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Background and Purpose: Several strategies for estimating stopping power ratio (SPR) from dual-energy
CT (DECT) have been proposed to improve accuracy of proton dose calculations. DECT methods can
mainly be categorized into projection-based methods, where material decomposition is performed prior
to image reconstruction, and image-based methods, where decomposition takes place after image recon-
struction. With the advent of photon-counting and dual-layer technology, projection-based methods
could be considered for SPR estimation. In this simulation-based study we compared the SPR accuracy
of one projection- and three image-based DECT methods.
Materials and Methods: X-ray CT projections of the female ICRP phantom were simulated using two dif-
ferent X-ray spectra with a realistic detector response and noise levels. ICRP slices at four different loca-
tions were selected. Reference SPR-maps were computed at 200 MeV. The SPR comparison was based on
percentage deviation inside ROIs and relative range errors calculated with Radon transform of difference
maps.
Results: SPR root-mean-square errors (RMSE) over the selected ROIs were 0.54% for the projection-based
method and 0.68%, 0.61% and 0.70% for the three image-based methods. The RMSE for the relative range
errors were slightly smaller for the projection-based approach, but close to zero for all decomposition
domains as positive and negative errors averaged out over the slice.
Conclusions: SPR estimations with the projection-based method produced slightly better results (though
not statistically significant) than the three image-based methods used in this simulation-based study,
therefore, with the advent of technological developments, projection-based methods could be considered
for SPR estimation if projection data is available.
� 2017 The Authors. Published by Elsevier Ireland Ltd on behalf of European Society of Radiotherapy &

Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

Treatment planning dose calculations of proton therapy require
conversion of each voxel of the computed tomography (CT) scan
into proton stopping power ratios (SPRs) relative to water [1].
However, since photons and protons interact differently inside
the human body, there is no direct correspondence between CT
numbers and SPRs. The uncertainty of the conversion from CT
numbers to SPR may lead to proton range errors up to 3.5% [2]. It
is therefore important to estimate the SPR accurately to reduce
treatment margins and to exploit the full potential of proton
therapy.

The use of dual-energy CT (DECT) was investigated [3,4] already
a few years after the introduction of the CT scanner [5]. Both
Alvarez and Macovski [3] and Rutherford et al. [4] observed that
the linear attenuation coefficient, l, could be separated into terms
describing the two main interaction processes for X-ray photons in
the energy range used in diagnostic CT: Photoelectric absorption
and Compton scattering. Material decomposition can therefore be
performed when having attenuation measurements at two differ-
ent energies [6]. The decomposition schemes proposed by Alvarez
and Macovski [3] and Rutherford et al. [4] differed both in the sug-
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gested basis functions and in the sense that Alvarez and Macovski
based their estimation scheme on the projection data directly
obtained from the CT scan and then reconstructed these basis
images, whereas Rutherford et al. relied on reconstructed CT data
of the linear attenuation for their estimations. These two approaches
can be categorized as projection-based and image-based methods,
respectively. The main difference in the approaches is therefore
the order of the decomposition and the reconstruction step. In
projection-based methods, material decomposition is performed
prior to image reconstruction, and for image-based methods the
decomposition takes place after image reconstruction.

Both projection-based and image-based approaches can be fur-
ther divided into two main types: Type (1) Model-based: prior
knowledge of source energy spectra and detector response is
required to solve analytically the system of equations; Type (2)
Calibration-based: X-ray measurements of materials with known
properties are performed to obtain parameters that characterize
the energy spectra and the detector response.

Several algorithms based on DECT have been proposed to predict
the SPR or the intermediate variables required to compute the SPR,
e.g., the relative electron density (RED), the effective atomic number
ðZeff Þ or the logarithm of the mean excitation energy [1,7–17]. At pre-
sent, no consensus is reached within the community to prefer one
method over the others, nor a decomposition domain (the
projection- or the image-domain) for the SPR estimation. Nearly all
DECT methods are image-based [18], possibly because image-based
methods have the clear advantage that they can be performed on all
DECT scanners, including conventional SECT scanners by acquiring
two consecutive images at different kVp settings. In contrast, for
projection-based methods the low and the high energy projections
need to be acquired at the same angle or be accurately interpolated.
Nevertheless, with the advent of dual-layer systems and photon-
counting detector technology, projection-basedmethods are becoming
more attractive since the projections from the different energy spectra
are obtained without angular separation and there cannot be any
motion between the two (or more) projections per source position.
Another reason is that projection-based methods require access to
dual-energy raw-data, which are not accessible in most commercial
CT systems without the vendor agreement or reverse engineering.

It has been shown that DECT has a potential to improve the accu-
racy of the SPR estimation compared to conventional single energy
CT (SECT) [1,19–21], however, these studies were based on image-
based methods. Tremblay et al. [22] concluded that combining the
output of projection-based methods with the image-based stoichio-
Fig. 1. Reference SPR for the four slices used in the comparison. Placement of ROIs are sh
the references to colour in this figure caption, the reader is referred to the web version
metric calibration proposed by Bourque et al. [11] gave better accu-
racy for RED and Zeff than a projection-based method alone. The aim
of the present study was therefore to investigate the impact on the
SPR accuracy when using a projection-based method. We compared
the performances of the SPR estimation and the corresponding pro-
ton range errors of one projection- and three image-based DECT
methods, through a simulation-based CT acquisition framework
with the measured detector response and dual-energy spectra of a
commercial DECT scanner and realistic noise levels.
2. Methods and materials

2.1. SPR estimation methods

Four DECT-based SPR estimation methods were investigated,
including one projection-based and three image-based approaches.
The projection-basedmethod relied on the two-material decomposi-
tion proposed by Alvarez and Macovski [3] to estimate the RED and
the conversion from RED to SPR proposed by Kanematsu et al. [23].
We will refer to this method as ‘‘AMK” for Alvarez andMacovski, and
Kanematsu. The first image-based method used a parametrization
for the SPR proposed by Taasti et al. [17]. This image-based method
will be referred to as ‘‘SPP” for Stopping Power Parametrization. The
second image-based approach was a combination of the methods
proposed by Saito [7] to compute the RED and by Kanematsu et al.
[23] to derive the SPR. We will refer to this method as ‘‘SK” for Saito
and Kanematsu. The third image-based method is a two-material
decomposition method with different basis materials for soft and
bone tissues, suggested by Han et al. [15]. The four SPR estimation
methods are described in Appendix A.
2.2. Virtual patient

The Adult Female (AF) reference computational phantom of the
International Commission on Radiological Protection (ICRP) [24]
was used as a virtual patient to evaluate the performance of the
SPR methods. This phantom, with voxel dimensions of
1.775 � 1.775 � 4.84 mm3, represented an average female subject
structured with 140 organs made of 53 standard human tissues.
The mass density and elemental weights of each tissue were pro-
vided in the ICRP Publication 110 [24]. To evaluate a large number
of tissue densities and compositions, four anatomical regions were
selected: head, sternum, breast and pelvis (Fig. 1).
own by blue circles, three to four ROIs are placed in each slice. (For interpretation of
of this article.)
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2.3. Calculation of reference SPR

Reference SPR values of the ICRP phantom were computed from
the chemical composition and density pixel-by-pixel using the
Bethe equation without correction terms, as described by Schnei-
der et al. [25]. A proton beam of 200 MeV kinetic energy was con-
sidered and the mean ionization energy of water was set to 78 eV
[26]. The mean ionization energies of the tissues were calculated
using the Bragg additivity rule [25] and the I-values given in Tables
2.8 and 2.11 in the ICRU49 report [27].
2.4. CT imaging and CT reconstruction

Virtual CT projections of the Gammex and the ICRP phantom
were generated in GATE [28] v7.2 (based on Geant4 v10.1,
physics-list: emlivermore) using the Fixed Forced Detection Actor.
This module deterministically computes digitally reconstructed
radiographs using the reconstruction toolkit (RTK) v1.3.0 [29] and
the Geant4 database of X-rays cross sections. Fan-beam projections
with 600 views of 2052 pixels subsequently re-binned to 1026 pixels
of 1 mm2 were acquired. The thickness of the detector row was
1 mm for the Gammex acquisitions and 2 mm for the ICRP phantom.
The source-to-isocenter distance was 626 mm and the source-to-
detector distance was 1026mm. For the simulations of the CT pro-
jections, the measured dual-energy spectra (low energy (LE):
100 kVp, high energy (HE): 150 kVp + 0.6 mm Sn) and the measured
detector response for the SOMATOM Force dual-source CT scanner
were used, kindly provided by Siemens Healthcare (Forchheim, Ger-
many). To have a fair comparison between the projection-based and
the image-based methods, energy spectra with high mean energies
were chosen to reduce the beam-hardening for the image-based
methods. To represent a realistic scenario, Poisson distributed noise
was applied to the projections. For each slice, a total central dose of
20 mGy was delivered, with an equal dose split between the two
energy spectra, thus a central dose of 10 mGy per energy spectrum;
the calculation of the number of photons needed to deliver a given
dose is described in Appendix C. No bowtie-filter was simulated.

Prior to CT reconstruction, the LE and the HE sinograms of the
Gammex and the AF phantom were corrected for beam-
Fig. 2. Relative SPR errors for each of the thirteen ROIs (for the placement see Fig. 1). The
bars show the standard error of the mean (SEM).
hardening using the method described in Ref. [30], since this was
found to be mandatory for the image-based methods. A look-up
table linearizing the input projection values for water [30] was cre-
ated using the energy spectra and the detector response and
increasing water thicknesses.

CT images of the Gammex phantom and the AF slices were
reconstructed using the LE and the HE sinograms, for the image-
based methods; and soft tissue and cortical bone density images
of the AF slices, for the projection-based method. All reconstruc-
tions were performed using the filtered-backprojection (FBP)
reconstruction of RTK; for the reconstructions of the AF slices pre-
serving the initial pixel dimension of 1.775 � 1.775 mm2 and for
the Gammex the pixel dimension of 1 � 1 mm2.
2.5. SPR comparison

The performance of the SPR estimation was evaluated based on
different criteria: relative SPR differences over defined ROIs, each
covering a single tissue, and relative range errors computed over a
whole slice. The placement of the ROIs can be seen in Fig. 1, and their
reference SPRs are listed in Table B.5 in Appendix B. For each ROI, the
mean error was calculated and its precision was assessed using the
standard error of the mean (SEM). To have a direct comparison of
the three methods, the root-mean-square error (RMSE) over the
mean relative SPR difference for the thirteen ROIs was taken; this
gave a combined error measure for the thirteen defined ROIs.

To estimate the influence of the SPR deviations on the range cal-
culation, we calculated the range errors along the proton beam
path through the entire slice using the Radon transform imple-
mented in MATLAB (The MathWorks Inc., Natick, MA). The Radon
transform was computed on the absolute SPR difference images,
for angles in the interval from 0–179� in steps of 1�. The SPR differ-
ence for pixels outside the body outline was set to zero. The Radon
transform was also performed on the reference SPR maps to calcu-
late the water-equivalent path length (WEPL). To exclude beam
paths entirely outside the body, an exclusion penalty was applied
to pixels in the reference SPR sinogram with a WEPL of zero. The
results for the range errors were given relative to reference WEPL
center squares show the mean of the relative SPR error over the ROI, and the error-
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maps, to take into account that the beam paths in different direc-
tions and slices were not of equal length.

3. Results

The RMSE over the mean relative error for each of the thirteen
ROIs was 0.54% for the AMK method, 0.68% for the SPP method,
0.61% for the SK method, and 0.70% for Han’s method (Fig. 2).
The bias (given by the mean error) for the head, sternum and
breast slices was smallest for the SPP method, however, for the pel-
vis slice (ROIs 4a-d) this method gave the largest errors (Table 1).
Considering all slices, the SK method had the largest bias. For all
methods, the relative errors for ROIs in the pelvis slice (ROIs 4a-
d) were larger than for the other slices.

The AMK method gave the lowest RMSEs for the relative range
errors. For the AMK and SPP methods, the positive and negative
range errors were nearly averaged out over the slice, giving mean
relative range errors close to 0%; only for the head slice estimated
Table 1
Comparison of relative SPR deviations over the defined ROIs. The upper part of the table giv
averaged over all four slices together. (PB: Projection-based, IB: Image-based).

Per slice Head

PB (AMK) Mean 0.28%
Uns. mean 0.28%

IB (SPP) Mean �0.06%
Uns. mean 0.46%

IB (SK) Mean �0.17%
Uns. mean 0.20%

IB (Han) Mean 0.01%
Uns. mean 0.34%

All slices RMSE

PB (AMK) 0.54%
IB (SPP) 0.68%
IB (SK) 0.61%
IB (Han) 0.70%

Fig. 3. Box-plot of relative range error distribution, as calculated by the Radon transfo
Projection-based, IB: Image-based). The boxes show the interquartile (IQ) range, i.e. from
median. The whiskers go from Q1� 2:5� IQ up to Q3þ 2:5� IQ. The outliers are not sho
to a WEPL of zero) are given in the right side of the figure.
by the SPP method the 0% range error was not within the
interquartile range (IQ) (Fig. 3). In contrast, for the image-based
SK method, the range error distribution had a negative bias for
all slices, and Han’s method gave a slight positive bias for some
slices. Even though the mean relative range errors for the SPP
method were fairly low, this method produced the widest error
distributions (Fig. 3 and Table 2).

4. Discussion

In this study, we have compared one projection-based and three
image-based SPR methods. We found that the projection-based
method produced slightly better results than the three image-
based methods used in this study. The differences were not found
to be statistically significant. The image-based SPP method gave
mean errors comparable to the results for the projection-based
method, but larger standard deviations. In contrast, the image-
based SK method resulted in slightly biased results. It has been
es the results averaged over the individual slices, while the lower part gives the results

Sternum Breast Pelvis

0.32% 0.29% �0.45%
0.32% 0.64% 0.66%
0.03% 0.17% �0.99%
0.30% 0.29% 0.99%
�0.06% �0.09% �0.85%
0.20% 0.40% 0.85%
0.26% 0.79% �0.60%
0.26% 0.79% 0.86%

Mean Uns. mean r

0.07% 0.49% 0.56%
�0.27% 0.55% 0.65%
�0.33% 0.44% 0.53%
0.06% 0.59% 0.73%

rm for each anatomical slice using each of the four SPR estimation methods (PB:
the 25%-percentile (Q1) to the 75%-percentile (Q3), and the black dots represent the
wn in the figure, but the percentages (excluding the sinogram entries corresponding



Table 2
Comparison of the relative range errors over each image slice. The results are given as the signed mean errors ðl� rÞ and the root-mean-square errors (RMSE) in percentage. The
range errors are taken relative to the reference water equivalent path length (WEPL); the mean reference WEPL for each slice is given in parentheses beneath the slice name. (PB:
Projection-based, IB: Image-based).

Head (122.8 mm) Sternum (162.5 mm) Breast (162.1 mm) Pelvis (181.7 mm)

Method l� r (%) RMSE (%) l� r (%) RMSE (%) l� r (%) RMSE (%) l� r (%) RMSE (%)

PB (AMK) �0.24 ± 0.81 0.84 �0.01 ± 0.64 0.64 �0.04 ± 0.58 0.58 �0.14 ± 0.80 0.82
IB (SPP) �0.41 ± 0.86 0.95 0.01 ± 0.81 0.81 0.04 ± 0.72 0.72 0.03 ± 1.10 1.10
IB (SK) �0.51 ± 0.80 0.95 �0.28 ± 0.63 0.69 �0.33 ± 0.57 0.66 �0.44 ± 0.80 0.91
IB (Han) �0.10 ± 0.82 0.82 0.36 ± 0.75 0.83 0.35 ± 0.65 0.74 0.47 ± 1.19 1.28
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shown earlier that the SPR accuracy using Saito’s method in com-
bination with an estimation of Zeff is dependent on the calibration
and evaluation materials being very similar [19].

In our simulations, clinical polychromatic energy spectra, a real-
istic detector response and noise levels corresponding to a 20 mGy
central dose were used. The material basis for the projection-based
approach was optimized to give the best results. To have a direct
comparison between projection-based and image-based calcula-
tions, we used an image-based method (the SK method) where
the conversion from RED to SPR were performed in the same
way as for the projection-based method, using the polyline fit pro-
posed by Kanematsu et al. [23], and we also compared to a two-
material decomposition image-based method, though not using
the exact same materials as for the projection-based method, as
we chose to use the optimal basis materials in each case. Further,
we also used one of the latest image-based methods [17], as this
method was proven to give smaller SPR errors and to be more
robust to noise than two other existing DECT methods [15,19].
For these reasons, we consider that the comparison was carried
out under fair conditions.

The image-based SK method showed a net negative bias on the
range accuracy that was not observed for the image-based SPP
method. Range errors seem to correlate well with SPR errors
obtained for some tissues, such as breast tissue (ROI 3c), adipose
tissue (ROI 4d) or pelvis spongiosa (ROI 4c), which were found in
large proportions in the selected slices. This suggests that accuracy
errors add up along the proton beam path. The SPP method
resulted in noisier SPR images and, thus, wider error distributions.
In terms of RMSE, the projection-based approach produced better
results for the SPR and the range with respect to the three
image-based methods. Therefore, based on these results, we rec-
ommend increasing the consideration of projection-based
approaches for proton SPR estimation. However, the inherent lim-
itations of each method should be taken into account, and there-
fore the most well-suited SPR estimation method for a specific
facility might depend on the DECT technology available at the facil-
ity. It can therefore not be generally stated which method will pro-
duce the most accurate results.

Beam-hardening artifacts occur because the energy dependency
of the linear attenuation coefficients is neglected. To overcome this
approximation, image-based methods require a beam-hardening
correction. In contrast, material decomposition in projection-
based approaches is performed prior to reconstruction, and as
the energy dependency is factored out in this decomposition pro-
cess (see Eq. (A.1)) the basis-images should not be affected by
beam-hardening. But this is not true unless a good choice of the
basis-material decomposition is performed, such that the assump-
tion that l can be separated into an energy-dependent and an
energy-independent part holds true. In the energy range of clinical
CT scanners (i.e. from 40 to 150 keV) and for materials with Z < 15
this assumption is acceptable [31]. In this study, the implemented
strategy to correct for beam-hardening in the image-based method
works well for water-equivalent tissues but might not be accurate
enough for low- and high-density tissues. A more sophisticated
beam-hardening correction might therefore improve the results
for the image-based methods. If a better beam-hardening correc-
tion had been applied, a LE spectrum with a lower mean energy
might be more relevant than the 100 kVp spectrum used in this
study.

The three image-based methods used in this study were
calibration-based (type 2), and a calibration was needed to find
the effective energies for the LE and HE spectrum. This calibration
procedure is sensitive to the calibration phantom being compara-
ble to the object for which the SPR is to be estimated; i.e. the cal-
ibration phantom should be of a similar size and consist of
materials with a composition comparable to human tissues, such
that the phantom hardens the X-ray energy spectrum in the same
way as the investigated anatomical site. For this study, only a sin-
gle calibration phantom with a diameter of 16.5 cm was used for
all four anatomical slices. This may be one cause for the larger rel-
ative SPR deviations in the pelvis slice for the image-based meth-
ods (Table 1).

For model-based (type 1) image-based methods, the energy
spectrum must also be properly hardened to reproduce the
beam-hardening of the scanned object. This issue is taken into
account by additionally filtering the X-ray source for instance by
water [1,32]. Here, the amount of water may also be dependent
on the anatomical region being investigated, since the performance
of these methods will depend on the accuracy of this prior knowl-
edge on the energy spectrum and the detector response [33].
Therefore, the input parameters must be tuned with care for both
types of image-based methods. However, for calibration-based
methods (type 2), this is more straight-forward since it only
requires using a well-suited calibration phantom of the proper size.

For the projection-based method applied in this study, the sys-
tem of Eqs. (A.4), (A.5) was solved numerically assuming that the
energy spectra and the detector response were well-known (type
1). The same was assumed for the beam-hardening correction of
image-based methods. It was shown that projection-based meth-
ods are sensitive to the amount of noise [34] and to alterations
of the energy spectrum [22]. Tremblay et al. found that for
projection-based methods the accuracy of the RED was more
degraded when the spectrum was altered than when using an
image-based method [22]. The projection-based results in the pre-
sent work are therefore dependent on accurate knowledge of the
energy spectrum and detector response. An alternative would be
to approximate the system of Eqs. (A.4), (A.5) by a polynomial
expansion of two variables [3,35]. The unknown coefficients could
be determined experimentally through a calibration procedure
with increasing thicknesses of two well-known materials (type
2). However, there would also be disadvantages with this
approach, including sensitivity to the order of the polynomial, to
the use of cross-terms in the polynomial, to the exact thicknesses
of the interposed slabs of two materials and to the number of
points of the calibration curve. It should also be noted that type
1 approaches always rely on a pre-calibration of the model, e.g.,
the one presented in [36].

The basis functions used for the projection-based method were
found to give the best SPR results, after testing several different
basis functions. Other basis functions have been suggested in the
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literature, e.g. Han et al. [15] used two different sets of basis func-
tions for soft and bone tissues, respectively, where the separation
was based on the ratio of the CT numbers which is not available
for projection-based methods. This method was tested in image-
space in this study. Tremblay et al. [22] found that in most cases
a two-material decomposition rather than decomposition into
physical processes performed better.

Another ongoing discussion within the community is how to
determine the reference SPR values. In this study, a 200 MeV pro-
ton energy was used to determine the reference SPR, as for proton
energies in the range between 80 and 300 MeV, the variation of
SPR with proton energy is negligible ð< 1%Þ [37]. In addition, Yang
[33] conducted a study with a 175 MeV initial kinetic energy beam
and concluded that neglecting the SPR dependence with energy
introduced a 0.5% range error.

5. Conclusion

In this simulation-based study, the dual-energy decomposition
domains – the projection-domain (decomposition prior to image
reconstruction) and the image-domain (decomposition after image
reconstruction) – were compared in terms of the performance of
extracting the SPR from DECT and the resulting WEPL. In terms of
SPR accuracy and range errors, the observed differences between
projection- and image-based methods were not statistically signifi-
cant. If properly calibrated, the two SPR estimation approaches can
therefore be assumed to give similar results. With the advent of
technological developments, projection-based methods are becom-
ing more attractive. Most of the existing methods to compute the
SPR are image-based but, based on these results, projection-based
approaches should also be considered for proton SPR determination.
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Appendix A. SPR estimation methods

A.1. Projection-based method (AMK)

The method used to compute the SPR from dual-energy projec-
tion data is an adaptation of the two-step procedure proposed by
Farace [12] in the image-domain. This method was chosen for its
simplicity and because it produced comparable results with
respect to Hnemohr’s approach [8]. First, RED was derived from
the reconstructed mass density images of soft tissue (ST) and cor-
tical bone (CB) [38], issued from the implementation of the two-
material decomposition method in the projection domain pro-
posed by Alvarez and Macovski [3]. Second, RED was converted
into SPR using the poly-line relations proposed by Kanematsu
et al. [23].

The basis material decomposition (BMD) method assumed that
the linear attenuation coefficient of the scanned object at a location
x can be expressed as a linear combination of two energy-
dependent basis functions of two materials with energy-
independent coefficients:

lðE; xÞ ¼ l
q

� �
ST
ðEÞ � aSTðxÞ þ l

q

� �
CB
ðEÞ � aCBðxÞ ðA:1Þ
where ðl=qÞ represented the mass attenuation coefficient of ST and
CB, and a is the mass fraction of ST and CB in the volume at location
x – in this BMD these mass fractions represented the energy-
independent coefficients.

The projection of the mass fractions aST and aCB was expressed
as follows:

ASTðu; hÞ ¼
Z
Lðu;hÞ

aSTð‘Þ d‘ ðA:2Þ

ACBðu; hÞ ¼
Z
Lðu;hÞ

aCBð‘Þ d‘ ðA:3Þ

where ‘ 2 Lðu; hÞ was the line-segment between the source and a
detector pixel located at position u for a given projection angle h.

When performing a dual-energy acquisition, two sinograms of
the same object at two different energy spectra were available:

ILEðAST;ACBÞ¼
Z Emax

Emin

SLEðEÞexp �AST
l
q

� �
ST
ðEÞ�ACB

l
q

� �
CB
ðEÞ

� �
dE

ðA:4Þ

IHEðAST;ACBÞ¼
Z Emax

Emin

SHEðEÞexp �AST
l
q

� �
ST
ðEÞ�ACB

l
q

� �
CB
ðEÞ

� �
dE

ðA:5Þ
where ILE and IHE were the measured intensities for the LE and the
HE spectrum, respectively, for a given projection angle; SLE and
SHE were the normalized energy spectra weighted by the detector
response.

The unknowns AST and ACB were determined by solving the sys-
tem of Eqs. (A.4), (A.5) using the implementation of Nelder and
Mead [39] in RTK [29], assuming that the energy spectra and the
detector response were known (type 1 decomposition).

Then, the mass fraction per volume of soft tissue ðaSTÞ and cor-
tical bone ðaCBÞ was determined by reconstruction of AST and ACB

(see Section 2.4). Afterwards, the RED was derived for each pixel
by:

REDðxÞ ¼
aSTðxÞ

P
iwi

Zi
Ai

h i
ST
þ aCBðxÞ

P
iwi

Zi
Ai

h i
CB

qW

P
iwi

Zi
Ai

h i
W

ðA:6Þ

where Zi was the atomic number, Ai was the atomic mass and wi

was the elemental weight fraction for element i of the tabulated
compounds ST, CB and water (represented with the index W)
[38]; qW was the mass density for water.

To reproduce the piece-wise linear relations suggested by Kane-
matsu et al. [23], the SPR and RED were calculated for 92 ICRU46
tissues of known chemical composition and mass density [40]
applying the Bethe equation (see Section 2.3). The fitting lines
are presented in Fig. A.1.

A.2. Image-based method – SPR parametrization (SPP)

The details of the image-based SPP method were described by
Taasti et al. [17], but the main principles are described here.

CT scans of a calibration phantom were required for the charac-
terization of the X-ray energy spectra (type 2 decomposition). This
calibration process was performed on simulated CT images of the
Gammex 467 electron density calibration phantom (Gammex,
Middleton, WI). The dimensions of the phantom were down-
scaled to half the size of the real Gammex phantom which has a
diameter of 33 cm; this was done to obtain the same beam harden-
ing effect on this calibration phantom as for the ICRP image slices.
Average CT numbers over ROIs inside the inserts in the recon-
structed CT images were used.
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Fig. A.1. Kanematsu fitting lines to convert from RED to SPR/RED.

Table A.1
Calibration parameters used in the SPR parametrization; for the energy spectra
characterization (Eq. (A.7)), and for the SPR estimation (Eq. (A.9)–(A.10)). The effective
energies of the low energy (LE) and high energy (HE) spectra are given in parentheses.

Energy spectra characterization SPR fitting parameters

LE (64 keV) HE (96 keV) Soft tissues Bone tissues

Asoft 988.8 991.3 x1 3.161 x5 0.8251

Abone 971.8 984.8 x2 1.176 x6 0.03853

Bsoft 1.006 1.007 x3 �1.136 x7 0.1150

Bbone 0.9803 1.004 x4 �0.01883 x8 �0.008910

Table A.2
Calibration parameters for Saito’s method, found by minimization of Eq. (A.11). These
parameters were used for calculation of RED in the SK method applied in this study.

a b a

1.0085 1.0091 0.5202

34 G. Vilches-Freixas et al. / Physics and Imaging in Radiation Oncology 3 (2017) 28–36
Based on the known density and elemental composition of the
inserts of the Gammex phantom, the effective energies of the used
energy spectra were found using the CT numbers ðHjÞ for the
phantom inserts. The effective energy was defined as the energy
which maximized the coefficient of determination, R2, for the lin-
ear fit:

lðEeff;jÞ
lWðEeff;jÞ ¼

Hj

At
j

þ Bt
j ðA:7Þ

Here, subscript j refers to the energy spectrum ðj ¼ LE;HEÞ, and A
and B are fitting parameters. The linear attenuation coefficients,
lðEÞ, for the Gammex inserts were calculated based on XCOM data
[41]. When the effective energies were found, the Gammex inserts
were divided into two categories, soft and bone tissues based on
their CT numbers in the LE CT image. Then Eq. (A.7) was refitted
for each tissue group, to find two sets of fitting parameters, At

j

and Bt
j , where superscript t 2 soft;bonef g indicates the tissue group,

using the effective energies Eeff;j for each energy spectrum j. In this
study we used a separation point between the tissue groups set to
HLE ¼ 150 HU.

The attenuation ratios, u, for the 92 reference human tissues
[40] were calculated at the effective energies based on their den-
sity and elemental composition:

u � lðEeffÞ
lWðEeffÞ ¼ q

P
iwi

l
q

� �
i
ðEeffÞP

iwi
l
q

� �
i
ðEeffÞ

h i
W

ðA:8Þ

These attenuation ratios were fitted to the SPR for the tissues
based on the following equations:

SPRest
soft ¼ ð1þ x1ÞuHE � x1uLE þ x2u2

LE þ x3u2
HE þ x4 u3

LE þu3
HE

� � ðA:9Þ
SPRest

bone ¼ ð1þ x5ÞuHE � x5uLE þ x6
uLE

uHE
þ x7 u2

LE �u2
HE

� �þ x8 u3
LE þu3

HE

� �
ðA:10Þ

where the xi’s are fitting parameters. The fitting parameters used in
this study can be found in Table A.1. When these expressions were
used to estimate the SPR for the AF phantom, the attenuation ratios
were calculated using the fitting parameters found together with
the effective energies, ut

j ¼ Hj=A
t
j þ Bt

j . The same separation
between soft and bone tissue was used for the SPR estimation as
for the calculation of the attenuation ratios.

A.3. Image-based method – Saito and Kanematsu’s (SK) method

This image-based DECT method is a combination of two meth-
ods originally presented by Saito [7] (calculation of the relative
electron density, RED), and by Kanematsu et al. [23] (conversion
from RED to SPR).

In Saito’s method the RED was estimated as

RED ¼ a
ð1þ aÞHHE � aHLE

1000
þ b ðA:11Þ

The constants a, b and a were found by making calibration fits
to the theoretical qe values for the 92 reference human tissues
and their CT numbers calculated from Eqs. (A.7) and (A.8). To
take the low RED values for lung tissue into account the
constants were found by minimizing the relative deviations
REDtheo � REDest� �

=REDtheo. The parameters used in this study
can be seen in Table A.2. The CT numbers for the 92 reference
human tissues used in the calibration were calculated from Eq.
(A.8) and the effective energies given in Table A.1.

The RED estimates were converted into SPR using the same cal-
ibration curve as described in Section A.1 for the Kanematsu
method (see Fig. A.1).

A.4. Image-based method – Han’s (Han) method

The image-based two-material decomposition method used in
this study was proposed by Han et al. [15], and was also explained
in a compressed way in Appendix A.2 in Ref. [17].

The basis materials used in this method were water and poly-
styrene or water and a CaCl2 23% aqueous solution. An unknown
material was assigned to one of the two basis material sets accord-
ing to its ratio of reduced CT numbers, n ¼ uHE=uLE; materials with
n P 0:97 were categorized as soft tissues and assigned to the
water-polystyrene group, while materials with n < 0:97 were cat-
egorized as bone tissues and assigned to the water-CaCl2-group.

The reduced CT numbers for this method were calculated as
uj ¼ Hj=Aj þ Bj, however unlike in the SPP method, described in
Appendix A.2, only one set of fitting parameters, Aj and Bj, was used
to characterize all tissues. These parameters are listed in Table A.3.

The ‘‘concentrations” of the two basis materials were denoted c1
and c2, and they were found by solving the linear least square
problem for c1 and c2:



Table A.4
Fitting parameters (a and b) for the correction factor f I ¼ a Itheo

IBVM
þ b used in Han’s

method, see Eq. (A.14).

Soft tissues Bone tissues

asoft ¼ 0:0837 bsoft ¼ 0:8996 abone ¼ �0:0599 bbone ¼ 1:021

Table A.3
Effective energies and CT number fitting parameters, from Eq. (A.7) used in Han’s
method.

Eeff (keV) Aj Bj

100 kVp 64 992.1 1.003
Sn150 kVp 96 990.2 1.007
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uðEeff;LEÞ
uðEeff;HEÞ

� �
¼ u1ðEeff;LEÞ u2ðEeff ;LEÞ

u1ðEeff ;HEÞ u2ðEeff ;HEÞ
� �

c1
c2

� �
ðA:12Þ

where the subscripts 1 and 2 denotes the two basis materials.
The electron density and the logarithm to the mean excitation

energy were calculated as

ED ¼ c1ED1 þ c2ED2 ðA:13Þ

and

I ¼ f I � exp
c1ED1 ln I1 þ c2ED2 ln I2

c1ED1 þ c2ED2

� �

�f I � exp IBVMð Þ ðA:14Þ

where ED is the electron density. The RED is then be found by divid-
ing by the electron density of water. f I is a correction factor for the I
values. It was found as a linear fit between the parameter c1

c1þc2
and

the ratio Itheo
IBVM

, f I ¼ a Itheo
IBVM

þ b. Here Itheo is the theoretical I-value for

the reference human tissue calculated based on the Bragg additivity
rule. There is a fit for each of the two tissue groups, and the calibra-
tion parameters are listed in Table A.4. If the correction factor, f I ,
was negative, when estimating for an unknown material, it was
set to 1 to avoid complex numbers when calculating the SPR
estimates.

Appendix B. SPR reference values for the thirteen ROIs
Table B.5
Reference data for the thirteen defined ROIs used for comparison of the relative SPR
differences. N is the number of pixels in the ROI.

ROI
name

AF
Material-ID

Tissue type SPRref N

Head 1a 49 Adipose tissue 0.972 75
1b 32 Brain 1.051 111
1c 8 Cranium, spongiosa 1.203 27

Sternum 2a 3 Humeri, upper half, spongiosa 1.157 195
2b 29 Muscle tissue 1.046 147
2c 29 Muscle tissue 1.046 75

Breast 3a 50 Lung tissue (compressed lungs) 0.384 195
3b 28 Blood 1.055 195
3c 48 Breast (mammary gland) 1.040 47

Pelvis 4a 29 Muscle tissue 1.046 111
4b 49 Adipose tissue 0.972 147
4c 14 Pelvis, spongiosa 1.100 47
4d 9 Femora, upper half, spongiosa 1.053 75
Appendix C. Calculation of CT dose

For the CT imaging setup, the level of Poisson noise depends on
the number of primary photons per simulation, Nprim, required to
deliver a central dose of 20 mGy, D ¼ 20 mGy, which was deter-
mined analytically assuming an homogeneous water medium:

Nprim ¼ DAbeamR
E SðEÞe�lWðEÞr len;WðEÞ

qW

� �
EdE

ðC:1Þ

where Abeam is the area covered by the beam at the isocenter, S is the
detected energy spectrum with unity area:

R
E SðEÞdE ¼ 1.

len;WðEÞ=qW

� �
and lW are the energy-dependent mass energy

absorption coefficient and the linear attenuation coefficient of
water, respectively, both taken from the NIST database [42], and r
is the radius of the phantom.
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