
HAL Id: hal-01743380
https://hal.science/hal-01743380

Submitted on 26 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Well-suited and adaptive post-processing for the
visualization of hp simulation results

Matthieu Maunoury, Christophe Besse, Vincent Mouysset, Sébastien Pernet,
Pol-André Haas

To cite this version:
Matthieu Maunoury, Christophe Besse, Vincent Mouysset, Sébastien Pernet, Pol-André Haas. Well-
suited and adaptive post-processing for the visualization of hp simulation results. Journal of Compu-
tational Physics, 2018, 375, pp.1179-1204. �10.1016/j.jcp.2018.09.017�. �hal-01743380�

https://hal.science/hal-01743380
https://hal.archives-ouvertes.fr

Well-suited and adaptive post-processing for the visualization of hp simulation
results

Matthieu Maunourya,, Christophe Besseb, Vincent Mouysseta, Sébastien Perneta, Pol-André Haasa

aONERA / DTIS, Université de Toulouse, Toulouse - France
bInstitut de Mathématiques de Toulouse; UMR 5219, Université de Toulouse; CNRS, UPS IMT, F-31062 Toulouse cedex 9, France

Abstract

While high order methods became very popular as they allow to perform very accurate solutions with low compu-
tational time and memory cost, there is a lack of tools to visualize and post-treat the solutions given by these methods.
Originally, visualization softwares were developed to post-process results from methods such that finite differences
or usual finite elements and therefore process linear primitives. In this paper, we present a methodology to visualize
results of high order methods. Our approach is based on the construction of an optimized affine approximation of
the high order solution which can therefore be handled by any visualization software. A representation mesh is con-
structed and the process is guided by an a posteriori estimate which control the error between the numerical solution
and its representation pointwise. This point by point control is crucial as under their picture form, data correspond to
values mapped on elements where anyone can pick up a pointwise information. A strategy is established to ensure that
discontinuities are well represented. These discontinuities come either from the physical problem (material change)
or the numerical method (discontinuous Galerkin method) and are pictured accurately. Several numerical examples
are presented to demonstrate the potential of the method.

Keywords: Visualization, high-order finite element, discontinuous Galerkin, post-processing

1. Introduction

High order methods represent an important class of numerical methods to solve partial differential equations
(PDE). Among these methods, one can cite the Finite Element method [1] and the Discontinuous Galerkin (DG)
method [2]. Many domains are concerned by these methods: for solving wave equations (in acoustic, elastodynamic
or electromagnetism [3]), in Computational Fluid Dynamic [4] or for Solid and Structural Mechanics. High order
methods are built from high order basis functions: high degree of the element (for example curved element) and/or
high polynomial degree. These methods became very popular as they allow to perform very accurate solutions with
low computational time and memory cost [3]. In isogeometric analysis [5], functions used to describe the geometry
of the computational domain are directly employed. Thus, high order functions are widely used [6]. The analysis and
development of these high order methods is still an active area of research and is widely used in the industry.

However, while many works have been done on the development of the solvers, there is a lack of tools to visualize
and post-treat the high order methods. Historically, PDE were solved with low order method (finite difference, low
order finite element). Thus, visualization of linear functions defined on simple elements (e.g. triangles, tetrahedra,
quadrilaterals and hexahedra) is common and well-suited. Originally, the standard visualization software were not
thought for high order methods. To the best of our knowledge, two main strategies are used to bypass this limitation:
pixel-exact rendering and low order remeshing. The first strategy is the creation of a visualization software which
will be adapted to high order methods by using a pixel-exact rendering [7, 8]. An example of a high order visual-
ization software is the Element Visualizer (ElVis, [9]). Such a software is based on pixel exact rendering, the costs
to interactively manipulate the data are therefore significantly higher than using linear approximations [9]. As the
rendering is constructed pointwise, there is no element vision and thus, an additional and expensive work is necessary
to post-process the solution. The second strategy is to transform the data given by the hp method in a combination
of linear functions defined on simple elements which will be handled by any visualization software. The basic idea
is to define a representation mesh and introduce a refinement strategy. A visualization error is also introduced due

1

to the P1 approximation of high order functions. Remacle et al. [10] use an isotropic refinement which can result in
the generation of a large amount of data. They evaluate the error measures (the approximation of the geometry and
the field representation) with a L2-norm. The post-processing of the data can be done directly in the visualization
software [11]. Note that Schroeder et al. [12] propose a first method based on the subdivision of element edges for
some finite element methods but this latter seems to be not optimal in terms of a posteriori indicators and doesn’t take
into account the specificities of DG methods for example.

In this paper, we present a methodology to visualize the solution fnum of a hp method. We propose to construct
an approximation of this solution, noted fvis, which can be handled accurately by most visualization softwares. All
the usual post-processing tools can therefore be at our disposal. Our approach is therefore to convert the data into a
combination of affine functions with an auto-adaptive method based on a L∞ guidance used as refinement method. It
allows to ensure a good pointwise accuracy and a low memory cost as it focuses only where needed. Our methodology
allows to overcome the weakness of the linear strategy (accuracy and memory cost). We define three objectives that
fvis must respect to be "well-suited":

(O1): The representation of fnum is obtained by plotting piecewise affine functions on k-simplexes, where k is the
(local) dimension of the (local) support of fnum,

(O2): According to a prescribed tolerance ε > 0, error between fnum and fvis is lower than ε in L∞-norm,

(O3): The representation fvis is (locally) continuous if fnum is (locally) continuous.

Objective (O1) represents a compatibility aim on the whole process, including the use of plotting tools. Indeed,
piecewise affine functions on k-simplexes can be represented without loss of accuracy with any visualization software.
Thus, if fvis verifies (O1), one is ensured to keep accurateness between its construction and representation. The notion
of k-simplex is introduced to say that, for instance, fnum stands for a 2D surface in R3 and we are going to mesh it
using triangles. In the same way, the locality of this notion indicates that fnum can be made of elements with various
dimensions (e.g. 2D and 3D elements for hybrid Boundary Integral Equation / Finite Element Method computations).

Actually, objective (O2) is composed of two parts. First, we ask to control the error between fvis and fnum. Then,
we force the measure to be completed in L∞-norm. Motivation of the first sub-objective is quite natural as we are going
to approximate fnum and thus generate errors. The second one is linked to the specific use of data represented. Indeed,
under its picture form, the data corresponds to values mapped on elements where anyone can pick up a pointwise
information. Hence, we ask to use the natural norm to control accuracy on pointwise values: the L∞-norm.

Objective (O3) ensures that fvis does not introduce gaps where fnum is continuous. Indeed, if not, it will give a
false information in the final representation. This has to be avoided. The addition of objectives (O2) and (O3) can be
expressed as: at the prescribed tolerance, the representation shows gaps if and only if fnum has. Capturing gaps of
fnum should be of prime interest for discontinuous schemes (such as DG: Discontinuous Galerkin). Indeed, gaps can
either be physically relevant or coming from numerical errors. In the first case, showing them enhances the quality of
the scheme. In the other case, gaps of fnum should be related to a posteriori estimates of the numerical error and thus
qualify the accuracy of the scheme.

In this paper, only surfaces are treated (i.e. the local dimension is k = 2). The main result of this paper is the
following theorem and the approach given in its sketch of proof.

Theorem 1.1. Let ε be a prescribed tolerance. If fnum is a suitable numerical solution (as described in (H1) to (H5)
hereafter) and a function fvis is constructed following algorithm 1 given in section 4, then this function fvis verifies
objectives (O1)-(O2)-(O3).

Sketch of proof. The algorithm presented is based on a description of fnum from a transformation between a
reference cell K̂ and a mesh cell K (as described in (H1) to (H5)). This formalism takes into account a wide class of
hp numerical schemes. Thus, fvis is a piecewise affine function supported on a mesh of K which is the linear mapping
of a mesh of K̂ made of simplexes. Then, this fvis satisfies (O1) by construction. The mesh of K̂ is performed using
usual adaptive techniques with a specific a posteriori estimate which is an upper-bound of Hausdorff distance, based
on L∞-norm, between the graphs of fnum and fvis. Hence, (O2) is verified. Now, to fulfil (O3), the mesh of any cell K is
done from a mesh of its boundary ∂K, where ∂K was decomposed in edges being meshed separately. Each edge mesh
is built adaptively using an a posteriori estimate involving the values of fnum coming from all cells sharing this edge.

2

However, the weak point of this strategy is that to satisfy (O3), during the mesh phase of K, we forbid to modify edge
meshes, then for fine enough elements close to ∂K, the linear mapping used to define the mesh of K happens to be not
injective. The consequence is that we can achieve a mesh such that our a posteriori estimate tends to the prescribed
tolerance ε whereas it doesn’t control Hausdorff distance as the latter is no longer defined. As a consequence, (O2) is
not satisfied. To bypass this problem, we define a specific a posteriori estimate involved when meshing edges which
introduces an a priori control of the 2D mesh process in the vicinity of ∂K.

The structure of the paper is as follows. In section 2, we start by defining what a well-suited visualization should
be. Section 3 is devoted to the construction of a well-suited visualization: a pseudo algorithm is given and a posteriori
estimates are defined to lead the construction in an adaptive manner. Section 4 contains the algorithm and explanation
on how the algorithm is performed. Section 5 deals with the convergence of the methodology presented in this paper.
Section 6 contains numerical results. Finally, conclusions and future works are given in the last section.

2. Definition of a well-suited visualization

In this section, we begin by describing the hp framework. Then, we give details of the construction of a well-
desired visualization. In the latter part of this section, a quantification of the visualization error is introduced.

2.1. Definition of the hp framework
In all the sequel, we consider that the original problem was to compute the approximation of a function f defined

as a mapping from a subset X = Rd (d = 1, 2 or 3) of a given space X into a K-vector space Y (K = R or C). These
spaces are supposed to be of Banach type and are thus equipped with norms respectively noted ‖·‖X and ‖·‖Y. The
numerical approximation of f , noted fnum, is computed with help of a discretization of X. This mesh of X is designed
by T (X) and is supposed to verify the following properties:

(H1): T (X) is a conformal meshing of X, that is ∪K∈T (X) K = X, made of bounded closed cells (K),

(H2): there is no overlapping between elements, that is Int(K)∩ Int(K′) = ∅, for any couple (K,K′) ∈ T (X)2,K , K′,
where Int(K) stands for the interior of K,

(H3): each cell K ∈ T (X) is defined as the image of a given reference cell K̂, expressed in a reference space X̂K , by a
bijective transformation gK . The dimension of X̂K , being the dimension of K in X, is noted nK .

These hypotheses are motivated by the following observations: hypothesis (H1) is not crucial but is introduced in
a sake of simplicity (if ∪K∈T (X)K , X, then replace in all the sequel X by the set ∪K∈T (X) K). Hypothesis (H2) should
allow non-conform meshes in the finite-element sense. Hypothesis (H3) is introduced here in order to grant a wide
enough range of applications for the numerical schemes to be addressed. This property is linked to the description of
basis functions explained hereafter. Actually, we will be able to treat schemes with basis functions constructed in X
or defined on a reference cell (K̂) and obtained by mean of a transformation (gK). In the first case, one simply has to
choose the trivial identification K̂ = K, X̂K = X and gK = Id. The second one becomes very interesting especially
when X is a subset of X with smaller dimension (for instance a curved surface in R3). In that case, a natural choice
of X̂K is a space of same dimension (here R2) giving a more natural coordinate system to define the basis functions.
Note at last that the notation of the reference cell (K̂) is linked to the one of the cell (K) so different local descriptions
can be adopted in the same set X. This last point allows, for instance, to deal with hybridized schemes.

The basis functions are defined on the reference cells. We note them {ϕK
i }i=1,NK with respect to K ∈ T (X) and we

assume that:

(H4): on any K ∈ T (X), {ϕK
i }i=1,NK ∈ C0(K̂,Y), where C0(K̂,Y) is the set of continuous functions over K̂,

(H5): on any K ∈ T (X), the definition of fnum on K, noted f K
num, is expressed with given coefficients (the degrees of

freedom) f K
i ∈ K by

∀x ∈ K, f K
num(x) =

NK∑
i=1

f K
i ϕ

K
i

(
g−1

K (x)
)
.

3

Regularity introduced with hypothesis (H4) is not really restrictive as most of hp methods are built on polynomial
basis. Basis functions can be scalar or vectorial depending on Y. Hypothesis (H5) describes the usual construction of
a numerical approximation from a basis where functions are mappings from reference cells. The notations about the
numerical function are plotted on figure 1.

K̂ ⊂ X̂K K ⊂ X ⊂ X K × f K
num(K) ⊂ X × Y

gK
−→

f K
num
−→

Figure 1: Description of the notations used.

Over the domain X, fnum can be explicited as:

∀x ∈ X, fnum({x}) =
{
f K
num(x) /∀K ∈ T (X), x ∈ K

}
. (1)

Note that fnum is not a function on X. Indeed, the definition of fnum given by (1) does not ensure that a x ∈ X is
associated to at most one value. This comes from (H2) which allows that two cells have all or part of their boundary
in common. This definition can thus handle with the representation of discontinuous functions such as those obtained
in DG schemes. However, from (H2) to (H5), for any K ∈ T (X), f K

num is a well-defined and continuous function when
restricted to the interior of K. Moreover, this function admits a straightforward continuous extension to K (which is
closed by (H1)).

2.2. Construction of desired visualization and notations
According to the definition of fnum given previously, the values of fnum({x}) are determined by the cell we consider

that x belongs to. Indeed, for any x ∈ X, from (H1) there is at least one cell K ∈ T (X) containing x. There are two
possibilities: x belongs to the interior of K and then by (H2) this cell is unique which involves fnum({x}) =

{
f K
num(x)

}
.

Otherwise, x lays on the boundary of K which can be common to several cells. In this case, fnum can present multiple
values (up to one per cell containing x). Our aim is to represent accurately fnum and to show gaps at the boundary
of cells if they exist (objective (O3)). Hence, following (1), we are going to define fvis through the local expressions
(f K

num)K∈T (X) of fnum by constructing local visualizations noted (f K̃
vis)K∈T (X). The exponent K̃ denotes that the support

of this function can differ from K (as we will observe in the sequel).
To ensure a maximum of compatibility between f K̃

vis and visualization softwares we are looking for a linear function
expressed on simplexes (objective (O1)). Hence, a meshing of K, noted T (K), will be constructed and f K̃

vis will satisfy:

∀S ∈ T (K), f K̃
vis

∣∣∣∣
S
∈ P1(S), (2)

where P1(S) stands for the space of polynomials with total order lower or equal to 1. Note that K has not been
supposed to be divisible into nK-simplexes and hence it can happen that

K̃ := ∪
S∈T (K)

S , K. (3)

Typically, this can occur when the geometrical transformation gK is not affine (for instance with curved elements).
The union of all these meshed elements is X̃ := ∪K∈T (X) K̃ and is a priori neither included in nor containing X. In the
same way, it can also happen that

f K̃
vis(K̃) , f K

num(K). (4)

4

According to the definition of the basis functions (ϕK
i)i which are functions on K̂ with values in Y (see (H4)),

and according to the link between K̂ and K with gK (see (H3)), the meshing of K will thus be performed through
a meshing of K̂. This last mesh, noted T (K̂), is composed of simplexes and is constructed in the following way.
Each element Ŝ of T (K̂) is a nK-simplex (i.e. the convex hull of nK + 1 points N̂ := (n̂i)i=1,...,nK+1). We define Λ

which associates n + 1 points P = (Pi)i=1,...,n+1 to the n-simplex Λ(P) and the topology of T (K̂) by Θ̂K := {N̂ :=
(n̂i)i=1,...,nK+1 : Λ(N̂) ∈ T (K̂)}. Then, the mesh of K̂ is defined by T (K̂) := {Λ(N̂) : N̂ ∈ Θ̂K}. The construction
of T (K) is performed in the same way. We define the set of nodes of T (K) as well as its topology by ΘK := {N =

(Ni)i=1,...,nK+1 := gK(N̂) : N̂ ∈ Θ̂K} with gK(N̂) := (gK(n̂i))i=1,...,nK+1 and N̂ := (n̂i)i=1,...,nK+1. The mesh in simplexes
of K is defined by T (K) := {Λ(N) : N ∈ ΘK}.

The method proposed is based on a classic plane to surface transformation from K̂ to K̃ (see [13, 14]). As the L∞

norm is not monotonic (Hausdorff distance can increase after refinement of the mesh), the advancing front techniques
([15]) can not be used. Furthermore, as two quantities are approximated (the geometry and the numerical function),
there is no easy way to use metric methods [16, 17, 18].

T (K̂) T (K)

Λ(N̂ 1)

Λ(N̂ 2)

N̂1
1 N̂1

2

N̂1
3

−→

N1
1

N1
2

N1
3

Λ(N 1)

Λ(N 2)

Figure 2: Construction of T (K̂) and T (K) for an element K ∈ T (X) (in dotted line).

An example of construction of these two meshes T (K̂) and T (K) is shown in figure 2. The link between the
meshes T (K̂) and T (K) is given by the following lemma. A last hypothesis is needed for this lemma:

(H6) : the reference cells K̂ are polyhedrons. Then, there exists T (K̂) which satisfies K̂ = ∪Ŝ∈T (K̂) Ŝ such that for any
couple (S , S ′) ∈ T (K̂)2, S , S ′, Int(S) ∩ Int(S ′) = ∅.

Lemma 2.1 (Identification of T (K)). For all K ∈ T (X), under (H3) and (H6), the P1 interpolation of gK constructed
from T (K̂), noted P1gT (K), is

1. a bijective function between T (K̂) and T (K),
2. a bijective function between the sets Θ̂K and ΘK ,
3. a surjective function from K̂ onto K̃.

Proof. Let Λ(gK(N̂)), N̂ ∈ Θ̂K be a nK-simplex of T (K). By definition, the P1-approximation of gK verifies
P1gT (K) (n̂i) = gK(n̂i) = Ni for any node Ni of Λ(gK(N̂)). Hence,
P1gT (K)(Λ(N̂)) = P1gT (K)

({∑nK+1
i=1 xin̂i, (xi) ∈ [0, 1]nK+1

})
=

{∑nK+1
i=1 xiNi, (xi) ∈ [0, 1]nK+1

}
= Λ(gK(N̂)). The surjectiv-

ity of P1gT (K) from T (K̂) to T (K) comes by construction as T (K) = {Λ(gK(N̂)), N̂ ∈ Θ̂K}. Injectivity is proven
by noting that T (K̂) and T (K) have the same cardinality. It proves the first result. The second result stems from the
bijectivity of gK and by noticing that P1gT (K) = gk on N̂ . The third result comes from the surjectivity of the first one
and the hypothesis (H6): K̂ = ∪

N̂∈Θ̂K

Λ(N̂).

The function f K̃
vis is then constructed with help of these simplexes and the definition of functions f Λ(N)

vis on each
simplex Λ(N) of T (K). f Λ(N)

vis is an affine function on Λ(N) defined by f Λ(N)
vis (x) =

∑nK+1
i=1 xi f K

num(Ni) ∈ Y, where
x =

∑nK+1
i=1 xiNi ∈ Λ(N) ⊂ K̃, (Ni)i=1,...,nK+1 are the nodes of Λ(N) and (xi)i=1,...,nK+1 ∈ [0, 1]nK+1 is unique as Λ(N) is

5

the closed hull of {Ni : i = 1, . . . , nK}. Note that for each node Ni ∈ N , f Λ(N)
vis (Ni) := f K

num(Ni). Then, f K̃
vis is given by:

∀x ∈ K̃, f K̃
vis({x}) =

{
f Λ(N)
vis (x) /∀N ∈ ΘK , x ∈ Λ(N)

}
. (5)

Figure 3 gives an illustration of both notations and the construction process.

K̂ ⊂ X̂K

gK

↗

K ⊂ X ⊂ X

f K
num
−→

K × f K
num(K) ⊂ X × Y

P1gK̃

↘

K̃ ⊂ X̃ ⊂ X

f K̃
vis
−→

K̃ × f K̃
vis(K̃) ⊂ X × Y

Figure 3: Description of the notations used.

Remark 2.2. Unfortunately, lemma 2.1 does not ensure the bijectivity from K̂ onto K̃. Indeed, the definition of T (K)
does not forbid the creation of k-simplexes with a non-empty intersection of their interior. The consequence of this
loss of bijectivity is that f K̃

vis constructed following (5) is not a function on K̃ (see the following proposition).

Proposition 2.3. Let K ∈ T (X) and T (K) be its mesh. Under (H1) to (H6) and with notations given previously, f K̃
vis

is a function on K̃ if and only if P1gT (K) is an injective function from K̂ onto K̃.

Proof. Let x ∈ K̃ and P1gT (K) be an injective function. By lemma 2.1, P1gT (K) is a bijective function, there is
at least one simplex containing x. There are two possibilities. First, if x belongs to the interior of a simplex Λ(N),
then thanks to the bijectivity of P1gT (K) and (H6), this simplex Λ(N) is unique and f K̃

vis(x) = f Λ(N)
vis (x). In the other

case, x belongs to the boundary of one or more simplexes. If x is a node of a simplex, x = N, then f K̃
vis(x) = f K

num(N).
Otherwise, x can be common to two simplexes Λ(N1) and Λ(N2) such that x = x1N1 + x2N2 where (Ni)i=1,2 and
(xi)i=1,2 are unique by bijectivity of P1gT (K). Thus, f K̃

vis(x) =
∑2

i=1 xi f K
num(Ni). As f K

num is a function on K, this proves
that f K̃

vis is a function on K̃.
Conversely, if P1gT (K) is not an injective function, an element x of K̃ can be the image of several x̂ j where j > 1,

j ∈ N. Hence, x can belong to several simplexes Λ(N j): {x} = {
∑nK+1

i=1 x j
i N j

i / x ∈ Λ(N j), N j = (N j
i)i=1,...,nK+1, (x j

i) j ∈

[0, 1]nK+1}. Thus, f K̃
vis({x}) =

{
f Λ(N)
vis (x) /∀N ∈ ΘK , x ∈ Λ(N)

}
=

{∑nK+1
i=1 x j

i f K
num(N j

i)
}
. It involves that f K̃

vis is not a func-

tion on K̃.

The construction of the mesh T (K̂) is guided by the control of the errors made when the geometry is approximated
by simplexes and the functions are approximated by affine functions.

6

2.3. Quantification of the visualization error
We introduce a quantification of the error between fnum and fvis. This error will be used to lead the construction of

fvis in an adaptive manner. Actually, definition of both fnum and fvis being local to any K ∈ T (X), this error is locally
estimated for any given K ∈ T (X). The main difficulty is the possible non-matching between the supports (see (3)) or
the range (see (4)) of these functions. To this purpose, we introduce Hausdorff distance on X×Y allowing to measure
the gap between the graph of two functions:

dX×Y
H : (f , f̃) ∈

(
C0

c (X,Y)
)2
7→ max

 sup
x∈Supp f

inf
x̃∈Supp f̃

d
(
(x, f (x)), (x̃, f̃ (x̃))

)
,

sup
x̃∈Supp f̃

inf
x∈Supp f

d
(
(x, f (x)), (x̃, f̃ (x̃))

) ,
where d is a distance over X × Y, with positive parameters α and β:

d : ((x, y), (x̃, ỹ)) ∈ (X × Y)2 7→ max
(
α ‖x − x̃‖X , β ‖y − ỹ‖Y

)
.

The two constants α and β are scaling parameters to allow pertinent comparisons between values on X and Y. The
evaluation of this distance is very expansive. Thus, in section 3, a posteriori estimates are defined to evaluate Haus-
dorff distance.

3. Construction of a well-suited visualization

This section is devoted to the construction of the visualization of fnum which verifies the properties summarized
in objectives (O1)-(O2)-(O3). First, a decomposition of all elements is explained which gives a sketch of algorithm.
Then, a posteriori estimates, which will be used in place of Hausdorff distance, are defined.

3.1. Fulfilment of objective (O3)
In order to guarantee objective (O3), we propose an approach based on the decomposition of all boundaries el-

ements in lower dimension and a construction of a mesh for each element. First, elements are collected in sets
TiD(X) ⊂ T (X) with i = 1, 2 with respect to their dimension:

TiD(X) := {K ∈ T (X), nK = i}.

To decompose each element, we define the set of all edges

E(X) ={E ⊂ ∂X ∩ ∂K,K ∈ T2D(X)} ∪ {Σ, ∃!(K,K′) ∈ T2D(X)2,K , K′,Σ = ∂K ∩ ∂K′},

where ∂X (resp. ∂K) denotes the boundary of the set X (resp. of K). Each element K ∈ T (X) admits a boundary
∂K ⊂ K which can be decomposed in edges E(K) such that E(K) = E(X) ∩ K. This decomposition satisfies ∂K =

∪E∈E(K) E and the following property: for any couple (E, E′) ∈ E(K)2, E , E′, Int(E) ∩ Int(E′) = ∅. The bijection gK

thus involves a decomposition of the boundary of K̂ in the same way: E(K̂) := {Ê ∈ ∂K̂, gK(Ê) ∈ E(K)}. Finally, we
populate the following sets T̃iD(X) for i = 1, 2:

T̃2D(X) = T2D(X), T̃1D(X) = T1D(X)∪E(X).

This specific decomposition in edges is used to fulfil objective (O3):

Proposition 3.1 (fulfilment of O3). Under hypotheses (H1) to (H6), let (T (Σ))
Σ∈T̃i D(X),i=1,2 be a set of meshes in sim-

plexes satisfying
∀K ∈ T2D(X), T (K)

|∂K̃ = T (K) ∩ ∂K̃ = ∪
Σ∈E(K)

T (Σ), (6)

with K̃ = ∪S∈T (K) S . Then, the representation fvis of fnum constructed from T (K) for all K ∈ T2D(X) fulfils objective
(O3).

7

Proof. Let Σ ∈ T̃1D(X) such that Σ < ∂X. There exists two elements K and K′ of T (X), such that K , K′ and
Σ = ∂K ∩ ∂K′. Let assume that f K

num|Σ = f K′
num|Σ on Σ where f K

num|Σ denotes the restriction of f K
num on Σ. By hypothesis,

there exists a mesh T (Σ) of Σ. Let S be an edge of T (Σ) whose extremities are noted a and b. According to section 2.2,
f K̃
vis|S and f K̃′

vis|S are affine functions defined from f K
num(a) to f K

num(b), by continuity of fnum on Σ. Hence, f K̃
vis|S = f K̃′

vis|S

for any edge S of T (Σ). Finally, f K̃
vis|Σ = f K̃′

vis|Σ and no artificial discontinuities are added.

Proposition 3.1 thus provides a "simple" algorithm to ensure objective (O3):

1. First, construct meshes of elements of T̃1D(X).
2. Then, create meshes of elements of T̃2D(X) from those of T̃1D(X) and satisfying proposition 3.1.

3.2. Fulfilment of objective (O2): elements of T̃2D(X)
As Hausdorff distance involves two embedded optimizations, it should be quite expensive to employ. Thus, we

introduce the following application for any given K ∈ T (X) and its associated mesh T (K)

∆T (K) : (f , f̃) ∈ C0(K,Y) ×C0(K̃,Y) 7→ sup
x̂∈K̂

δT (K)(f , f̃ ; x̂),

where
δT (K)(f , f̃ ; x̂) = max

(
α
∥∥∥gK(x̂) − P1gT (K)(x̂)

∥∥∥X , β ∥∥∥∥(f ◦ gK) (x̂) −
(

f̃ ◦ P1gT (K)

)
(x̂)

∥∥∥∥Y) ,
and we prove next result

Lemma 3.2. Let K ∈ T (X), under (H3), (H6) and the notations given previously, the estimate ∆T (K) verifies:

∀(f , f̃) ∈ C0(K,Y) ×C0(K̃,Y), dX×Y
H

(
f , f̃

)
≤ ∆T (K)

(
f , f̃

)
.

Proof. First, let x ∈ K be any given point. By (H3), we can note x̂ = g−1
K (x). As P1gT (K)(x̂) ∈ K̃ it comes

inf x̃∈K̃ d
(
(x, f (x)), (x̃, f̃ (x̃))

)
≤ d

(
(gK(x̂), f ◦ gK(x̂)) , (P1gT (K)(x̂), f̃ ◦ P1gT (K)(x̂))

)
, and then it infers that the supre-

mum over all x ∈ K of the left hand term is lower than ∆T (K)(f , f̃).
Conversely, let x̃ ∈ K̃ be arbitrarily given. From lemma 2.1 and the surjectivity of P1gT (K), there exists x̂ ∈ K̂ such

that x̃ = P1gT (K)(x̂). As gK(x̂) ∈ K, it comes infx∈K d
(
(x, f (x)), (x̃, f̃ (x̃))

)
≤ d

(
(gK(x̂), f ◦ gK(x̂)) , (x̃, f̃ (x̃))

)
. Then, the

supremum over all x̃ ∈ K̃ of the left hand term is lower than ∆T (K)(f , f̃).
Finally, the two parts of dH under the max are bounded from above by ∆T (K)(f , f̃) giving the result.

For any given K ∈ T (X) we identify f K
num and f K̃

vis with their extensions by zero off K and finally we can formulate
the a posteriori estimate

Proposition 3.3 (A posteriori estimate). With notations introduced in section 2, under (H1) to (H6), if P1gT (K) is an
injective function for any element K ∈ T (X), then we have

dX×Y
H (fnum, fvis) = max

K∈T (X)
dX×Y

H

(
f K
num, f K̃

vis

)
≤ max

K∈T (X)
∆T (K)

(
f K
num, f K̃

vis

)
.

Proof. Let K ∈ T (X) be an arbitrary cell as defined in (H1) to (H3). We have to check that f K
num and f K̃

vis are
continuous and then result comes by applying the lemma 3.2 on K ((H6) is satisfied). Actually, if (H4) and (H5) are
verified then f K

num is continuous on K. By hypothesis, P1gT (K) is an injective function, then from proposition 2.3, f K̃
vis

is continuous on K̃.

When for any K ∈ T (X), P1gT (K) is an injective function, the estimate ∆T (K) control Hausdorff distance which is
the criterion to evaluate the error between fnum and fvis (see section 2.3). As ∆T (K) is localized in K, it provides a tool
to measure the quality of the representation f K̃

vis at each step of its construction. Then, the convergence of this estimate
(under the tolerance ε) ensures that objective (O2) is satisfied.

8

3.3. Fulfilment of objective (O2): specific treatment for elements of T̃1D(X)

Construction of f K̃
vis will be based on an auto-adaptive method using Bowyer-Watson algorithm where we create a

refined enough meshT (K), for each cell K, to reach a prescribed tolerance. Proposition 3.3 shows that the construction
of f K̃

vis can be led directly over K̂ by controlling the function ∆T (K)(f K
num, f K̃

vis). Then, if this last quantity tends to
zero, the convergence between the visualization fvis and the numerical solution fnum is thus ensured. Note that this
convergence includes both the difference in values of these functions and the matching of their supports. At last, the
subscript T (K) introduced in the notation of ∆T (K) shows the dependence on the mesh of K.

Now proposition 3.3 introduced a new hypothesis assuming that P1gT (K) is injective. Actually, it can be trans-
gressed when refining Ŝ ∈ T (K̂) by addition of a new vertex x̂ ∈ Ŝ but such that x = gK(x̂) does not lie in P1gT (K)(Ŝ).
Figure 4 shows an example where P1gT (K) fails to satisfy this condition. One sees an area in K̃ where each point got
several values of f K̃

vis. As a consequence, there is an overlapping area where f K̃
vis is not well-defined.

K̂ ⊂ X̂K

gK

↗

K ⊂ X ⊂ X

f K
num
−→

K × f K
num(K) ⊂ X × Y

P1gT (K)

↘

K̃ ⊂ X̃ ⊂ X

f K̃
vis
−→

K̃ × f K̃
vis(K̃) ⊂ X × Y

Figure 4: Visualization of a function f K
num defined on an element K and its representation f K̃

vis constructed on an element K̃: P1gT (K) is not bijective
from K̂ to K̃.

For X = R2, this phenomenon can be decomposed into two categories:

1. In-domain vertex insertion: a point is added inside the former K̃ (the last tessellation before addition of this
point).

2. Out-domain vertex insertion: a point is added outside the former K̃.

First case can be usually solved using swap techniques and sometimes additional vertices inside the domain. But,
if the second case happens, the effective boundary of K̃ is no longer P1gT (K)(∂K̂) (see figure 4). As long as x stays
outside the domain delimited by P1gT (K)(∂K̂), regardless to swap that can be committed, ∂K̃ differs from P1gT (K)(∂K̂)
and the problem remains. Thus, the only solution is to add points on ∂K̂ to recover ∂K̃ = P1gT (K)(∂K̂). If this
operation is done careless of the mesh performed for any cell of T (X) sharing this piece of gK(∂K̂), then hypothesis
of proposition 3.1 is transgressed and by the way, (O3) is lost. To bypass this problem, we should update the boundary
mesh of all these adjacent cells at the risk of an expensive and potentially diverging algorithm. Our point is therefore
to propose a fine enough mesh of ∂K̂ such that the out-domain vertex insertion never occurs. This will be done by a
priori identifying the location of those bad points, called Rollover Areas, to ensure the preservation of the boundary
mesh (∂K̃ = P1gT (K)(∂K̂)) during the full meshing process. Hence, proposition 3.1 applies and thus (O3) is verified.
Finally, both vertex insertion problems can be avoided letting P1gT (K) be injective.

Note that for X = R3, to the best of our knowledge, the question of guarantying the injectivity of P1gT (K) when
meshing a curved surface defined on a reference plane is not issued. However, the process that will be proposed as a

9

consequence of the management of possible Rollover Areas in X = R2 is straightforwardly extended in X = R3 and
gives an efficient tool to handle for specific visualization artefact in the curved surface cases.

This section is thus devoted to first identify the Rollover Areas and then introduce an accuracy control of those
areas for X = R2.

3.3.1. Definition of the Rollover Areas
Let K ∈ T (X), T (K) be a mesh associated to this element such that P1gT (K) is injective from K̂ to K̃ = ∪S∈T (K)S .

The Rollover Area of K is defined as:
RK
T (∂K) = K\Int(K̃). (7)

Its inverse image in the reference element is R̂K
T (∂K) = g−1

K

(
K\Int(K̃)

)
. The subscript indicates that this area depends

only on the mesh of the boundary.

Proposition 3.4. Let K ∈ T (X) and assume that hypotheses (H1) to (H6) are satisfied. Let T (K) be a given mesh of
K with P1gT (K) being injective from K̂ to K̃. Finally, let x̂ ∈ K̂ be a given point and note Tx̂(K̂) the mesh refined by
the insertion of the new vertex x̂ in T (K̂). If x = gK(x̂) is an out-domain vertex (ie x ∈ RK

T (∂K)), then P1gTx̂(K), the
function associated to Tx̂(K), is not injective.

Proof. Let x̂ ∈ Ŝ such that x̂ ∈ R̂K
T (∂K) where Ŝ ∈ T (K̂). Following definition of R̂K

T (∂K) given in (7),

x = gK(x̂) < Int(K̃), then x ∈ ∂K̃ or x < P1gT (K)(Ŝ). In the first case, as x ∈ ∂K̃, two elements are flat and then
P1gTx̂(K) is not injective. In the second case, three configurations are possible (see [19]): x̂ belongs to the interior of
a simplex Ŝ which is unique by (H6), x̂ belongs to the common edge of two simplexes or x̂ belongs to the boundary
of K̂. In the first (resp. second) case, three (resp. four) simplexes are created instead of the simplex Ŝ (resp. two
simplexes). We consider the first case, the proof is similar for the second configuration. Let denote Ŝ 1, Ŝ 2 and Ŝ 3 the
simplexes created from x̂ and the three nodes of Ŝ and S 1, S 2 and S 3 their images by P1gTx̂(K). Let us prove there
exist i and k, i , k, such that Int(S i)∩ Int(S k) , ∅. We prove it by contradiction. We assume that Int(S i)∩ Int(S k) = ∅

for each i , k. In that case, ∪3
i=1 S i = S and x = gK(x̂) ∈ S which is absurd. Thus, there exists y ∈ Int(S i) ∩ Int(S k),

i , k, such that y = P1gTx̂(K) (̂yi) = P1gTx̂(K) (̂yk) with ŷi ∈ Ŝ i and ŷk ∈ Ŝ k. Finally, P1gTx̂(K) is not injective as there is
an overlapping area.

The definition of the Rollover Area given by equation (7) is pretty uneasy from a practical point of view as it is
implicit, so we will introduce new sets notedVK

S , to be used instead of RK
T (∂K), such that: RK

T (∂K) ⊂ ∪S∈T (∂K)V
K
S .

Definition 3.5. Let K ∈ T (X), T (K) be its mesh and Ŝ = [âb̂] ∈ T (∂K̂) a boundary segment, where the brackets
mean that a segment is considered. We note Ŝ ′ = g−1

K (P1gT (K)(Ŝ) ∩ K) and n̂ the inward normal of Ŝ pointed toward
K̂. We define the two following quantities.

1. We note n̂a and n̂b, the vectors associated to vertices â and b̂,

n̂a = arg min
û∈

{
n̂, âŷ
‖âŷ‖ where ŷ∈Ŝ ′\{â}

}
 û.âb̂∥∥∥âb̂

∥∥∥
 and n̂b = arg min

û∈
{
n̂, b̂ŷ
‖b̂ŷ‖

where ŷ∈Ŝ ′\{b̂}
}
 û.b̂â∥∥∥b̂â

∥∥∥


2. Let x̂ = (1 − α)â + αb̂ ∈ Ŝ and n̂x = (1 − α)n̂a + αn̂b, where α ∈ [0, 1]. Let ŷ∗ ∈ Ŝ \g−1
K (K̃) be arbitrary, tx̂ = max

{
t, x̂ + tn̂x ∈ ∂K̂

}
, if (ab ∧ agK(ŷ∗)) · (ab ∧ agK(x̂ + tx̂n̂x)) > 0,

tx̂ = max
{{

t, x̂ + tn̂x ∈ K̂, ab ∧ agK(x̂ + t n̂x) = 0
}
∪ {0}

}
, else.

Finally, with those notations, we set

V̂K
S =

{
x̂ + tn̂x, x̂ = (1 − α)â + αb̂ ∈ Ŝ , n̂x = (1 − α)n̂a + αn̂b, α ∈ [0, 1], 0 ≤ t ≤ tx̂

}
(8)

10

Ŝ ′

n̂a

x̂1 + tx̂1
n̂x1

n̂x2

V̂K
S

K̂

ŷ∗x̂1â = â0
Ŝ
â1 x̂2 = x̂2 + tx̂2

n̂x2

n̂b

b̂ = â2

R̂K
S

n̂x1

(a) Case 1: reference cell K̂

a1

x1
y∗S

K

a = a0

x2

gK(x̂1 + tx̂1
n̂x1

)
S ′

V
K
S

b = a2R
K
S

(b) Case 1: cell K

b̂ = â1x̂

n̂x
n̂bn̂a

Ŝ ′
2

Ŝ

ĉ

K̂

V̂K
S

Ŝ ′
1

ŷ∗

x̂ + tx̂n̂x
Â

â = â0

d̂

b̂1b̂0

R̂K
S

(c) Case 2: reference cell K̂

b = a1

y∗

x

S ′
1

S ′
2

S

VK
S

K

a = a0 b0

d c

K̃

gK(x̂ + tx̂n̂x)

A

b1

RK
S

(d) Case 2: cell K

Figure 5: Illustration of the rollover areas and all the notations in two cases.

Note that the first case of tx̂ is well-defined as K̂ is convex and thus there are at most two points on ∂K̂ intersecting
the line issued from x̂ with direction n̂x (they can be equal, thus corresponding t = 0, see for instance when x̂ is the
vertex of K̂ being a triangle). This case is illustrated in figures 5.c and 5.d. Furthermore, the set Ŝ \g−1

K (K̃) used to
choose ŷ∗ can be empty, nevertheless, it means that V̂K

S = Ŝ and naturally tx̂ = 0. The second case of tx̂ is shown in
figures 5.a and 5.b.

Lemma 3.6. Let K ∈ T (X), T (K) be a mesh of K, RK
T (∂K) andVK

S = gK(V̂K
S) given respectively by (7) and (8), then

RK
T (∂K) ⊂ ∪S∈T (∂K)V

K
S

Proof. To prove the result of this lemma, we introduce for each edge S a set RK
S , which is used to identify the

connected components of RK
T (∂K) and have a decomposition following the edges. Then, we prove that these sets RK

S

verify RK
T (∂K) ⊂ ∪S∈T (∂K)R

K
S . Finally, to prove the result, we show that for each S , RK

S ⊂ V
K
S .

1. Let Ŝ = [âb̂] ∈ T (∂K̂) be a boundary segment and S = gK(Ŝ). We define the points {ai}i=0,N as the extremities
of the connected components of gK(Ŝ)∩P1gT (K)(Ŝ). The number of such points is therefore limited and defined
such that a0 = a, aN = b, ∃ βi ∈ [0, 1], ai = (1 − βi)a + βib = gK(âi) where the reals βi are sorted in ascending
order. Now, we define Σ̂K

S = ∪N−1
i=0 Σ̂K

S ,i, where

Σ̂K
S ,i =

{
g−1

K ([aiai+1]) ∪ [âiâi+1], if [aiai+1] ⊂ K,
g−1

K
(
[aiai+1] ∩ K

)
∪ Â ∪ [âiâi+1], else,

11

where Â is an arc or an union of arcs such that Â ⊂ ∂K̂ (see figure 5). Each arc of Â is composed of arcs or
segments [b̂ jb̂ j+1] such that b j = gK(b̂ j) ∈ (∂K\S) ∩ P1gT (K)(Ŝ), where the points {b̂ j} are sorted in ascending
order (in the same way than {âi}). To simplify the following, we will note [b̂ jb̂ j+1] even if it is not a segment.
Hence, each such Σ̂K

S ,i is closed.
We note B(C) the bounded connected components of the complement of C in X and we introduce

R̂K
S =

(
B(̂ΣK

S) ∪ Σ̂K
S

)
\g−1

K

(
Int(K̃)

)
(9)

2. We want to show that RK
T (∂K) ⊂ ∪S∈T (∂K)R

K
S . First, let notice that the boundary of the Rollover Area, ∂RK

T (∂K) =

∂
(
K\Int(K̃)

)
can be decomposed as

∂RK
T (∂K) = ∂

(
K ∩ Int(K̃)C

)
=

(
∂K ∩ Int(K̃)C

)
∪

(
K ∩ ∂K̃

)
= ∪

Ŝ∈T (∂K̂)

((
gK(Ŝ)\Int(K̃)

)
∪

(
P1gT (K)(Ŝ) ∩ K

))
.

(10)
Then, by construction of each ΣK

S = gK (̂ΣK
S) and equation (10), ∂RK

T (∂K) ⊂ ∪S∈T (∂K)Σ
K
S . Let now prove that

Int(R̂K
T (∂K)) ⊂ ∪S∈T (∂K)R

K
S . We decompose R̂K

T (∂K) as R̂K
T (∂K) = ∪ĈĈ where Ĉ are the connected components

of R̂K
T (∂K). We now consider any of this connected component Ĉ such that Int(Ĉ) , ∅ (otherwise Ĉ ⊂ ∂K̂ and

the result is immediate). Then, ∃ Ŝ i = [âiâi+1] ⊂ Ŝ ⊂ ∂K̂, Int1D(Ŝ i) ∩ Ĉ , ∅, where Int1D(Ŝ i) denotes the 1D
interior of the segment Ŝ i, and such that gK(Ŝ i) , P1gT (K)(Ŝ i). Three cases could a priori occur.

• If Ĉ ⊂ B(̂ΣK
S ,i) ∪ Σ̂K

S ,i, then Ĉ ⊂ ∪S∈T (∂K)R̂
K
S .

• The second case would be that Int
(
Ĉ ∩

(
B(̂ΣK

S ,i) ∪ Σ̂K
S ,i

))
= ∅, then Ĉ ∩ Int(K̂) = ∅ or Σ̂K

S ,i ∩ Int(K̂) = ∅.

However, as Int(Ĉ) , ∅, Ĉ ∩ Int(K̂) = ∅ is impossible and as gK(Ŝ i) , P1gT (K)(Ŝ i), Σ̂K
S ,i ∩ Int(K̂) = ∅ is

impossible too. Hence, Int
(
Ĉ ∩

(
B(̂ΣK

S ,i) ∪ Σ̂K
S ,i

))
, ∅.

• The third case would be that Int
(
Ĉ ∩

(
B(̂ΣK

S ,i) ∪ Σ̂K
S ,i

))
, ∅ but such that Ĉ 1 B(̂ΣK

S ,i). In that case, there

exists a connected component Ĉ′ ⊂
(
Ĉ ∩ B(̂ΣK

S ,i))
)

such that its boundary ∂Ĉ′ satisfies ∂Ĉ′ ⊂ ∂R̂K
T (∂K).

Thus, Ĉ′ is a connected component of R̂K
∂K strictly included in Ĉ: this is impossible.

Hence, any connected component Ĉ ⊂ R̂K
T (∂K) satisfies Ĉ ⊂ ∪S∈T (∂K)R̂

K
S and therefore RK

T (∂K) ⊂ ∪S∈T (∂K)R
K
S .

Ŝ ′

K̂

b̂

n̂a

V̂K
S

R̂K
S

Ŝx̂ŷâ

n̂b

ẑ

n̂x

ÎK
S

(a) Case 1

b̂

n̂b

Ŝ

K̂

b̂1b̂0 ŷ

x̂

ẑ

R̂K
S

Î
K
S

V̂K
S

â

n̂a n̂x

(b) Case 2

Figure 6: Illustration of the area ÎK
S in two cases

3. The last step of the proof is to show that for any S ⊂ ∂K, RK
S ⊂ V

K
S . Let ẑ ∈ R̂K

S , to prove that ẑ ∈ V̂K
S ,

we show first that ẑ can be written as ẑ = x̂ + t̂n̂x where t̂ ≥ 0, x̂ ∈ Ŝ = [âb̂], then we show that t̂ ≤ tx̂. We

12

introduce ϕ(α, t̂) :7→ (1 − α)(â + t̂n̂a) + α(b̂ + t̂n̂b) and the set ÎK
S = ϕ([0, 1] × R+) ∩ K̂ which is a convex

set. Let prove that ẑ ∈ ÎK
S . It is obvious that t̂ ≥ 0, otherwise for any x̂ ∈ Ŝ , x̂ + t̂n̂x < K̂. Let prove that

n̂a = arg minû∈
{
n̂, âŷ
‖âŷ‖ where ŷ∈∂R̂K

S

} (û.âb̂
‖âb̂‖

)
. Let consider ŷ ∈ ∂R̂K

S , then there are three possibilities, ŷ ∈ Ŝ ′, ŷ ∈ Ŝ or

ŷ ∈ Â (see definition of Σ̂K
S ,i).

If ŷ ∈ Ŝ , âŷ.âb̂ ≥ 0, then
(

âŷ.âb̂
‖âŷ‖‖âb̂‖

)
≥ 0 ≥ minû∈

{
n̂, âŷ
‖âŷ‖ where ŷ∈Ŝ ′\{â}

} (û.âb̂
‖âb̂‖

)
as n̂.âb̂ = 0. If ŷ ∈ Â, there exists two

points b̂ j, b̂ j+1 which are the extremities of Â, and ŷ lies on ∂K̂ between b̂ j and b̂ j+1, such that
∣∣∣∣∣ ̂̂b jâŷ

∣∣∣∣∣ ≤ ∣∣∣∣∣ ˆ̂b jâb̂ j+1

∣∣∣∣∣
and

∣∣∣∣∣ ˆ̂yâb̂ j+1

∣∣∣∣∣ ≤ ∣∣∣∣∣ ˆ̂b jâb̂ j+1

∣∣∣∣∣ (see figure 6) where
∣∣∣∣b̂ac

∣∣∣∣ denotes the absolute value of the angle from the point a.

These two inequalities show that arg minŷ∈Â

(
âŷ.âb̂
‖âŷ‖‖âb̂‖

)
= arg minŷ∈{b̂ j,b̂ j+1}

(
âŷ.âb̂
‖âŷ‖‖âb̂‖

)
. However, as b̂ j and b̂ j+1

lie in Ŝ ′, arg minû∈
{
n̂, âŷ
‖âŷ‖ where ŷ∈∂R̂K

S

} (û.âb̂
‖âb̂‖

)
= n̂a. The same result holds for n̂b. Then, the definition of n̂a as an

argmin on Ŝ ′ given in definition 3.5 is the same than the one evaluated in the boundary ∂R̂K
S . Furthermore, by

continuity of the function minimized in a closed set, the argmin of this function on R̂K
S lies in its boundary too.

Thus, ẑ ∈ ÎK
S and ẑ can be expressed as ẑ = x̂ + tẑn̂x where x̂ ∈ Ŝ and tẑ ≥ 0.

To end the proof, we need to show that tẑ ≤ tx̂. Two cases have to be considered: ẑ ∈ ∂R̂K
S and ẑ ∈ Int(R̂K

S). If
ẑ ∈ ∂R̂K

S , then there are three possibilities: ẑ ∈ Ŝ , ẑ ∈ Â or ẑ ∈ Ŝ ′. If ẑ ∈ Ŝ , then tẑ = 0 and tẑ ≤ tx̂. If ẑ ∈ Â,
tẑ = tx̂ as tx̂ is defined by its first case in definition 3.5, and tx̂ is the upper bound (otherwise the point is outside
K̂). If ẑ ∈ g−1

K (P1gT (K) ∩ K), then ab ∧ agK(x̂ + tẑn̂x) = 0 and tẑ ∈
{
t, x̂ + tn̂x ∈ K̂, ab ∧ agK(x̂ + t n̂x) = 0

}
and

tẑ ≤ tx̂. Finally, in all cases if ẑ ∈ ∂R̂K
S , tẑ ≤ tx̂. Let now consider the case ẑ ∈ Int(R̂K

S). In this case, following
the line from x̂ and guided by n̂x, there exists ŷ = x̂ + tŷn̂x such that ŷ ∈ ∂R̂K

S and tŷ ≥ tẑ. Thanks to the previous
case, we know that tŷ ≤ tx̂, then tẑ ≤ tx̂. Finally, ẑ ∈ V̂K

S .

3.3.2. Definition of a specific estimate
As we now have a characterization of the Rollover Area, we want to control Hausdorff distance not only on the

edge considered but on R̂K
S . Then, for any K ∈ T (X), Ŝ ⊂ Ê, Ê ∈ T (∂K̂), we define the following application:

ΓK
S : (f K

num, f S̃
vis) ∈ C0(K,Y) ×C0(S̃ ,Y)

7→ sup
x̂∈Ŝ , t̂∈[0,tx̂]

max
(
α
∥∥∥∥gK(x̂ + t̂ n̂x) −G(f K

num, f S̃
vis; x̂, t̂)

∥∥∥∥X , β ∥∥∥∥(f K
num ◦ gK

)
(x̂ + t̂ n̂x) − F(f K

num, f S̃
vis; x̂, t̂)

∥∥∥∥Y)
,

(11)

where each component of G noted Gi, (i = 1, . . . , 3) is defined as:

Gi(f K
num, f S̃

vis; x̂, t̂) = arg max
Gl

i, l=1,...,4

(∣∣∣∣(gK)i(x̂ + t̂ n̂x) −Gl
i(f K

num, f S̃
vis; x̂, t̂)

∣∣∣∣), i = 1, . . . , 3.

Each function Gl
i is given by

Gl
i(f K

num, f S̃
vis; x̂, t̂) = P1gT (E)(x̂) + t̂Jl

gK
n̂x, l = 1, . . . , 4.

and

J1
gK

=

 ∂1gmax
1 ∂2gmax

1
∂1gmax

2 ∂2gmax
2

∂1gmax
3 ∂2gmax

3

 , J2
gK

=

 ∂1gmax
1 ∂2gmin

1
∂1gmax

2 ∂2gmin
2

∂1gmax
3 ∂2gmin

3

 , J3
gK

=

 ∂1gmin
1 ∂2gmax

1
∂1gmin

2 ∂2gmax
2

∂1gmin
3 ∂2gmax

3

 , J4
gK

=

 ∂1gmin
1 ∂2gmin

1
∂1gmin

2 ∂2gmin
2

∂1gmin
3 ∂2gmin

3

 ,
where ∂ jgmax

i (resp. ∂ jgmin
i) denotes the maximum (resp. minimum) of the partial derivative of the i-th component of

gK in the j-th direction. Similarly, we define the functions F and F l (l = 1, . . . , 4) by substituting gK by f K
num ◦ gK and

P1gT (E) by f S̃
vis ◦ P1gT (E) and each Jl

fnum◦gK
is defined in the same way than Jl

gK
. Then, we prove next result.

13

Proposition 3.7. With previous notations, let K ∈ T (X) and Ŝ ∈ T (∂K̂). Then,

∀ ẑ ∈ V̂K
S , δT (K)

(
f K
num, f K̃

vis; ẑ
)
≤ ΓK

S

(
f K
num, f S̃

vis

)
,

Proof. We just need to prove that for any mesh T (K) of K, such that T (K)
|S̃ = S̃ , G satisfies for all ẑ =

x̂ + t̂ n̂x ∈ V̂
K
S ,

∥∥∥gK(ẑ) − P1gT (K)(ẑ)
∥∥∥X ≤ ∥∥∥∥gK(ẑ) −G(f K

num, f S̃
vis; x̂, t̂)

∥∥∥∥X. Then, with similar arguments the follow-

ing result will be also true for any mesh, for all ẑ = x̂ + t̂ n̂x ∈ V̂
K
S ,

∥∥∥∥(f K
num ◦ gK

)
(ẑ) −

(
f K̃
vis ◦ P1gT (K)

)
(ẑ)

∥∥∥∥Y ≤∥∥∥∥(f K
num ◦ gK

)
(ẑ) − F(f K

num, f S̃
vis; x̂, t̂)

∥∥∥∥Y.

For ẑ = x̂ + t̂ n̂x ∈ V̂
K
S , P1gT (K)(ẑ) can be expressed as:

P1gT (K)(ẑ) = P1gT (K)(x̂ + t̂ n̂x) = P1gT (E)(x̂) + t̂JP1gT (K) (x̂)n̂x,

where JP1gT (K) denotes the jacobian associated to P1gT (K). Note that P1gT (E)(x̂) depends only on the mesh of the edge
E. Furthermore, for each component:

min
l=1,...,4

(
Jl

gK
n̂x

)
i
≤

(
JP1gT (K) (x̂)n̂x

)
i
≤ max

l=1,...,4

(
Jl

gK
n̂x

)
i
, i = 1, . . . , 3,

and ∣∣∣(gK)i(ẑ) − (P1gT (K))i(ẑ)
∣∣∣ ≤ ∣∣∣∣(gK)i(ẑ) −G(f K

num, f S̃
vis; x̂, t̂)

∣∣∣∣ , i = 1, . . . , 3,

which gives the result.

From proposition 3.7, for any K ∈ T (X), E ∈ E(K), its mesh T (E) and Ŝ ∈ T (Ê), an a posteriori estimate ΓK
S is

constructed such that for any mesh T (K) satisfying T (K)
|S̃ = S̃ :

∀ ẑ ∈ V̂K
S , δT (K)

(
f K
num, f K̃

vis; ẑ
)
≤ ΓK

S

(
f K
num, f S̃

vis

)
.

From lemma 3.6, we know that the Rollover Area RK
T (∂K) is included in the union of all VK

S . Thus, using above
estimate, we can control, in this area, the accuracy of any further 2D mesh that will be generated, whereas it is not
constructed yet, by 1D evaluations over each element of the boundary mesh.

4. Algorithm

This section is devoted to the presentation of the algorithm which is summed up in algorithm 1. The organization
of the section follows the steps of the construction of fvis.

4.1. Computation of the extrema
Several extrema have to be computed: for the function fnum, its derivatives, the geometrical transformation gK

associated to each mesh cell K, its jacobian and its hessian. All these quantities are known analytically. These
extrema are used either to compute the weights α and β used in the function d in Hausdorff distance or to evaluate
tx̂ defined for the Rollover Area. To find these extrema, a modification of a global optimization algorithm known as
DIRECT is used. DIRECT, was initially developed by Jones et al. (see [20]) to solve global optimization problems.
The algorithm is deterministic and samples the domain by adding points and decides where to search depending on the
information given by tested points. DIRECT, acronym of dividing rectangles, is developed for hyperrectangles. For
our problem, simplexes are used instead of hyperrectangles which means a kind modification of the original algorithm
(see [21]). The algorithm is an usual branch and bound one. For surfaces, a triangle is subdivided into four triangles
by inserting the middle of edges (see [22]). The value of each function on any triangle is evaluated at its barycentre.
Two strategies are used simultaneously to select triangles to subdivide. First, candidates are taken among triangles
with the biggest error : it ensures a local search. Secondly, triangles with the lowest levels of subdivision (which have
the biggest areas) are subdivided : it ensures a global search (see figure 7). In our algorithm, only one DIRECT is used
to find all the extrema needed at once: all the constrains of search are cumulated which allow to be computationally
less expansive.

14

Algorithm 1: Construction of fvis

Input: T (X), fnum, ε
Output: fvis

1. Computation of the extrema of the functions, the geometry, their gradients and the weights α and β.
2. Decomposition of the boundary: 2D→ 1D.
3. Mesh of the elements of T̃1D:
for each edge E ∈ T̃1D(X) do

Computation of ΓT (E).
while ΓT (E) > ε do

Refinement of T (Ê) and update of ΓT (E).
end

end
4. Mesh of the elements of T̃2D:
for each element K ∈ T̃2D(X) do

Construction of an initial mesh T (K̂) from meshes of the edges Ê ∈ E(K̂).
Computation of ∆T (K).
while ∆T (K) > ε do

Refinement of T (K̂) and update of ∆T (K).
end

end
5. Generation of the output.

(a) Initial triangle (b) Step 1 (c) Step 2 (d) Step 3

Figure 7: Step by step DIRECT method

4.2. Decomposition of the boundary

The decomposition of the boundary of the elements in edges is primordial because it permits to fulfil (O3) as
explained in proposition 3.1. Then, the mesh of all the elements of T̃1D has to be done once for all. This is the
third step of algorithm 1. However, as any edge E can belong to multiple 2D cells, several accuracy constraints are
formulated. Indeed, for each element K whose boundary contains S , we ask to verify ΓK

S ≤ ε. Note that this definition
of ΓK

S depends on the trace of f K
num. The latter being the local definition of fnum on K, these traces can thus be different

from a cell to an adjacent one. Then, to take into account all these contributions, we introduce an estimate ΓT (E)
defined as

ΓT (E) = max
S∈T (E)

ΓS = max
S∈T (E)

max
{K,S∈T (∂K)}

ΓK
S .

This results in the creation of a list of connected functions on E including any pure 1D function supported on E (when
E ∈ T1D) and traces of 2D functions whose boundary of its support contains E (when E ∈ T̃1D). When we consider
pure 1D function or when we a priori know that no Rollover Area will occur (in the case of straight edges), ΓK

S is
replaced by ∆K

S defined as:

∆K
S : (f , f̃) ∈ C0(S ,Y) ×C0(S̃ ,Y)

7→ sup
x̂∈Ŝ

max
(
α
∥∥∥gE(x̂) − P1gT (E)(x̂)

∥∥∥X , β ∥∥∥∥(f ◦ gE) (x̂) −
(

f̃ ◦ P1gT (E)

)
(x̂)

∥∥∥∥Y) , (12)

15

When equation (12) is used with f (resp. f̃) being the trace of a given 2D function f K
num (resp. f K̃

vis) on E, gE (resp.
P1gT (E)) thus stands for the restriction of gK (resp. P1gT (K)) to E.

4.3. Mesh of the elements of T̃1D

The mesh of the elements of T̃1D follows a Bowyer-Watson algorithm (see [23, 24, 25]). It is an adaptive remeshing
method guided by an a posteriori estimate. As presented in the previous section, in order to obtain a unique mesh
of an element E of T̃1D, the estimate considered must be the maximum of all the accuracy constraints on E. Each
constraint comes from a connected function on E for which either ∆K

S or ΓK
S has to be evaluated.

In the case of pure 1D function or when we know that no Rollover Area will appear, we compute ∆K
S which is only

supported on S . Thus, this optimization problem (equation (12)) is straightforwardly solved by DIRECT method 1D.
In the other cases, each function to be treated is the trace of a function f K

num defined on an element K ∈ T2D. Thus,
the estimate ΓK

S given by equation (11) is used. In this formulation, we need to perform an optimization on a subset
V̂K

S of K̂. The difficulty lies in the fact that V̂K
S itself is implicitly defined by another optimization problem. Then, the

use of ΓK
S should be complicated and expansive. To bypass this difficulty, we start replacing, with help of a mapping

given hereafter, this not explicit domain V̂K
S by an arbitrary shape V̂0 more suitable for optimization. We choose

V̂0 as an isosceles triangle whose vertices are A(0, 0), B(1, 0),C(0.5, 0.5). Hence, a point is refereed in the isosceles
triangle by its coordinates (α, t) with:

α ∈ [0, 1], t ∈
{

[0, α] ifα ≤ 0.5,
[0, 1 − α] else.

A point ẑ ∈ V̂K
S can be written as ẑ = x̂ + t̂ n̂x where x̂ ∈ Ŝ for some Ŝ ∈ T (Ê) whose extremities are noted â and b̂.

Then, the bijection ψ from V̂0 onto V̂K
S is defined by:

ψ : (α, t) 7→ ẑ = â + αâb̂ + t̂ n̂ where t̂ =

{ t
α

tx̂ if 0 ≤ α ≤ 0.5,
t

1−α tx̂ else.

With this new parameterization, DIRECT algorithm can be used as V̂0 is a simplex. When evaluating the estimate
ΓK

S , we obtain the test point ẑ ∈ V̂K
S by mean of ψ. Thus, for the point x̂ = (1 − α)â + αb̂ ∈ Ŝ , we have to know the

value of tx̂ which is obtained by solving an optimization problem with help of a projected gradient method. However,
the combination of DIRECT and the specific shape of V̂0 allow to drastically limit the number of different values of
tx̂ evaluated as shown hereafter.

As DIRECT is a subdivision algorithm, we introduce a numbering of the vertices in the following algorithm.

Algorithm 2: Numbering of the vertices in DIRECT
Input: m the maximum level of DIRECT
1. Initialization of the indices associated to the vertices of the triangle V̂0: A(iA = 0), B(iB = 2m+1) and
C(iC = 2m).

2. When a triangle of vertices V1(iV1), V2(iV2) and V3(iV3) is refined, we note V4, V5 and V6 the center of the
segments [V1V2], [V1V3] and [V2V3], thus generating next level triangles V1V4V5, V2V4V6, V3V5V6 and
V4V5V6. The indices associated to the new vertices are: iV4 =

iV1 +iV2
2 , iV5 =

iV1 +iV3
2 and iV6 =

iV2 +iV3
2 .

Algorithm 2 gives an easy way to have the abscissa of a center of gravity of a triangle, as presented in next lemma,
which is the point where each estimate ΓK

S is evaluated by DIRECT method.

Lemma 4.1. Let m be the maximum level of DIRECT method and αm
k = k/2m+1 for k ∈ ~0, 2m+1�. Let T be a triangle

of arbitrary level i whose vertices are noted V1(iV1), V2(iV2) and V3(iV3). We note G the center of gravity of this triangle
T and αG its abscissa. Then,

1. For each vertex V(iV), its index iV is an integer and its abscissa αV is given by αV = αm
iV

,
2. The abscissa of G is given by αG = αm

iG
where iG = (iV1 + iV2 + iV3)/3.

16

Proof. Let V(iV) be a vertex of a triangle at a level i of DIRECT. To prove that its index iv is an integer, we see
by recurrence that iV = 2m−ik, with k ∈ ~0, 2i+1�. The key point is to notice that if V is created at level i then it is
the isobarycentre of two vertices V1(iV1) and V2(iV2) of level i − 1. Thus, we have iV =

iV1 +iV2
2 = 2m−i(k1 + k2) with

k1 + k2 ∈ ~0, 2i+1�. In a very similar way, we observe that αV =
αV1 +αV2

2 and αm
iV

=
αm

iV1
+αm

iV2
2 which involves αV = αm

iV
.

To prove the second result, we notice that an isosceles triangle whose base is parallel to (AB) is subdivided
into 4 isosceles triangles whose each base is also parallel to (AB). Then, the abscissa of G is the same as the ab-
scissa of the opposite vertex (for instance V3) to the base (V1V2). Thus, αV3 =

αV1 +αV2
2 , and from the first result,

iV3 = 2m+1αV3 = 2m+1(
αV1 +αV2

2) =
iV1 +iV2

2 . Taking iG =
iV1 +iV2 +iV3

3 , we have iG =
iV1 +iV2

2 = iV3 which ends the proof.

To summarize, the computation of the estimate ΓK
S is performed in the following way. First, we initiate DIRECT

method on V̂0. Each step of DIRECT needs to evaluate ΓK
S ◦ ψ at the center of gravity with coordinates (α, t) of

a triangle of V̂0. However, to calculate ψ(α, t), we need to know tx̂ with x̂ = (1 − α)â + αb̂. But, with help of
algorithm 2, according to lemma 4.1, we have seen that the centers of gravity are sharing a small group of x̂ (identified
by their abscissas αm

k). As a consequence, the maximum number of different tx̂ to evaluate is 2m+1 − 1, with respect
to 4m centers of gravity generated by m level DIRECT method on a triangle. Thus, the complexity goes from O(N) to
O(
√

N).
Note that the vector n̂a (and n̂b) introduced to define the Rollover Area in section 3 a priori requires to know

the inverse transformation g−1
K . When it is difficult to evaluate, we simplify the expression of the term âg−1

K (y) by

introducing a limited development of g−1
K around a and using the identity Jg−1

K
(a) =

(
JgK (â)

)−1
, we obtain the following

approximation:
âb̂.âŷ∥∥∥âb̂
∥∥∥ . ‖âŷ‖

≈
âb̂.J−1

gK
(â)(ab)∥∥∥âb̂

∥∥∥ . ∥∥∥J−1
gK

(â)(ab)
∥∥∥ which is accurate enough when ab is small and does not need to

know g−1
K .

The refinement of an element Ŝ ∈ T (Ê) is done by splitting Ŝ around a point realizing the maximum of the
estimate. The abscissa of this point can be directly straightforwardly given by algorithm 2.

4.4. Mesh of the elements of T̃2D

The mesh of an element of T̃2D starts with the recovery of all the points on the boundary (from the meshes of the
boundary). Then, a first mesh T (K̂) of an element K̂ is created with help of all these points. The strategy is similar
than for elements of T̃1D. A Bowyer-Watson algorithm is used to refine this mesh. The estimate ∆T (K) is evaluated
with DIRECT method on each simplex. The choice of the point added is given by the criterion (C):

(C) : The point x̂ added to the representation mesh T (K̂) is one satisfying

x̂ = arg max
ŷ∈K̂

δT (K)

(
f K
num, f K̃

vis; ŷ
)
.

4.5. Generation of the output

The last step of the algorithm is the generation of the output at the specific format of a visualization software (for
instance Gmsh [10], Paraview [26], VisIt [27]). For each element K ∈ T (X), a mesh T (K̂) has been built. Then,
following lemma 2.1, a mesh T (K) is constructed based on a linear mapping. Finally, the values of f K

num are associated
with each point of T (K). On a common edge to two elements, two nodes are created (one for each element) and
their values can be different (if fnum is not continuous at this interface). It allows to observe numerical jumps which is
pertinent for Discontinuous Galerkin method for instance (this duplication of the nodes was also used in [28]).

5. Convergence

We summarize in the following theorem all the hypotheses and properties that led to the algorithm proposed in
section 4.

17

Theorem 5.1. Let ε be a prescribed tolerance, X = R2 and fnum be a suitable numerical solution (following hypothe-
ses (H1) to (H5)). If algorithm 1 described in section 4 has converged then fvis satisfies objectives (O1)-(O2)-(O3).

Proof. Objective (O1) is satisfied by construction as simplexes are used: each element K ∈ T (X) is approximated
by K̃ = ∪S∈T (K) S and affine functions are defined on these simplexes.

Several ingredients are necessary to verify (O2): for each element K ∈ T (X), f K̃
vis has to be a function on K̃

(otherwise Hausdorff distance is not well-defined) and the threshold ε must be an upper-bound of the estimate ∆T (K).
Proposition 2.3 shows that f K̃

vis is a function on K̃ if and only if P1gT (K) is a bijective function. To ensure that P1gT (K)
remains bijective at each step of the algorithm, an estimate ΓK

S is used. Proposition 3.7 shows that this estimate in the
Rollover Area is an upper-bound of any estimate ∆T (K) whose mesh is constructed from the mesh of the boundary. As
the point which is selected and added in the representation mesh is the one where the error is maximum (criterion (C)),
if the estimate ΓK

S is bounded by the tolerance, no point will be added in the Rollover Area. Then, proposition 3.4
shows that this ensures that no exterior loss of bijectivity is possible. Finally, Hausdorff distance is well-defined
at each step of the algorithm and thus can be controlled by the estimate ∆T (K). Proposition 3.3 proves that (O2) is
satisfied if the tolerance is an upper-bound of the estimate ∆T (K) for each element K.

Objective (O3) is fulfiled by proposition 3.1.

6. Numerical examples

Several numerical examples are presented to demonstrate the potential of the method. The first example deals
with the rendering of basis functions. Despite this case should be easy, it must be analyzed cautiously. The second
numerical example is more realistic and is about the propagation of an acoustic wave. Vectorial finite elements are
used to solve the problem on a hybrid mesh. The last example focus on an elasticity problem solved by discontinuous
Galerkin method.

6.1. Rendering tests with Gauss-Lobatto basis functions

Basis functions are the keystone of high order methods as the numerical solutions are constructed from basis
functions and degrees of freedom. In this paragraph, the rendering of some Gauss-Lobatto basis functions is done.
These functions are classic in high order finite elements and discontinuous Galerkin methods, for example in spectral
finite elements methods for wave propagation [3]. First, we want to compare the rendering given when the process of
construction of the representation is based on L∞-norm and L2-norm. Then, in the case of curved elements, we show
why the use of the specific estimate introduced in section 3.3 is crucial. Finally, the costs of the adaptive method in
comparison with a uniform refinement are presented.

Figure 8 compares the representation given by the adaptive method when the the construction is guided following
L2-norm (figures 8.b and 8.e) and L∞-norm (figures 8.c and 8.f) of two Gauss-Lobatto basis functions of order r = 3
defined on a quadrangle. In this example, we choose the unit square, the representation of its geometry is therefore
trivial. Gauss Lobatto basis functions for this cell are Lagrange interpolating polynomial, ϕGLr

i j , i, j = 1, . . . , r + 1 (r
denotes the polynomial order), defined from the Gauss Lobatto points ξi j = (ξi, ξ j) where ξi are the Gauss Lobatto
points defined on the unit segment [29]. Figure 8.a is the rendering reference of the function ϕGL3

22 (the representation
mesh is very fine and constructed as a regular subdivision of the element). Figure 8.b is the representation given by the
adaptive strategy when the construction is guided following the L2-norm under the tolerance 1% (the representation
mesh is shown in white). One sees that the rendering is very far from the reference even if the tolerance is quite fine.
Figure 8.c is obtained by our approach (with L∞-norm) with the same tolerance of 1%. The difference in comparison
to the previous one is the pointwise control. In the second case (figures 8.d, 8.e and 8.f), the function is the sum of
two Gauss Lobatto basis functions: ϕGL3

22 + 0.05 ϕGL3
33 . This case is close to the previous one but with the addition of a

second basis function whose amplitude is 5% of the first one. This function is shown in figure 8.d and the rendering
given by the L2-norm (resp. L∞-norm) is done in figure 8.e (resp. 8.f) at the same tolerance (1 %). When L2-norm is
used, the additional basis function is not "detected" and the rendering is almost similar to the first case. This additional
basis function should be detected as the tolerance is lower than the rate of amplitude (5%) which means than it should
not be neglected. A significant part of the information is therefore lost. The control by the L∞-norm enables to avoid

18

this kind of visualization artifact. Finally, a plot over one diagonal of the quadrangle is performed in figure 8.g for the
six representations. The extremities of the line are two vertices of the square: (0,0) and (1,1). This extraction confirms
that the rendering given by the L2-norm does not detect the second basis function. This is particularly annoying as the
interpolating point of this basis function lies in this line.

(a) ϕGL3
22 (reference) (b) ϕGL3

22 (L2-norm) (c) ϕGL3
22 (L∞-norm)

(d) ϕGL3
22 + 0.05 ϕGL3

33 (reference) (e) ϕGL3
22 + 0.05 ϕGL3

33 (L2-norm) (f) ϕGL3
22 + 0.05 ϕGL3

33 (L∞-norm)

(g) A plot over a diagonal of the square for the 6 previous functions

Figure 8: Representation of Gauss Lobatto basis functions of order 3 on a quadrangle (accuracy 1%)

The second example is a Gauss-Lobatto basis function of order 6 defined on a quadrangle Q2 (of order 2, defined
from 9 nodes): ϕGL6

32 . In figure 9, the two estimates ∆K
S (figures 9.a and 9.c) and ΓK

S (figures 9.b and 9.d) given in
section 3.3 are compared. The representation mesh is shown and the mesh of the boundary (thick black line). As
expected, when the estimate ∆K

S is used, the construction of the boundary mesh takes into consideration only the trace
of the function. The consequence is that points can be added in the Rollover area (see section 3.3.1) and there is an
overlapping. In figure 9.c, one can see that some points are outside the mesh boundary (thick line). However, when ΓK

S
is used, the mesh of the boundary is finer than previously as the vicinity of the boundary is taking into consideration.
Thus, there is no overlapping and no loss of bijectivty. Note that the number of elements is similar in both cases and
even lower with ΓK

S (216 triangles) than with ∆K
S (221 triangles).

Figure 10 compares the performance for adaptive and uniform methods in the two cases presented previously. As

19

(a) Representation with ∆K
S (b) Representation with ΓK

S

(c) Zoom of (a) (d) Zoom of (c)

Figure 9: Representation at 3.5% with the two estimates ∆K
S (a and c) and ΓK

S (b and d) of a Gauss-Lobatto basis function Q6 on quadrangle Q2

expected, the use of the adaptive method allows, for a given tolerance, to have much less elements than with a regular
refinement. Indeed, a uniform remeshing generally implies many useless subdivisions due to the different scales of
the function variations. This is particularly true when the order of the function (or the element) increases. Hence, in
the second case, the differences between adaptive and regular are even greater.

(a) Basis function Q3 on quadrangle Q1 (b) Basis function Q6 on quadrangle Q2

Figure 10: Comparison of the accuracy given from adaptive and uniform methods for two Gauss-Lobatto basis function

20

6.2. Acoustic wave equation
The second numerical example focuses on the propagation of an acoustic wave. We are treating a displacement-

based transient acoustic equation. Thus, the system we are going to solve is the following:
ρ(x) ∂

2u
∂t2 (x, t) − ∇ (µ(x) ∇ · u(x, t)) = f (x, t), in Ω × [0,T]

u(x, t) · n = 0, on Γ × [0,T]
u(x, 0) = 0, in Ω
∂u
∂t (x, 0) = 0, in Ω

(13)

where Ω is the bounded domain, Γ its boundary, n the outward normal and T the final time. Classical notations are
introduced: ∇ denotes the gradient and ∇· the divergence. The displacement vector is noted u, ρ and µ are parameters
which depend on the medium they belong to. The problem is solved by finite elements method. Raviart-Thomas
elements are used (see hereafter) on an hybrid mesh: curved triangles, of order 2 (ie. defined from 6 points), are used
to have a good approximation of the geometry, and quadrangles are used where a Cartesian mesh is possible. The
displacement field is approximated in the following finite element space

Vk
h = {vh ∈ H(div,Ω) : ∀K ∈ T (X),P−1

K vh|K ◦ gK ∈ RT k(K̂)}

where k is the order of the Raviart-Thomas elements used, PK denotes the Piola transformation [30], PK =
JgK
|JgK |

with
JgK the jacobian matrix of the geometrical transformation and |JgK | its determinant. Depending on the nature of the
elements, two cases have to be considered. For the triangles, gK ∈ P2(K̂)2, the triangles are thus defined from 6 nodes
and RT k(K̂) = Pk(K̂)2 + xPk(K̂) as in [30]. For the quadrangles, the reference cell K̂ is the unit square, gK ∈ Q1(K̂)2,
RT k(K̂) = Qk+1,k(K̂) × Qk,k+1(K̂) as in [3] where Ql,m(K̂) = Pl([0, 1])

⊗
Pm([0, 1]).

(a) Component over x (b) Component over y

(c) Zoom on the dotted line box of (a) (d) Zoom on the dotted line box of (b)

Figure 11: Representation of the solution of the propagation of an acoustic wave at a final time T=5

The computational mesh used for figure 11 is composed of 64 quadrangles and 306 triangles, the order chosen is
k = 5. The domain is constituted of two medium: one medium is composed of triangles, the second of quadrangles.
For the triangles, the parameters are constant: ρ1 = 4 and µ1 = 1. For the quadrangles, ρ2 = 1 and µ2 = 1. As ρ1 , ρ2,
there is a physical discontinuity due to a material change at the interface between the triangles and the quadrangles.

21

Two black straight lines show this interface in figure 11. As this interface is parallel to y-axis, the x-component of the
solution should be continuous whereas the y-component of the solution should be discontinuous. Note that a unique
representation mesh is built: each component of the solution has therefore the same representation mesh. Figures
11.c and 11.d are zooms of an area of interest. Each edge (between two elements) has a unique representation mesh.
It allows to represent currently the physical gaps (y-component) and the continuities (x-component), as asked by
objective (O3).

6.3. Elasticity problem solved by discontinuous Galerkin method

The last example is devoted to the propagation of an elastic wave in a 3 layered medium computed by a Discontin-
uous Galerkin method [31] constructed similarly than in part 6.1 but by using Gauss points instead of Gauss Lobatto
points. The order of the basis functions used is 7. The computational mesh is a Cartesian mesh of 24 × 24 cells.
Figure 12 shows some representations of the numerical solution at the final time. Figure 12.a shows the representation
given by the adaptive method under the tolerance 0.5 %. The representation mesh (white) is plotted, 52108 elements
constitute the representation, which involves an average of 90 elements by cell. A zoom on the dotted line box is done
in figure 12.c. As DG method was used to solve the problem, one sees gaps between each elements of the compu-
tational mesh (see figure 12.c). As asked by objective (O3), numerical jumps are well-represented. Figure 12.b is a
similar zoom but an uniform remeshing of 7 × 7 (corresponding to 98 triangles) of each computational cell is done
to obtain this representation. This subdivision corresponds to an usual remeshing where the number of representation
points is equal to the number of degrees of freedom (ie. 64). The rendering obtained is not accurate, the relative
error is about 10.5 % in L∞-norm. Furthermore, any post-processing (isolines, cuts, streamlines,. . .) done from such
a "bad" representation will obviously lead to an incorrect result. For instance, ten isovalues are plotted from the two
representations (see figures 12.b and 12.c), we clearly see that the isovalues coming from the uniform refinement are
inaccurate.

We now focus on one cell of the computational mesh, noted C, which lies in the middle of the dotted line box and
is particularly interesting as it contains many information, due to a change of the characteristics of the elastic medium.
Figure 12.d is a zoom on this cell given by the uniform 7 × 7 approach, figure 12.e (resp. 12.f) gives a comparison
with the adaptive method for the same accuracy of 10 % (resp. the same global number of elements). Table 1 sums
up some of these information. It gives a comparison of the number of elements of the representation mesh created for
several cases. The global number of elements to have 10% (resp. 1 %) accuracy is 25 (resp. 33) times bigger with the
uniform subdivision than the adaptive method.

Method Local (cell C) Global (576 cells)
Number of elements Accuracy Number of elements Accuracy

Uniform 7 × 7 98 10,4 % 56448 (98/cell) 10,5 %
Adaptive (10) 23 9.93 % 2194 (≈ 4/cell) 9.93 %

Uniform 27 × 27 1458 1.03 % 839808 (1458/cell) 1.03 %
Adaptive (1) 416 1.00 % 24856 (≈ 43/cell) 1.00 %

Table 1: Comparison of the number of elements of the representation mesh with the uniform subdivision and the adaptive methods for several
accuracies on one cell of the computational mesh (local, cell C) and on the whole computation mesh (global)

7. Conclusion

An auto-adaptive method for the visualization of high-order methods is presented. Our approach is based on the
construction of an optimized P1 approximation of the hp solution. A key point is that we want to control the error
between the solution and its representation in L∞-norm. The rendering of discontinuities is another point of interest.
These discontinuities can either comes from the physical problem (material change) or the numerical method (DG). A
decomposition of the boundary of the elements in edges is introduced to handle these discontinuities. A representation
mesh is constructed element by element from the mesh of the boundary. The refinement of this mesh is guided by
an a posteriori estimate which control Hausdorff distance, the latter being introduced to evaluate pointwise the error

22

(a) Representation of the numerical solution with the adaptive
method (0.5 %)

(b) Zoom on the dotted line box, uniform 7 × 7, 56448
elements

(c) Zoom on the dotted line box of (a), adaptive (0.5 %),
52108 elements

(d) Focus on the central cell of the
dotted line box, noted C, uniform
7 × 7, 98 elements

(e) Focus on cell C, adaptive 10 %,
23 elements

(f) Focus on cell C, adaptive 0.5 %,
818 elements

Figure 12: Propagation of an elastic wave in a 3 layered medium computed by Discontinuous Galerkin (DG) method Q7 on a 24×24 uniform mesh

23

between the numerical solution and its representation. In the case of curved elements, a specific a posteriori estimate
is defined to ensure the convergence of the algorithm. Finally, a theorem proves that the representation constructed
following this algorithm is "well-suited". The framework is general for any standard visualization software as the data
are transformed into linear functions. Several numerical examples show the relevance of the methodology proposed.
This non-uniform refinement process allows to limit the amount of data generated. The pointwise control avoid to
lose information/phenomenon. This paper focused on the rendering of surfaces but the volume rendering could be
straightforwardly treated by the algorithm we propose.

References

[1] O. C. Zienkiewicz, R. L. Taylor, The finite element method, Vol. 3, McGraw-hill London, 1977.
[2] B. Cockburn, G. E. Karniadakis, C.-W. Shu, The development of discontinuous galerkin methods, in: Discontinuous Galerkin Methods,

Springer, 2000, pp. 3–50.
[3] G. Cohen, S. Pernet, Finite Elements and Discontinuous Galerkin Methods for Transient Wave Equations, Springer, 2017.
[4] G. Karniadakis, S. Sherwin, Spectral/hp element methods for computational fluid dynamics, Oxford University Press, 2013.
[5] T. J. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,

Computer methods in applied mechanics and engineering 194 (39) (2005) 4135–4195.
[6] A. Bartezzaghi, L. Dedè, A. Quarteroni, Isogeometric analysis of high order partial differential equations on surfaces, Computer Methods in

Applied Mechanics and Engineering 295 (2015) 446–469.
[7] Y. Zhou, M. Garland, R. Haber, Pixel-exact rendering of spacetime finite element solutions, in: Proceedings of the Conference on Visualiza-

tion’04, IEEE Computer Society, 2004, pp. 425–432.
[8] A. Stahl, T. Kvamsdal, C. Schellewald, Post-processing and visualization techniques for isogeometric analysis results, Computer Methods in

Applied Mechanics and Engineering 316 (2017) 880–943.
[9] B. Nelson, E. Liu, R. M. Kirby, R. Haimes, ElVis: A system for the accurate and interactive visualization of high-order finite element

solutions, IEEE transactions on visualization and computer graphics 18 (12) (2012) 2325–2334.
[10] J.-F. Remacle, N. Chevaugeon, E. Marchandise, C. Geuzaine, Efficient visualization of high-order finite elements, International Journal for

Numerical Methods in Engineering 69 (4) (2007) 750–771.
[11] J.-F. Remacle, C. Geuzaine, G. Compère, B. Helenbrook, Adaptive mesh generation and visualization, Encyclopedia of Aerospace Engineer-

ing.
[12] W. J. Schroeder, F. Bertel, M. Malaterre, D. Thompson, P. P. Pebay, R. O’Bara, S. Tendulkar, Methods and framework for visualizing

higher-order finite elements, IEEE Transactions on Visualization and Computer Graphics 12 (4) (2006) 446–460.
[13] T. Lan, S. Lo, Finite element mesh generation over analytical curved surfaces, Computers & Structures 59 (2) (1996) 301–309.
[14] H. Chen, J. Bishop, Delaunay triangulation for curved surfaces, Meshing Roundtable (1997) 115–127.
[15] R. Löhner, P. Parikh, Generation of three-dimensional unstructured grids by the advancing-front method, International Journal for Numerical

Methods in Fluids 8 (10) (1988) 1135–1149.
[16] R. B. Simpson, Anisotropic mesh transformations and optimal error control, Applied Numerical Mathematics 14 (1) (1994) 183–198.
[17] L. Chen, P. Sun, J. Xu, Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm, Mathematics of Computation 76 (257)

(2007) 179–204.
[18] A. Loseille, F. Alauzet, Continuous mesh framework part I: well-posed continuous interpolation error, SIAM Journal on Numerical Analysis

49 (1) (2011) 38–60.
[19] D. Walfisch, Visualization for high-order discontinuous Galerkin CFD results, Master’s thesis, Massachusetts Institute of Technology. Dept.

of Aeronautics and Astronautics. (2007).
[20] D. R. Jones, C. D. Perttunen, B. E. Stuckman, Lipschitzian optimization without the Lipschitz constant, Journal of optimization Theory and

Applications 79 (1) (1993) 157–181.
[21] J. Clausen, A. Žilinskas, Subdivision, sampling, and initialization strategies for simplical branch and bound in global optimization, Computers

& Mathematics with Applications 44 (7) (2002) 943–955.
[22] A. Žilinskas, J. Žilinskas, Global optimization based on a statistical model and simplicial partitioning, Computers & Mathematics with

Applications 44 (7) (2002) 957–967.
[23] A. Bowyer, Computing Dirichlet tessellations, The computer journal 24 (2) (1981) 162–166.
[24] D. F. Watson, Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes, The computer journal 24 (2) (1981)

167–172.
[25] S. Rebay, Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm, Journal of computational

physics 106 (1) (1993) 125–138.
[26] U. Ayachit, The paraview guide: a parallel visualization application.
[27] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal,

A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel, M. Durant, J. M. Favre, P. Navrátil, VisIt: An End-User Tool For Visualizing and
Analyzing Very Large Data, in: High Performance Visualization–Enabling Extreme-Scale Scientific Insight, 2012, pp. 357–372.

[28] A. O. Leone, P. Marzano, E. Gobbetti, R. Scateni, S. Pedinotti, Discontinuous finite element visualization, in: Proceedings 8th International
Symposium on Flow Visualization, 1998.

[29] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, Vol. 55, Courier
Corporation, 1964.

[30] V. Ervin, Computational bases for RTk and BDMk on triangles, Computers & Mathematics with Applications 64 (8) (2012) 2765–2774.

24

[31] Y. Dudouit, Spatio-temporal refinement using a discontinuous Galerkin approach for elastodynamic in a high performance computing frame-
work, Ph.D. thesis, Bordeaux (2014).

25

