) formulation. However, our analysis and the definition of the feedback law expressed in
the reference configuration suggest that the natural framework for numerical simulation corresponds to
the Lagrangian formulation for the fluid. This is why we are going to use the discrete approximation of
system (1.5) in the numerical simulations.

The goal of this section is to explain how to solve numerically the full nonlinear system (1.5) with
and without control.

6.1. Full discretization of the nonlinear system. The spatial semi-discretization of the non-
linear system (1.5) is similar to that of the linearized system (1.6), see Section 2. The time discretiza-
tion is treated by a classical Backward Difference Formula of order 2 (BDF2) using three time levels
(tn+2, tn+1, tn) with a time step ∆t. In the nonlinear system, two types of nonlinearities appear. The
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first ones, corresponding to geometrical nonlinearities, are treated explicitly contrary to the convective
term in the fluid part which is treated implicitly with a Newton method. This approach significantly re-
duces the computational complexity, and it is usually used without compromising stability and accuracy
[15]. For time advancing scheme, we retain the monolithic approach. The contribution of the feedback
control is treated explicitly (this choice is more consistent with feedback strategy in particular when an
estimator is introduced).

With this approach, the full discretization of the nonlinear system (1.5) is given by

3

2∆t
Mzz

 ũη1

η2

n+2

− 2

∆t
Mzz

 ũη1

η2

n+1

+
1

∆t
Mzz

 ũη1

η2

n = Âzz

 vη1

η2

n+2

+ Ãzθθ
n+2

+

Nf (ũ)
0
0

n+2

+

Nv(ũ,η1,η2,θ)
0

Nη2(ũ,η1)

n+1

+

 0
0

MηηWf

n+1

+

 0
0

Mηηfs

 ,
ÃTzθ

 ũη1

η2

n+2

= Nθ(ũ,η1)n+1 +Aθgg
n+1
p +Aθggs,

 ũη1

η2

 (0) =

u0

0
η0

2

 ,
(6.1)

where Âzz =

Ãvv 0 0
0 0 Aη1η2
0 Ãη2η1 Aη2η2

 ,
with Ãvv =

(
−2ν

∫
Ω

ε(φi) : ε(φj)

)
1≤i,j≤nv

, Ãη2η1 =

(
−
∫

Γs

(β∇ζj · ∇ζi + α∆ζj ·∆ζi)
)

1≤i,j≤ns
,

and ũ, η1, η2, fs, gs, gp and θ are the coordinate vectors of the approximations of ũ, η1, η2, fs, gs, gp
and of the multipliers. We refer to Section 2 for details on the other elementary matrices to assemble.
The nonlinear terms Nf , Nv, Nη2 and Nθ (depending on Ff , Fs, Fdiv given in appendix) are defined by

Nf (ũ) = −

∫
Ω

nv∑
i=1

nv∑
j=1

ũiũj(φi · ∇)φj · φk


1≤k≤nv

,

Nv(ũ,η1,η2,θ) =

∫
Ω

Ff

 nv∑
i=1

ũiφi,

np∑
j=1

qjpj ,

ns∑
l=1

η1,lζl,

ns∑
m=1

η2,mζm

 · φk


1≤k≤nv

,

Nη2(ũ,η1) =

∫
Γs

Fs

 nv∑
i=1

ũiφi,

ns∑
j=1

η1,jζj

 · ζk


1≤k≤ns

,

Nθ(ũ,η1) =


∫

Ω

divFdiv

 nv∑
i=1

ũiφi,

ns∑
j=1

η1,jζj

 · qk


1≤k≤np

, 0, · · · , 0

 .
Now, let us verify that system (6.1) is well-posed. For that, we have to prove that the system

3

2∆t
Mzz

 ũη1

η2

 = Âzz

 ũη1

η2

+

Lvvũ0
0

+

FfF 1
s

F 2
s

+

 Avθθ
0

Aη2θθ

 , ÃTzθ

 ũ
η1

η2

 = Fθ, (6.2)

admits a unique solution for all (Ff , F
1
s , F

2
s , Fθ) ∈ Rn and for all matrix Lvv ∈ Rnv×nv corresponding to a

linearization of the nonlinear term Nf . In order to study the above system, we decompose the multiplier
associated to the Dirichlet boundary conditions τ into the form τ = (τtang, τn) where τtang and τn are
the tangential part and the normal part of τ respectively. Thus, the matrix Aη2τ can be rewritten into
the form, see Section 2

Aη2τ = [0 Aη2τn ] .
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Theorem 6.1. We assume that Aη2τn is of maximal rank. Then, for all (Ff , F
1
s , F

2
s , Fθ) ∈ Rn and

for all Lvv ∈ Rnv×nv , there exists ∆t small enough such that the system (6.2) admits a unique solution.
Proof. From the equations of the structure, it is possible to express η1 and η2 in terms of the

multiplier θ if ∆t is small enough. Finally, it is possible to rewrite the system on (ũ,θ) in such a way
that the system admits a unique solution under the Inf-Sup condition (6.4).

Remark 6.1. The rank condition on Aη2τn assumed in Theorem 6.1 is satisfied when we approximate,
with the same grid, the structure displacements by Hermite finite elements and the multiplier associated
to the Dirichlet boundary conditions by P1 finite elements.

6.2. Numerical tests for the nonlinear system without control for Re = 200.

6.2.1. Data of the numerical experiments. We recall, see Section 1, that the reference config-
uration of the fluid domain is

Ω = ([0, L]× [−`, `]) \ ([0, `s]× [−e, e]),

We choose e = 0.05, L = 50e, ` = 21e and `s = 10e.
The stationary inflow condition gs = (gs,1, gs,2) imposed on the boundary Γi = {0} × [−21e,−e] ∪

{10e}× [−e, e]∪{0}× [e, 21e] is an approximation of the Blasius boundary layer profile defined by gs,2 = 0
and

gs,1(z) =



Um ∀ e+ b ≤ z ≤ 21e,

Um

(
2
z − e
b
− 2

(
z − e
b

)3

+

(
z − e
b

)4
)

∀ e ≤ z ≤ e+ b,

0 ∀ − e ≤ z ≤ e,

Um

(
2
z + e

b
− 2

(
z + e

b

)3

+

(
z + e

b

)4
)

∀ − e− b ≤ z ≤ −e,

Um ∀ − 21e ≤ z ≤ −e− b,

where Um is the maximum velocity at the inflow, Re = 2eUm
ν is the Reynolds number of the fluid and

b = 14e√
Re

is the thickness of the boundary layer. For the numerical tests realized with the free GetFEM++

library [23], we choose the following parameters Re = 200, Um = 1.0 for the fluid and for the structure

α = 10−3, β = 0, γ = 10−1.

Mesh and finite element approximation. We use a triangular mesh of 89418 cells, symmetric with respect
to the horizontal axis z = 0, locally refined near the inflow boundary and near the structure. The mesh
on Γs used for Sh and Dh is that induced by the mesh on Ω. For the space discretization Xh, Ph and Dh,
we use generalized Taylor-Hood finite elements P2-P1-P1 for the velocity, the pressure and the Lagrange
multipliers satisfying the Inf-Sup condition

inf
p∈Ph,p 6=0

sup
v∈Xh,v 6=0

b(v, p)

‖v‖Xh‖p‖Ph
≥ a0, (6.3)

for some a0 > 0 independent of h, see [5]. Thus, according to [12], the Inf-Sup condition

inf
(p,τ)∈Ph×Dh,(p,τ)6=0

sup
v∈Xh,v 6=0

b(v, p)− 〈v, τ〉Γ0

‖v‖Xh‖(p, τ)‖Ph×Dh
≥ a1 > 0, (6.4)

is satisfied under some conditions on the mesh size used for the boundary. For the displacement of the
structure, we use Hermite finite elements. Then the resulting total degrees of freedom is equal to 406339.

6.2.2. The boundary perturbation. We test the efficiency of the feedback laws for inflow bound-
ary perturbations on Γi of the form

gp(t, z) = βpµ(t)g(z) with µ(t) = e−30(t−1)2 and g(z) =
(
mσ(ψ1,p1)n · n, 0

)T
. (6.5)

The quadruplet (ψ1,κ1,κ2,ρ1) is the real part of an eigenvector associated to the most unstable eigen-
value of the adjoint problem (4.4) and p1 is the contribution of the pressure in the multiplier ρ1, see
Theorem 5.1. Thus, the perturbation gp is one of the most destabilizing normal boundary perturbations
for the fluid. The truncation function m is used to impose the compatibility conditions at the junction

between Γi and Γs and is defined by m(z) = g( 3(z−e)
l−e ) for z ≥ 0, m(z) = g(−3(z−e)

l−e ) for z < 0 where

g(x) = G(z) for z ≤ 3
2 , G(3−z) for z > 3

2 with G(z) = 0 for z < 0, G(z) = z3(6z2−15z+10) for 0 ≤ z ≤ 1
and G(z) = 1 for z > 1. The function µ is used to localize the perturbation in time. See Figure 6.1 for
illustrations. Finally, βp > 0 is a parameter used to vary the amplitude of the perturbation.
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Fig. 6.1: Graphs of the functions mσ(φ1,p1)n · n, m and µ.

6.2.3. Evolution of the perturbed nonlinear system without control. We choose two values
of the amplitude βp = 0.1 and βp = 0.9. For βp = 0.1, the maximal value of the perturbation gp
corresponds to 1.35% of that of gs. In Figure 6.2, we plot the evolution of the L2-norm of the difference
between the velocity ũ of the perturbed nonlinear system (1.1) and the velocity us of the steady flow, the
evolution of the L∞-norm of the displacements of the lower part and upper part of the structure. The
results confirm that the stationary solution is unstable. Moreover, we remark that, for t ≥ 6, the norms
of the solutions for βp = 0.1 and βp = 0.9 asymptotically tend to the same value.

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14

‖ũ
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Fig. 6.2: Perturbed nonlinear systems without control for βp = 0.1 and βp = 0.9.

6.3. Numerical stabilization of the nonlinear system for Re = 200. We are going to show,
by numerical experiments, that we are able to locally stabilize the nonlinear system (1.1) for inflow
boundary perturbations. We recall that the fluid equations are rewritten in the reference configuration
via a change of variables. Coming back to the moving domain is guaranteed only if the displacements
of the structure are less than 0.05, see [11, Theorem 3.1]. Thus, we have to construct feedback laws
generating admissible displacements of the structure. To satisfy that constraint, we can vary the shift
parameter ω, the family of control functions (wi)1≤i≤nc and the choice of the unstable subspace Zu. In
order to find a feedback law efficient in presence of inflow boundary perturbations, we use the following
strategy. First, we compute the eigenvalues of the linearized system. Then, we fix a value for ω and we
compute the degrees of stabilizability of the linearized system for different choices of (wi)i and of Zu.
Finally, using the degrees of stabilizability and other numerical tests described below, we fix the family
(wi)1≤i≤nc , and next the unstable subspace Zu.

24



6.3.1. Computation of the spectra. We compute the spectra of the structure, the fluid and the
fluid-structure systems, close to the imaginary axis, see Figure 6.3. For that, we use an Arnoldi method
combined with a shift and inverse transformation implemented in the Arpack Library. The results are
reported in Table 6.1. We have solved the eigenvalue problems for a mesh of 89418 cells, for a coarser
mesh of 75846 cells and for a very fine mesh of 283956 cells. The values are reported in Table 6.2.
We observe that, in comparison with the results obtained using the very fine mesh, the solutions of the
eigenvalue problems for the mesh of 89418 cells are accurate up to 10−2.

6.3.2. The choice of ω. The parameter ω permits to improve the decay rate of the controlled
solutions towards the stationary solution. However, the L∞-norm of the control and then the L∞-norm
of the displacements of the structure increase with ω. Thus, we have to choose ω in order to realize a
compromise between the efficiency of the control and small enough displacements of the structure. We
fix ω = 2. In Section 6.3.5, we will see how to modify ω in order to reduce the displacements of the
structure.
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Fig. 6.3: Spectra.

λ1,2 λ3 λ4 λ5,6 λ7 λ8 λ9,10

−2.87± 1.27i −4.08 −5.71 −12.93± 3.26i −16.32 −19.96 −30.32±5.49i

(a) First eigenvalues of the structure system.

λ1,2 λ3,4 λ5 λ6,7 λ8,9 λ10,11

0.81± 8.80i −0.70±9.64i −0.88 −1.18±7.99i −1.23±11.05i −2.03±5.83i

(b) First eigenvalues of the fluid system.

λ1,2 λ3 λ4,5 λ6 λ7,8 λ9,10

0.82± 8.79i −0.57 −0.72±9.60i −0.80 −0.86±0.80i −1.08±1.88i

(c) First eigenvalues of the fluid-structure system.

Table 6.1: First eigenvalues of the structure, the fluid and the coupled systems.

cells λ1,2 λ3 λ4,5 λ6 λ7,8 λ9,10

75846 0.820±8.789i −0.574 −0.722±9.602i −0.807 −0.864±0.809i −1.088±1.883i
89418 0.822±8.792i −0.574 −0.722±9.604i −0.806 −0.864±0.809i −1.089±1.883i
283956 0.824±8.794i −0.574 −0.722±9.604i −0.806 −0.864±0.809i −1.089±1.883i

Table 6.2: First eigenvalues of the fluid-structure system for different meshes.

6.3.3. The choice of the controls functions, the degrees of stabilizability and the unstable
subspace Zu. We choose the control functions (wi) in the family (ζi2)i defined in Theorem 5.2 (the
functions ζi2 are the approximations of the control functions used to stabilize the infinite dimensional
system, see [11]). More precisely, we consider control families of the form (wi)1≤i≤nc = (ζi2)1≤i≤nc
with nc ≥ 2. We have computed the degrees of stabilizability of the linearized system for different
values of nc and for different choices of Zu. We considered Zu = GR(λ1,2), Zu = GR(λ1,2) ⊕ GR(λ3),
Zu = GR(λ1,2)⊕GR(λ4,5) and Zu = GR(λ1,2)⊕GR(λ6). The results are reported in Table 6.3. We observe
that the degrees of stabilizability vary slightly with nc. That is why, in the sequel, we choose nc = 2.
The unstable subspaces Zu = GR(λ1,2) and Zu = GR(λ1,2) ⊕GR(λ3) are the most stabilizable ones and
Zu = GR(λ1,2)⊕GR(λ4,5) is the worst one. However, due to the nonlinearities, it is not sure that these
conclusions remain valid for the nonlinear system. That is why we compute the controlled nonlinear
system for the different unstable subspaces and for a small perturbation amplitude (βp = 0.1). The
L2-norm of the controls are reported in Table 6.4 and the difference between the controlled solutions and
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the stationary solution are plotted in Figure 6.4. The results confirm that the worst choice of Zu is Zu =
GR(λ1,2)⊕GR(λ4,5) even if it corresponds to the best decay rate. We notice that Zu = GR(λ1,2)⊕GR(λ6)
corresponds to the best degree of stabilizability. Moreover, it corresponds to the smallest displacements
of the structure. Thus, we choose Zu = GR(λ1,2)⊕GR(λ6) in the following tests.

nc 2 3 5 10
105d 9.59 9.59 9.59 9.59

(a) Zu = GR(λ1,2).

nc 2 3 5 10
105d 9.59 9.59 9.59 9.59

(b) Zu = GR(λ1,2) ⊕GR(λ3).

nc 2 3 5 10
105d 4.29 4.30 4.30 4.30

(c) Zu = GR(λ1,2) ⊕GR(λ4,5).

nc 2 3 5 10
105d 8.44 8.45 8.45 8.45

(d) Zu = GR(λ1,2) ⊕GR(λ6).
Table 6.3: Influence of (wi)1≤i≤nc and of Zu on the degrees of stabilizability.

Zu GR(λ1,2) GR(λ1,2)⊕GR(λ3) GR(λ1,2)⊕GR(λ4,5) GR(λ1,2)⊕GR(λ6)
‖f‖ 0.087 0.088 0.104 0.076

Table 6.4: L2-Norm of the controls for different choices of Zu (βp = 0.1).
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Fig. 6.4: Influence of Zu on the stabilization of the perturbed nonlinear system for βp = 0.1.

6.3.4. Efficiency of the feedback law for ω = 2, nc = 2 and Zu = GR(λ1,2)⊕GR(λ6). We test
the efficiency of the feedback law for increasing perturbation amplitudes. The results are plotted in
Figure 6.5. We see that we are able to stabilize the nonlinear system for perturbation amplitudes smaller
than βp = 1. Moreover, as expected, the control and the displacements of the structure increase with the
amplitude of the perturbation. With this strategy, we are not able to stabilize the nonlinear system for
βp = 1 because the displacements of the structure are slightly larger than the limit displacement equal to
0.05. However, we notice two control phases. The first one, from t = 0 to t = 1.5, corresponds to the time
interval where the perturbation passes through the fluid domain, and a second one for t > 1.5. We know
that the more we act in the first phase (by increasing ω) the less we shall need to act thereafter. That
implies that the displacements of the structure increase in the first phase and decrease in the second one.
Thus, since the displacements are smaller than 0.05 in the first phase, we can increase the parameter
ω. In the next section, we will see that we are able to stabilize the nonlinear system for perturbation
amplitudes greater than βp = 1 with ω = 2.5. 26
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Fig. 6.5: Controlled nonlinear system for ω = 2, nc = 2, Zu = GR(λ1,2)⊕GR(λ6) and for different βp.

6.3.5. Efficiency of the feedback law for ω = 2.5, nc = 2 and Zu = GR(λ1,2)⊕GR(λ6). The
goal is to stabilize the nonlinear system for perturbation amplitudes greater than βp = 1. We recall
that, for ω = 2, nc = 2 and Zu = GR(λ1,2) ⊕GR(λ6), we are not able to stabilize the original nonlinear
system for βp = 1 because the displacements of the structure are greater than 0.05. That is why we
increase ω by choosing ω = 2.5. We compute the solutions of the corresponding controlled system. The
results are reported in Figure 6.6. The feedback law is able to stabilize the nonlinear system for βp = 1
and the displacements of the structure are smaller that 0.05. Moreover, as expected, we observe that by
increasing ω, the control and the displacements of the structure increase in the first period and decrease
in the second one.
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Fig. 6.6: Influence of ω on the stabilization of the perturbed nonlinear system for βp = 1.
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The feedback law obtained by choosing ω=2.5 is also able to stabilize the nonlinear system for βp=1.1
corresponding to an amplitude perturbation of order 15% of gs, see Figure 7.1. The displacements of the
structure are close to the limit 0.05 in the two phases. Thus, we cannot stabilize the nonlinear system
for larger perturbation amplitudes and we cannot hope to stabilize it by increasing the value of ω.

7. Conclusion. For a Reynolds number Re = 200 and for a boundary perturbation, localized in
time around t = 1, and of amplitude of order 15% of the stationary inflow boundary condition, we
propose a strategy for choosing a feedback control able to stabilize the fluid-structure system coupling
the Navier–Stokes equations with an Euler-Bernoulli damped beam equation.

The control is obtained by stabilizing the projected linearized system onto an invariant subspace
containing the unstable subspace of the linearized dynamical system. The feedback law is determined by
solving a Riccati equation of small dimension. This feedback law, which is constructed on the linearized
model, is applied to the nonlinear fluid–structure model. In order to improve the performance of the
control law, we choose the invariant subspace based on the analysis of the degrees of stabilizability.
Next we vary the exponential decay rate involved in the Riccati equation in order that the structure
displacements of the nonlinear closed-loop system remain sufficiently small. This is important for practical
applications.

Acknowledgments. The authors are partially supported by the Thematic Network ’Aeronautic
and Space’ via the project CARPE (Contrôle Actif et Robuste de Plaque Epaisse). The last two authors
are partially supported by the ANR-Project IFSMACS (ANR 15-CE40.0010).

0

20

40

60

80

100

0 2 4 6 8 10 12 14

‖ũ
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Fig. 7.1: Perturbed nonlinear system for ω = 2.5, nc = 2, Zu = GR(λ1,2)⊕GR(λ6), βp = 1 and βp = 1.1.

Appendix A. The geometrical terms.
We recall that the sign function s is defined by s(y) = −1 if y < 0 and s(y) = 1 if y ≥ 0. The nonlinear
terms Ff , Fdiv and Fs in system (1.5) are defined by

Ff [ũ, p̃, η1, η2]=
(`− s(z)z)η2

`− e− s(z)η1
ũz −

2ν(`− s(z)z)η1,x

`− e− s(z)η1
ũxz +

ν((z − `)2η2
1,x − η2

1)

(`− e+ s(z)η1)2
ũzz

+
2ν(`− s(z)z)η2

1,x

(`− e− s(z)η1)2
ũz −

ν(`− s(z)z)η1,xx

`− e− s(z)η1
ũz −

ν(`− e)η1

(`− e− s(z)η1)2
ũzz +

(`− s(z)z)η1,x

`− e− s(z)η1
p̃ze1

− s(z)η1

`− e− s(z)η1
p̃ze2 +

(`+ z)η1,x

`− e− s(z)η1
ũ1ũz −

s(z)η1

`− e− s(z)η1
ũ2ũz − ν∇divFdiv[ũ, η1],
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Fdiv[ũ, η1] =
1

`− e
(s(z)η1ũ1e1 + (`− s(z)z)η1,xũ1e2) ,

Fs[ũ, η1] = ν

(
(`− e)η1,x

`− e− s(z)η1
ũ1,z + η1,xũ2,x − s(z)

2η1 − (`− s(z)z)η2
1,x

`− e− s(z)η1
ũ2,z

)
.

The linear differential operators A1, A2, A3 and A4 in (1.6) are defined by

A1η1 =
s(z)η1

`− e
(ps,ze2 + us,2us,z − 2νus,zz + νus,1,xxe1 + νus,1,xze2) +

νη1,x

`− e
(us,1,ze2 − us,1,xe1)

+
(`− s(z)z)
`− e

((ps,ze1 − 2νus,xz + us,1us,z − νus,1,zze2 − νus,1,xze1) η1,x − ν (us,z + us,1,ze1) η1,xx)

A2η2 =
(`− s(z)z)η2

`− e
us,z, A3η1 =

1

`− e
(s(z)η1us,1,x + (`− s(z)z)η1,xus,1,z),

A4η1 = ν

(
s(z)η1

`− e
us,2,z − η1,xus,1,z

)
.
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