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Plasma ∗

A. Nicolopoulos†, M. Campos-Pinto‡and B. Després§
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Abstract

We consider a boundary value problem (BVP) for a reduced system of time harmonic Maxwell
equations in magnetized plasma. The dielectric tensor is strongly anisotropic and the system admits
resonant solutions in the context of the limit absorption principle. In particular, in the vanishing
viscosity limit the normal component of the electric field becomes infinite and non integrable at
the resonant point, and the system becomes ill-posed. In this article we recast the problem in the
framework of mixed variational problems and we propose a well-posed formulation that characterizes
the singular limit solutions. A key tool is the method of manufactured solutions [7] to construct an
integral variational characterization of the jump conditions at the resonance. The well posedness is
demonstrated and basic numerical results illustrate the robustness of our approach.

Keywords: plasma heating, Maxwell’s equations, hybrid resonance, mode coupling, singular solutions, manufac-

tured solutions, mixed variational formulations, finite elements
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1 Introduction

Linear cold plasma models are routinely used to compute the propagation of radio-frequency electro-
magnetic (EM) waves in magnetized plasmas, with applications in the ionosphere and in tokamaks
[5, 15, 16, 1]. However, to our knowledge, a sound analysis of the well-posedness of these models has
never been proposed in the context of variational formulations which are the basis of computational tools
in the plasma physics community [10, 11]. The reason is that the mathematical or physical solutions
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present White-Chen strong vectorial singularities [17] which make questionable the accuracy of finite
element solvers in this context. In this work we contribute to establish the first rigorous mathematical
and computational treatment for such problems by constructing an original and stable mixed variational
formulation of the equations.
In the cold plasma model problem, the time harmonic Maxwell’s equations are coupled with a Newton
law for the linearized response of the non-homogeneous electron plasma. After elementary manipulations
the electron current density can be eliminated from the equations, and the time-harmonic EM field (Eν ,
Bν) satisfies a system of the form {

Bν − ∇×Eν = 0
∇×Bν − ενEν = 0

. (1.1)

Here Eν is the unknown electric field. The physical magnetic field is actually 1
iωBν with ω the frequency

of the wave sent into the plasma, but for convenience we call Bν := ∇ ∧ Eν the magnetic field. The
presence of a bulk magnetic field results in a planar structure for the dielectric tensor. If the plasma
density varies only in the x direction and the bulk magnetic field is aligned with the z direction, we may
consider a simplified tensor of the form

εν(x) =

 α(x) + iν iδ(x) 0
−iδ(x) α(x) + iν 0

0 0 1

 , x = (x, y, z) (1.2)

with α a smooth function vanishing at x = 0 and δ > 0. The planar configuration is obtained by
considering fields of the form (Eν ,Bν)(x) = eikzz(Êν , B̂ν)(x) which corresponds to waves being sent into

the plasma with a wave vector k = (kx, 0, kz), see [17]. Writing Êν = (eνx, e
ν
y , e

ν
z)t and B̂ν = (bνx, b

ν
y , b

ν
z)t,

we rewrite system (1.1) as
bνx +ikze

ν
y = 0

bνy −ikzeνx + eνz
′ = 0

bνz −eνy ′ = 0
,


−ikzbνy −(α+ iν)eνx − iδeνy = 0

ikzb
ν
x − bνz

′ +iδeνx − (α+ iν)eνy = 0
bνy
′ −eνz = 0

(1.3)

and we observe that all the components of the fields can be expressed in terms of eνy and bνy . As ν goes
to 0 which is a physical regime encountered in fusion plasma physics, the main singularity concerns

eνx = − iδ

α+ iν
eνy −

ikz
α+ iν

bνy . (1.4)

The problem is that the field Eν becomes non integrable for ν = 0. This non integrability phenomenon
is not compatible with the standard finite element treatment of Maxwell’s equations [13].

A convenient approach to have a better understanding of the problem and to propose a solution is to
consider a White-Chen reformulation in planar geometry. We write it as

− d2

dx2
uν(x) +

1

α(x) + iν
Nν(x)uν(x) = 0 in Ω = (−1, 1), (1.5)

where the unknown uν = (eνy , b
ν
y)t is made of the second components of the electromagnetic field. It is

completed with natural dissipative boundary conditions

d

dx
uν(±1)∓

(
iσ 0
0 i/σ

)
uν(±1) = f(±1), (1.6)

for σ > 0 and f a C2-valued field defined on ∂Ω = {−1, 1}.
Here the matrix Nν(x) ∈M2(C) is also a smooth function of x as

Nν(x) =

(
k2
z(α(x) + iν) + δ(x)2 − (α(x) + iν)2 δ(x)kz

δ(x)kz k2
z − (α(x) + iν)

)
for x ∈ Ω, (1.7)

which does not vanish at x = 0. Therefore for ν = 0 the coefficients of (1.5) blow up at this resonant
point and the boundary value problem (BVP) is ill-posed. The limit equation can only be formulated
outside 0

− d2

dx2
u(x) +

1

α(x)
N(x)u(x) = 0 in Ω− {0}. (1.8)
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However, a preliminary mathematical remark is that the matrix N = N0 satisfies at the resonance the
important condition rank (N(0)) = 1, so that there exists functions v ∈ H1(Ω) such that 1

αNv is square
integrable on Ω although v(0) 6= 0.

The case kz = 0 corresponds to a wave being sent with a normal incidence with respect to the bulk
magnetic field [17]. In this case the equations on eνy and bνy decouple. The wave corresponding to the
latter field is called an ordinary mode (O-mode) and in the limit ν → 0 it satisfies a standard Helmholtz
equation. The wave corresponding to the former one is called an extraordinary mode (X-mode) and is
the singular one. In the generic situation considered here of a function α that vanishes locally at x = 0
the component eνx = −i δ

α+iν e
ν
y may become non-integrable, and the problem needs be addressed using a

limit absorption principle with vanishing positive viscosity ν → 0+. It has been mathematically analyzed
in [9]. However it must be noticed that classical literature [13] does not say anything about this problem,
because of the strongly anisotropic nature of the dielectric tensor which generates these strong singular
vectorial solutions.

In this article we develop a mathematical theory that covers the case kz 6= 0 corresponding to a wave
being sent in the plasma with an oblique incidence with respect to the bulk magnetic field [17]. We still
have the same type of potentially non-integrable field eνx, see (1.4), but this case is notoriously more
complicated to analyze since it brings what is called a mode coupling: as the extra-diagonal coefficients
are non zero in the matrix (1.7), it is no longer possible to decouple the equations on eνy and bνy . Our goal
is thus to characterize and analyze the reduced model (1.5) in the limit ν → 0+. For that purpose we will
use the classical framework [2] for mixed variational formulations. The most original tool in our approach
will be the method of manufactured solutions recently introduced in [7] which is used to characterize the
singular solutions within the mixed variational framework.

The very singular behavior of the solutions corresponds to an interesting and fundamental resonance
phenomenon that takes place at x = 0. In the context of controlled nuclear fusion this is one of the
methods used to heat the plasma in a tokamak. The resonant heating is tied to the amplitude of the
singularity. Letting Πν = Im(Eν ×Bν) denote an ad-hoc Poynting vector, it can be written as

lim
ν→0+

∫
Ω

∇ ·Πνdx = lim
ν→0+

ν

∫
Ω

|Eν(x)|2 dx > 0 (1.9)

where the positivity of the limit is already an indication of its singular nature. We refer to [8, 7] for
additional mathematical results on the X-mode resonance, and to [6] for a numerical study.

Assumptions and notations. Before stating the main results we need to particularize the class of
matrices which is encompassed by our theory. As written above, for ν ∈ R the matrix-valued functions
considered here are of the form (1.7).

Assumption 1. We suppose that α ∈ W 3,∞(Ω) is real-valued and such that 0 is its only root, with
r = α′(0) 6= 0. In addition we assume that δ ∈W 3,∞(Ω) is real and positive. Finally the Fourier variable
is arbitrary, kz ∈ R, to handle the mode coupling phenomenon described in [17].

Notation 2. As Nν depends continuously on ν, for ν = 0 we denote the limit matrix by N := N0.

The symmetry properties of (1.2) can be characterized as follows.

Proposition 3. For ν ∈ R, Nν is such that

Nν = (Nν)t, Nν = N−ν , and kerN(0) = SpanC
{(
kz,−δ(0)

)t}
.

For ν ≥ 0, it also verifies the dissipation property

1

2i

( 1

α+ iν
Nν − 1

α− iν
N−ν

)
= Im

( 1

α+ iν
Nν
)
≤ 0, (1.10)

in the sense that it is negative semi-definite.

Proof. Given (1.7), the three first properties are immediate as α, δ, kz and ν are real-valued and as

α(0) = 0. For the last one we use Im
( 1

α+ iν
Nν
)

= Im
( α− iν
α2 + ν2

Nν
)

=
−ν

α2 + ν2

(
δ2 + α2 + ν2 δkz

δkz k2
z

)
.
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Because δ2|c1|2 + 2δkzc1c2 + k2
z |c2|2 = |δc1 + kzc2|2 for c1, c2 ∈ C, it establishes Im(Nν/(α + iν)) ≤ 0.

Finally as Nν/(α+ iν) = N−ν/(α− iν), the announced property is verified. �

New results. Our main mathematical results can now be formulated as follows.

Theorem 4. Under the above assumptions, the unique solution uν of system (1.5)-(1.6) converges for
ν → 0+ weakly in H1(Ω)2 towards a function u+. This function is a strong solution to the limit equation
(1.8) except at the resonance and satisfies strongly the boundary conditions (1.6).

This first result establishes the existence of a limit for vanishing viscosity parameter ν, but the limit
equation (1.8) does not allow to completely characterize u+ since the equation is not valid at x = 0 due
to the singularity. The next result establishes that u+ is the solution of a well posed mixed variational
formulation in the spaces

V = H1(Ω)2 × C and Q =
{
v ∈ H1(Ω)2, N(0)v(0) = 0

}
.

Theorem 5. The viscosity limit u+ is the unique solution of a mixed variational formulation

Find ((u, s),λ) ∈ H ×Q such that{
a+
(
(u, s), (v, t)

)
− b
(
(v, t),λ

)
= 0, ∀(v, t) ∈ H,

b
(
(u, s

)
,µ) = `(µ), ∀µ ∈ Q,

(1.11)

where the sesquilinear form b is defined in (2.3), the antilinear form ` is defined in (2.5) and the sesquilin-
ear form a+ is defined in (3.4).

The proof heavily relies on the theory of mixed variational formulation [2] applied to a convenient charac-
terization of the limit solution u+, where the sesquilinear form a+ appears to be exactly what is needed
to complement the missing information stressed in Theorem 4. We will also propose in the core of this
work another mixed variational formulation which is valid for ν > 0 and has the limit (1.11) for ν = 0+.
We will show at the end of this work how to reconstruct all components of the electromagnetic field from
the numerical computation of u. It will illustrate the highly singular nature of the electromagnetic field
and the computational efficiency of this new method. The gain of numerical accuracy, with respect to
a classical finite element formulation, will be illustrated on the numerical computation of the resonant
heating.

Organization of this work. Preliminary material, such as the sesquilinear form b and simple a priori
bounds, are introduced in Section 2. The mixed variational formulation is constructed and studied in the
following Section 3. Since the theory of mixed variational formulation is completed with a well established
theory of numerical discretization, we take this opportunity to illustrate our main results with simple and
reliable numerical results in Section 4. It also helps to better understand the physics which is behind the
model problem (1.5). An application to an accurate calculation of the resonant heating is finally shown.

Additional conventions. Vectors will be written in bold lower-case letters as u or λ, matrices will be
written in bold upper-case letters as N. The dependency on ν will be upper-indexed, as for Nν . When the
limit as ν goes to 0 depends on the sign of ν, it will be upper-indexed with a plus or a minus sign, as for
u+ or a+. And when the limit does not depend on the way ν goes to 0, it will not be indexed, as for N,

to simplify the notations. We will use the notations
{
f
}1

−1
= f(1) +f(−1) and

[
f
]1
−1

= f(1)−f(−1) for

a scalar function f defined in -1 and 1. When the context makes it non ambiguous, the norm ‖.‖H1(Ω)2

will often be denoted by ‖.‖H1(Ω) or even simpler by ‖.‖H1 . The dual spaces will be noted with a prime,
for example Q′ is the space of all continuous linear maps from Q to C.

2 Preliminary material

Let us start the construction with two natural variational formulations associated to (1.5)-(1.6) and
(1.6)-(1.8). For ν > 0, the viscosity problem can be written in H1(Ω)2 as a first variational formulation:

Find u ∈ H1(Ω)2 such that

bν
(
u,v

)
= `ν(v) for all test functions v ∈ H1(Ω)2.

(2.1)
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Here the sesquilinear form is

bν
(
u,v

)
=

∫
Ω

(
u′ · v′ + u · Nν

α+ iν
v

)
dx−

{(
iσ 0
0 i/σ

)
u · v

}1

−1
, for (u,v) ∈ H1(Ω)2 (2.2)

and the antilinear form is
`ν(v) =

[
f · v

]1
−1
, for v ∈ H1(Ω)2.

In order to pass to the limit ν = 0+, in a way or another the kernel of N(0) spanned by the vector(
kz, δ(0)

)t 6= 0 has to be excluded. In this work, we decide to impose this constraint on the test functions.

Definition 6. For ν = 0+, we introduce a space of test functions Q =
{
v ∈ H1(Ω)2, N(0)v(0) = 0

}
.

The limit of (2.2) for ν = 0+ is naturally written for u ∈ H1(Ω)2 and v ∈ Q ⊂ H1(Ω)2:

Find u ∈ H1(Ω)2 such that

b
(
u,v

)
= `(v) for all test functions v ∈ Q.

(2.3)

where the sesquilinear form is

b
(
u,v

)
=

∫
Ω

(
u′ · v′ + u · N

α
v

)
dx−

{( iσ 0
0 i/σ

)
u · v

}1

−1
, for u ∈ H1(Ω)2, v ∈ Q (2.4)

and the antilinear form is the same
` = `ν on Q. (2.5)

Remark 7. The fact that (2.4) is well defined for u ∈ H1(Ω)2 and v ∈ Q is a consequence of Hardy’s
inequality [4] ∫

Ω

f2(x)

x2
dx ≤ 4

∫
Ω

f ′2(x)dx

for f a real-valued function of H1(Ω) vanishing at 0. It is sufficient to apply this inequality separately to
the first and second components of the vector Nv to show that N

αv ∈ L2(Ω)2.

It is easy to show that solutions u = (e, b)t ∈ H1(Ω)2 to (2.3) are in fact strong solutions except at x = 0
of the following system of four second-order ODEs

−e′′ +
(
k2
z +

δ2

α
− α

)
e +

δkz
α
b = 0, in (−1, 0) and (0, 1),

−b′′ +
δkz
α
e +

(k2
z

α
− 1
)
b = 0, in (−1, 0) and (0, 1),

(2.6)

for which we have two boundary conditions on the left at −1 and two on the right at 1. Now, because
of the constraint imposed on the test function space Q it is only possible to show that three linear
combination of the solutions, namely e, b and kze

′ − δ(0)b′, are in H1(Ω), which yields three continuity
relations at 0. Thus we see that one constraint is missing to define uniquely a solution on Ω. The problem
here is similar to what is known for the X-mode equation corresponding to kz = 0, as described in the
introduction: for ν = 0 the system (2.6) completed with boundary conditions admits multiple solutions,
see e.g. [9] or Proposition 31 below. In order to obtain the missing information (if there is one), we begin
by gathering simple a priori bounds before passing to the limit.

2.1 A priori bounds

A priori bounds are derived in this section for the solution of problem (1.5)-(1.6) with positive viscosity
ν > 0. We remind that here uν = (eνy , b

ν
y)t consists of the second components of the electric and magnetic

fields in the cold plasma model (1.3). As observed before the other components are easily recovered from
these two ones, and we may point out that eνx = −i δ

α+iν e
ν
y − i kz

α+iν b
ν
y , so that a singularity of order 1/α

is expected at the limit.

Proposition 8. For ν ∈ (0, 1], σ > 0 and f defined on ∂Ω with values in C2, the weak formulation (2.1)
of (1.5)-(1.6) has a unique solution in H1(Ω)2. This solution is denoted uν .
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Proof. The right-hand side `ν is antilinear and continuous. Let us focus on the sesquilinear and contin-
uous form bν . From Proposition 3 we see that the real and imaginary parts of Nν

α+iν are Hermitian. It

follows that for v = (v1, v2) ∈ H1(Ω)2, the decomposition into real and imaginary parts of bν(v,v) writes

bν(v,v) =

∫
Ω

(
v′ · v′ + v · Nνv

α+ iν

)
dx−

{(
iσ 0
0 i/σ

)
v · v

}1

−1

= ‖v′‖2L2 +

∫
Ω

v · Re
( Nν

α+ iν

)
vdx

+i

(∫
Ω

v · Im
( Nν

α+ iν

)
vdx−

{
σ|v1|2 +

|v2|2

σ

}1

−1

)
.

Since α, δ ∈ L∞(Ω) and ν > 0, it results that for a non-negative constant C1 ≥ 0,

Re bν(v,v) = ‖v′‖2L2 +

∫
Ω

v · Re
( Nν

α+ iν

)
vdx

≥ ‖v′‖2L2 − C1‖v‖2L2 .
(2.7)

One has

Im bν(v,v) =

∫
Ω

v · Im
( Nν

α+ iν

)
vdx−

{
σ|v1|2 +

|v2|2

σ

}1

−1

=

∫
Ω

−ν
α2 + ν2

∣∣(δ, kz)t · v∣∣2dx− ν‖v1‖2L2 −
{
σ|v1|2 +

|v2|2

σ

}1

−1

.

(2.8)

Consider kz 6= 0. In this case, one has the inequality

Im bν(v,v) ≤ −C2‖v‖2L2

with a positive constant C2 > 0. This way,

Re
((
C2 + i(1 + C1)

)
bν(v,v)

)
= C2 Re bν(v,v)− (1 + C1) Im bν

(
v,v

)
≥ C2(‖v′‖2L2 − C1‖v‖2L2) + (1 + C1)C2‖v‖L2

≥ C2‖v‖2H1 .

So the formulation (2.1) is coercive and the Lax-Milgram theorem [Corollary 5.8 in Brezis [4]] ensures
that there exists a unique solution in H1(Ω)2, denoted uν .
The second case is kz = 0. The coercivity of Im bν with respect to the second component uν2 is lost.
But it is not a problem because the system is decoupled in two scalar equations, as the matrix (1.7) is
diagonal. The equation for uν1 is still coercive, see computations above (2.7)-(2.8). The equation for uν2
is the classical Helmholtz equation

−uν2
′′ − uν2 = 0 on Ω,

with dissipative boundary conditions, that admits a unique solution. �

Lemma 9. There exists C > 0 such that for all ν ∈ (0, 1], ‖uν‖H1(Ω) ≤ C.

Proof. The proof is performed in two steps. Firstly we show that the boundary values uν(±1) and
uν ′(±1) are bounded uniformly with respect to ν. This is the easy step. Secondly we show that these
uniform bounds propagate inside Ω.

First step. Taking the imaginary part of (2.1) with u = v = uν , it yields∫
Ω

uν · Im(
1

α+ iν
Nν)uνdx−

{
σ|uν1 |2 +

1

σ
|uν2 |2

}1

−1

= Im
[
f · uν

]1
−1
,

so that thanks to the dissipation property (1.10) and using Im
[
f · uν

]1
−1
≥ −2

[
|f ||uν |

]1
−1

,{
σ|uν1 |2 +

1

σ
|uν2 |2

}1

−1

− 2
[
|f ||uν |

]1
−1
≤ 0.

This second-order polynomial on the four variables |uν1(−1)|, |uν1(1)|, |uν2(−1)| and |uν2(1)| has positive
leading coefficients thus it can only be non-positive on a given compact set. And this compact set depends
on the coefficients of the polynomial, which are σ and f , but not on ν.
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Second step. One has

∣∣uν ′′(x)
∣∣ =

∣∣∣∣ Nν(x)

α(x) + iν
uν(x)

∣∣∣∣ ≤ C

|x|
|uν(x)| , x 6= 0, (2.9)

with C > 0 a positive constant depending only on α, δ and kz, so independent of ν and x. Introduce the
auxiliary function g 

g′′(x) =
C

|x|
|uν(x)| ≥

∣∣uν ′′(x)
∣∣ in (-1,0),

g′(−1) =
∣∣uν ′(−1)

∣∣ ,
g(−1) = |uν(−1)| .

(2.10)

We notice that g′(−1) and g(−1) are bouded uniformly with respect to ν. The functions g, g′ and g′′ are
non-negative for −1 ≤ x < 0. One has g′(x) = g′(−1) +

∫ x
−1
g′′(y)dy so relation (2.9) ensures

g′(x) ≥
∣∣uν ′(−1)

∣∣+

∫ x

−1

∣∣uν ′′(y)
∣∣ dy ≥ ∣∣uν ′(x)

∣∣ in (−1, 0). (2.11)

Integrating a second times yields

g(x) = g(−1) +

∫ x

−1

g′(y)dy = |uν(−1)|+
∫ x

−1

g′(y)dy ≥ |uν(−1)|+
∫ x

−1

∣∣uν ′(y)
∣∣ dy ≥ |uν(x)| , (2.12)

for x in (−1, 0). Use again (2.10) to get

g(x) ≥ |x|
C
g′′(x) in (−1, 0).

This last inequality is used to obtain a bound on g. Indeed (ln g)′′ = g′′/g − (g′/g)2 ≤ g′′/g ≤ C/|x|
for x in (−1, 0). Since the primitive of 1/x is the logarithm, which is an integrable function, a double
integration on (−1, x) gives a L∞(−1, 0) bound on g. Therefore relation (2.12) guarantees

|uν(x)| ≤ C in (−1, 0), for 0 < ν ≤ 1,

for a positive constant C > 0 independent of ν. And it follows∣∣uν ′(x)
∣∣ ≤ C̃(1 + | ln |x||) in (−1, 0), for 0 < ν ≤ 1,

for another positive constant C̃ > 0 independent of ν. Therefore uν is in fact bounded in H1(−1, 0)2

independently of ν. A similar bound uniform with respect to ν holds in H1(0, 1)2. Finally since uν ∈
H1(Ω) is continuous at x = 0, it establishes

‖uν‖H1(Ω) = ‖uν‖H1(−1,0) + ‖uν‖H1(0,1) ≤ C

for a positive constant independent of ν. The proof is ended. �

Corollary 10. As ν → 0+ and up to a subsequence, uν admits a weak limit in H1(Ω)2, that we denote
u+. This limit is a solution of (2.3) for all v ∈ Q.

The goal is now to derive a variational formulation satisfied by u+. We will see that u+ is actually the
solution of a well-posed formulation, in the sense that it has a unique solution. Therefore u+ will be the
weak limit in H1(Ω)2 of the whole sequence uν as ν → 0+, and not only of a subsequence.

Remark 11. Chosing ν < 0 and ν → 0− leads to another limit denoted u−. A priori u+ 6= u−. The
analytical solution (4.8) at the end of this paper is an example where indeed u+ 6= u−.

2.2 Manufactured solutions

In this Section we consider the diagonal coefficient of the dielectric tensor has a vanishing second order
derivative at the resonance, that is α′′(0) = 0 and α(x) = rx + O(x3). This is only for the simplicity of
notations, the general situation α′′(0) 6= 0 is treated in Remark 14.
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For ν > 0 define

wν
1 =

(
i
δ (1− k2z

α+iν +
k2z

rx+iν )
ikz
α+iν −

ikz
rx+iν

)
,

wν
2 =

(
δ(0)
kz

)
i
r ( log(r2x2+ν2)

2 − i atan( rxν )).

(2.13)

These functions intend to approximate the electromagnetic field wν
1 ≈ (eνy , b

ν
y)t and wν

2 ≈ (bνz , e
ν
z)t =

(eνy
′, bνy

′)t at the singularity. They are solutions of the non-homogeneous system{
−wν

2
′ +

1

α+ iν
Nνwν

1 = zν1 ,

wν
2 −wν

1
′ = zν2 ,

in Ω, (2.14)

with right hand sides

zν1 =

(
iδ

α+iν −
iδ(0)
rx+iν + i

k2z−(α+iν)
δ (1− k2z

α+iν +
k2z

rx+iν )

0

)
,

zν2 =

(
iδ(0)
r ( log(r2x2+ν2)

2 − i atan( rxν )) + iδ′

δ2 (1− k2z
α+iν +

k2z
rx+iν )− ik2z

δ ( α′

(α+iν)2 −
r

(rx+iν)2 )
ikzα

′

(α+iν)2 −
ikzr

(rx+iν)2 + ikz
r ( log(r2x2+ν2)

2 − i atan( rxν ))

)
.

(2.15)

Proposition 12. For ν ∈ (0, 1], the manufactured solution (wν
1 ,w

ν
2) and the right hand side (zν1 , z

ν
2) are

bounded in L2(Ω)2 uniformly with respect to ν.

Proof. The non trivial part concerns 1/(α+ iν)− 1/(rx+ iν) and α′/(α+ iν)2 − r/(rx+ iν)2. First,∣∣∣∣ 1

α+ iν
− 1

rx+ iν

∣∣∣∣ ≤ ∣∣∣∣α− rxαrx

∣∣∣∣ = O(1) for small x, (2.16)

because α− rx = O(x2) thanks to Assumption 1. So 1
α+iν −

1
rx+iν ∈ L

∞(Ω) with a bound uniform with
respect to ν. For the second estimation,

α′

(α+ iν)2
− r

(rx+ iν)2
=
α′r2x2 − α2r + 2iν(α′rx− αr)− ν2(α′ − r)

(α+ iν)2(rx+ iν)2
.

Assuming α− rx = O(x3) and keeping track of ν,∣∣∣∣ α′r2x2 − α2r

(α+ iν)2(rx+ iν)2

∣∣∣∣ ≤ |α′r2x2 − α2r|
(αrx)2

+
O(νx3)

να(rx)2
+
O(ν2x2)

ν2(rx)2
= O(1) for small x and ν.

Each term is again in L∞(Ω), and the dependency on ν is cancelled as it is of the same order at the
numerator and denominator of each fraction. �

Remark 13. According to (2.14), we have the sharper bound ‖wν
1‖H1 ≤ C for a positive constant C > 0

independent of ν.

Remark 14. General coefficients are α = rx+ px2 +O(x3) with p non necessarily zero. A solution is to

replace in (2.15) occurrences of r/(rx+ iν)2 by (r+ 2px)/(rx+ px2 + p2

r x
3 + iν)2. Indeed one can check

that ∣∣∣∣∣ α′

(α+ iν)2
− r + 2px

(rx+ px2 + p2

r x
3 + iν)2

∣∣∣∣∣ = O(1) for small x and ν.

The p2x3/r term is here to filter out the non zero root of rx+ px2.

Lemma 15. As ν → 0+, the manufactured functions defined above admit the following limits in L2(Ω)2

w+
1 =

(
i
δ (1− k2z

α +
k2z
rx )

ikz
α −

ikz
rx

)
,

w+
2 =

(
δ(0)
kz

)
i
r (log |rx| − i sign(rx)π2 )),

z+
1 =

(
iδ
α −

iδ(0)
rx + i

k2z−α
δ (1− k2z

α +
k2z
rx )

0

)
,

z+
2 =

(
iδ(0)
r (log |rx| − i sign(rx)π2 ) + iδ′

δ2 (1− k2z
α +

k2z
rx )− ik2z

δ ( α
′

α2 − r
(rx)2 )

ikzα
′

α2 − ikzr
(rx)2 + ikz

r (log |rx| − i sign(rx)π2 )

)
.

(2.17)
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Proof. This is immediate using Proposition 12. �

Remark 16. To characterize u−, we could define a family of manufactured functions for a negative
viscosity by the same formula and have similar ν-independent bounds. The limits as ν → 0− of wν

2 and
zν2 would then be different as atan(rx/ν) →

ν→0−
sign(−rx)π2 .

2.3 An energy relation

As introduced at the beginning of the paper, a key observation is the energy identity (1.9). We make this
remark instrumental in our context by considering specific quadratic forms associated to the Poynting
vector of the scaled difference between the electromagnetic field and the corresponding manufactured
solutions. This is performed introducing the space of non negative test-functions that do not vanish at
the singularity location

C1
0,+(Ω) =

{
ψ ∈ C1

0(Ω), ψ ≥ 0, ψ(0) > 0
}
. (2.18)

This technical tool is essential in our method.

Definition 17. For ν > 0, ϕ ∈ C1
0,+(Ω) and (u, s) ∈ H1(Ω)2 × C, set the quadratic form J ν

J ν(u, s) = − Im

∫
Ω

(u− swν
1) · (u′ − swν

2)ϕ′dx+ Im

∫
Ω

(
szν1 · (u− swν

1)− szν2 · (u′ − swν
2)
)
ϕdx.

(2.19)
Denote the limit quadratic form J + = lim

ν→0+
J ν defined on the same space H1(Ω)2 × C.

We will pass to the limit in J ν(uν , s) as ν → 0+. In this direction it will be imperative in our analysis
to establish that the quantities arising from (2.19)

uν · uν ′ϕ′, wν
1 · uν ′ϕ′, uν ·wν

2ϕ
′, uν · zν1ϕ, wν

1 · zν1ϕ, uν ′ · zν2ϕ, wν
2 · zν2ϕ,

are bounded in L1(Ω) independently of ν.

Proposition 18. For ν > 0, s ∈ C and uν the solution considered in Proposition 8, the following identity
is verified

J ν(uν , s) = ν

∫
Ω

( 1

α2 + ν2

∣∣(δ, kz)t · (uν − swν
1)
∣∣2 +

∣∣(1, 0)t · (uν − swν
1)
∣∣2)ϕdx ≥ 0. (2.20)

Moreover, up to a subsequence,

lim
ν→0+

J ν(uν , s) = J +(u+, s)

=
π

|r|
∣∣(δ(0), kz)

t ·
(
u+(0)− sw+

1 (0)
)∣∣2ϕ(0).

(2.21)

Proof. As uν verifies (1.5), (wν
1 ,w

ν
2) verifies (2.14), it follows −(uν ′ − swν

2)′ +
Nν

α+ iν
(uν − swν

1) = −szν1 ,
(uν ′ − swν

2)− (uν − swν
1)′ = −szν2 .

Since ϕ is compactly supported in Ω, integrating by parts and elementary manipulations give that

− Im

∫
Ω

(uν − swν
1) · (uν ′ − swν

2)ϕ′dx = Im

∫
Ω

(uν − swν
1)ϕ · (uν ′ − swν

2)′dx

+ Im

∫
Ω

(uν − swν
1)′ϕ · (uν ′ − swν

2)dx

= Im

∫
Ω

(uν − swν
1)ϕ · Nν

α+ iν
(uν − swν

1)dx

+ Im

∫
Ω

(uν − swν
1)ϕ · szν1dx

− Im

∫
Ω

(uν − swν
1)′ϕ · szν2 dx

= Im

∫
Ω

(uν − swν
1)ϕ · Nν

α+ iν
(uν − swν

1)dx

− Im

∫
Ω

(
(uν − swν

1) · szν1 − (uν ′ − swν
2) · szν2

)
ϕdx.
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Therefore

J ν(uν , s) = Im

∫
Ω

(uν − swν
1) · Nν

α+ iν
(uν − swν

1)ϕdx

= −
∫

Ω

(uν − swν
1) · Im

( Nν

α+ iν

)
(uν − swν

1)ϕdx

= ν

∫
Ω

( 1

α2 + ν2

∣∣(δ, kz)t · (uν − swν
1)
∣∣2 +

∣∣(1, 0)t · (uν − swν
1)
∣∣2)ϕdx.

(2.22)

The second part of the integral is bounded by ν and converges towards 0. To tackle the first part with
coefficient ν/(α2 + ν2), observe that there exists a continuous function ε defined on R+ and vanishing
at 0, such that

ν

∫
Ω

dx

α2 + ν2
=

1

|r|

∫ |r|/ν
−|r|/ν

dx

x2 + 1
+ ε(ν) →

ν→0+

π

|r|
.

Since uν is bounded in H1(Ω)2 uniformly with respect to ν, there exists C > 0 independent of ν such
that∣∣uν(0)− u+(0)

∣∣2 =

∫ 1

0

(
(1− x)|uν − u+|2

)′
dx ≤ 3‖uν − u+‖L2‖uν − u+‖H1 ≤ C‖uν − u+‖L2 .

Up to a subsequence the right hand side tends to 0, therefore uν(0) → u+(0) as ν → 0+. The same
reasons imply wν

1(0)→ w+
1 (0) as ν → 0+.

Consequently J ν(uν , s) converges towards π
|r|
∣∣(δ(0), kz)

t ·
(
u+(0) − sw+

1 (0)
)∣∣2ϕ(0), and the result is

proven. �

Lemma 19. For u ∈ H1(Ω)2, the quadratic forms can be expanded as second order polynomials with
respect to s ∈ C. One has

J ν(u, s) = − Im

∫
Ω

u · u′ϕdx+ Im

(
s

∫
Ω

(
(u′ ·wν

1 − u ·wν
2)ϕ′ + (u · zν1 − u′ · zν2)ϕ

)
dx

)
−|s|2

∫
Ω

wν
1 · Im

( 1

α+ iν
Nν
)
wν

1ϕdx,
(2.23)

and

J +(u, s) = − Im

∫
Ω

u · u′ϕdx+ Im

(
s

∫
Ω

(
(u′ ·w+

1 − u ·w+
2 )ϕ′ + (u · z+

1 − u′ · z+
2 )ϕ

)
dx

)
+|s|2πϕ(0)

|r|
.

(2.24)

Proof. Develop the formula (2.19) with respect to s

J ν(u, s) = − Im

∫
Ω

u · u′ϕdx+ Im s

∫
Ω

(
(u′ ·wν

1 − u ·wν
2)ϕ′ + (u · zν1 − u′ · zν2)ϕ

)
dx

−|s|2 Im

∫
Ω

(
wν

1 ·wν
2ϕ
′ + (zν1 ·wν

1 − zν2 ·wν
2)ϕ
)
dx.

As in the proof of Proposition 18, it follows by an integration by parts that

Im

∫
Ω

(
wν

1 ·wν
2ϕ
′ + (zν1 ·wν

1 − zν2 ·wν
2)ϕ
)
dx =

∫
Ω

wν
1 · Im

( Nν

α+ iν

)
wν

1ϕdx, (2.25)

which yields relation (2.23). Again, according to the definition of w+
1 and w+

2 , when ν goes to 0+∫
Ω

wν
1 · Im

( Nν

α+ iν

)
wν

1ϕdx = −ν
∫

Ω

( 1

α2 + ν2

∣∣(δ, kz)t ·wν
1

∣∣2 +
∣∣(1, 0)t ·wν

1

∣∣2)ϕdx
→ π

|r|
∣∣(δ(0), kz)

t ·w+
1 (0)

∣∣2 ϕ(0)
(2.26)

as detailed at the end of the proof of Proposition 18. Finally, see (2.17), w+
1 (0) = ( i

δ(0) , 0)t so (2.24) is

established. �
Another integral relation, which will be used in the numerical section, is the following.
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Proposition 20. The limit solution satisfies a second integral relation: for any ϕ ∈ C1
0(Ω), it holds∫

Ω

(u+ ·w+
2 − u+′ ·w+

1 )ϕ′dx =

∫
Ω

(u+ · z+
1 − u+′ · z+

2 )ϕdx. (2.27)

Proof. For ν > 0, using again (2.1) and (2.14)∫
Ω

(uν ·wν
2 − uν ′ ·wν

1)ϕ′dx =

∫
Ω

((uνϕ)′ ·wν
2 − uν ′ϕ ·wν

2)dx

−
∫

Ω

(uν ′ · (wν
1ϕ)′ − uν ′ ·wν

1
′ϕ)dx

=

∫
Ω

(uνϕ · (− Nν

α+ iν
wν

1 + zν1)− uν ′ϕ ·wν
2)dx

−
∫

Ω

(− Nν

α+ iν
uν · (wν

1ϕ)− uν ′ ·wν
1
′ϕ)dx

=

∫
Ω

(uνϕ · zν1 − uν ′ϕ · zν2)dx.

Now, up to a subsequence, as uν converges towards u+ in H1(Ω)2 and the manufactured functions
converge in L2(Ω)2, (2.27) is obtained passing to the limit ν → 0+. �

3 A mixed variational formulation for the limit problem

The minimization of the quantity J + on the product space of weak solutions of (1.6)-(1.8) and of complex
scalars yields a mixed variational formulation in the Hilbert spaces equipped with natural norm

V = H1(Ω)2 × C, Q =
{
v ∈ H1(Ω)2, N(0)v(0) = 0

}
,

‖(u, s)‖V = ‖u‖H1(Ω)2 + |s|. ‖v‖Q = ‖v‖H1(Ω)2 .

We extend the form b defined in (2.4) from H1(Ω)2 ×Q to V ×Q by

b
(
(u, s),λ

)
=

∫
Ω

(
u′ · λ′ + u · Nλ

α

)
dx−

{( iσ 0
0 i/σ

)
u · λ

}1

−1
, for (u, s) ∈ V and λ ∈ Q, (3.1)

and recall that ` is the antilinear form such that for all λ ∈ Q, `(λ) =
[
f · λ

]1
−1

.

We are able to write the Lagrangian associated to the minimization of J + on the space of weak solutions
of (1.6)-(1.8).

Definition 21. For (u, s) ∈ V and λ ∈ Q, let L+ be defined as

L+
(
(u, s),λ

)
= J +(u, s) + Im

(
b
(
(u, s),λ

)
− `(λ)

)
. (3.2)

3.1 Euler-Lagrange equations and main Theorem

The Euler-Lagrange equations associated to the extremalization of L+ are{
dJ +

(u,s)(v, t) + Im b
(
(v, t),λ

)
= 0, ∀(v, t) ∈ V,

Im b
(
(u, s),µ

)
= Im `(µ), ∀µ ∈ Q.

(3.3)

Let a+ be the sesquilinear form defined by Im a+
(
(u, s), (v, t)

)
= dJ +

(u,s)(v, t) for all (u, s), (v, t) ∈ H.

Lemma 22. One has for (u, s), (v, t) ∈ H

a+
(
(u, s), (v, t)

)
=

∫
Ω

(v · u′ − u · v′)ϕ′dx− s
∫

Ω

(
(w+

2 · v −w+
1 · v′)ϕ′ + (z+

2 · v′ − z+
1 · v)ϕ

)
dx

+t

∫
Ω

(
(w+

2 · u−w+
1 · u′)ϕ′ + (z+

2 · u′ − z+
1 · u)ϕ

)
dx+ 2

πϕ(0)

|r|
ist.

(3.4)
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Proof. Differentiate (2.24) to get

dJ +
(u,s)(v, t) = − Im

∫
Ω

(u · v′ + v · u′)ϕdx+ Im

(
s

∫
Ω

(
(v′ ·w+

1 − v ·w+
2 )ϕ′ + (v · z+

1 − v′ · z+
2 )ϕ

)
dx

)
+ Im

(
t

∫
Ω

(
(u′ ·w+

1 − u ·w+
2 )ϕ′ + (u · z+

1 − u′ · z+
2 )ϕ

)
dx

)
+ 2 Re(st)

πϕ(0)

|r|
.

Defining a+ the sesquilinear form such that Im a+
(
(u, s), (v, t)

)
= dJ +

(u,s)(v, t), it yields (3.4). �
Our problem (3.3) can be recast as

Find ((u, s),λ) ∈ V ×Q such that{
Im a+((u, s), (v, t)) + Im b((v, t),λ) = 0, ∀(v, t) ∈ V,
Im b((u, s),µ) = Im `(µ), ∀µ ∈ Q.

(3.5)

The interest of this formulation is that it fits into the frame of classical mixed variational formulations,
see [2]. We are now able to state the main result of this paper.

Theorem 23. The variational formulation (3.5) is equivalent to

Find
(
(u, s

)
,λ) ∈ V ×Q such that{

a+
(
(u, s), (v, t)

)
− b
(
(v, t),λ

)
= 0, ∀(v, t) ∈ V,

b
(
(u, s),µ

)
= `(µ), ∀µ ∈ Q.

(3.6)

There exists a unique solution in the space V ×Q. In addition, the first component of the solution is the
limit u+ defined in Corollary 10.

Proof. The equivalence between (3.6) and (3.5) is immediate since Im b = − Im b and that V and Q are
both complex-valued. The second part, namely the well-posedness, is proven in Section 3.2. The last
part is proven in Section 3.3, where the expressions of s+ and λ+ are also precised. �

Corollary 24. The whole sequence uν converges weakly in H1(Ω)2 towards u+ as ν → 0+.

3.2 Proof of the second part of the main Theorem

First of all, note that problem (3.6) can be reformulated using the operators A+ : V → V ′, B : V → Q′

and h ∈ Q′ such that for all (u, s), (v, t) ∈ V and λ ∈ Q,(
A+(u, s), (v, t)

)
V ′,V

= a+
(
(u, s), (v, t)

)
,
(
B(u, s),λ

)
Q′,Q

= b
(
(u, s),λ

)
, (h,λ)Q′,Q = `(λ). (3.7)

The variational problem (3.6) then writes

Find
(
(u, s

)
,λ) ∈ V ×Q such that{

A+(u, s)−Btλ = 0, in V ′,

B(u, s) = h, in Q′.

(3.8)

Set K = kerB. Define the restriction of A+ on K ⊂ V with values in K ′ which contains V ′. This operator
A+
KK′ : K → K ′ is such that for all (u, s), (v, t) ∈ K,

(
A+
KK′(u, s), (v, t)

)
K′,K

=
(
A+(u, s), (v, t)

)
V ′,V

.

An important well-posedness result for mixed systems we will use is the following.

Theorem 25 (Theorem 4.2.2 in Boffi-Brezzi-Fortin [2]). The mixed system

Find
(
(u, s

)
,λ) ∈ V ×Q such that{

A+(u, s)−Btλ = κ, in V ′,

B(u, s) = h, in Q′.

(3.9)

admits a unique solution for any κ ∈ V ′ and h ∈ Q′ if and only if A+
KK′ is bijective and B is onto.

The verification of these conditions for our problem is given in three steps. Firstly we characterize K,
then we prove that A+

KK′ is bijective and finally we prove that B is onto. Therefore it proves the first
part of Theorem 23.
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Proposition 26. There exists v, w ∈ H1(Ω)2 such that a basis of K is BK =
{

(v, 0), (w, 0), (0, 1)
}

with v(±1) 6= 0 and w(±1) 6= 0. In particular dim(K) = 3.

Proof. Since the bilinear form b defined in (3.1) has no dependance with respect to the scalar s, the
space spanned by (0, 1) is in K. Let us now consider (u, 0) belonging to K ⊂ H1(Ω)2 ×C. The function
u is a continuous function, and the continuity in 0 will have its importance in the sequel.
The claim will be proved if and only if we can show that such functions span a vectorial space of dimension
2. This part of the proof is as follows. For any ε ∈ (0, 1), one has that u ∈ H2(−1,−ε)2 ∪H2(ε, 1)2 and
that outside of 0, −u′′ + N

αu = 0. Also, it verifies the boundary conditions

u′(±1)∓
(
iσ 0
0 i/σ

)
u(±1) = 0.

Define vL and wL the solutions to the Cauchy problems associated to that ODE on (−1, 0) for the
boundary conditions {

vL(−1) = (1, 0)t,
v′L(−1) = (−iσ, 0)t,

and

{
wL(−1) = (0, 1)t,
w′L(−1) = (0,−i/σ)t.

Similarly, define vR and wR the solutions to the Cauchy problems associated to that ODE on (0, 1) for
the boundary conditions {

vR(1) = (1, 0)t,
v′R(1) = (iσ, 0)t,

and

{
wR(1) = (0, 1)t,
w′R(1) = (0, i/σ)t.

Then u is a complex linear combination of vL and wL on (−1, 0), and of vR and wR on (0, 1).
These solutions to Cauchy problems on the left and right hand sides can all be extended continuously in
0, reasoning as in the proof of Proposition 8 for the H1(−1, 0)2 and H1(0, 1)2 bounds for uν , using the
ODE on (−1, 0) and on (0, 1) respectively.
On the left, it defines an operator φL : c ∈ C2 7→ u(0−) ∈ C2 by solving the Cauchy problem

−u′′ +
N

α
u = 0, in (−1, 0),

u(−1) = c,

u′(−1) = −
(
iσ 0
0 i/σ

)
c.

On the right, it defines an operator φR : d ∈ C2 7→ u(0+) ∈ C2 by solving the Cauchy problem
−u′′ +

N

α
u = 0, in (0, 1),

u(1) = d,

u′(1) =

(
iσ 0
0 i/σ

)
d.

(3.10)

The condition that u ∈ H1(Ω)2 is now equivalent to the continuity condition u(0−) = u(0+), that is
T (u(−1),u(1)) = 0 where the linear mapping T : C4 → C2 is defined by T (c,d) = φL(c)− φR(d).
It is in fact easy to show that the dimension of the range of T is equal to 2: a sufficient and simpler
condition is to show that the dimension of the range of φR is also equal to 2, and this is equivalent to
saying that φR is one-to-one. The condition φR(d) = 0 is equivalent to say that u in (3.10) is such that
u(0+) = 0. For ε ∈ (0, 1), integrating the equation against u on (ε, 1) yields∫ 1

ε

(
|u′|2 + u · N

α
u
)
dx−

(
iσ 0
0 i/σ

)
d · d + u′(ε) · u(ε) = 0.

Refer again to the proof of Proposition 8 to get |u′(ε)| ≤ C(1 + | ln ε|) = C(1− ln ε). One has

|u(ε)| ≤
∫ ε

0

|u′(y)|dy ≤ C
∫ ε

0

(1− ln y)dy = Cε(2− ln ε).

So one can pass to the limit u′(ε) · u(ε)→ 0 as ε→ 0. It yields∫ 1

0

(
|u′|2 + u · N

α
u
)
dx−

(
iσ 0
0 i/σ

)
d · d = 0,
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which is well-defined thanks to Hardy’s inequality. Taking the imaginary part, it yields d = 0. So φR
is one-to-one, and bijective. A similar computation establishes φL is bijective. So the dimension of the
range of φR is equal to 2, and the dimensions of the range and kernel of T are also equal to 2.
Take (v, 0) and (w, 0) ∈ K defined such that v(−1) = (1, 0)t and w(−1) = (0, 1)t. These functions
coincide with vL and wL respectively on the interval (−1, 0), and they span a 2 dimensional subspace of
K. Necessarily φR(v(1)) = φL(v(−1)) 6= 0 so v(1) 6= 0. For the same reason w(1) 6= 0. The claim is
proved. �

Proposition 27. A+
KK′ is a bijection between K and K ′.

Proof. The space K being of finite dimension, it is sufficient to prove A+
KK′ is one-to-one. Consider the

basis BK of K defined in Proposition 26. The operator A+
KK′ is associated to a matrix M

M =


∫

(v′ · v − v · v′)ϕ′
∫

(w′ · v −w · v′)ϕ′ a1∫
(v′ ·w − v ·w′)ϕ′

∫
(w′ ·w −w ·w′)ϕ′ a2

−a1 −a2 2iπϕ(0)
|r|


for a1, a2 ∈ C two given scalars, see (3.4). Let (c1, c2, c3) ∈ C3 be in the kernel of this matrix. In
particular

(c1, c2,−c3)M(c1, c2, c3)t = 0.

That is

|c1|2 Im

∫
Ω

v′ · vϕ′dx+ |c2|2 Im

∫
Ω

w′ ·wϕ′dx− |c3|2
πϕ(0)

|r|
= 0.

Remark that for u ∈ K,

Im

∫
Ω

u′ · uϕ′dx = − Im

∫
Ω

u · N
α

u(ϕ− ϕ(0))dx+ Im
{( iσ 0

0 i/σ

)
u · u(ϕ− ϕ(0))

}1

−1

= −
(
σ{|u1|2}1−1 +

1

σ
{|u2|2}1−1

)
ϕ(0) ≤ 0.

For u = v or u = w, this quantity does not vanish as v(±1) 6= 0 and w(±1) 6= 0. Moreover ϕ(0) > 0.
Necessarily, (c1, c2, c3) = 0, and A+

KK′ is one-to-one. �

Proposition 28. B is onto from V to Q′.

Proof. Proving B is onto from Q× {0} ⊂ V to Q′ is sufficient. In the sequel of the proof there will be
the abuse of notation that B is defined from Q to Q′.
For all u, λ ∈ Q, decompose b

(
(u, 0),λ

)
as the sum of two sesquilinear forms b0(u,λ) + b1(u,λ) with

b0(u,λ) =

∫
Ω

(u′ · λ′ + u · λ)dx−
{(

iσ 0
0 i/σ

)
u · λ

}1

−1
, b1(u,λ) =

∫
Ω

u ·
(N
α
− I
)
λ dx.

The sesquilinear form b0 is coercive, as for all u ∈ Q, Re b0(u,u) = ‖u‖2H1 . So B0 : u ∈ Q 7→
(
λ 7→

b0(u,λ)
)
∈ Q′ is positive and bounded below in the sense of [12]. Denote by B1 the operator u ∈ Q 7→(

λ 7→ b1(u,λ)
)
∈ Q′. All bounded sequences (un)n∈N ⊂ Q admit a subsequence strongly converging in

L2(Ω)2 towards a limit u ∈ Q. Besides, Cauchy-Schwarz and Hardy’s inequalities imply that

∣∣(B1un,λ)Q′,Q − (B1u,λ)Q′,Q
∣∣ =

∣∣ ∫
Ω

(un − u) · (N
α
− I)λ dx

∣∣ ≤ C‖un − u‖L2‖λ‖H1 .

Hence B1 is compact. Therefore B = B0 + B1 is a Fredholm operator of order 0 since it is a compact
perturbation of a positive and bounded below operator B0, see Theorem 2.33 in [12]. The Fredholm’s
alternative establishes B is onto provided it is injective. This part is verified as follows. Take u ∈ kerB.
Then (

Bu,u
)
Q′,Q

=

∫
Ω

(
|u′|2 + u · N

α
u
)
dx−

{
iσ|u1|2 +

i

σ
|u2|2

}1

−1
= 0.

Once again, taking the imaginary part yields u(±1) = 0 on the boundary of the domain.The boundary

condition u′(±1) = ±
(
iσ 0
0 i/σ

)
u(±1) yields u′(±1) = 0. This is propagated by the equation on Ω,

see Proposition 26, so u = 0. The injectivity of B on Q× {0} is proven and the proof is ended. �
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3.3 Proof of the third part of the main Theorem

The third part of Theorem 23 states that u+, the weak H1 limit of uν defined in Corollary 10, is the
solution to the variational formulation (3.6). In order to establish this result we derive a new variational
formulation for ν > 0 which tends to the limit problem as ν → 0+. It will also yield additional informa-
tion about the Lagrange multipliers (s+,λ+).

For ν ∈ R, (u, s), (v, t) ∈ V and λ ∈ H1(Ω)2, define the sesquilinear form aν such that

Im aν((u, s), (v, t)) = dJ ν(u,s)(v, t) (3.11)

by

aν
(
(u, s), (v, t)

)
=

∫
Ω

(v · u′ − u · v′)ϕ′dx− s
∫

Ω

(
(wν

2 · v −wν
1 · v′)ϕ′ + (zν2 · v′ − zν1 · v)ϕ

)
dx

+t

∫
Ω

(
(wν

2 · u−wν
1 · u′)ϕ′ + (zν2 · u′ − zν1 · u)ϕ

)
dx

−2ist

∫
Ω

wν
1 · Im

( 1

α+ iν
Nν
)
wν

1ϕdx.

We extend trivially the form bν defined in (2.2) from H1(Ω)2 ×H1(Ω)2 to V ×H1(Ω)2 by

bν
(
(u, s),λ

)
=

∫
Ω

(
u · λ + u · Nνλ

α+ iν

)
dx−

{(
iσ 0
0 i/σ

)
u · λ

}1

−1
, for (u, s) ∈ V,λ ∈ H1(Ω)2.

Now that ν regularizes the equations, the form bν is defined on all H1(Ω)2 without any difficulty.

Proposition 29. For any ν > 0, s ∈ C, v ∈ H1(Ω)2 and µ ∈ H1(Ω)2, the solution uν of (2.1) satisfies

bν
(
(uν , s),µ

)
= `ν(µ) and aν

(
(uν , s), (v, 0)

)
= b−ν

(
(v, 0),−(uν − swν

1)ϕ
)
. (3.12)

Moreover aν
(
(uν , s), (0, t)

)
= 0 for all t ∈ C is equivalent to

ν

∫
Ω

( 1

α2 + ν2
(uν − swν

1)ϕ ·
(

δ2 δkz
δkz k2

z

)
wν

1 + (uν − swν
1)ϕ ·

(
1 0
0 0

)
wν

1

)
dx = 0. (3.13)

Proof. The first relation of (3.12) is just a reformulation of (2.1), with the extension of bν on the whole
space V . Now for s ∈ C and v ∈ H1(Ω)2,

aν
(
(uν , s), (v, 0)

)
=

∫
Ω

(v · u′ − u · v′)ϕ′dx− s
∫

Ω

(
(wν

2 · v −wν
1 · v′)ϕ′ + (zν2 · v′ − zν1 · v)ϕ

)
dx

= −
∫

Ω

(
(u− swν

1)ϕ
)′ · v′dx+

∫
Ω

(u− swν
1)′ · (vϕ)′dx− s

∫
Ω

(
zν2 · (vϕ)′ − zν1 · vϕ

)
dx

= −
∫

Ω

(
(u− swν

1)ϕ
)′ · v′dx− ∫

Ω

(u− swν
1)ϕ · Nν

α+ iν
v dx,

(3.14)

which is exactly b−ν
(
(v, 0),−(uν − swν

1)ϕ
)
: it yields the second relation of (3.12).

Finally if for all t ∈ C
aν
(
(uν , s), (0, t)

)
= −aν

(
(0, t), (uν , s)

)
= 0,

because of (3.11) ∂sJ ν(uν , s) = 0. Then (3.13) follows from Proposition 18 and (2.20). �

For ν > 0, define for all v ∈ H1(Ω)2

Γν(v) = ν

∫
Ω

( 1

α2 + ν2
v ·
(

δ2 δkz
δkz k2

z

)
wν

1 + v ·
(

1 0
0 0

)
wν

1

)
dx.

As it appears in (3.12)-(3.13), the candidates for the Lagrange multipliers are

sν = Γν(uνϕ)/Γν(wν
1ϕ) and λν = −(uν − sνwν

1)ϕ. (3.15)
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Indeed, by construction, for Qν =
{
v ∈ H1(Ω)2, Γν(v) = 0

}
, (uν , sν) ∈ V and λν ∈ Qν are a solution to

the problem
Find (u, s) ∈ V and λ ∈ Qν such that{

aν
(
(u, s), (v, t)

)
− b−ν

(
(v, t),λ

)
= 0, ∀(v, t) ∈ V,

bν
(
(u, s),µ

)
= `ν(µ), ∀µ ∈ Qν .

(3.16)

And (3.16) continuously matches (3.6) as ν → 0+ in the sense that

v ∈ Qν −→
ν→0+

v ∈ Q, (3.17)

that for all (u, s), (v, t) ∈ V ,
aν
(
(u, s), (v, t)

)
−→
ν→0+

a
(
(u, s), (v, t)

)
, (3.18)

and that for all (u, s) ∈ V , if µν ∈ Qν is such that µν →
ν→0+

µ ∈ Q, then

b±ν
(
(u, s),µν

)
→

ν→0+
b
(
(u, s),µ

)
. (3.19)

Proposition 30. The solution to problem (3.6) is (u+, s+) ∈ V and λ+ ∈ Q for s+ = −i
(
δ(0), kz

)t·u+(0)

and λ+ = −(u+ − s+w+
1 )ϕ.

Proof. It has been established in Corollary 24 that uν
H1

⇀ u+ as ν → 0+. Secondly, sν = Γν(uνϕ)/Γν(wν
1ϕ)

and as in (2.21),
Γν(uνϕ)→ π

|r|
u+(0) ·

(
δ2(0) δ(0)kz
δ(0)kz k2

z

)
w+

1 (0)ϕ(0) = −i π
|r|
(
δ(0), kz

)t · u+(0)ϕ(0),

Γν(wν
1ϕ)→ π

|r|
w+

1 (0) ·
(

δ2(0) δ(0)kz
δ(0)kz k2

z

)
w+

1 (0)ϕ(0) =
π

|r|
ϕ(0),

and sν → −i
(
δ(0), kz

)t · u+(0) in C. Finally, λν
H1

⇀ λ+ as ν → 0+. Now as (3.16) is verified by all

(uν , sν) and λν and because of (3.17)-(3.18)-(3.19), (u+, s+) and λ+ verify the variational formulation
(3.6). �

4 Numerical illustration

In order to illustrate the qualitative behavior of the solutions and their dependence with respect to ν, we
present some numerical results obtained for these variational formulations using Lagrange finite elements
of order 1. We refer to [2] for a description of standard discretization methods for such mixed variational
problems.
Our numerical solutions are obtained through convenient approximations of (3.6) and (3.16), which are
the new formulations using the manufactured solutions. For the purpose of comparison, we also present
the approximation of the more classical formulation of the initial problem (2.1). It will show the gain of
accuracy of our method in the regime of small ν.
The particular case kz = 0 is the normal incidence and the general case kz 6= 0 is the oblique incidence.
In normal incidence, the system of equations is decoupled. Denote uν = (eν , bν). For bν , it is a Helmholtz
equation. For eν , it writes

−eν ′′(x) +
( δ2(x)

α(x) + iν
− (α(x) + iν)

)
eν(x) = 0 in Ω, (4.1)

with boundary conditions
eν ′(±1)∓ iσeν(±1) = f(±1). (4.2)

In the case where Maxwell’s equations (1.3) are decoupled, equation (4.1) concerns eνy = eν , eνx =

−i δ
α+iν e

ν
y and bνz = eνy

′. The equations on eνx, eνy and bνz are called the X-mode equations, for extraodinary
mode. The equations that concern eνz , bνx and bνy are called the O-mode equations, for ordinary mode.
We are also able to compute a numerical value of of the resonant heating. This quantity is based on the
divergence of the Poynting vector Πν = Im(Eν ×Bν). As computed in [7], ∇ ·Πν = ν‖Eν‖22, so that∫

Ω

∇·Πνϕdx = ν

∫
Ω

( 1

α2 + ν2
|(δ, kz)t ·uν |2 + |eν |2 + |bν ′|2

)
ϕdx →

ν→0+

π

|r|
ϕ(0)

∣∣(δ(0), kz
)
·u+(0)

∣∣2. (4.3)

We will present in Fig. 2 a comparison of the values of the resonant heating for three different approxi-
mation methods .
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4.1 The Whittaker test case: an analytical solution in normal incidence

In normal incidence, we construct an analytical reference solution. Take the coefficients

α = −x and δ =
√

1− x/4 + x2. (4.4)

With these coefficients, the limit of equation (4.1) as ν → 0+ is the Whittaker equation with unknown
e+

−e+′′(x) +
(1

4
− 1

x

)
e+(x) = 0 in (−1, 0) and (0, 1). (4.5)

General solutions of the Whittaker equation outside x = 0 are linear combinations of the elementary
solutions

u : x 7→ xe−x/2, v : x 7→ −ex/2 +
(

ln |x|+
∫ x

1

ey − 1

y
dy
)
xe−x/2. (4.6)

To get a unique solution two additional constraints are missing. This information can be recovered using
the fact the solution we are interested in is the H1 weak limit of (4.1) as ν → 0+. First, we have the
continuity of e+ in 0. Second, we have the integral relation (2.27). As for kz = 0, second components of
w+

1 , w+
2 , z+

1 and z+
2 are zero, see (2.13)-(2.15), denote the first components w+

1 , w+
2 , z+

1 and z+
2 . Relation

(2.27) then rewrites ∫
Ω

(e+w+
2 − e+′w+

1 )ϕ′dx =

∫
Ω

(e+z+
1 − e+′z+

2 )ϕdx. (4.7)

Proposition 31. The limit solution e+ of (4.1) as ν → 0+ is such that

e+ =

∣∣∣∣ aLu+ cv, −1 ≤ x ≤ 0
aRu+ cv, 1 ≥ x ≥ 0

. (4.8)

for aL, aR and c ∈ C, with the jump condition

aR − aL = − iπδ(0)2

|r|
v(0)

u′(0)
c. (4.9)

One can check that the limit solution e− is such that

a−R − a
−
L = −(aR − aL). (4.10)

Proof. For some aL, aR, cL and cR ∈ C, e+ = aLu+ cLv in (−1, 0) and e+ = aRu+ cRv in (0, 1). The
continuity of e+ in 0 yields cL = cR. Denote c that coefficent. As for any 1 > ε > 0, (4.5) and (2.14)
yield ∫ 1

ε

(e+w+
2 − e+′w+

1 )ϕ′dx =

∫ 1

ε

(e+z+
1 − e+′z+

2 )ϕdx+ (e+′(ε)w+
1 (ε)− e+(ε)w+

2 (ε))ϕ(ε),∫ −ε
−1

(e+w+
2 − e+′w+

1 )ϕ′dx =

∫ −ε
−1

(e+z+
1 − e+′z+

2 )ϕdx− (e+′(−ε)w+
1 (−ε)− e+(−ε)w+

2 (−ε))ϕ(−ε),

relation (4.7) is equivalent to∫ ε

−ε
(e+w+

2 − e+′w+
1 )ϕ′dx =

∫ ε

−ε
(e+z+

1 − e+′z+
2 )ϕdx−

[
(e+′w+

1 − e+w+
2 )ϕ

]ε
−ε
. (4.11)

Both integrals on (−ε, ε) vanish as ε→ 0, since e+, w+
1 , z

+
2 ∈ H1(Ω), w+

2 , z
+
1 ∈ L2(Ω) and ϕ ∈ C1(Ω):∣∣∣∣∫ ε

−ε
(e+w+

2 − e+′w+
1 )ϕ′dx

∣∣∣∣ ≤ (‖e+‖L∞‖w+
2 ‖L2‖ϕ′‖L∞ + ‖e+′‖L2‖w+

1 ‖L∞‖ϕ′‖L∞
)√

2ε,∣∣∣∣∫ ε

−ε
(e+z+

1 − e+′z+
2 )ϕdx

∣∣∣∣ ≤ (‖e+‖L∞‖z+
1 ‖L2‖ϕ‖L∞ + ‖e+′‖L2‖z+

2 ‖L∞‖ϕ‖L∞
)√

2ε.
(4.12)

The scalar difference converges towards 0 as ε→ 0 because of (4.11) and (4.12). It also rewrites

[
(e+′w+

1 − e+w+
2 )ϕ

]ε
−ε = w+

1 (ε)ϕ(ε)
(
e+′(ε)− e+′(−ε)

)
+ e+′(−ε)

∫ ε

−ε
(w+

1 ϕ)′dx

−e+(ε)ϕ(ε)
(
w+

2 (ε)− w+
2 (−ε)

)
− w+

2 (−ε)
∫ ε

−ε
(e+ϕ)′dx.

17



Both integrals can be bounded again by
√
ε up to a multiplicative constant. Since

√
ε ln(ε)→ 0 with ε,√

εe+′(−ε),
√
εw+

2 (−ε) and v′(ε)− v′(−ε) also vanish in 0. So

[
(e+′w+

1 − e+w+
2 )ϕ

]ε
−ε →ε→0

iϕ(0)

δ(0)
(aR − aL)u′(0)− cv(0)ϕ(0)

δ(0)π

|r|
= 0

and the jump condition is obtained. �

Now that we have (4.8)-(4.9), the two boundary conditions are sufficient to determine these three coeffi-
cients. The numerical results presented here have been obtained for the parameters

σ = 1, f(−1) = 1, f(1) = 2, and ϕ(x) = e
1

2x−1−
1

2x+1 1(− 1
2 ,

1
2 ). (4.13)

Note that ϕ ∈ C1
0,+(Ω).

We observe in Fig. 1 that for a coarse grid, the discretization of the limit problem is accurate, and that
for a small ν, the discretization of our new formulation of (1.5)-(1.6) using manufactured solutions is
more satisfying than the one of the classical formulation (2.1).
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Figure 1: From left to right, imaginary parts of the first component of the numerical solutions on a mesh of 40
cells for the limit problem with manufactured solutions, for the problem with small ν = 10−7 and manufactured
solutions, and for the classical problem (Finite Element method) with small ν = 10−7. Analytical solution in
solid line, approximations in dashed lines.

In Fig. 2, we also consider the oblique case kz = 4, with boundary conditions

f(−1) = (1, 3)t, f(1) = (2, 5i)t.

The resonant heating (4.3) from the approximate solutions can be computed and it is presented in the
right part of Fig. 2 for the three different methods in function of the number of cells. The result is
very typical of convergence tables with respect to two small parameters which are ν and h = 1

Ncell
in our

case. The classical finite element method is very sensitive to small ν since the exact solution and the
limit problem become singular or ill-posed at the limit. It explains why an important number of cells is
necessary to compute the resonant heating. On the contrary the discretization of the limit problem (3.6)
captures the correct resonant heating for a very small number of cells. The intermediate formulation
(3.16) displays an intermediate behavior, with respect to resonant heating. These results are a direct
consequence that a correct numerical value of the resonant heating is, through formula (4.3), function of
getting a correct numerical value of the solution at the resonance point x = 0. It is already visible in Fig.
1 that the new formulation (3.6) is much better for the computation of the solution at the resonance point
x = 0. This result has its own physical interest in the context of fusion plasmas, but it also illustrates
the mathematical interest of having a correct formulation of the limit problem.

4.2 A more physical test-case

Let us finally consider a configuration for which a very simplified antenna sends a time-harmonic plane
wave into the plasma at x = −1. We restore the physical dimension of all coefficients of the tensor (1.2)
by considering

εν =

 α+ iν iδ 0
−iδ α+ iν 0
0 0 γ

 .
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Figure 2: Mesh with 200 cells. Above: solution for kz = 0. Below: solution for kz = 4. On the left, figure
above: from left to right, real parts of the approximation of fields e and b by the limit problem above, modulus
of the corresponding fields below. On the left, figure below: same but on the 2D reconstruction of the solution
u2D = ueikzz. On the right: discrete heating for the three different methods in function of the number of cells
Ncell.

We take parameters such that the plasma is propagative on the first sixth part from the left for half a
period, and resonant at x = 0. The parameters are

α(x) =

∣∣∣∣∣∣∣∣∣
(6π)2, x < − 2

3

−3x

2
(6π)2, − 2

3 ≤ x <
1
3

− (6π)2

2
, x ≥ 1

3

, δ(x) =

∣∣∣∣∣∣∣
0, x < − 2

3

120x+
240

3
, − 2

3 ≤ x <
1
3

120, x ≥ 1
3

, γ = (6π)2. (4.14)

The boundary conditions are now(
1 0
0 1/γ

)
u′(±1)∓

(
iσ1 0
0 i/σ2

)
u(±1) = f(±1).

The dispersion relation k2
x + k2

z = α2(−1) characterizes a plane wave propagating on (−1,−2/3), where

the coefficients of the equation are constant. We take kx = kz = α(−1)√
2
. In the tests

f(−1) = e−ikz (2ikz, 20)t, f(1) = (0, 0)t,

and
σ1 = kz, σ2 = α(−1)/kz.

The cut-off function ϕ is the same as in (4.13).
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In Fig. 3, for normal incidence, approximation of the three fields concerned by the X-mode solution to
the limit problem are plotted, as for u = (e, b)t,

e+
y = e, e+

x =
−iδ
α
e and b+z = e′.

The discontinuity of ex in 1/x appears clearly.
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Figure 3: From left to right, approximation of the X-mode fields e+x , e+y and b+z using the discretization of the
limit formulation. Real parts above, imaginary parts below, for a mesh of 200 cells.

In Fig. 4, for oblique incidence taking kz = 6π√
2
, the singular field e+

x , and the two regular fields e+
y and

b+y are plotted, as for u = (e, b)t,

e+
y = e, b+y = b and e+

x = − iδ
α
e− ikz

α
b.

We observe on figure 4 that the second component of the wave is propagated almost until x = 0, that
its first component behaves as if it was influenced by the singularity in such a way it corresponds to a
reflection of the incident plane wave, that the field e+

x does present a singularity at x = 0, and that all
fields are absorbed on the right side of the singularity.

Figure 4: From left to right, 2D reconstruction of the approximation of the fields e+x , e+y and b+y using the
discretization of the limit formulation, and using again u2D = ueikzz. Real parts above, modulus below, for a
mesh of 200 cells.
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