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Abstract. We propose a methodology to generate an accurate and effi-
cient reconstruction of radiated fields based on high order interpolation.
As the solution is obtained with the convolution by a smooth but po-
tentially high frequency oscillatory kernel, our basis functions therefore
incorporate plane waves. Directional interpolation is shown to be efficient
for smart directions. An adaptive subdivision of the domain is established
to limit the oscillations of the kernel in each element. The new basis func-
tions, combining high order polynomials and plane waves, provide much
better accuracy than low order ones. Finally, as standard visualization
softwares are generally unable to represent such fields, a method to have
a well-suited visualization of high order functions is used. Several numer-
ical results confirm the potential of the method.

Keywords: Boundary Equation Methods, integral representation for-
mulas, high order reconstruction, directional interpolation, visualization

1 Introduction

The Boundary Element Methods (BEM) are efficient methods to solve partial
differential equations. They are based on a boundary integral formulation which
allow to reduce the discretization of the problem to the boundary and therefore
reduce the costs in comparison with classic methods such as finite differences or
finite elements. In this contribution, we will focus on Helmholtz problem [10].

While BEM’s unknowns are lying on the surface of the scatterer, using rep-
resentation formulas [10], it is possible to compute the solution of the problem in
any point (even off the boundary). A common way [13] to visualize the scatter-
ing in an arbitrary domain is to define an a priori Cartesian grid, compute with
the representation formula the radiated field in each vertex of the grid and use
a linear interpolation to approximate the solution. The problem is that many
information are lost due to linear interpolation. Therefore, to keep a good ac-
curacy of the approximation, a huge number of interpolation points is needed.
As a consequence, the costs (CPU time and memory) to evaluate the integral
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representation explode. High order interpolation allows much better approxima-
tion. Furthermore, as an asymptotic behaviour of the kernel is known, the use
of a combination of high order and plane waves can be used to improve the ap-
proximation of the solution [3, 6, 9]. Finally, as standard visualization softwares
are unable to visualize such high order polynomials nor plane waves functions,
we combine this with an algorithm to visualize high order functions in any visu-
alization software [8].

This paper is organized as follows. In section 2, Helmholtz problem and the
BEM formulation used to solve it are given. In section 3, we give a method and
an algorithm to get a correct visualization of high-order solutions. In section 4,
we propose a methodology to adaptively subdivide the domain and reconstruct
radiated Helmholtz fields. Section 5 is devoted to numerical examples to show
the potential of our method. Finally, conclusions and future works are given in
the last section.

2 Formulation of the scattering problem

We consider the scattering of an incident wave w (for instance a plane wave)
from an object Ωs. This problem is modeled by Helmholtz equation [10]

∆u+ k2u = 0, in Rd\Ωs,

u = 0, on Γ = ∂Ωs,

lim
|x|→∞

|x| (∂|x|(u− w)(x)− ik(u− w)(x)) = 0,

(1)

where ∆ denotes the laplacian, k is the wave number, d is the dimension of the
problem (d = 2 or 3), n is the unit outward normal and u is the total acoustic
field. The second equation in (1) is the Dirichlet boundary condition. The third
equation in (1) is the Sommerfeld radiation condition [10] so (1) is well-posed in
the unbounded domain Rd\Ωs.

An integral formulation is used to solve the well-posed problem (1). First,
we parametrize the solution of (1) from the Cauchy data (q := ∂u

∂n ) by using the
single layer operator S [10] defined by

Sq(x) =

∫
Γ

G(x, y)q(y)dγy, ∀x /∈ Γ,

where G is the fundamental solution of Helmholtz equation (1):

G(x, y) =


i
4H

(1)
0 (k |x− y|), if d = 2,

eik|x−y|

4π |x− y|
, if d = 3,

(2)

and H
(1)
0 is the Hankel function of first kind and order 0 [1]. Then, the solution

is given by
u(x) = w(x) + Sq(x), ∀x /∈ Γ. (3)
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To determine the solution u over the domain, we need to compute the density
q. The boundary condition is therefore used to get the integral formulation. In
the case of a homogeneous Dirichlet boundary condition, (3) is reduced to

u(x) = w(x) +

∫
Γ

G(x, y)q(y)dγy, in Rd\Ωs, (4)

In the case of Neumann or more general boundary conditions, the densities q and
ϕ := u|Γ are computed by integral formulations constructed from appropriate
trace formulas of (3). For more details, one can refer to [10]. In all cases, the
representation formula (3) is obtained by convolution with corresponding kernels.

(a) 16 × 16 grid:
289 d.o.f. (λ× λ)

(b) Q6 functions:
49 d.o.f. (λ× λ)

(c) 48 × 48 grid:
2401 d.o.f (3λ×3λ)

(d) Q13 functions:
196 d.o.f. (3λ×3λ)

Fig. 1. Representation of several radiated fields with low order functions (a) and (c)
and high order functions (b) and (d) ( L∞ interpolation error under 1%).

Figure 1 plots several radiated fields and shows the advantages of high order
interpolation. In the first two cases, the lengths of the square to visualize are
equal to the wavelength. If a Cartesian grid is defined, 289 d.o.f are needed to
interpolate the field with low order functions to get 0.95% interpolation error in
L∞-norm whereas with functions of order 6 and 49 d.o.f. (shown as white points
in the figure) the error is 0.23 %. In a larger domain, (the two last cases of figure
1), 2401 d.o.f are needed to get 0.95% interpolation error in L∞-norm whereas
with functions of order 13 and 196 d.o.f., the error is 0.45 %. Thus, to get an
approximation under 1%, high order interpolation needs much less degrees of
freedom. Note that in the case of high order functions, the visualization has
been generated following the method described in next section and 504 (resp.
3096) elements composed the representation mesh in figure (b) (resp. (d)).

3 Construction of a well-suited visualization

In this section, we present a method developed by the authors [8] to visualize a
hp solution noted fnum. Standard visualization softwares are unable to visualize
and post-treat such solutions. Indeed, these softwares were originally thought
and developed for low order method (finite differences, low order finite elements).
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Our method is based on a low order remeshing [12] which consists to transform
fnum into a combination of linear functions defined on simple elements which
will be handled by any visualization software. A representation mesh is built by
means of a refinement strategy. An approximation of the solution, noted fvis,
is constructed. A visualization error is consequently introduced due to the P 1

approximation of high order functions. We define three objectives that fvis has
to respect to be ”well-suited” in our sense:

1. The representation fvis is defined from affine functions on simplexes.

2. The visualization error between fnum and fvis is controlled in L∞-norm.

3. The representation fvis is (locally) continuous if fnum is (locally) continuous.

The first objective comes from the compatibility with visualization softwares.
Indeed, only piecewise affine functions on simplexes are represented without loss
of accuracy by any visualization software. The second objective is linked to
the need to control the error between fvis and fnum and to the specific use of
data represented. Indeed, under its picture form, the data corresponds to values
mapped on elements where anyone can pick up a pointwise information. Hence,
the control in L∞-norm is natural. The third objective ensures that fvis does not
introduce gaps when fnum is continuous. However, gaps can also coming from
the Physics (material change) or discontinuous methods (such as Discontinuous
Galerkin) and need to be well-rendered.

The function fnum is defined as a mapping from a subset V of a given space
X (whose norm is noted ‖·‖X) into a space Y equipped with norm ‖·‖Y. The
mesh of V is designed by T (V) and is assumed to be a conformal mesh of V.

Each element K ∈ T (V) is defined as the image of a given reference cell K̂ by a
bijective geometrical transformation gK . Hence, the numerical solution fnum is
defined locally on any given cell K ∈ T (V), such that

∀x ∈ K, fKnum(x) =

NK∑
i=1

fKi ϕ
K
i

(
g−1K (x)

)
, (5)

where fKnum is the local expression of fnum, fKi are the degrees of freedom and
ϕKi are basis functions which are assumed to be continuous on the reference cell.

Following (5), the representation fvis is defined by constructing local visual-

izations noted (f K̃vis)K∈T (V). Hence, a meshing of K, noted T (K), composed of

simplexes is performed. The exponent K̃ recalls that an approximation of the
element is therefore introduced K̃ := ∪S∈T (K)S 6= K. The local representation

f K̃vis is then constructed from affines functions on these simplexes.

We introduce a quantification of the error between fnum and fvis. To this
purpose, we introduce Hausdorff distance on X×Y allowing to measure the gap
between the graph of two functions [8]. As Hausdorff distance involves two em-
bedded optimizations, it is expensive to employ. Thus, we introduce the following
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application for any given K ∈ T (V) and its associated mesh T (K)

∆T (K) : (f, f̃) ∈ C0(K,Y)× C0(K̃,Y) 7→ sup
x̂∈K̂

max
(
α
∥∥gK(x̂)− P 1gT (K)(x̂)

∥∥
X ,

β
∥∥∥(f ◦ gK) (x̂)−

(
f̃ ◦ P 1gT (K)

)
(x̂)
∥∥∥
Y

)
,

where the constants α and β are two scaling parameters which allow pertinent
comparisons between values on X and Y. For any K ∈ T (V), Hausdorff distance
between fnum and fvis is bounded by the a posteriori estimate ∆T (K). As this
estimate is localized, it provides a tool to measure the quality of the representa-

tion f K̃vis at each step of its construction. Then, the convergence of this estimate
(under a prescribed tolerance) ensures that the second objective is satisfied. The

method is therefore based on the construction of a mesh T (K̂) of the reference
cell guided by the control of the errors made when the geometry is approximated
by simplexes and the functions are approximated by affine functions. Then, the
P1 interpolation of gK , noted P 1gT (K), permits to construct T (K) from T (K̂).
Finally, the values of fKnum are computed at each vertex of T (K) to construct

the representation f K̃vis.
In order to guarantee the third objective, we propose an approach based on

the decomposition of all boundaries elements in lower dimension and a construc-
tion of a mesh for each element. To fix a unique mesh at the interface between
elements, a representation mesh of each edge is built. The mesh of each 2D
element starts with the recovery of all the points on the boundary (from the
meshes of the boundary) and then the interior mesh is built. The generation
of the representation meshes follows a Bowyer-Watson algorithm [4, 14, 11]. It
is an adaptive remeshing method guided by an a posteriori estimate which is
evaluated by a global optimization algorithm known as direct [7]. The algorithm
direct, acronym of dividing rectangles, is an usual branch and bound one.

Thus, all objectives are verified and an accurate visualization is possible.

4 Accurate, adaptive and compressed reconstruction of
radiated fields

Given a boundary Γ of a scattering object, a solution q has been computed on
Γ by a Boundary Element Method (section 2). Then, we want to visualize the
radiated solution, noted u, in a domain V. We can approximate u by interpolation

u(x) ≈
NV∑
j=1

u(ξj)φj(x), ∀x ∈ V,

where NV denotes the number of interpolation points, (ξj)j=1,NV
are interpola-

tion points and (φj)j=1,NV
are basis functions with collocation types (see here-

after). The degrees of freedom (u(ξj))j=1,NV
are therefore computed by the repre-

sentation formula (4). Each computation is expensive because of the convolution
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by the fundamental solution G. The objective is to get a good approximation
of u for a reasonable number of degrees of freedom. Then, the choice of smart
basis functions (and the interpolation points) is crucial. Note that if we use an
interpolation on the kernel G, instead of u, with the same basis functions and
interpolation points, we get the same approximation

u(x) ≈
∫
Γ

NE∑
j=1

G(ξj , y)φj(x)q(y)dγy =

NE∑
j=1

∫
Γ

G(ξj , y)q(y)dγy︸ ︷︷ ︸
u(ξj)

φj(x), ∀x ∈ V.

Thus, to control the approximation of the solution (for any incident wave), the
control of the approximation of the kernel is equivalent.

4.1 Formulation of compressed reconstruction of radiated field

The quality of the reconstructed radiated field depends on the accuracy of the
kernel interpolation. For large wave number k, this function is highly oscillating.
The use of directional interpolation [3, 6, 9] permits to get an improvement on
this interpolation.

Directional interpolation with one direction. For the sake of simplicity, we
show the developments with the 3D Green function [3] but the results are similar
in 2D. Indeed, the Atkinson expansion [5] shows that the asymptotic behaviour
of the kernel is similar in both dimensions. The function G to interpolate is given
by (2). Let consider y ∈ Γ given, and x ∈ Rd defined such that x = y + αc+ ε,
where c ∈ Rd, α and ε are constants. Then,

‖x− y‖ =

〈
x− y, x− y

‖x− y‖

〉
=

〈
x− y, αc+ ε

‖αc+ ε‖

〉
≈
ε
α→0

〈
x− y, c

‖c‖

〉
. (6)

We define a modified kernel Gc linked to a direction c ∈ Rd with ‖c‖ = 1

Gc(x, y) = G(x, y)e−ik〈c,x−y〉 =
eik(‖x−y‖−〈c,x−y〉)

4π ‖x− y‖
, ∀x ∈ V,∀y ∈ Γ. (7)

Equation (6) shows the behaviour in the case the direction is chosen such that
x = y + αc+ ε and ε/α→ 0. The choice of the direction is therefore relevant if

c ≈ (x− y)/ ‖x− y‖ , ∀x ∈ V, ∀y ∈ Γ. (8)

In the case this assumption holds, the quantity (‖x− y‖ − 〈c, x− y〉) is reduced
and therefore the oscillations of Gc are limited.

Figure 2 shows the advantage of the plane wave use. Green kernel is plotted
with y taken at the origin and x ∈ V where V is a square whose abscissas and
ordinates lie between 5λ and 6λ with λ = 2π/k. A direction c = xc/ ‖xc‖ is
defined where xc is the center of the square. A plane wave is plotted (eik〈c,x〉)
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in the same domain. A function Gc is defined according to (7). This function
clearly presents less oscillations than Green function G and hence is easier to
interpolate with accuracy. Thus, last figure is obtained from an interpolation of
G with Lagrangian polynomials of order 4 in each direction (25 d.o.f.) combined

with the directional plane wave (i.e. G(x, 0) ≈
∑NE
j=1G(ξj , 0)Lj(x)eik〈c,x−ξj〉) to

get an accuracy of 0.24 % L∞ error on the approximation of G.

(a) Green kernel G (b) A plane wave (c) Function Gc (d) Approx. of G

Fig. 2. Visualization of Green kernel G (a), a plane wave (b), the function Gc (c) and
an approximation of G using a directional interpolation of G with orders 4 (d).

Remark 1. The approximation of G used for figure 2 (d) is independent of the
source term w in (1) so by comparison to figure 1 (d), we can extrapolate that
for the same accuracy, this strategy will reduce by a factor 8 the number of d.o.f.

An approximation on Gc is introduced with Gc(x, y) ≈
∑NE
j=1Gc(ξj , y)Lj(x)

where (Lj)j=1,NV
are the Lagrangian polynomials. Then, for any x ∈ V,

u(x) ≈
∫
Γ

NE∑
j=1

G(ξj , y)e−ik〈c,ξj−y〉Lj(x)eik〈c,x−y〉q(y)dγy

≈
NE∑
j=1

u(ξj)Lj(x)eik〈c,x−ξj〉.

In this case, the basis functions are chosen such that φj(x) = Lj(x)eik〈c,x−ξj〉

where x ∈ V. In order to verify the assumption (8), the angle between c and
(x − y)/ ‖x− y‖ must be small. As previously, the direction c is defined as c =
(xc − yc)/ ‖xc − yc‖ where xc and yc are defined as ”average” of V and Γ . If
the assumption (8) is not satisfied (i.e. α/ε does not tend toward 0 in (6)),
a subdivision of the domain V (and eventually of Γ ) is needed and multiple
directions are defined.

Directional interpolation with multiple directions. In order to define
judicious basis functions, a subdivision of V can be done. A mesh of V, noted
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T (V), will be constructed and composed of elements EV such that T (V) is a
conformal mesh of V, that is ∪EV∈T (V) EV = V and without overlapping between
elements. In each element EV , a local field will be therefore reconstructed with
local directions and basis functions. Furthermore, a subdivision of Γ can be
established to respect the assumption on the directions (8). The boundary Γ is
decomposed in Γ = ∪ΓnΓn such that there is no overlapping between each part
Γn. For each Γn a direction cn is then defined from two points xc and yc where
xc is the center of the element EV and yc is an ”average” of Γn. Furthermore,
to each portion Γn, we introduce a function, noted Gnc , similar to the case one
direction (7)

Gnc (x, y) =
eik(‖x−y‖−〈cn,x−y〉)

4π ‖x− y‖
, ∀x ∈ EV ,∀y ∈ Γn. (9)

Using all these directions, the approximation of u is for any x ∈ EV ,

u(x) ≈
NΓ∑
n=1

∫
Γn

NE∑
j=1

G(x, y)q(y)dγyLj(x)eik〈cn,x−ξj〉

≈
NΓ∑
n=1

NE∑
j=1

u|Γn(ξj)Lj(x)eik〈cn,x−ξj〉,

(10)

where u|Γn(ξj) is the piece of radiated field computed at an interpolation point
(computed from a portion Γn ⊂ Γ ). Note that for a given number of degrees
of freedom, the computational cost in the integral equation code is the same
with one or more directions. Indeed, at one interpolation point, the sum of all
contributions is a constant and corresponds to the discretization of Γ .

4.2 Algorithm

We propose a relevant subdivision of V. We assume that V is an axis-parallel
box (rectangle in 2D or parallelepiped in 3D), or we define an axis-parallel box
including the domain to visualize. In the same way, we introduce G, an axis-
parallel box including Γ . For each element EV ∈ T (V), a subdivision of G is
constructed such that its elements, noted BE , verify ∪BE⊂G BE = G. The subscript
on BE shows the dependence on the element EV considered. The boundary Γ can
be decomposed, following the subdivision of G, such that Γ = ∪Γn⊂BEΓn and
Γn = Γ ∩BE . For each portion Γn included in a box BE , a direction cn is defined
from the centers xc and yc of respectively EV and BE .

In algorithm 1, we propose a methodology to generate the subdivision of V
and for each element EV ∈ T (V), the subdivision of G associated. Therefore, we
provide a criterion to decide whether a refinement is needed or not. We fix an
arbitrary constant R > 0 and ask in each element to limit the oscillations of
the kernel by controlling the ratio between the lengths of the element and the
wavelength.
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Algorithm 1: Subdivision of V and assignation of the orders

Initialize the criterion R, EV = V and BE = G.
Compute rmax corresponding to the couple (Emax

V ,Bmax
E ).

while rmax > R do
Subdivide (Emax

V ,Bmax
E ).

Compute rmax for a new couple (Emax
V ,Bmax

E ).

end
for each element EV ∈ T (V) do

Assign the interpolation orders in each direction.
end

Admissibility criterion. Two cases are considered whether or not there are di-
rections. First, when no direction is used, we define the ratio r = max(L1, L2)/λ
where λ is the wavelength and L1 (resp. L2) is the length of the element in the
first (resp. second) direction. The bigger this ratio is, the more the function is
possibly oscillating. An element is said admissible if its ratio is smaller than R.
Otherwise, this element needs to be subdivided. However, when directions are
used, for a couple (EV ,BE), a direction cn is defined and we define the ratio

r̃ = max(L1, L2)/λ̃, where λ̃ = 2π/k̃ and k̃ is defined by

k̃ = k max
(x,y)∈(EV ,BE)

∣∣∣∣1−〈cn, x− y
‖x− y‖

〉∣∣∣∣ . (11)

This definition of k̃ is therefore equivalent to a wave number. Indeed, Gnc (9) is

then equivalent to eik̃r/(4πr) where r is the distance between two given points.
The ratio r̃ allows to quantify the oscillations after introduction of the direction.

Subdivision of the domain. The construction of the subdivision of V is based
on a hierarchically partition of this domain. This partitioning is recursive and
therefore a tree structure is used. Level 0 corresponds to the whole domain V.
Tree level l+1 is obtained from level l by subdividing each leaf LV equally into 2
children. The direction of subdivision (in the first or second direction) is chosen
such that the maximum of the new ratios r̃ in the new configuration is the lowest.
At the same time, a tree structure is also used to define the subdivision of Γ
associated to each leaf LV . Let note AΓ the tree linked to LV . The leaf where
the ratio is maximal is subdivided into 2 children. The same criterion is used to
define in which direction the subdivision is done. When a subdivision is done on
a couple, four configurations are tested (two directions possible for each leaf).

When each element respects the admissibility criterion (ratio under R), a
mesh of V is constructed by taking all the leafs (elements without children) of
the tree of V. Furthermore, to each element of this mesh, from the leafs of the
associated tree AΓ , a subdivision of Γ is constructed such that ∪BEBE = G.
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Assignation of the interpolation orders. The last step of algorithm 1 is to
assign the interpolation orders and define the associated interpolation points. Let
EV be an arbitrary element whose lengths are L1 and L2. The decomposition of Γ
is constructed from elements BE ⊂ G and we note {BE} this set. Then, similarly

to the admissibility criterion, we define two ratios r̃1 = L1/λ̃ and r̃2 = L2/λ̃

for the element EV and λ̃ = 2π/κ. However, κ must take into account all the
subdivision of G and is therefore defined as

κ = k sup
{BE}

max
(x,y)∈(EV ,BE)

∣∣∣∣1−〈c, x− y
‖x− y‖

〉∣∣∣∣ = sup
{BE}

k̃. (12)

Table 1. Rules to fix the order for a given accuracy ε according to the ratio
length/wavelength

Ratio r 1/4 1/3 1/2 3/4 1 3/2 2 3

Order (ε = 1%) 3 5 6 8 10 13 17 24

Finally, using a priori rules [2], according to the two ratios, the interpolation
orders in both directions are fixed. The following 1D problem is used to fix these
rules (some of them are reported in table 1): For a given tolerance ε > 0, find
the smallest N such that ∥∥∥f − f̃N∥∥∥

∞,[0,1]
≤ ε,

where f(x) = sin(2πrx), r is the ratio, f̃N (x) =
∑N+1
i=1 f(ξNi )LNi (x). For each

order N , the N + 1 1D Chebyshev points on [0,1] are noted (ξNi )i=1,N+1 and
the Lagrangian polynomials associated are noted LNi . It ensures the control in
L∞-norm of the interpolation error for a given accuracy (for instance ε = 1%).

Overall formulation. Finally, following (10), in an element EV , the local re-
constructed radiated field uEVrad is

uEVrad(x) =

NE .N
E
Γ∑

i=1

uEVi φEVi (x), ∀x ∈ EV ⊂ V, (13)

where uEVi are the degrees of freedom whose basis functions φEVi are composed of
high order polynomials and directional plane waves (10). The method explained
in section 3 is therefore used to visualize this field. In comparison with (5),
the link between the basis functions φEVi , defined on the element EV , and the
functions ϕKi defined on the reference cell in the previous section is given by

φEVi (x) = (ϕKi ◦ g−1K )(x), ∀x ∈ EV ,

where gK is the geometrical transformation between the reference cell and EV .
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5 Numerical results

Several numerical examples are presented to demonstrate the potential of the
method. The first example illustrates the advantages of our strategy with a one
direction interpolation application. In the second case, the domain to visualize is
wider and the adaptive method proposed in section 4 is used. The last example
is more realistic and shows in particular the benefits of the coupling of the
reconstruction with the visualization method proposed in section 3.

5.1 One directional interpolation

(a) Reference (b) No direction (c) One direction

(d) L∞ abs. error (no dir.) (e) L∞ abs. error (one
dir.)

Fig. 3. Some scattering of diffracted fields (a, b and c) by a disk. Except the reference,
the others figures are obtained with order 5 in each direction. We compare the addition
of only one direction (fig. c and e) to the case without direction (b and d).

The first problem is a wave propagation scattered by a disk obstacle. The
radius of the obstacle is 0.9 and its center is the origin. The incident plane wave
is horizontal and coming from the left. The wave number is k = 6π so the wave-
length is λ = 1/3. The abscissas and ordinates of the domain to visualize both
lie between 5λ and 8λ such that the lengths of the elements are 3λ. We define
only one direction from the center of the element and the origin (corresponding
to the center of the boundary). In this case, no subdivision is done and the order
prescribed by table 1 is 5 in each direction. Thus, 36 interpolation points are
defined to reconstruct the radiated field. Figure 3 compares the diffracted field
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obtained with and without a direction. Figure (a) is the reference field computed
with a very high order to have a good accuracy. Without direction, the radiated
field is very far from the reference as shown by the pointwise absolute error
with more than 111 % relative error at some points. With the same points, the
addition of the direction permits to have a very low error (maximum of 3%).

5.2 Adaptive method

(a) With directions (b) Without direction

Fig. 4. Subdivision of the domain and comparison of the orders needed

For this second example, the parameters (disk, wave number k) are un-
changed. However, the domain where we want to reconstruct the solution is
different and larger. The abscissas (resp. ordinates) of this domain lie between 2
and 6 (resp. -4 and 4) such that its lengths are 4. It corresponds therefore to 12
wavelengths in each direction (as λ = 1/3). We fix R = 0.1, then a subdivision of
the domain is done and 112 elements are constructed. Figure 4 shows the subdi-
vision of the domain and the orders needed to have the same accuracy whether
there are or not directions. Figure 5 compares for the same degrees of freedom
(d.o.f.), the solution obtained with or without directions. For this given subdivi-
sion, in order to have the same accuracy, the number of degrees of freedom goes
from 1120 to 32508 (factor 29).

5.3 A more realistic example

The last problem deals with a more realistic wave propagation. The scattering
boundary is a L-shape object whose maximal length is 1. The wave number is
k = 6π. The domain we want to visualize the total radiated field is large such
that its abscissas and ordinates both lie between -2 and 2. Note that in this case
the scattering object is included inside the visualization domain. The adaptive
method is use to subdivide this domain such that 360 elements are created
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(a) Adaptive
(1120 d.o.f.)

(b) No dir.
(1120 d.o.f.)

(c) No dir.
(32508 d.o.f.)

Fig. 5. Visualization of the diffracted field. Comparison of our method and the case
without direction for the same number of d.o.f. (a-b) and for a similar accuracy (a-c).

and 9219 degrees of freedom (average of 25 d.o.f. by element) are used. The
admissibility criterion chosen was 1/2. Then, the number of d.o.f. is relatively
low as in each element and following table 1, this number is bounded by 6× 6.
Figure 6 shows the representation obtained. Note that the total field is plotted.
Thus, in addition to the scattered field, the incident field is taken into account.
The consequence is the addition of only one basis function which is eiνx where
ν is the direction of the plane wave. Figure 6 (b) shows the representation mesh
used to represent the solution (accuracy asked is 0.5%). The number of elements
in the representation mesh is 51999 (average of 144 triangles in each element).
The subdivision of the domain is also shown with ticker lines.

6 Conclusions

An accurate and automatic method is proposed to reconstruct radiated Helmholtz
fields from boundary element solutions. An adaptive method for the visualiza-
tion of such fields, in particular able to handle functions composed of high order
polynomials and special functions as plane waves, is presented and used.
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