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NUMERICAL STABILIZATION OF A FLUID-STRUCTURE INTERACTION SYSTEM

FOURNIE MICHEL*, NDIAYE MOCTAR*, AND RAYMOND JEAN-PIERRE*

Abstract. We study the numerical stabilization of a fluid-structure interaction system in a wind tunnel, around an
unstable stationary solution. The goal is to find a feedback control, acting only in the structure equation, able to stabilize
locally the full coupled nonlinear system. The Finite Element Approximation of this coupled system leads to a Differential
Algebraic Equation (D.A.E.) for the fluid velocity, the structure displacement and its velocity, and a Lagrange multiplier
taking into account together the incompressibility condition and the equality of the fluid velocity and the displacement
velocity of the structure at the fluid-structure interface. We determine a feedback control law based on a spectral decompo-
sition of the D.A.E. But the D.A.E. is not standard because the operator acting on the Lagrange multiplier in the differential
equation is not the transpose of the operator involved in the algebraic constraints. We overcome these difficulties by proving
new relationships between eigenvalue problems involving Lagrange multipliers and those without Lagrange multipliers. In
numerical simulations, we show how the calculation of the degree of stabilizability of different invariant subspaces (gener-
alized eigenspaces) may be helpful to determine an efficient control strategy. In particular, the determined feedback law is
able to reject a perturbation (leading to a complete stabilization of the nonlinear fluid-structure system) whose magnitude
is of order 15% of the inflow velocity.

Key words. Fluid-structure interaction, feedback control, stabilization, Navier-Stokes equations, beam equations,
Finite element approximation.

AMS subject classifications. 93B52, 37M99, 37N10, 76D55, 74F10, 76D05

1. Introduction. We are interested in stabilizing a fluid-structure interaction model in a wind
tunnel whose geometrical configuration is represented in Figure 1.1. The inflow velocity U, generated
by a powerful fan system is assumed to be constant and horizontal Uy, = (e, 0)T, with us > 0. A
thick plate, with a straight base, is located in the center of the wind tunnel, and the fluid flows around
this obstacle. The wind tunnel is formally divided into two subdomains. In the left hand side of the wind
tunnel (LHS for short), the fluid flow is not precisely modeled. At the inflow boundary of the right hand
side of the wind tunnel (RHS for short), the flow is assumed to be a known Blasius type profile g5 plus
an unknown perturbation g,. This unknown perturbation, relatively small with respect to gs, takes into
account the fact that the fluid flow in the LHS of the wind tunnel is not precisely known.

I C computational domain

- LHS RHS

Fig. 1.1: Configuration of the wind tunnel.

In the absence of perturbation, that is when g, = 0, assuming that the fluid flow is governed by the
Navier-Stokes equations with some boundary conditions, the flow in the RHS is a stationary solution
(us,ps). For a Reynolds number Re = 200, for which the numerical simulations are done, the stationary
solution u, is unstable. When g, # 0, we observe a shedding of vortices behind the thick plate, see
the vorticity profile in Figure 1.2. Our goal is to use a control device able to stabilize the fluid flow
around the stationary solution wug, in the presence of perturbations. This type of problem has been
studied theoretically in [4, 21, 22] and numerically in [1, 2]. Here the novelty is that we would like to use
the displacement of elastic structures, located at the upper and lower boundaries of the thick plate, to
stabilize the coupled fluid-structure interaction system. Let us describe our model more precisely. The
geometrical domain €2, corresponding to the RHS of the wind tunnel, is defined by

Q= ([0,L] x [=€,4) \ ([0,£5] x [—e,e]),
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Fig. 1.2: Vorticities of the steady flow (left) and the perturbed flow (right).

where L > 0 is the length of the domain, 2¢ is its height, ¢, is the length of the thick plate in the
computational domain, and 2 e is the thickness of the plate. The boundary of 2, denoted by I, is split
into different parts ' =T'; UT; UT'. UT',, where

s =(0,05) x {—e}U(0,5) x{e}, T.=(0,L)x{—L}U(0,L)x {4} and T, ={L}x (=41,

Fi = Fi71 U Fi72 @] Fi_yg Wlth Fi,l = {0} X (76, 76)7 Fi’g = {O} X (67€), Fi73 = {gg} X (76, 6).
We also set I'o = I's UT'; UT'. and I'; . = I'; UT'.. The two elastic beams, used to stabilize the fluid
flow, are located on I'y. The displacement 7 of the beams is assumed to be normal to I'y, and it satisfies
an Euler-Bernoulli damped beam equation with clamped boundary conditions. Since the structure is

deformed, the domain occupied by the fluid at time ¢ depends on the displacement 7(t) of the structure,
see Figure 1.3.
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Fig. 1.3: Reference configuration (left) and deformed configuration (right).

The fluid domain at time ¢ is denoted by €2, ;) and the fluid-structure interface by I';;). We use the
notations

Q= U ({t} x Qn(t))7 Ey = U ({t} x Fn(t))7 e1=(1,0) e2=(0,1),

te(0,00) te(0,00)
Q> = (0,00) x 2, X =(0,00) xI's,X* = (0,00) xI';, X =(0,00) xI'e, and X = (0,00) x Iy,
The Eulerian-Lagrangian system describing the evolution of the fluid-structure system [21] is
ug — divo(u,p) + (u- V)u =0in Qp°,
divu=0in Q7°, w=mnonX*, u=gs+gyon XX,
u-n=00nX¥, e(un-r=0o0nX¥, o(u,p)n=0on%r,
Nie — BAY — YA + Ay = —a(u, p) T M)V 1 +n02-n+ fs+ f on 357,
n=0on (0,00) x A5, 7y =0on (0,00) x T,
w(0)=u’on Q, n(0)=0onT,, n(0)=mnonTy,

(1.1)

where u and p stand for the fluid velocity and pressure, o(u, p) is the Cauchy stress tensor

o(u,p) = 2velu) = pl, e(u) = 5(Vu+ (Vu)T),
2



v is the fluid viscosity, @ > 0, # > 0 and v > 0 are parameters of the structure, n,) (resp. n) is the unit
normal to I'; ;) (resp. T'y) exterior to €2, (resp. Q), and u®, 9 are initial data. Here Ay = 0, stands for
the Laplace-Beltrami operator on I'y, the term —U(u,p)|pn(t)nn(t) v/1 4+ nZ-n represents the force exerted
by the fluid on the structure, fs is a stationary force defined below, g, is a stationary boundary condition
and f is the control function which will be used to stabilize the fluid-structure interaction system.

We notice that a Neumann boundary condition is prescribed on ¥5° while a Navier boundary condi-
tion is prescribed on X2°. What is done in the present paper can be also adapted without any difficulty
to the case where a Neumann boundary condition is imposed on X2°. In that case, the transformation
used to rewrite the system in the reference configuration must be defined differently. Other geometries
could also be considered.

Let (us, ps) be a stationary solution of the Navier-Stokes equations in the reference configuration

—divo(us,ps) + (us - V)us, = 0 in §,
divus, =0in Q, wus=0o0onT,, wus;=gsonly, (1.2)
us-n=0onT,, elus)n-7=0o0nTl., o(us,ps)n=0onT,.

We choose f; = —ps|r, in (1.1). Thus, (u,p,n) = (us,ps,0) is an unstable stationary solution of sys-
tem (1.1), and it is the solution around which we want to stabilize (1.1). We choose the function f of the
form

$(t.9) = D L), (13

where the functions w; belongs to L?(T's) and f(-) = (f1(:), -+, fn.(*)) is the control variable. The
functions w; must be appropriately chosen so that the linearized system around (us, ps, 0) is stabilizable,
see Section 7.3, where the stabilizability is studied. The goal of the paper is to find a control f, in
feedback form, able to stabilize system (1.1) around the stationary solution (us, ps,0), with any prescribed
exponential decay rate —w < 0, provided that g,, u’—us and 13 are small enough in appropriate functional
spaces.

The analysis of this stabilization problem has been done in [11]. Here we would like to develop a
similar strategy for the semi-discrete system obtained by approximating by a finite element method the
system (1.1) rewritten in the reference configuration.

To rewrite system (1.1);_4 in the reference configuration Q°°, for all ¢ > 0, we introduce the mapping

(¢ —e)y — ten(t, , 3(1/)6))
C—e—s(y)én(t,x,s(y)e)
where the sign function s is defined by s(y) = -1 if y <0, s(y) =1 if y > 0 and £ is a continuous linear
operator such that En(t,xz) = 0 for (¢,2) € (0,00) x (({s+ L)/2,L), see [11]. In the following, to simplify
the notation, we write n in place of &n.

For all t > 0, Ty transforms €, into 2. We make the change of unknowns

a(t,a,2) = ult, Ty (@,2), Bt 2) = p(t, T, (2, 2)),

Toey © (@ y) — (2, 2) = <o:

m(t,z) :==n(t,z), n(t,x):=mn(t,z), and " =u’. (14
The quadruplet (@, p,n1,72) satisfies the system
iy — divo(a,p) + (4 - V)u = Fyla, p,m,n2] in Q°,
div @ = div Fyiy [0, m1] In Q%°, @ =man on X°, 4 =g, + gs on X5°,
t-n=0o0nX¥, e(@n-7=0o0nxX, o(upn=0onx>,
M —n2 =0on X, (1.5)

N2t — 6AS771 - 7A5n2 + OéAinl = 70’(17’713)” -n+ ES [ﬂa 7]1] + f + fs on 2207
m =0on (0,00) x s, M1, =0 on (0,00) x I,

w0)=a’in Q, 7 (0)=0o0nT, n2(0)=n) on Ty,
3



where the nonlinear terms Fy, Fg;, and F are given in Appendix A. The linearization of system (1.5)
around the stationary solution (us, ps,0,0) is
vy —divo(v,q) + (us - Vv + (v V)us — Ay — Aane = 0 in Q°,
dive = Agn in @, v=1mpnon X, wv=g,on X,
v.n=00n%>®, ewn-Tr=00nXr, o(v,qn=0on3IT,
M —n2=0on XY, (1.6)
N2 — BA — YA + A2y — Ay = —o(v,q)n - n+ f on B°,
m =0on (0,00) X s, M1, =0 on (0,00) x I,
U(O) =" in Qv 7]1(0) =0on Fsa 772(0) = TIS on I's.
The linear differential operators A;, Az, A3 and A4 are defined in Appendix A.

For the finite element approximation of systems (1.5) and (1.6), we shall take into account the
Dirichlet boundary condition of the fluid flow on I'y, I'; and I'. by Lagrange multipliers. We introduce
finite-dimensional subspaces X;, C H*(2;R?) for the velocity, P, C L?(Q) for the pressure, S, C HZ(Ts)
for the displacement and its velocity, Dy C {g = (g1,92) € L*(To;R?),g =0o0on Ty UT;,go = 0on I}

for the multiplier associated to the Dirichlet boundary conditions on I'o =T UT; UT,.
The finite dimensional approximation of the linearized system (1.6) is

Find v € H} _((0,00); X1), ¢ € L2 .((0,00); P), 7 € LZ ((0,00); D),

loc loc

m € LE.((0,00); Sk),m2 € LE ((0,00); Sy), such that

loc

% o ’U(t)(bdaj = af(v(t)’nl(t)7772(t)7 ¢) =+ b(¢7q(t)) + <T(t)7 ¢>F07 V¢ € Xh7
b(v(t),y) = | Asm(t)¢dr, Vi € Py,

Q (1.7)
(,v(t)r, = /F Ip udar+/rs n2(t)n - pdx, Yy € Dy,

d
2 de = de, V¢ €Sy,
i [ mcdz= [ mcan wes,

s

G [ Oz = aln(®.m(0).0 - (7(0).Crle., ¥ € S

s

where

af(v,ﬂlanz,ﬁb)_/g<—2V5(U)15(¢)_(Us'V)¢"U—(¢‘V)U5'U+/QA1771'¢>+/QA2771'¢) dx,
b<¢7q>=/ﬂdiv¢qdm7 <M,¢>ro=/r ) u-cbd:er/F o b2 do,
sUl';

as(11, 72, C) = /F (—BVm - V¢ + algy - AC+ A € — Vg - VC) da,

System (1.7) has to be completed by initial conditions. The Lagrange multiplier 7 is introduced to
take into account the boundary conditions v =mn on I'y, v =g, on I'; and v-n =0 on I'.

In order to construct a linear feedback law, which is easy to compute, able to locally stabilize the
nonlinear system (1.5), with any prescribed exponentially decay rate —w < 0, we are going to follow a
strategy similar to that used in [11] for the continuous model. It can be summarized in several steps
corresponding to each section.

— In section 2, we present the matrix formulation of the semi-discrete Finite Element approximations.

— In section 3, we reformulate the finite-dimensional linear system as a control system by eliminating the
multiplier from the equations using a projector which plays a role similar to that of the Leray projector
for the infinite-dimensional system.

— In section 4, we study the relationships between the eigenvalue problems involving Lagrange multipliers
and those without Lagrange multipliers. Using these relationships, we are able to construct the feedback
law without having to call the projector which is difficult to construct numerically.

4



— In section 5, we use the spectral decomposition to bring back the stabilization problem to the stabi-
lization of a finite-dimensional linear system. Then, the feedback law is obtained by solving an Algebraic
Riccati Equation of small dimension and then easy to solve.

— Finally, in section 6, thanks to numerical tests, we prove that the linear feedback law is able to stabilize
the discrete nonlinear system. By choosing conveniently different parameters used to determine the
feedback control law, we are able to stabilize perturbation amplitudes that are of order 15% of the
stationary inflow boundary condition.

2. Semi-discrete approximations. In this section, we show that the matrix formulation of system
(1.7) corresponds to system (2.3).

We denote by (¢;)1<i<n, a basis of Xp, (pi)i<i<n, a basis of Py, ((;)1<i<n, a basis of Sy, (1i)1<i<n,
a basis of Dy,. We set

v=3" v, 00 =300 00 =30 G, M2 = D MG M8 = D iy Mh.oGis
n T ] T s ]
Q=200 @iDis Gp = Doily Gphis T = DTy Tiflis Wy = Yy wh;.

If we denote with boldface letters the corresponding coordinate vectors, we have

'U:(’U]_,"',UnU)T, UO:(U?7"'7U9LI})T7 ,'71:(77%7"'777?5),1—'7 ,’72:(77%7"'?7755)T5
778 = (,’7%,0"" angj))Ta f = (fla"' 7fnc)Ta gp = (911)7 7937)Ta q = (qlv'" aan)Tv
T:(Tla"';Tn.,-)T; 0:(611,"',anﬂ'l,"',TnT)T» wj:(wjl,’...vas)T’ W:[wlwn(‘]

For the fluid, we introduce the stiffness matrices Ay, Avg, Avr, Avs, Agg and the mass matrix M.,
defined forall 1 <i<n,, 1 <j<n,, 1<k<ng,1<1I<n,,1<m<n; by

(Anndig = =2 [ 6 e0) = [ (0 V0000~ [0 Vuon oy = [ 00

(Avq)ik = / pkdiV ¢i7 (Av‘r)il = / M - (bi +/ ,U/l72¢l,27 (M‘r‘r)ml = / TL* Tm,
Q rsury; . T

A=A Aw], Ay = [ MO]

For the structure, we introduce the stiffness matrices A A

fined for all 1 <7 < ngz and 1 < j < ng by
(Ann)is = )iy = [ G5-6i (Agan)is = — / (896 VG +adG - A6)+ [ 44G-G
r. r,

s

Ay, and the mass matrix M,, de-

ninz» 271

(Anany)is = —7/ V-V,

FS
We also introduce the coupling matrices Ay, , Ay, Ayigs Anars Ay and A,,e defined for all 1 <4 < n,,
1<j<ng, 1<k<ng,1<1<ng 1<m<n, by

(Avny )i = /QAle iy (Aupy)ij = /QAij “diy (Anige = —/QAka Py (A )em =— [ G- e,

s
Apo = [Ang 0 0], Apo=0 Ay 0].

We set

N, =Ny +2ng, Ng=ng+n, and n=n,+ny.

We introduce the mass matrix M, the stiffness matrix A, and the control operator B € L(R",R"=)

Mzz 0 Azz sz@ 0
M = o ol A= o and B = 0 , (2.1)
where A O My W
Muv 0 0 Avv Avm Avng . Ava N Ava
Mo,=|0 My, 0|, A.=|0 0 Apn|, Adw=| 0 |, Ady=|4,0|. 22
0 0 My, 0 Ao Anams Apyo Apyo

5



Thus, the matrix formulation of system (1.7) is

v v 0 0 0
d |m m 0 0 v f
dat |m n2 My W f 0 | (0) 0 23)
0 0 0 _Aéggp 72 T2
or, equivalently
dl?v v _ v v CH
Mzza M| =Aw |m| +A00+Bf, AL |m| = AggGps M| (0)= |01, (2.4)
72 72 72 72 75

where v, 11, 12, v°, 19 and g, are the coordinate vectors of v, 11, 12, v°, 79 and g, respectively,
0 = (q,7)", q and T are the coordinate vectors of ¢ and 7 respectively. The initial conditions v° and 7
are such that (v°,0,m3) belongs to Ker(AZ)).

3. Reformulation of the finite-dimensional linear system.

3.1. The stationary finite-dimensional linear system. The goal of this subsection is to rewrite
the system

v Ff

AM — 4) || = | Foa (3.1)
2 Fso
0 0

as a system satisfied by (v,m1,7m2) in which the multiplier 0 is eliminated, and to characterize the
multiplier 8 in terms of the solution (v,71,n2) and of the data (Fy, F 1, Fs 2). We are going to consider
system (3.1) either when A € C and (Fy, Fs 1, Fs2) € C™, in which case the solution (v,n1,72) and the
multiplier 8 respectively belong to C™= and C™, or when A\ € R and (FYy, F§ 1, Fs2) € R"#, in which case
the solution (v, 71, m2) and the multiplier @ respectively belong to R"™= and R™?. In order to collect both
the results stated for either real or complex solutions, below we state results valid for K™ where either
K = C or K=1R. Let us notice that the matrices involved in system (2.3) have real coefficients.
We first consider the following system involving only the velocity v and the multiplier

AMypv = Ayyv + Ay + Fy, Az;ev =g. (3.2)

To eliminate the multiplier 8 from equation (3.2);, we are going to introduce the projection into Ker(Afg)
parallel to Im(M, ! Ay).
PROPOSITION 3.1. 1. The projector PL in K™ onto Ker(AZL)) parallel to Im(M,, A,g) is defined by

Pl =1— M, Aw(AL, M [ Ae) AL,
2. The projector P, in K™ onto Ker(AZ,M,.') parallel to Im(Ag) is
P, =1 — Aw(AT, MV A0) AT, ML
Moreover, we have
PyAv =0, P2=P, P,My=My,Pl, P,M,=PM, =P,M,Pl, M, P, =PM"
Proof. Tt is similar to that of [1, Proposition 3.1]. d

REMARK 3.1. From the Inf-Sup condition (6.4), it follows that Ag is of rank ng. Thus, the matriz
AT ALY Ay is invertible. We set

A= PZM71A1)117 A90 = (AZQA;UIAUG)ila M09 = (AZQMq;leq)é)il and L= A;U1A1)9A90-

v
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LEMMA 3.1. We have (I — PI)L = M} Ao Mpg.
Proof. The proof follows from the fact that [ —PT = MI;JIAU(;M%AZ@. 0
LEMMA 3.2. Let Fy belong to K™ and g belong to K™. The couple (v,0) is a solution of system

(3.2) if and only if

APy = APl v — APILg + PI M, Fy, (I —PDYv = M, AypMoeg,

(3.3)
0 = —Mpg (—Ag + Nygog + AUTOM;}ADU]PZ’U + A{eMv_vlFf) ,

— AT —1 —1
where Ngg = AU0M1)1) Am)Mm) Anggg.

Proof. The proof is similar to that of [1, Proposition 3.2]. d
In order to eliminate the multiplier  in system (3.1), we introduce the following operators

P, 0 0 Ave M, 0 0
P=|0 Igns 0|, Au=1]0 and My,=| 0 M, 0 , (3.4)
0 0 Igns 0 0 Nipgyy My + Npgng
where
Nﬁ2772 = AnzeMaeAz];G and N772771 = AnzéMGOA%e' (35)
‘We have
M, ! 0 0
M;'=1] 0 M, ! 0

0 _(Mnn"‘annz)_anzmMn_nl (Myy + Nypgpy) ™

PROPOSITION 3.2. The operator PT is the projector in K" onto Ker(AZL,) parallel to Tm(M;1Ay)
and the operator P is the projector in K™ onto Ker(AT,M 1) parallel to Im(A.g). Moreover, we have

PA,y =0, P>=P, PM,=M/P" PM,=P’M,=PMP" M 'P=P"M "'

Proof. Tt follows from Proposition 3.1. a
We introduce the matrix A in R™=*"= defined by
A= PTMs_lgzza (36)
where
B Apy Ay, + AWIPﬁLATT]1 o Aup + AUUIP{]LA;(,
A,.=1 0 0 4771”2 , (3.7)
Alev A7I2"]1 Anzm
and

T —1
A’?rﬂ) = _A7729M99Av0Mvv AU’U’

A?72?71 = Amnz - An29M90(A50M@1Avm - NeeA%e% (3.8)
Anznz = An2772 - A7729M99(A17;0M1;)1AU772 - NG@AZ;;G)'

PROPOSITION 3.3. Let (Fy,Fs1,Fs2) be in K™=, A quadruplet (v,m1,12,0) € K is solution of the
equation

v Ff
AM — A) || = |Fen 3.9
( V| = | FS ] (3.9)
0 0

7



if and only if

v Fy
(AM, — M,APT || =P Fiq ;
T2 Fs,2 - AngQMQQAz;GMJvlFf

(I =P )v = =M Ay Mpg AT g — Mt Avg Mg AT 4o,
0 = —Mao(AAflem + )‘Aﬁe"h - N09(A519771 + Aﬁe’h))
~Mog AT, ML Ay PTv — Mpg AT, M N Ayt + Avyomz + Fy).
If in addition,
AL My Fp+ AL gM UV Fy + AL g MUF, 5 =0,

m10 126
then
v Ff
(AM, — MAPT |ny | = MJPT M | Foq |,
2 Fyo

and 0 in (3.10) satisfies
0 = —Mpo(AAT ymi +AAT ymo — Noo (AT g + AL ym2))

1

—MggAvTeMv_vl (AUUPZ’U + Ay + Aup, n2) + M99A519M17_171F371 + MQGAg;eMn_ans,Z

(3.10)

Proof. Step 1. Let (v,m1,1m2,0) be a solution of (3.9). The couple (v, 8) is solution of the system

AMypv = Aot + Ay + Avyym + Avnomz + Fy, Afev = *(Aflem + Agzeng).
Thanks to Lemma 3.2, we have
AP v = AP v + APTL(AT g + A} gm2) + Py M Ay, 1+ Avgo ) + PY My,
(I =P )v = =M Ay Mpg AT gy — M,  Avg Moo AT ymo,

0 :—M@e(AA%leTll —I—AAZI;Q’IIQ _NGO(AZ;GTII —I—AZI;Q’I’]Q)) —MQQA;{QM&} (AUUPZ’U—I—AWH m -i-AvnzT[Q —|—Ff).

The system on 1; and 7, is given by
AMppm = Agigam2 + Fon and  AMyyme = Ap60 + Apyyomi + Agynam2 + Fo o
We have
Ap,00 = —Apyo Mg (AAT g + XNAT gm0 — Nog (AL g + AL pm12))
—Ap,oMog AL M (A PTv + Ay, + Avnymi2 + Fy).

Or equivalently

Ape0 = —AAUQQMQQ(Aglo
+(Apo Moo Nog AT 5 — Ao Mg ATy Myt Ay, )2 — Apyo Mg ATy M Ay P 0
— A0 Moo AL M 1 Fy.

M+ AL gm2) + (Ao MogNog A 5 — Ayo Mg ATy M M Ay )

Replacing the above expression of A,,¢0 in the system satisfied by (n1,72), we obtain
AMyym = Apynamz2 + Fsa,
(M, + AnQQMggAzze)ng + )\An29M99A£IQU1
= (Apon + AppoMooNoo AL g — Ay Mog ALy Mt Ay, )m
F(Anans + Anpo Moo Noo ALy — Ao Mog ALy Mt Auyy )0

—|—FS,2 — AmgMggAZeMi;}AUUPUTU — AnnggeAvT@M,;UlFf.
8



Thus we have

v Ff
(AM, — MJPTM YA )PT || =P Fsq )
u> Fyo— AyoMog AT M, Fy

and (3.10) is proved. The converse can be proved by similar arguments.
Step 2. If in addition

AL M Fy + AL gMy Y Foy + AL yM T F 5 =0,

then
—MGQAZQM,L;}F)" = MQQA%GM{,}FSJ + MG()A;Z@M?;}FSQ and
Fso— AnzoMegAgeM@lFf =F;0+ AnzoMegAgleM%lFSJ + AnzoMggA%eM%lFs_’g.
Hence
~ v Ey
(AM, — MPTMPAPT || =P Fqq )
2 Fs,2 + AnQGMGGA;I;IQM%lF‘;,l + An29M90A§29M%1F372

8 = —Mog(AA] ym + AT gm2 — Nog (A gm1 + Al ym2))
— Moo ATy M} (Ao PTo + Ayyyymi + Avpymo) + MGHAgleMJnlEs,l + MaeA%gM%lEs,z-

We notice that

Fy Fy
Ms_l Fs,l = Mz_zl Fé‘,l
Fs,2 + Ang()MGOAgleMy;ans,l + AngGMGHA%;gM%lFs,Z E@,Q
Thus we can conclude because
N v Fy
A =PTMTAPT |m | =PTM ! | Fyy
Yp Fs,2 O

3.2. Instationary systems.

PROPOSITION 3.4. Let (v°,19,g,) € R™ x R™ x R™ such that (v°,0,19) belongs to Ker(AL,) and
gp(0) = 0. System (2.3) or (2.4) is equivalent to the system

d v v v v
ﬁpT m|=AP" |m| +Bf, P n| (0)=P" | 0],
72 72 72 3
(I =P v = =M Ay Mog AT g — M Ao Mg AT ymo + M} Ayg Mg Agggy, (3.11)

0 = — Mg AL ymi — Myg AT gy — Moo (AT M Ay, — Nog AT g)m

— Mg (AL, My ) Ay, — Nog AT 5112 — Mg ATy MM Ay PT v + Mg Agyg;, — Moo Noo AgyGp,

where

B=M;'B. (3.12)

Proof. The proof follows from Proposition 3.3. O



3.3. Adjoint stationary systems. The goal of this section is to study the adjoint system

P Gy

oy |k [Gsa
(AM - AT) 1) = | (3.13)

p 0

and to establish results similar to those established for the direct system (3.9) in Proposition 3.3. For
that we introduce the operator A# defined by

A# =PI M TAT

PROPOSITION 3.5. Let (Gf,Gs1,Gs2) be in K"=. The quadruplet (1, k1, ke, p) € K" is solution of
equation (3.13) if and only if

Y Gy

()\MST — MSTA#)]P’T Ki| =P Gs,l —Am@MeeAUTaM;}Gf R
G.o— Ay oMagAL M-1G

K2 )2 120 100 4,9 Ve S f (314)
(I =P)p = =M, AygMyo AT ko,
p= 7)\M99A%129K,2 + MQ@NG#;A;II;GKZQ — MggAfeM&lefUPf¢ — MQQAZGM&}GJQ

where the operator Ngf) € LK™ K™) is defined by
Njy = Ay M, AT M Ay My (3.15)

If in addition,
ALM Gy + AL gM G0 =0,

vU

then, we have

P Gy
AMI — MTA#)PT |ky| = MIPTMZ |Gaa |,
Ko GS,Q

and
p= —AM@QAZ];@RQ + M@@Na#;AZ];eK',Q — MQQAZGM;}AT ]P)T’(ﬁ + MQ@A§2GGS,2.

VvV U

To prove the proposition, we will establish two preliminary results, Lemmas 3.3 and 3.4. We introduce
the operator L# € L£(K"?, K") defined by

L#h =, (3.16)
where (1, p) is the solution of the equation
Apt+ Awp =0, Alytp =h.
As in Lemma 3.2, we can prove that
L# = AT ApAl, and (I —POL# = M, A9 Mpy. (3.17)
We introduce the operator A# € £(K™) defined by
A* =PTMTAT (3.18)
LEMMA 3.3. Let Gy € K™ and h € K™. The couple (¢, p) is a solution of system

AMvvw = AEM/J + Avep + Gfa Afad) = h’7 (319)
10



if and only if

APTop = A#PLyp — A*PTL#h + PT M, Gy,

(I —=PDYep = Mt Ayg Mygh,

p = Moy (~Ah+ Njoh + AT, M AL PTy + AT MG ). (3:20)
Proof. 1t is similar to that of Lemma 3.2. O
Now, we introduce the matrix
AL 0 ALPILAAL,
C:= AL, + Cyo 0 AL 4+ Cony |
Al 4+ Chpw AL AL+ Con,
where
Couna = Ao MogNGG AT o — AT M1 AgMpg AT 5, Cyyyy = — Ay, g Mg ATy M T AT,
Corang = Ango Moo NGy AT o — AT M1 AugMpg AT 5, Ciry 1= — Ay, Moo ATy M, T AT, .
LEMMA 3.4. We have PTMTCPT = A#PT.
Proof. We have
AT 0 AL
AL, = |AT + (A PTLAT )T 0 AT
Agng + (AvaILA;[;;e)T A%nz A};m
Hence
0 0 AL, —ALPIL#AL,
(AL = C)PT = |(AwPTLAT )" = Coo)B] 0 AL, — AL, = Co, (3.21)
(AnPTLAT )" = Cpo)PL 0 AL — AL — Cra
Thanks to equation (3.17), we obtain
AZUPZL#A;Q = AEUL#Agge — A, (I - PZ)L#Agzo = AveAeTeA%a - AEUML;}A'UQMQQAZ;Q
= AU(;AOTQAZZQ + Agw,
(3.22)
AWIP’Z]LAgle = AvaAZ;lg — Ay (I — IP’Z)]LA%Q = AngggA%;e - AUUM&)lAngggAz;le (3.23)
= AveAeeA%;g +C
and
AWIP’Z]LAgze = Am,]LAg;g — Ay (I — Pf)LAgZQ = AUQA90A£29 — Am,M,l;}lAngggAg;e (3.24)
= AU9A99A£29 + C’,%sz,
(the operator A, is defined in Section 2). It follows that
Agzv - AZU}P’Z}L#AZZQ = —AngggAz];g,
(AwPILAT )7 = Cyy BT = Ay, g ATy AT,PT =0, (3.25)
((AvaUTLAﬂa)T - anv)PZ = A7729A9T€AZGPZ =0,

11



because P, A,9 = 0, see Proposition 3.1. We recall that
Ngg = AZHM&}AW)M&}AUQMQG and NO#; = AZ@M@lAZUMl;lAUQMQ.g,
then, we can easily prove that

AmgMggN;%AZQQ = AmgNg:gMggA%;a and AmgMggN;ﬁA%;@ = A7729N97:9M99A;7;G'

Hence
452U1 - Aﬁm = Oy = A7719N9T€M‘99AZ;29 - AmgMgeNengz;g =0, (3.26)
A52?72 - Agzﬂz - anﬂz = An29N£M90A529 - AW&M%NWA?;%’ =0.

From equations (3.21), (3.25) and (3.26), we obtain

0 0 —AypMpAL,
(AT —C)P" =0 0 0 : (3.27)
0 0 0
We deduce that
0 0 —PTM; L A,pMpAT,
PTM T (AT, —)PT = |0 0 0 =0, (3.28)
0 0 0

because PT M1 A, g = M,,P, A, =0, see Proposition 3.1. Thus, we have IF’TM;TCIP’T:IP’TM;T/TZZ]P’T.

Proof of Proposition 3.5. -
Step 1. Let (¥, k1, Ko, p) € C™ be a solution of (3.13). Then, (1, p) is solution of the system
AMyotp = AT+ Aygp + Gy, Alyp = *Aﬁe"i% (3:29)
Thanks to Lemma 3.3, we have
APTyp = A#PTp + AFPTL#AT (ko + PTMIGy, (I —PD)p = — M Ay Mo AL g1, (3.30)

p= —)\MQQAZZOKZQ + MQQN;%A%-‘ZQFLQ — MQQAZGM&}AT ]P)T’lﬂ — MggA{eM;}Gf.

VU U

The couple (K1, k2) is a solution to the system

AMymFLl = AT Ko + Agﬁlw + A7I19p + Gs,17

271
AMnnFLQ = Agmz'il + A%12772K'2 + Aanw + Amgp + GS,Q.

We have
Apaop = —AAn,oMog AL g + Ao Moo Ny AL grin — Apo Mg ATy M AT PTp — Ao Mog AL M, Gy,
Apop = —MAy oMo AL grin + Ayo Moo Ny AL gk — Ao Mg ALy M AT PTap — A, g Mg ATy MGy

Replacing these two expressions in the system satisfied by (K1, k2), we obtain

)\M,mli‘,l + AAmgM@gAngKQ = (A;zm =+ AmgMggNg‘zA%;a — AZ’ZI M;lengggA%;e)Rg

+(AL, — ApoAge ATy M AT YPTop + Gy — Ay Mpg AL M, G,
MMy + Anyo Mg AT g)ko = AL | kg + (AT 4+ AyyoMog NGy AT o — AT M1 Ao Mg AT 5)ks
+(AT,, — Ap,o Moo ATy M P AT YPT4p + Gy 0 — ApyoMog AL MGy

12



Thus, thanks to Lemma 3.4, we have

Gy
AMT — MTAF)PT | k1| =P |Gy1 — Ao Mg AL MGy |
Ko Gso — Ao Mog AL M Gy

(I — IP)T)’l,b = —MﬁlAnggeA;‘ll;eﬂ%
p= 7)\M99A ,6K2 + MggNaeA L6012 — MggA{eM AT PT'I/J — MQQAZQMI;}GJC.

VUV U

The equivalence between (3.13) and (3. 14) is proved
Step 2. If in addition AZQ 1Gf +A oMy, GS 2 =0, we have MggAvG Gf = —MQQAEQQM;?}GS,Q.
Hence

Gs,l — AmgMggA oM, Gf =G 1+ AnlgMggA OM Gg 2
and  Gsa — ApoMag ALgM, Gy = Gy o+ AygMog AL )M LG o

Moreover p = —AMQQA;II;QKZQ + M99N£A£20H2 - MQQAUTGMU?}AT ]P)T’lp + MgaA%;eM%lGSQ, and

vol v
P Gy
(AMZ - MSTA#)]P)T Ki| = P Gs,l + AnleMGHA 9M7 Gs 2
Ko G372 + A7729M99A77249M G
Notice that Gy Gy
M;T Gq 1+ AHIQMQQA%QGM Gg 9| = M;Zl Gs,l
Gs72 + AnQGMGHA M Gs 2 Gs,?

The proof is complete. ]

4. Equivalence between eigenvalue problems. We are going to study the links between the
eigenvalue problems associated to the operator A and the eigenvalue problem associated to the pair
(A, M), i.e

U u
AeC, (u,61,02) € Ker(AL), A |d| =X|61], (4.1)
o2 P
and ;‘ (;L
AeC, (u,8,00,0)eC, A =AM | (4.2)
P &2
(7] 0
We will also study the links between the adjoint eigenvalue problems
P P
AeC, (’l/), K1, K,Q) S Ker(AZe), A7 Ki| =XK1, (43)
Ko Ko
and P P
XeC, (P,K1,k2,p)€Cr, AT |"1| =AM |2 (4.4)
Ko Ko
P p

We recall that A.g is defined in (3.4) and that Ker(A4Z,) = Im(PT).

DEFINITION 4.1. A wvector (u', 8%, 8%) € Ker(ALy) is a generalized eigenvector of order i for prob-
lem (4.1) associated with a solution (X, (u®,8Y,89)) of (4.1) if (u?, 8%, 8%) is obtained by solving the chain
of equations

uj uj_1

A —A) |8 | == 8", for1<j<i.
5! o)1
2 2
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A wvector (u?,8%,85,0°) € C" is a generalized eigenvector of order i for problem (4.2) associated with a
solution (X, (u®,89,89,0%) of (4.2) if it is obtained by solving the chain of equations

u’ w1
&7 ot

(AM — A) 5} =-M 6}_1 . forl<j<i.
9 gi-1

We have similar definitions for the problems (4.3) and (4.4).

4.1. Equivalence between the direct eigenvalue problems.
THEOREM 4.1. A pair (X, (u,d1,02,0)) is a solution of the eigenvalue problem (4.2) if and only if
(A, (PTw,81,8,)) € C* x Ker(A%Ly) is a solution of the eigenvalue problem (4.1) and

(I — ]PZ)U = —M&}lAngggAzletsl — M&}AUQM%A%@(;Q,
0= _)‘M%A;ﬁ(sl — )\M@@A;eég — M99(AUT€M7;;1AM71 — N99A§19)51 (4.5)
_MGO(AZQM’L;U]-A’U”IQ - NaeA;‘,,;g)(sz - MeeAngglAvaTu.
Proof. Tt follows from Proposition 3.3. 0

THEOREM 4.2. A quadruplet (u®,8%,8%,0%) is a generalized eigenvector of order i associated with
the solution (X, (u,89,689,8°)) of problem (4.2) if and only if (PTu?, 8%, 8%) € Ker(AL)) is a generalized
eigenvector of order i associated with the solution (X, (PLuY 8?,683)) € C* x Ker(AL)) of (4.1) and

(I — Pf)ul = 7M1;}1AU9M99A5105{ — M&}lAngggAg;eéé,
0 = 7)\M99A3;195i — )\MggAZza(s; — Mgg(Agngq;}Avm — NggA?le)(si
— Moo (AT My' Ay, — Nog AL )85 — Mg ALy MM Ay PTu! — Mpg AT (8171 — Mg AT 8571,
where the vector (PTu'=1, 8171, 857 1) € Ker(AZ)) is a generalized eigenvector of order i — 1 associated

Proof. Thanks to Proposition 3.3, it follows that (u?, 8%, 83, 0°) is a generalized eigenvector of order
i associated with the solution (A, (u®, 89,489, 6%)) of problem (4.2) if and only if

ui u?il
(AT —A)PT |67 | = —P" |67,
&5 6y

(I - IP)Z)’U,z = 7M1;)1AU9M99A;106{ - M;lengggA?ze(s%,
0 = 7)\M99A3;105i - AMQ@A%—;Q&% - Mgg(AgweM;}Avm - NQQA%@)(S{

7M99(AUT@M1;)1AM72 — N99A§29)6§ — MQQAZQMI;}AUUP{Ui — MggAz;letsi_l — MggAgze(s;_l.

We deduce the theorem by induction. |

4.2. Equivalence between the adjoint eigenvalue problems. Now, we are going to prove the
equivalence between the adjoint eigenvalue problems.
THEOREM 4.3. A pair (X, (¥, K1, K2, p)) s a solution of the eigenvalue problem (4.4) if and only if
(A, (PI4p, k1, K2)) € C* x Ker(ALy) is a solution of the eigenvalue problem (4.3) and
(I - Pf)’l[) = —Ml;)lAngggA;eliQ,

p= —)\MQQA%;(,FLQ + MQQNG#;AZQORQ — M@gAgaM&}Avag’lﬁ.

Proof. Tt follows from Proposition 3.5 O
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THEOREM 4.4. A quadruplet (1%, k¢, kS, p') is a generalized eigenvector of order i associated with
the solution (X, (¥°, k9, K3, p°)) of problem (4.4) if and only if (PT 4!, ki, kb)) € Ker(AZL,) is a generalized
eigenvector of order i associated with the solution (X, (PL% k9, K3)) € C* x Ker(ALy) of (4.3) and

(I =PY)Y" = =M AypMog AT gK5,

2

pi = —)\MggA%;eK'é + MGGNH#;A%HK’E — MggAgaM;le”U]P’g'(pi + MggAg Glﬁ‘,g_l,
where the vector (PT4p'~1 ki~ ki) € Ker(AL)) is a generalized eigenvector of order i — 1.
Proof. 1t relies on Proposition 3.5 and is similar to the proof of Theorem 4.2. ]
5. Stabilization of the finite-dimensional linear system.

5.1. Spectral decomposition of the operator APT. We are looking for a decomposition of
R™* into a sum of the generalized eigenspaces of the operator APT. It is convenient to assume that
0 ¢ spect(A). If it is not the case, we can replace A by A — oI with A\ ¢ spect(A) before the analysis.
We can decompose R™= as follows

R™ = Ker(AZTg) & Im(M;lAzg),
with  Ker(AZ)) = Im(P?) and Tm(M;'A.g) = Ker(PT).

Since 0 ¢ spect(A), we have Ker(APT) = Ker(P?) = Im(M; 1 A.p). Therefore, 0 is an eigenvalue of the
operator APT and Im(M;'A,p) is the corresponding eigenspace. In order to decompose Ker(AZ)) into
the other eigenspaces of the operator APT, we consider the eigenvalue problem (4.1) and the adjoint
problem (4.3). We are going to prove that the spectral decomposition of the operators APT and A#P7
can be deduced from the study of the eigenvalue problems (4.2) and (4.4). First, we show the following
result.

LEMMA 5.1. Let (u,d1,82) € C" and (1, k1, Kk2) € C"= be such that

AZgu + Az]—;e(sl + Agzg(sg == 0 and Agg'l’b + A%;eh‘/2 = 0.
Then, we have

(’u’u 617 52)T(PMST - Mzz)('llb7 K1, K’Q) = 0.

Proof. We have

(P, —I)M,, 0 0 —Ay,gMgpAT, 0 0
PMT — M., = 0 0 NE | = 0 0 NI
O 0 Nﬂznz 0 O N"72772

because P, — I = —A,g(AT M Ayg) " PAT MY = —AygMpg AL, M,,!, see Proposition 3.1. It follows
that
(u,81,02)" (PM] — M..) (v, k1, k2) = —ul Ayg Moo Alytp + 81 Ay e Moo A] gka + 85 Ayyo Mg A ko
= —ul Ay Moo ALyp — 61 Ay g Mog ATy0p — 83 Ayg Mog Al yap

= —(u"Ayg + 8] Ao + 03 Ayyg) Mg Alytp = 0

We set
ng = dim(Ker(A%)). (5.1)

THEOREM 5.1. There exist two families (u’,8%,85,0%)1<i<n. and (P!, kL, kS, pl)i1<i<n. of C":
constituted of eigenvectors and generalized eigenvectors of (4.2) and (4.4) respectively, such that
o The union of the families (PTu’ 8%,85)1<i<n, and (u',8%,85)n+1<i<n. is a basis of C"=,
(PTut, 8%, 65)1<i<n, is constituted of eigenvectors and generalized eigenvectors of problem (4.1) and
(u', 8%, 85) no+1<i<n. is a family of vectors belonging to Ker(PT).
15



e The union of the families (PLap' kY, KY)1<i<n, and (Y', ki, KY)not1<i<n. is a basis of C"=,
(PZ#)%,%,‘R%);SZ—S”O is constituted of eigenvectors and generalized eigenvectors of problem (4.3)
and (Y, KL, KY)no+1<i<n. 18 a family of vectors belonging to Ker(PT).

e We have the decompositions

Ac =F'APTF  and AL =@ 'A#PT®,

where Ac is a decomposition of APT into complex Jordan blocks. The matrices F' and ® are in the
form F = [IP’TF1|FO] and ® = []PT<I> |®o] where Fy, Fy, ®1, ®g are the matrices whose columns

are (’LL 51»6 )1<’L<TLO7 (’U, 51a6 )no+1<z<nz7 (Q/J aH17R2)1<z<no; (1/} 7K17K2)ng+1<1<nz Tesl)ecmvely
Moreover, we have the following bi-orthogonality conditions

F*M'® =Icn. and FyM,.®, = Ign.,

where F* is the complex transpose conjugate of F'.

Proof. Step 1. Decomposition of APT and A#IP’T Using the complex Jordan decomposition of real
matrices, we know that there exists a matrix_ F e Cr=xn- constituted of eigenvectors and generahzed
eigenvectors of Problem (4.1) such that Ac = F~'APTF. We set ® = M TF~* where M; T = (M)~}
F = (ﬁ*)’ and F* is the conJugate transpose of F. Thus, the matrices F and ® satisfy the b1—
orthogonality condition FM r o= Icn-.

Now, we are going to prove that Ay = > IA#PT D,

From the identities Ms_l'i)_* = F and FAc = APTF = IP’TMS_%LZ]P’T?, we deduce that Ms_l‘i\*_*Ac =
PTM LA, PTM @ and Ac®* = ®*MPTM LA, PTM L. Since M,PT = PM, and PTM; ! =
M 'P, we have Ac®* = ®*PA,, M 'P. Taking the complex conjugate transpose,

we obtain ®A% = PTM;TAT PT® — A#PT®. Hence AL = @ LA#PT S,

Step 2. Construction of F and ®. We denote by (a!,8%,83); (resp. (', ki, kb)) the columns of the
matrix F (resp. </I\>) Without loss of generality, we assume that (@, 8%, 8%)1<i<n, and (P, K%, Kb)1<i<n,
belong to Im(PT). We denote by Fyy (resp. ®¢) the matrix whose columns are (4!, 8%, 85)ny+1<i<n. (resp.
(Y, K&, K5)no11<i<n, ). Finally, we denote by A; the eigenvalue of APT associated to (@, 8%, 8%). Thanks
to Theorem 4.2, (u*, 8%, 8%, 0%) with

ut = al— M;)lAngggAz;le(;i — Ml;zlAiﬁMe@Az;;Gé%?
02 = 7)\1M99A5195i — )\nggA%;o(s% - Mgg(AZeM&)lAvnl - NggAgle)(si

7M99(A3;9M1;)1Am]2 — Ng@A%@)(‘)‘é — MQQAUTQM&}AEUPS’IZZ. — M@gAgle(si_ Mg@A (51_1,

12072
is a generalized eigenvector of problem (4.2). From Theorem 4.4, (¢!, k', kb, p') with

Yl =t — M Ay Mog AT 4k,

p = -\ MQQA 9[‘.',2 + M99N90An20’<’2 MggAgeM;}lAm}Pz’(bl + Mg@AT 9&122 1,

is a generalized eigenvector of problem (4.4). We denote by F; (resp. ®;) the matrix whose columns are
(u’, 8%, 0%)1<i<n, (resp. (¥*, K, Kb)1<i<n,)- By construction, we have

F = [PTFl | FO] - 1/;\1 and @ = [PT@l |¢0] — @

Step 3. Bi-orthogonality conditions. We have to show that F*MI® = Icn. and FyM,,®1 = Icn. .
Due to the bi-orthogonality condition satisfied by F' and ®, we have

F*M'® =Ico. and (PTF)*MIPT®, = F;PMIPT®, = Icn.. (5.2)

Since PMTPT = PMT, we have FyM,,®, = FyPMT®, + Fi(M,, — PMT)®, = FyPMTPT®, +
Fr (M., ]P’MsT)t‘In Therefore, thanks to Lemma 5.1 and equation (5.2), we get Fy*M,,®1 = Icn-.

d
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THEOREM 5.2. There exist two families (v, m},n%, 0" )1<i<n.and (¢, 1, ¢4, p*)1<i<n. of R"such that
o The union of the families (PTv', nt, mi)1<i<n, and (v', 1%, 08)not+1<i<n. is a basis of R™=.

o The union of the families (PT ¢, {1, ¢8)1<i<ng and (%, L, ¢ )no+1<i<n. is a basis of R"=.

e We have the decompositions

A=E'APTE and AT =2 'A#PTE,

where A is a decomposition of APT into real Jordan blocks. The matrices E and 2 are in the form
E = [PTE,|Ey] and E = [PTE| |5y where E1, Ey, E,, B¢ are the matrices whose columns are
(v', M1, M3)1<i<ngs (V' M1, M3)no+1<i<n. s (@, €15 C5)1<i<ngs (@' €15 €2)no+1<i<n. respectively. Moreover,
we have the following bi-orthogonality conditions

E"MTE = Izn. and ETM..E, = Ign..

Proof. We denote by (A;); the eigenvalues of the pair (M, A). To construct (v%,n},n4%,0%)1<i<n. and
(¢",¢1,¢5, p')1<i<n., we proceed in the following way.
Case 1. Xj is real. If (u',8%,8%,0.) and (¢, ki, kb, pl) are generalized eigenvectors associated to Aj,
we can assume that they are real vectors. Thus, we set

(0", 11,3, 0") = (u',87,05,6¢)  and  (¢',¢1, G5, p") = (¥, K1, K3, ).

Case 2. Xj is complez. There exists k such that Ay, = A; is also an eigenvalue of (M, A). If (u’, 8%, %, 67)
and (9", k1, Kb, p,) are generalized eigenvectors associated to A, (™, 81, 85", 67) and (™, k7", k5", p7*

are eigenvectors or generalized eigenvectors associated to Ak, then we may assume that (u', 84,65, 0.) =
(W™, 87,65, 67) and (97, &}, kb, pi) = (™, KT, k5", pi). We set

(’Uiani’n%voi) = ﬁRe(ui’éivéé’ei) and (qbiaCi,C%vpi) = \/éRe("/’i7’{'ziv’§évpi)>
(0™, m",my",0™) = V2Im(u', 81, 85,0,) and  (¢™, ("¢ p™) = V2Im(', K1, K, o).

The two families (v?, i, n%, 0%)1<;<n. and (¢%, L, 3, p')1<i<n. of R™ satisfying the bi-orthogonality con-
ditions ETMIE = Ign. and Ef M,,E; = Ign., and such that A = E"'APTE and AT = E-1A#PTE.

O
COROLLARY 5.3. We have the following decompositions of APT and A#PT
A=ZE"M,AP'E and A" =ETMTA#PTE.
Proof. 1t follows from the bi-orthogonality of E and =. |

5.2. Projected systems. Let (X;);en be the eigenvalues of the operator APT. We denote by
Gg(Aj) the real generalized eigenspace of APT and Gj(A;) the real generalized eigenspace of A#PT
associated to the eigenvalue A;. We choose oy > 0 and J, a finite subset of N such that {j € N |
Re(Aj) > —as} C J,. We define the unstable subspaces

Zy = ®je3, Gr(A;) and  Z; = ®jey, Gr(Aj).
Without loss of generality, we assume that
Z, = Vect {(PIv",mi,n}) |1 <i<d,} and Zs = Vect {(PJv',n{,n}) [d, +1<i<no},
where d,, is the dimension of Z,. Introducing
Zo = Ker(APT) = Vect { (v',n{,m}) | no +1 <i<n.},
we have

R" =7, ®Zs P Zo.
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We introduce the subspaces
Zo = Vect {(v',mi,mb) | 1<i<d,} and Z;=Vect{(v',ni,n}) |dy,+1<i<ng}.

PROPOSITION 5.4. We have the decomposition R™= = Zu ® ZS & Zg.
Proof. Tt follows from the fact that

T ® T &Zo =R, dim(Z,) = dim(Z,) and dim(Z,) = dim(Z,).

We set dg = ng — d,, and dy = n, — ng. We denote by

e E, € R"=*% the matrix whose columns are (v', 1}, m%)1<i<a,,
E, € R"=*4s the matrix whose columns are (v',n},15)a, 11<i<ngs
E; € R"=*9 the matrix whose columns are (v, n!, N5 no+1<i<n.»
E, € R™*%u the matrix whose columns are (¢%, (%, ¢3)1<i<a,
E, € R™*%: the matrix whose columns are (¢, ¢, ¢8)a, +1<i<ngs
Ey € R"=* the matrix whose columns are (¢, (i, ¢5)no+1<i<n. ,
©,, € R"*% the matrix whose columns are (0%);<;<4,,
®, € R"*d: the matrix whose columns are (0")a, +1<i<nos
Xu € R"*4u the matrix whose columns are (p%)1<;<a,

e x5 € R"*ds the matrix whose columns are (p%)a, +1<i<ng-
LEMMA 5.2. We have the relationships

ETPMTPTE, = Iya,,  ETPMTPTE, = Opaxa., EIPMTPTE, = Oga, i,
ETPMTPTE, = Opa,xa., ETPMTPTE, = Ips,,  ETPMTPTE, = Oga.ao,
ETPMTPTE) = Opagxan, ETPMTPTE) = Opagna,, ETMTEq = .

Proof. Tt follows from the fact the matrices E = [PTE, |PTE,| Ey] and E = [PTE, |PTE, | E(]

satisfy the bi-orthogonality condition ET MIE = Ign. . 0
LEMMA 5.3. We have

Au O]Rdu, Xdg O]Rdu, Xdg AZ ORd“ Xdg ORdu Xdg
A = ORds X dy AS O]Rds xdg and AT = ORdS Xdy, Ar{ O]Rds X dg 5
O]R'io Xdq ORdg Xdg OJRdO O]Rdo X day O]Rdo Xdsg ORdO
where A, = ETPM,APTE,, AT = ETPMTA#PTE,,
5.3
s = EIPMAPTE,, AT = ETPMTA#PTE,. (5:3)
Proof. 1t follows from Corollary 5.3. |

LEMMA 5.4. We have the relationships
T = T = T = T =
Eu Mzz:.u = I]Rdu, _ES Mzz:'s = I]Rds, Eu Mzz:'s = ORduxds, _ES Mzz.:u = O]Rdsxdu.

Proof. It follows from the fact the matrices By = [E,|E;] and 1 = [E, | E,] satisfy the bi-

orthogonality condition Ef M,.E; = Ign.. ]
ProprosITION 5.5. We have

A =EYAE, A =ETAT=, A, =

[1]

T T T AT =
TA,.E,, AT =ETATE,.

Proof. By construction of the matrices E,, E,, ©, and X, we have

A.. Aul|[E) [M.. 0] [E, ) ~ B o
i [@J — [ 0 o} [Qu] A, ie  A.E,+ A4®©,=M._.EA\, ALE,=0,
AT Ayl [ [M.. 0] (B .7 . T~ o = AT T
AL, 0 {x} - [ 0 0} {x] Ao te AnBu A = MBS =
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We deduce that
ETM,.E A, = ETA,.E, + 874,40, = ETA,.E, + (A%,2,)70, = €T A,.E,,
E;M..E,A, = EfALE, + E; Aoxu = EJALE, + (AZQE )X = Ey ALE..
From Lemma 5.4, it follows the relations for (A,, AL) and similarly for (Ag, AT)
A =EBTA.E,, AT =ETAT=, and A,=ETA._.E, A =ETAT=,.
We introduce the operators I1,, € ,C(]R"Z,Zu) and I, € /J(]R"Z,ZS) defined by
I, = E,E/M,. and II,=EEIM...

PROPOSITION 5.6. The operator I, is the projection of R™ onto Zu parallel to ZS ® Zo and the
operator Il is the projection of R™= onto Zs parallel to Z, & Zy.
Proof. We have

n =ke,E'M..E)E'M,, = E,E M., =11,

u

because EL M, . E, = Iga., see Lemma 5.4. Therefore, Hu is the prOJectlon onto Im(IL,) parallel to
Ker(II,). Thus, to prove that Hu is the projection onto Z parallel to Z @ ZO, we have to show that
Im(I1,) = Z, and Ker(Il,) = Z, & Zo. It is immediate that 6 Im(IL,) = Zy and Zg @ Zy C Ker(I1,), and
since dim(Z, ® Zo) = dim(Ker(IL,)), we have Ker(IL,) = Zs ® Zy. We prove similarly that II, is the
projection of R™= onto is parallel to 2u D Zg. 0

PROPOSITION 5.7. The operator IPTEUESJP’MS 1s the projection of R™= onto Z, parallel to Zg @ Zg
and the operator }P’TESEZ]P’MS is the projection of R™= onto Zs parallel to Z,, ® Zy. Moreover, we have
the relationships

PTE.ETPM, = PTTI,M_'M,PT  and PTEE'PM, =PTTI,M_'M,PT.

Proof. It is similar to that of Proposition 5.6. 0
PROPOSITION 5.8. If (v,m1,m2,0) is solution of system (2.4), then the triplets (v, M1 u,M2.u) and
(vs,M1,5,M2,5) defined by

(vu7n1,ua"72,u)T = EgMzz(’UJhJ}z)T and (v87771,sa 772,S)T = EZMZZ(’Ua 771,?72)T,

obey the system

d [ v, vy, . [ v, . 0
% Mu| = A Mul| = Xu AZQAGggp + Bufv Nu (0) = E'u Mzz 00 ’
_"72,u 2, _nZ,u Up
- - (5.4)
q | vs Vs R v, vY
% Ms| = A M,s| — XZAZGAQQQ;D + Bsf7 MN,s (0) = EzMzz 00 )
_772,s 72, _772,3 Up)
where B,=Z!B and B,=E!B. (5.5)

Conversely, if the pair ((Vu, M4, M2,u)s (Vs, M5, M2,5)) 18 solution to system (5.4), then (v,n1,m2,0), with

v vu vS
]PT T :PTEu M,u +PTES M,s|
2 M2,u 12,s

(I =P )v = =M Ay Mog AT g — M  Avg Mg AT yma + M. Ay Mo Agygy,
0 = —Mog A} gm1.e — Moo A} gm2,e — Moo (A3g M, Auy, — Noo Ajl o)
—Mpg (A Myt Avy, — Nog AT 5112 — Mpg ALy Myt Ay PL v + Mg Ageg;, — Moo Noo AggGp,

is solution of system (2.4).
Proof. The proof can be done as in [1, Proof of Proposition 3.8]. O
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5.3. Linear feedback law and degree of stabilizability. The goal is to find a feedback law able
to stabilize system (2.3) or equivalently (2.4) with a prescribed exponential decay rate —w. Then after
fixing Z,, and due to Proposition 5.8, it is necessary and sufficient to find a feedback law able to stabilize
the equation satisfied by (vy, 71,4, M2,,)- That is why we make the following assumption.

For all w > —Respect(A,) the pair (A, + wlga,,B,) is stabilizable. (5.6)

Let us recall that B,, defined in (5.5) depends to the choice of the family (w;)1<;<n,. Therefore, the choice
of this family is crucial to check the condition (5.6) which is satisfied if and only if the stabilizability
Gramian of the pair (A, + wlga.,B,) is positive definite. In that case, the stabilizability Gramian is
nothing but P ! . where P, ., is the solution of the Algebraic Riccati Equation

Pu,w c ,C(Rdu), ]P)u,w = ]P)Z,w >0,

(5.7)

Puw(Au + wlga,) + (AL + wlga, )Py — Py wBuBIP, ., = 0.
We could define the degree of stabilizability as the lowest eigenvalue of IP’;}U. Moreover, we recall that B,
depends on the basis chosen for Z;,. Thus P, ,, and ]P’;}U also depend on this basis. In order to obtain a

degree of stabilizability d,, ., independent of the basis chosen for Z, as in [1], we define it by

Nl

du o = max(spect(M,P, ,M,))" " with M, = (ELM,.E,)=.

B

Different choices of Z,, may give different degrees of stabilizability. Among different possible choices, we
choose the subspace Z, with the greatest degree of stabilizability. Next, we choose the feedback law able
to stabilize the pair (A, + wlgd.,B,) equal to

Kyw = —BIP, . (5.8)

5.4. Stability of the closed-loop linear system. Let us set K, = —BTEuPu,wEZMZZ where
P, . is the solution of (5.7). We are going to prove that the linear closed-loop system

g v v _ v Y R v
Mzza M| =(A.. + BK,) |m| + 4.0, |m| )= 1|0, AL [m| = Asgp, (5.9)
72 72 72 n9 72

is exponentially stable.
PROPOSITION 5.9. If P, is solution of (5.7) then Py, = M,,Z,P, wELM,, is the solution of

P.. € L(Z,), P,.=PI >0,

P,o(Ay +wIL,) + (AT + wlI?)P, ,, — P, B,BIP, , =0, (5.10)
with A, = T,M_ A, 11, and B, = I, M_'B.
Proof. Let P, ,, be a solution of (5.7). Using the identities
ETAE, =A,, ETATE,=AT, ETM.,. =8TM._1, M.E,=1TM.E,,
we get
MoBuPuw ME M. = M B Py B AL B EM... = PuuAs,
and M,.E AP, ETM,., = M,.2,E'AT 2, P, ,ETM,. = ATP, . (5.11)
We also have
MeeBuPuls, By M = Pyl and - M Bula, Py, M =T, P (5.12)

Finally, we have M..Z,P, ,B,BIP, ,EL M., = M..E,P, ,ET BBTE,P, ,ETM,. = P, ,B,BIP, .
combined with the equations (5.11), (5.12), we prove that P, , is solution of (5.10). d
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REMARK 5.1. Since Py, does not depend on the choice of the basis of Z,, the feedback law K, does
not depend on the basis of Z},. Indeed, we have
K,=-B"M_'M,.E,P, ,EIM,, = -BTM_'P, .

THEOREM 5.10. Let w > —Respect(Ay), (v°,n3,g,) € R™ x R™ x R"" be such that (v°,0,n3)
belongs to Ker(ALy) and e“tg, € HE(0,00;R""). For all t > 0, the solution (v,m1,m2,0) of system (5.9)
satisfies the following estimates for some C > 0

T (o (£), 11.(£), m2 (1)) = < Ce™! (07 rne + I3 lrne + 1€ Gp ]l 20,0020 ),
L (0(8), 11 (1), m2(t)) s < Cem ™ ([0l + [mSllns + €' gpllL2(0,00inr));
I(Z = PD)v()llrne < Cem ™ ([[0%[zne + [0Sllrns + e gpll 1 0,005mnr))-

Proof. Setp 1. From Proposition 5.8, e (vy, M1 u, M2.u)’ = e“'BI M., . (v,m1,12)T is the solution of

d vy, vy, N vy, v
—e“" |mu| = (Ay + wlpa, +BKyo)e?t [n1u| — e xL ALy Aoygp, || (0)=EIM |0
dt 0

2,0 2,4 2,4 T2

Since Ay, + wlga. + B, K, o is exponentially stable, there exists C' > 0 such that

1(wu (1), 11,0 () M2 (D) Rt < Ce™ ! ([0 [l + M3 ]lne + € gpll 2 (0,00mnr))-

Setp 2. The triplet (vs, M1 .s,M2.5)7 = ELTM.,(v,m1,m2)T obeys the system

a | vs Vg vy, Vs 0

= = A B, K —xTAT,A 0)=2"M.|0

dt M,s| =As [M,s + Bg w,w | T,u Xs A20099p, M,s ( ) — =g zz
12, 12, M2,u 72,5 "78

Since Re(spect(As)) < —as, there exists C' > 0 such that
(05 (8), M1, (£), D25 (D) 1t < Ce™ ™[00 [z + [0S llrne + €2 gpll 12(0,0080r))-
Setp 3. Finally, we have

17 = P)o(t)||zne < Cem Mm@t (]jof)

roo + [08llrns + e gpll 1 0,005 ))-

d

6. Numerical simulations. Numerical simulations for fluid-structure interaction problems remain
a challenge, see the review [14, 6]. A broad spectrum of methods exists and can be adapted to the present
work. There are mainly two approaches to numerically solve fluid-structure interaction systems. The
first one, called the monolithic approach, consists of solving the coupled system as a unique problem, see
[8, 24, 13]. The second one, called the partitioned approach, uses two different codes to solve separately
the equations of the fluid and of the structure, see [9, 10]. The monolithic approach is generally stable
contrary to the partitioned approach.

In most of numerical codes, the equations of the fluid are rewritten in an Arbitrary Lagrangian
Eulerian (ALE) formulation. However, our analysis and the definition of the feedback law expressed in
the reference configuration suggest that the natural framework for numerical simulation corresponds to
the Lagrangian formulation for the fluid. This is why we are going to use the discrete approximation of
system (1.5) in the numerical simulations.

The goal of this section is to explain how to solve numerically the full nonlinear system (1.5) with
and without control.

6.1. Full discretization of the nonlinear system. The spatial semi-discretization of the non-
linear system (1.5) is similar to that of the linearized system (1.6), see Section 2. The time discretiza-
tion is treated by a classical Backward Difference Formula of order 2 (BDF2) using three time levels
(tnF2, ¢ ) with a time step At. In the nonlinear system, two types of nonlinearities appear. The
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first ones, corresponding to geometrical nonlinearities, are treated explicitly contrary to the convective
term in the fluid part which is treated implicitly with a Newton method. This approach significantly re-
duces the computational complexity, and it is usually used without compromising stability and accuracy
[15]. For time advancing scheme, we retain the monolithic approach. The contribution of the feedback
control is treated explicitly (this choice is more consistent with feedback strategy in particular when an

estimator is introduced).

With this approach, the full discretization of the nonlinear system (1.5) is given by

m
| 712

’ﬂ, n+2 ’ﬁ, n+1 ﬂ n
3 —~
7Mzz - 7Mzz 7Mzz = Azz
2At n At n N n
T2 72 72
~ n+2 ~ n+1
Nf(u) N’U(uanlan2u0)
+] 0 + 0 +
0 N, (@, m1)
i n+2 ’l~,l,_
ATy | m = No(@,m)" ™" + Agggyt + Agggs,  |m| (0) =
72 72
Ay, 0 0
where A.=10 0 Ay,
0 Anzm An2772_

with Aiw—(—zu /Q s(@):s(@-)) R - (— /F (6vcj~vci+aA<joAci>>
1<i,j<n .

n+2

+ szeen+2

v

n+1 0
+ (6.1)

M7777f3

b
1<i,j<n.

and @, M1, M2, fs, gs, gp and O are the coordinate vectors of the approximations of @, 11, 72, fs, s, 9p
and of the multipliers. We refer to Section 2 for details on the other elementary matrices to assemble.
The nonlinear terms Ny, N,, N,, and Ny (depending on Fy, Fy, Fy;,, given in appendix) are defined by

Ny Ny

Ny(w) = — /szﬂiaj(d%‘ V) - bk

=1 j=1 1<k<n,

N’L)(a77717772) 0)

Moy Ns
Ny, (@, m1) = /Fs > it Y mgGil G ;
I's i i
i=1 j=1 1<k<n,
Ty Ns
No(@,m) = /diVFdiv > it > miGi|
Q2 i=1 j=1

Now, let us verify that s

Ny Np Ns Ns
/Ff > b,y aipi Y il Y m2mm | - O
Q i=1 j=1 =1 m=1

)

1<k<n,

70’...70

1<k<n,

ystem (6.1) is well-posed. For that, we have to prove that the system

3 U R U Ly,u Fy A,00 _ u
EMZZ mi| = Azz m| + 0 + Fsl + 0 ; AZH m = F97 (62)
2 72 0 F? Ap00 2

admits a unique solution for all (Fy, F}, F2, Fy) € R™ and for all matrix L,, € R" X" corresponding to a
linearization of the nonlinear term Ny. In order to study the above system, we decompose the multiplier
associated to the Dirichlet boundary conditions 7 into the form T = (Tigng, 7o) Where Ti4ny and 7, are
the tangential part and the normal part of T respectively. Thus, the matrix A,,, can be rewritten into

the form, see Section 2

Appr = [0 Apr, ]
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THEOREM 6.1. We assume that A,,., is of mazimal rank. Then, for all (Fy, F}, F? Fy) € R" and
for all Ly, € R™*™  there exists At small enough such that the system (6.2) admits a unique solution.

Proof. From the equations of the structure, it is possible to express 171 and 72 in terms of the
multiplier  if At is small enough. Finally, it is possible to rewrite the system on (@, ) in such a way
that the system admits a unique solution under the Inf-Sup condition (6.4). O

REMARK 6.1. The rank condition on A,,., assumed in Theorem 6.1 is satisfied when we approzimate,
with the same grid, the structure displacements by Hermite finite elements and the multiplier associated

to the Dirichlet boundary conditions by Py finite elements.
6.2. Numerical tests for the nonlinear system without control for Re = 200.

6.2.1. Data of the numerical experiments. We recall, see Section 1, that the reference config-
uration of the fluid domain is

Q= ([0, L] x [=6 )\ ([0, £5] x [=ee]),

We choose e = 0.05, L = 50e, £ = 21e and ¢; = 10e.
The stationary inflow condition gs = (gs,1,9s,2) imposed on the boundary T'; = {0} x [-21e, —e] U
{10e} x [—e, e]U{0} X [e, 21¢] is an approximation of the Blasius boundary layer profile defined by gs.2 =0

and U Ve+b< z < 2le,
3 4
z—e z—e z—e
— <z <
Um<2 5 2( 5 ) +< 5 >> Ve<z<e+b,
gs1(2) = 0 , .y V-e<z<e,
U 2z+e_2 zhe + zte V—-e—-b<z< —e,
b b b
Un V-2le<z< —e—b,

where U, is the maximum velocity at the inflow, Re = 2€Um is the Reynolds number of the fluid and
b= \1/‘% is the thickness of the boundary layer. For the numerlcal tests realized with the free Get FEM++

library [23], we choose the following parameters Re = 200, U,,, = 1.0 for the fluid and for the structure
a=10"3 B=0 ~=10"1

Mesh and finite element approzximation. We use a triangular mesh of 89418 cells, symmetric with respect
to the horizontal axis z = 0, locally refined near the inflow boundary and near the structure. The mesh
on I'y used for S}, and Dy, is that induced by the mesh on Q. For the space discretization X}, P, and Dy,
we use generalized Taylor-Hood finite elements Py-P1-P; for the velocity, the pressure and the Lagrange

multipliers satisfying the Inf-Sup condition b(v, p)
i . )

i > ag 6.3
PEPR,p#0 ye X, v£0 Hv”Xh”p”Ph 7 ( )

for some ag > 0 independent of h, see [5]. Thus, according to [12], the Inf-Sup condition

inf sup b, p) = (v, )y > ay >0, (6.4)

(p,T)E PR X Dp,(p,7)#0 ve X}, ,v£0 ”UHX;L (p, )||P;L><Dh

is satisfied under some conditions on the mesh size used for the boundary. For the displacement of the
structure, we use Hermite finite elements. Then the resulting total degrees of freedom is equal to 406339.

6.2.2. The boundary perturbation. We test the efficiency of the feedback laws for inflow bound-
ary perturbations on I'; of the form

gp(t.2) = Bpu(t)g(z)  with pu(t) =D and  g(z) = (mo(w',p)n-n.0)" . (65)

The quadruplet (1!, k!, k2, p') is the real part of an eigenvector associated to the most unstable eigen-
value of the adjoint problem (4.4) and p' is the contribution of the pressure in the multiplier p*, see
Theorem 5.1. Thus, the perturbation g, is one of the most destabilizing normal boundary perturbations
for the fluid. The truncation function m is used to impose the compatibility conditions at the junction
between I'; and T'y and is defined by m(z) = g(3(z e)) for z > 0, m(z) = g(M) for z < 0 where
g(z) = G(z) for z < 3, G(3—2z) for z > 3 with G(z) = 0 for z < 0,G(z) = 2%(62>—15z+10) for 0 < z < 1
and G(z) =1 for z > 1. The function y is used to localize the perturbation in time. See Figure 6.1 for
illustrations. Finally, 8, > 0 is a parameter used to vary the amplitude of the perturbation.
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(a) Graph of mo(¢*, p*)n - n. (b) Graph of m. (¢) Graph of pu.

Fig. 6.1: Graphs of the functions mo(¢*, p')n - n, m and p.

6.2.3. Evolution of the perturbed nonlinear system without control. We choose two values
of the amplitude 3, = 0.1 and 8, = 0.9. For §, = 0.1, the maximal value of the perturbation g,
corresponds to 1.35% of that of gs. In Figure 6.2, we plot the evolution of the L2-norm of the difference
between the velocity @ of the perturbed nonlinear system (1.1) and the velocity us of the steady flow, the
evolution of the L*-norm of the displacements of the lower part and upper part of the structure. The
results confirm that the stationary solution is unstable. Moreover, we remark that, for ¢ > 6, the norms
of the solutions for 3, = 0.1 and 3, = 0.9 asymptotically tend to the same value.

80 80
70 4 70
= =
=R gl =R
S =
I I
i\\ 30 :Q\ 30
=y Eow
10 10
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 9 4 6 8 10 12 14 t 0 2 2 4 6 8 10 12 14 t
(a) L*-norm of @ — us (B, =0.1). (b) L*-norm of & — us (Bp = 0.9).
0.012 T T T 0.012 T T T
lower part —— lower part ——
upper part upper part
0.01 —H 0.01
E 0.008 2 0.008 -
3 8
~ ~
—— 0.006 —— 0.006
= =
_E 0.004 _E 0.004 +
0.002 —H 0.002
0 0
0 2 4 6 8 10 12 Idf 0 2 4 6 8 10 12 ”T
(¢) L-norm of 1 (Bp = 0.1). (d) L°°-norm of m1 (B, = 0.9).

Fig. 6.2: Perturbed nonlinear systems without control for 3, = 0.1 and 3, = 0.9.

6.3. Numerical stabilization of the nonlinear system for Re = 200. We are going to show,
by numerical experiments, that we are able to locally stabilize the nonlinear system (1.1) for inflow
boundary perturbations. We recall that the fluid equations are rewritten in the reference configuration
via a change of variables. Coming back to the moving domain is guaranteed only if the displacements
of the structure are less than 0.05, see [11, Theorem 3.1]. Thus, we have to construct feedback laws
generating admissible displacements of the structure. To satisfy that constraint, we can vary the shift
parameter w, the family of control functions (w;)i<i<n, and the choice of the unstable subspace Z,. In
order to find a feedback law efficient in presence of inflow boundary perturbations, we use the following
strategy. First, we compute the eigenvalues of the linearized system. Then, we fix a value for w and we
compute the degrees of stabilizability of the linearized system for different choices of (w;); and of Z,.
Finally, using the degrees of stabilizability and other numerical tests described below, we fix the family
(w;)1<i<n., and next the unstable subspace Z,.
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6.3.1. Computation of the spectra. We compute the spectra of the structure, the fluid and the
fluid-structure systems, close to the imaginary axis, see Figure 6.3. For that, we use an Arnoldi method
combined with a shift and inverse transformation implemented in the Arpack Library. The results are
reported in Table 6.1. We have solved the eigenvalue problems for a mesh of 89418 cells, for a coarser
mesh of 75846 cells and for a very fine mesh of 283956 cells. The values are reported in Table 6.2.
We observe that, in comparison with the results obtained using the very fine mesh, the solutions of the
eigenvalue problems for the mesh of 89418 cells are accurate up to 10~2.

6.3.2. The choice of w. The parameter w permits to improve the decay rate of the controlled
solutions towards the stationary solution. However, the L°°-norm of the control and then the L°°-norm
of the displacements of the structure increase with w. Thus, we have to choose w in order to realize a
compromise between the efficiency of the control and small enough displacements of the structure. We

fix w = 2. In Section 6.3.5, we will see how to modify w in order to reduce the displacements of the
structure.

10 10 : - o "

Im()\;)
Tm(A;)
Im(\;)

—10 —10 ) . . 1ol "

—6 -5 —4 -3 -2 -1 0 1 —6 -3 -2 0 1 —6 .7\5 -2 0 1
Re())) Re(Aj) Re()))
(a) Structure. (b) Fluid. (¢) Fluid-structure.
Fig. 6.3: Spectra.
Al2 A3 Aq As6 A7 Ag A9,10

—2.87+£127: | —4.08 | =5.71 | —12.93 +£3.267 | —16.32 | —19.96 | —30.32+5.49¢

(a) First eigenvalues of the structure system.

A1 Az4 As 6,7 Ag.9 A10,11
0.81 £+ 8.802 —0.70+9.647 | —0.88 | —1.18+7.997 | —1.23+11.05¢ | —2.03+5.837

(b) First eigenvalues of the fluid system.

Al A3z Aup A6 A7g A9,10
0.82 £+ 8.791 —0.57 | —=0.72+9.607 | —0.80 | —0.86+=0.807 | —1.08 +£1.88:

(c) First eigenvalues of the fluid-structure system.
Table 6.1: First eigenvalues of the structure, the fluid and the coupled systems.

cells 12 A3 Aus X6 A7s A9,10
75846 | 0.820£8.789: | —0.574 | —0.722+£9.602¢ | —0.807 | —0.864+0.809: | —1.088+1.883%

89418 | 0.82248.7927 | —0.574 | —0.722+£9.6047 | —0.806 | —0.864+£0.8097 | —1.089+1.883¢
283956 | 0.824+£8.7947 | —0.574 | —0.7224+9.604¢ | —0.806 | —0.864+0.8097 | —1.089+1.883¢

Table 6.2: First eigenvalues of the fluid-structure system for different meshes.

6.3.3. The choice of the controls functions, the degrees of stabilizability and the unstable
subspace Z,. We choose the control functions (w;) in the family (¢3); defined in Theorem 5.2 (the
functions ¢4 are the approximations of the control functions used to stabilize the infinite dimensional
system, see [11]). More precisely, we consider control families of the form (w;)i<i<n, = ({3)1<i<n,
with n. > 2. We have computed the degrees of stabilizability of the linearized system for different
values of n. and for different choices of Z,. We considered Z, = Gr(A12), Z, = Gr(A12) ® Gr(A3),
Zy, = Gr(M,2)BGr(As5) and Z, = Gr(A1,2) BGr(As). The results are reported in Table 6.3. We observe
that the degrees of stabilizability vary slightly with n.. That is why, in the sequel, we choose n. = 2.
The unstable subspaces Z,, = Gr(A1,2) and Z,, = Gr(A12) @ Gr(A3) are the most stabilizable ones and
Z,, = Gr(A12) ® Gr(Aa5) is the worst one. However, due to the nonlinearities, it is not sure that these
conclusions remain valid for the nonlinear system. That is why we compute the controlled nonlinear
system for the different unstable subspaces and for a small perturbation amplitude (8, = 0.1). The
L?-norm of the controls are reported in Table 6.4 and the difference between the controlled solutions and
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the stationary solution are plotted in Figure 6.4. The results confirm that the worst choice of Z,, is Z,, =
GRr(M12) ®GRr(A45) even if it corresponds to the best decay rate. We notice that Z,, = Gr(A1,2) DGr(Xs)
corresponds to the best degree of stabilizability. Moreover, it corresponds to the smallest displacements
of the structure. Thus, we choose Z, = Gr(A1,2) ® Gr(A¢) in the following tests.

Ne 2 3 5 10 Ne 2 3 5 10
10°d | 9.59 | 9.59 | 9.59 | 9.59 10°d | 9.59 | 9.59 | 9.59 | 9.59
(a) Zu = Gr(A1,2). (b) Zu = Gr(A1,2) ® Gr(A3).
Ne 2 3 5} 10 e 2 3 5 10
10°d | 4.29 | 4.30 | 4.30 | 4.30 10°d | 8.44 | 845 | 8.45 | 8.45
(¢) Zy = Gr(A1,2) ® Gr(As5). (d) Zu = Gr(A1,2) ® Gr(Xe)-

Table 6.3: Influence of (w;)1<i<n, and of Z, on the degrees of stabilizability.

Ly, Gr(A1,2) Gr(A1,2) ®Gr(A3) | Gr(A12) @ Gr(Ass5) | Gr(A12) ® Gr(Xs)
7]l 0.087 0.088 0.104 0.076

20

Zy = G()‘L ) — 0.014 | Z, = G()‘LZ) —
Zy = G(Ar2) ® G(As) — Zy = G(X1) & G(Ag) —
Zy = G(Ai2) @ G(Ay5) 0012 [ Zy = G(A12) ® G(Ag5)
1 Z, = G(A12) ® G(Ag) E Zy = G(Ni2) ® G(Xo)
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e Zy = G(Xi2) ® G(Xo) e Zy = G(X12) ® G(Ag)
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(c) Evolution of the L*-norm of 7 (lower part). (d) Evolution of the L*-norm of n: (upper part).

Fig. 6.4: Influence of Z, on the stabilization of the perturbed nonlinear system for 3, = 0.1.

6.3.4. Efficiency of the feedback law for w = 2, n. = 2 and Z, = Gr(A1,2) ® Gr(Xs). We test
the efficiency of the feedback law for increasing perturbation amplitudes. The results are plotted in
Figure 6.5. We see that we are able to stabilize the nonlinear system for perturbation amplitudes smaller
than 8, = 1. Moreover, as expected, the control and the displacements of the structure increase with the
amplitude of the perturbation. With this strategy, we are not able to stabilize the nonlinear system for
Bp =1 because the displacements of the structure are slightly larger than the limit displacement equal to
0.05. However, we notice two control phases. The first one, from t = 0 to t = 1.5, corresponds to the time
interval where the perturbation passes through the fluid domain, and a second one for ¢ > 1.5. We know
that the more we act in the first phase (by increasing w) the less we shall need to act thereafter. That
implies that the displacements of the structure increase in the first phase and decrease in the second one.
Thus, since the displacements are smaller than 0.05 in the first phase, we can increase the parameter
w. In the next section, we will see that we are able to stabilize the nonlinear system for perturbation
amplitudes greater than 3, = 1 with w = 2.5. %
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Fig. 6.5: Controlled nonlinear system for w = 2, n. = 2, Z,, = Gr(A1,2) ® Gr(Ag) and for different f3,,.

6.3.5. Efficiency of the feedback law for w = 2.5, n. =2 and Z, = Gr(M1,2) ® Gr(X¢). The
goal is to stabilize the nonlinear system for perturbation amplitudes greater than 5, = 1. We recall
that, for w = 2, n. = 2 and Z,, = Gr(A1,2) ® Gr(As), we are not able to stabilize the original nonlinear
system for 3, = 1 because the displacements of the structure are greater than 0.05. That is why we
increase w by choosing w = 2.5. We compute the solutions of the corresponding controlled system. The
results are reported in Figure 6.6. The feedback law is able to stabilize the nonlinear system for 3, =1
and the displacements of the structure are smaller that 0.05. Moreover, as expected, we observe that by
increasing w, the control and the displacements of the structure increase in the first period and decrease
in the second one.

100 D)
w=25 e w=25 —
80
0.1
j:' 60 g o0,
= =
| = 006
= 10 =
S =
= 0.04
20
0.02
0 0
0 2 1 6 8 10 12 14 0 1 2 3 1 5 6 7 8
t t
(a) Evolution of the L?-norm of & — us. (b) Evolutions of the L2-norm of the controls.
0.06 0.06
W=2 = Ww=2 —
w=25 w=25

0.05 4 0.05

0.04 4 0.04

0.03 0.03

Oz,

i’
1
i @) e

I

0.02 4 0.02

0.01 4 0.01

0 0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

¢ t
(¢) Evolution of the L*°-norm of n1 (lower part). (d) Evolution of the L*-norm of n; (upper part).

Fig. 6.6: Influence of w on the stabilization of the perturbed nonlinear system for 3, = 1.
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The feedback law obtained by choosing w=2.5 is also able to stabilize the nonlinear system for 3, =1.1
corresponding to an amplitude perturbation of order 15% of gs, see Figure 7.1. The displacements of the
structure are close to the limit 0.05 in the two phases. Thus, we cannot stabilize the nonlinear system
for larger perturbation amplitudes and we cannot hope to stabilize it by increasing the value of w.

7. Conclusion. For a Reynolds number Re = 200 and for a boundary perturbation, localized in
time around ¢ = 1, and of amplitude of order 15% of the stationary inflow boundary condition, we
propose a strategy for choosing a feedback control able to stabilize the fluid-structure system coupling
the Navier—Stokes equations with an Euler-Bernoulli damped beam equation.

The control is obtained by stabilizing the projected linearized system onto an invariant subspace
containing the unstable subspace of the linearized dynamical system. The feedback law is determined by
solving a Riccati equation of small dimension. This feedback law, which is constructed on the linearized
model, is applied to the nonlinear fluid-structure model. In order to improve the performance of the
control law, we choose the invariant subspace based on the analysis of the degrees of stabilizability.
Next we vary the exponential decay rate involved in the Riccati equation in order that the structure
displacements of the nonlinear closed-loop system remain sufficiently small. This is important for practical
applications.
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Fig. 7.1: Perturbed nonlinear system for w = 2.5, n, = 2, Z,, = Gr(A1,2) ® Gr(X¢), Bp =1 and 5, = 1.1.

Appendix A. The geometrical terms.
We recall that the sign function s is defined by s(y) = —1if y < 0 and s(y) = 1 if y > 0. The nonlinear
terms Fy, Fy;y and Fy in system (1.5) are defined by

o (C—s(z)2)np2 - 20(0—s(2)2)n1 0 - v((z —0ni . —n7)
F = — : Tz ’ zz
f[u7p77717772] ‘g_e_s(z)nluz (_6_8(2),’71 u + (€—€+S(Z)?71)2 u

o R O 1 P (L U Y (o VS (e E E

(L —e—s(z)m)? e l—e—s(z);m =~ ({—e— s(z)nl)Quzz l—e—s(z)m !

s(zm U+ 2)ma - sm ' )
e s T T e s M T T e = sy 120 T VYAV Pl ml,
f-e- S(’Z)mpzez " t—e—s(z)m R p— s(z)m lptiz — VVdiv Faiy [, 1]
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1

Faivla,m] = 57— (s(z)mtner + (€ = s(2)2)m atre2),
- (e - 6)771 T~ ~ 2771 - (z - 3(2)2)77% T ~
Fs 5 = —_— z T x : z
[ m] {—e—s(z)m T+ Maliae = 8(2) l—e—s(z)m 2
The linear differential operators A;, As, A3 and A4 in (1.6) are defined by
s(z v
A1771 = g(_)nl (ps,z62 + Us2Us,z — 2Vus,zz + VUs 1,22€1 + Vus,l,wz€2) + £T7z (us,l,z€2 - us,l,xel)
{—s(z)z
+4( 7 _(e) ) ((ps,zel - 2Vu$,$2 + Us1Us,z — VUs 21,2262 — Vus,l,rzel) M —V (Us,z + Us,l,zel) nl,zm)
{—s(z)z 1
Agne = wusm Azm = ——(s(2)mus, 1,0 + (€ — 5(2)2)N1,2Us1,2),
{—e {—e
s(z
Ay =v ( E( )771 Us,2,z — nl,zus,l,z>-
—e
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