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Abstract 14 

Single grain OSL has become a widely used approach in Quaternary geochronology. However, the origins 15 

of De distributions and the sources of variation in individual dose estimates are still poorly understood. 16 

The amount of scatter in these distributions on top of the known uncertainties in measurement and 17 

analysis is defined by overdispersion and this quantity is generally used for weighting individual De 18 

values to calculate a central equivalent dose. In this study, we address the nature and amount of 19 

different sources of dispersion in quartz single grain De estimates, by (i) using appropriate statistical 20 

tools to characterize De populations and (ii) modelling, with a specifically designed GEANT4 code, dose 21 

rate distributions arising from the presence of potassium feldspar grains in well-sorted sands. The model 22 

uses Monte Carlo simulations of beta emissions and interactions in a random close packing of quartz 23 

and feldspar spheres representing a sand sample. Based on the simulation results, we explain the 24 

discrepancy between intrinsic and natural overdispersion values in a well-bleached sample, thus 25 

validating the model. The three parameters having the most influence on dispersion in dose rate 26 

distributions, and modelled in this study, appear to be grain size, potassium content and total dose rate.  27 

Finally an analysis of measurement uncertainties and other sources of variations in equivalent dose 28 

estimates leads us to conclude that all age models (both logged and unlogged) which include an 29 

overdispersion value to weight individual De values rely mainly on unknown parameters; this ignorance 30 

may lead to an inadvertent bias in De estimates. Assuming counting statistics make a small contribution 31 

to dispersion (as is often the case), we suggest that in some cases it is most appropriate to use 32 

unweighted averages of equivalent doses when dividing by commonly measured average dose rates. 33 

 34 

Keywords: Single grain OSL; dose rate distributions; age models; overdispersion; GEANT4 simulations 35 
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 36 

1. Introduction. 37 

Quartz Optically Stimulated Luminescence (OSL) has become a widely used tool for establishing 38 

the chronology of sediment burial. The Single Aliquot Regenerative protocol (SAR: Murray and Wintle, 39 

2000; 2003) allows the determination of individual equivalent dose estimates (De) from aliquots of 40 

arbitrary number of grains, including individual grains. Equivalent dose distributions derived from single-41 

grain measurements are usually significantly dispersed, requiring some statistical treatment for their 42 

analysis; the choice of this statistical treatment can have a significant effect on the accuracy of the 43 

resulting OSL ages. For instance, post-depositional mixing of sediments (e.g., Tribolo et al., 2010) and/or 44 

insufficient resetting of the OSL signal before deposition (e.g., Jain et al., 2004; Olley et al., 2004) may 45 

lead to dose distributions where the central value is not representative of the sediment burial event. In 46 

single-grain equivalent dose analysis, the key concept of overdispersion (OD) is defined as the dispersion 47 

of results that cannot be explained by ‘within aliquot errors’, i.e. the measured or otherwise known 48 

uncertainties assigned to individual equivalent dose estimates (see Galbraith et al., 1999, for an 49 

introduction and discussion on its significance in OSL dating; see also Galbraith and Roberts, 2012). 50 

Statistical models have been proposed to identify the De representative of the target event. For example 51 

the Minimum Age Model (MAM, Galbraith et al., 1999), the IEU (Thomsen et al., 2007; Jain et al., 2004) 52 

and the leading edge model (Lepper, 2001), have been suggested as tools to resolve the best-bleached 53 

component, and the Finite Mixture Model (FMM, Galbraith and Green, 1990; Roberts et al., 2000) has 54 

been suggested to identify individual dose components present in a mixture. These models require the 55 

input of an estimate of OD appropriate to the sample had it been well bleached; this can be either taken 56 

as a value presumed to be typical of well-bleached samples in general (i.e. <20 %, Jacobs et al., 2008a) or 57 
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experimentally determined from well-bleached samples with similar characteristics to those of the 58 

sample under investigation (Thomsen et al., 2007).  59 

However, little is known about the nature and source(s) of overdispersion in single grain De 60 

distributions. Thomsen et al. (2012) have demonstrated that overdispersion is dependent on dose in 61 

well-bleached samples irradiated with a known gamma dose; in two samples they found the 62 

overdispersion increased as the given dose increased. In naturally irradiated samples, different beta 63 

dose rates to different grains in sedimentary media are also expected to contribute to overdispersion in 64 

De values (e.g., Mayya et al., 2006; Cunningham et al., 2012). These different dose rates arise because 65 

the range of beta particles is comparable to the size of sand grains, and to the inter-granular distance. In 66 

particular, the presence of hotspots – such as potassium feldspar grains, which generally represent an 67 

important source of dose rates in sands – generates skewed, wide dose rate distributions (Mayya et al., 68 

2006; see also Brennan, 2006, for a discussion on the effect of hotspots on alpha dose rate 69 

distributions). Mayya et al. (2006) simulated beta dose rate distributions from individual potassium-rich 70 

feldspar grains to single 200 µm grains of quartz, and they showed that the dispersion in beta dose rates 71 

from potassium increases as the average potassium content (i.e. the number of feldspar grains) is 72 

decreased. Nathan et al. (2003) compared experimental and simulation results, using the Monte Carlo 73 

radiation transport code MCNP transport code, for different cases of heterogeneity in sedimentary 74 

environments. Despite weak agreement between experimental and numerical datasets, they showed 75 

that beta dose rate heterogeneity (either in the form of cold or hotspots) can influence single grain De 76 

distributions. Cunningham et al. (2012) used MCNP to simulate dose rate distributions induced by NaOH 77 

grains containing artificially produced, short-lived 24Na to mimic the effect of potassium feldspar grains. 78 

They were able to reproduce the shape of experimentally determined dose rate distributions, which can 79 

be fitted with log-normal distributions, but did not manage to get quantitative agreement between 80 

modelled and experimental data. Nevertheless, it is now clear that the presence of radioactive hotspots 81 
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induces positively skewed distributions of dose rates; conversely, the presence of coldspots such as 82 

calcareous blocks in ‘lumpy environments’ leads to negatively skewed distributions (see Brennan et al., 83 

1997, for a study of gamma dose rates). These distributions are in contrast to those postulated by Jacobs 84 

et al. (2008b) who suggested that coldspots were the explanation for the two discrete modes in their 85 

dose distributions; both in view of the experimental and modelling results above, this seems unlikely 86 

(see also Guérin et al., 2013).   87 

 Despite this general understanding of the effect of hotspots in governing dose distributions, very 88 

few studies have compared experimental equivalent dose with simulated dose rate distributions. 89 

Recently Chauhan and Singhvi (2011) compared measured equivalent dose with modelled dose rate 90 

distributions, to assess whether the measured dispersion in De values from multi-grain aliquots could be 91 

explained solely by dose rate distributions, or if an extra-source of dispersion such as poor bleaching was 92 

needed to explain the scatter in De measurements. However, this study was not based on single grain De 93 

measurements and it is not clear how many sensitive grains were present per aliquot. Moreover, the 94 

dispersion in De values was taken as the standard deviation of individual estimates, and it did not 95 

account for the uncertainties on the individual De values. In the absence of the knowledge of the effect 96 

of these uncertainties, it is difficult to interpret these results quantitatively. 97 

 2. Background 98 

The purpose of this study is to study beta dose rate distributions from potassium feldspar grains 99 

to single grains of quartz in sand using the radiation transport toolkit GEANT4 (Agostinelli et al., 2003). In 100 

particular, parameters influencing these dose rate distributions are identified and the model has been 101 

tested on a well-bleached, well characterised sand sample. A statistical analysis of De distributions from 102 

both natural and gamma dosed fractions of the sample are provided, and consequences regarding the 103 

use of various published age models is discussed.  104 
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Since De estimates on individual grains have highly variable uncertainties, most OSL age models 105 

apply weighting factors to calculate representative equivalent doses. Moreover, most De distributions 106 

reported in the literature exhibit overdispersion. In the most commonly used logged age models (such 107 

as for example the Central Age Model and the Minimum Age Model; Galbraith et al., 1999), the same 108 

relative OD (in %) is added in quadrature to individual relative De uncertainties, assuming multiplicative 109 

error properties (i.e. absolute uncertainties proportional to doses); the weighted average of logged De 110 

values (geometric mean) corresponds to the central dose. Conversely, in unlogged age models the same 111 

absolute OD (in Gy) is added in quadrature to individual absolute De uncertainties, assuming additive 112 

error properties (i.e. constant absolute errors); the weighted average of De values (arithmetic mean) 113 

corresponds to the central dose. In both cases the OD parameter is added in quadrature to each dose 114 

estimate in the weighted mean calculation of De. The choice between logged or unlogged models 115 

depends on the shape of measured De distributions: multiplicative error properties lead to lognormal 116 

distributions (and to the choice of logged age models), whereas additive error properties lead to normal 117 

distributions (and to the choice of unlogged age models; for a discussion on this point, see Arnold et al., 118 

2009). 119 

Thomsen et al. (2012) tried to determine whether dose distributions from uniformly gamma 120 

irradiated samples were normal or lognormal: they studied De distributions of samples bleached in a 121 

solar simulator and then delivered a homogeneous well-known gamma dose, to study the nature of 122 

intrinsic overdispersion. They concluded that both logged and unlogged models provided reasonable, 123 

but not perfect fits to their De distributions; in particular, they found no evidence for multiplicative error 124 

properties in equivalent dose measurements that could justify using logged age models. 125 

For this study, a sand sample from a beach-ridge from Skagen (Denmark; see Buylaert et al., 126 

2006; Nielsen et al., 2006; Guérin et al., 2012) was chosen for two reasons: firstly, because  its OSL 127 
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properties satisfy the general criteria for acceptability of the SAR protocol (fast component, recycling, 128 

recuperation, dose recovery etc.) and in this area, the average OSL ages determined with large multi-129 

grain aliquots of quartz are, for a number of sediment samples (n=20), in good agreement with 130 

radiocarbon data (Nielsen et al., 2006); secondly, the beta dose rate from potassium contributes a 131 

significant fraction (50 %) of the total dose rate to quartz; hence it is likely that, if dose rate distributions 132 

are affected by potassium and have implications regarding single-grain De populations, such an effect 133 

will be observed in this sample. It thus is a good candidate to (i) model beta dose rate distributions from 134 

potassium and (ii) experimentally characterise the implications of such modelling for analysis of 135 

equivalent dose distributions. As a result, the effect of potassium feldspar grains on the dispersion of De 136 

measurements from the natural distribution is presumed to be significant. Following Buylaert et al. 137 

(2006), this sample will be referred to as ‘the inter-comparison sample’. 138 

3. Samples, material and methods 139 

3.1. Sample preparation and characterization 140 

Gamma spectrometry 141 

Sediment was homogenised by crushing and sealed in a plastic box containing ~10 g of material. 142 

This sealed sample was then stored for at least three weeks to ensure radon build-up, before 143 

measurement using high resolution, low background gamma spectrometry, at the IRAMAT-CRP2A in 144 

Bordeaux. The potassium, uranium and thorium contents are given in Table 1. The corresponding dose 145 

rates have been calculated using dose rate conversion factors from Guérin et al. (2011) and using grain-146 

size attenuation factors from Guérin et al. (2012). The accuracy in dose rate determination, using the 147 

infinite matrix assumption, has been questioned in general – and for this sample in particular – by 148 

Guérin et al. (2012), especially when it comes to grain-size attenuation factors for uranium and thorium.  149 

However, the exact value of the attenuation factors (constants) is not critical for our study since we are 150 
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only interested in comparing the equivalent dose and dose rate distributions in this sample; we 151 

therefore used attenuation factors for beta dose rates from uranium and thorium. The effect of 152 

moisture on gamma dose rate was taken into account following Guérin and Mercier (2012), using the 153 

mean grain size of the sample and using the cubic-centred packing model. For the effect of moisture on 154 

beta dose rates, we used the water correction factors from Nathan and Mauz (2008) in sediments 155 

containing no carbonates, which were indirectly confirmed by Guérin and Mercier (2012). Here it should 156 

be noted however, that these correction factors have not been adapted to sand samples (for which the 157 

geometry of energy emission and absorption has consequences on the effect of moisture on beta dose 158 

rate – see Guérin et al., 2012). For the potassium feldspar extracts, the internal dose rate was calculated 159 

using dose rate conversion factors for potassium (Guérin et al., 2011) and the self-dose values from 160 

Guérin et al. (2012), and assuming an internal potassium content equal to 12.5±0.5% (Huntley and Baril, 161 

1997). Finally, the contribution from Rb was calculated according to Readhead (2002) and Huntley and 162 

Hancock (2001). 163 

Grain size analysis and element composition 164 

Grain size analysis and single grain element composition were obtained from Scanning Electron 165 

Microscope (SEM) image analysis and Energy Dispersive Spectrometry (EDS), respectively. Guérin et al. 166 

(2012) already modelled dose rates in this sample but their study focused on average dose rates to the 167 

different grain-size classes. Nevertheless, the sample characteristics were taken from this previous 168 

study: the grain size distribution can be found in their Fig. 1 (where the frequency corresponds to the 169 

actual number of grains rather than the most commonly used mass fraction). The sample is a well-sorted 170 

medium sand, with a mean grain size of 360 µm (geometric mean following Folk and Ward, 1957, 171 

calculated using the GRADISTAT program, Blott and Pye, 2001; in the following, all mean grain sizes are 172 

calculated accordingly). Based on EDS analysis, it is mainly (>99% by number of grains) made up of three 173 
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minerals: quartz (85% of the grains), potassium (7%) and sodium (8%) feldspar. Single grain EDS analysis 174 

further revealed that the grain-size distribution of potassium feldspar grains is similar to that of the 175 

sample taken as a whole. The potassium concentration, calculated from the abundance of potassium 176 

feldspar grains, and assuming a 12.5 % K content of these feldspars (corresponding to the peak in the 177 

histogram of K concentration from single grains, Fig. 2 in Guérin et al., 2012) is  ~1 % by mass and 178 

compares very favourably with gamma spectrometry results (Table 1). 179 

Sample preparation 180 

Prior to mineral separation, the sample was wet sieved to isolate 180-250 µm sand grains. These 181 

grains were then treated with HCl (10%) to remove carbonates, and with hydrogen peroxide (H2O2) to 182 

remove organic contaminants; despite a weak reaction, both treatments were continued until no 183 

further reaction was visible. Two aqueous solutions of sodium heteropolytungstates (densities 2.58 and 184 

2.62 g.cm-3) were used to isolate K-rich feldspar fractions (<2.58 g.cm-3) and quartz (>2.62 g.cm-3). The 185 

quartz fraction was then etched with HF (40%) for 40 minutes to remove the outer portion of the grains 186 

affected by alpha irradiation. After etching, any fluoride contaminants were removed by rinsing with 187 

10% HCl. This fraction was then re-sieved to >180 µm for further analysis, in particular for single grain 188 

measurements; this latter step removes any <180 µm grains resulting from the dissolution of residual 189 

feldspar in the quartz-rich fraction, or of small quartz grains.  190 

3.2. Luminescence instrumentation 191 

Grains were mounted in 9 mm base-diameter stainless steel cups using silicon oil. Aliquots of ~6 192 

mm in diameter were measured for quartz, at the IRAMAT-CRP2A in Bordeaux, and of ~3 mm in 193 

diameter for feldspar extracts, at Risø. Luminescence measurements were made using Risø TL/OSL DA-194 

15 and DA-20 readers (Bøtter-Jensen et al., 2003; 2010); for quartz multi-grain aliquots, blue (470 nm) 195 

light-emitting diodes (LED) were used with 7.5 mm Hoya U-340 detection filters; for feldspar, IR diodes 196 
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emitting at 875 nm were used in combination with coupled Schott BG39 and Corning 7-59 detection 197 

filters (transmission 320–460 nm). Each 90Sr/90Y source was calibrated during the measurement period 198 

by measuring several aliquots of calibration quartz irradiated with gamma rays (4.81 Gy; hereafter 199 

referred to as Risø calibration quartz) from a national secondary-standard 137Cs source; this calibration 200 

has been independently confirmed by Bos et al. (2006). 201 

Single grains of quartz were measured using an automated Risø TL/OSL reader (DA 20) fitted 202 

with a single grain attachment (Duller et al., 1999; Bøtter-Jensen et al., 2000). The grains were loaded 203 

into aluminium single-grain discs; each disc contains 100 holes 300 µm in diameter and 300 µm deep, on 204 

a 10x10 rectangular grid with 600 µm spacing between centres. A green laser (532 nm) was used to 205 

stimulate these grains individually, with light detection through a 7.5 mm Hoya U-340 glass filter. To 206 

confirm that only one grain was loaded into each hole, the single grain discs were visually inspected 207 

using a microscope before measurement. Radiochromic films allowed the determination of a coefficient 208 

of variation of 5.6% in dose rates to individual positions on the single-grain disc (Lapp et al., 2012). 209 

Correcting for this spatial variation in dose rates to single grains did not significantly change the 210 

measured De distributions, so we used a single beta source dose rate for all grain positions. 211 

3.3. Modelling: LSD algorithm and GEANT4  212 

The model used in this study was already described in detail by Guérin et al. (2012) and a 213 

previous version of the GEANT4 code is available in Guérin (2011). Here GEANT4 (Agostinelli et al., 2003; 214 

Allison et al., 2006) is used to simulate the beta emission spectra from potassium feldspar grains (Fig. 1; 215 

such grains represent 7% of the total), and to track each primary (electron) and secondary (photon and 216 

electrons) particle transport individually in a random close packing of spherical grains. The random close 217 

packing is based on the Lubachevski-Stillinger-Donev (LSD) algorithm (Donev et al., 2005). The grain size 218 

distribution of the sample was determined experimentally by SEM image analysis (sample grains were 219 
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thinly spread on a glass plate to ensure no grain overlap). The equivalent radius of the grains was 220 

determined assuming spherical grains (by equivalent radius of a grain we mean the radius of a circle 221 

whose surface would correspond to apparent, generally irregular surface of the grain). The compactness 222 

of the sediment obtained by random packing of the grains, using the LSD algorithm, is 0.635; as a result, 223 

the density of the medium when air fills the pore space, is calculated to be 1.68 g. cm-3.  224 

The sample water content, as determined experimentally, is 12% - which corresponds to a 225 

sediment density of 1.88 g.cm-3. To obtain the same density for the wet sediment in our Monte Carlo 226 

simulations, air is replaced by uniform, ‘light water’ (with a density of 0.55 g.cm-3) in pore spaces; this 227 

leads to a calculated wet density for the simulated sediment equal to the experimental value. Here it 228 

should be noted that these dry and wet sediment density values corresponding to the simulations are  229 

close to ‘typical’ sediment densities such as those given e.g. by Aitken (1985, Appendix H). The low 230 

density, uniformly distributed ‘water’ is an approximation; in practice, surface tension effects alter the 231 

spatial distribution of water (density: 1 g.cm-3) in the pore spaces – water forms thin layers at the 232 

surface of grains and tends to accumulate where grains touch each other. Such modelling goes beyond 233 

the scope of this study, however, it is difficult to say if a more realistic distribution of water would 234 

significantly affect the results of the simulations. For charged particles, the stopping power (unit: cm2.g-235 

1) determines the energy loss in the media, so for example, energy loss in 10 µm of water with a density 236 

of 0.55 g.cm-3 is equivalent to crossing 5.5 µm of identical water but with a density of 1 g.cm-3; one can 237 

ignore here 4.5 µm of air because of the negligible mass. As a result, in terms of energy loss in pore 238 

space, the two scenarios are equivalent (light, uniformly distributed water, or dense, localised water and 239 

air). However, some difference between the two cases will occur in terms of directional straggling; but 240 

these are expected to even out on average. 241 
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 Beta particles are emitted isotropically and their starting point is sampled homogeneously 242 

within the feldspar potassium grains. For simplicity, Guérin et al. (2012) simulated either pure potassium 243 

feldspar grains (with a K content of 14%, following stoichiometric values), or grains with zero potassium 244 

content. This assumption allows simplification of the simulations; however, the continuous distribution 245 

of K in the grains (cf. SEM-EDS analysis presented in Fig. 2 of Guérin et al., 2012) suggests that the actual 246 

potassium distribution may be somewhat less heterogeneous than in the model. Here, it should be 247 

noted that: (i) the potassium content of grains having a K content less than 6% are considered as zero 248 

potassium grains; this is considered acceptable since these grains represent only ~10-15 % of the total 249 

potassium in the sample; (ii) SEM-EDS analyses characterise only the surface of the grains, while the 250 

beta dose rate originates in the entire volume (so SEM-EDS values might not be representative of the 251 

content of the grains). We also observed low but non-zero values of K content from measurement of 252 

quartz grains, implying that at least some K is residing on the surface of all grains. Thus, the number of 253 

feldspar grains with intermediate K values is likely to be even lower than that observed in the data, 254 

suggesting that our assumed binary distribution of K should have little influence on the validity of the 255 

simulation results. 256 

For tracking of both photons and electrons, Penelope physics datasets were used, as they are 257 

well-adapted to the simulation of low energy electromagnetic interactions (Salvat et al., 2001). 258 

Production cuts (i.e. range of secondary particles below which these secondary particles are not 259 

generated) and maximum step size were set to 20 µm to ensure accurate tracking down to one tenth of 260 

the diameter of the dosimeter grains of interest. In other words, the energy that would be carried away 261 

by a particle with a range of less than 20 µm was assumed to deposit locally, and the interaction 262 

probabilities were recalculated, by extrapolation of the provided Penelope datasets, every 20 µm along 263 

the particles tracks. To mimic infinite matrix conditions, a reflection algorithm was used (Nathan, 2011; 264 

Guérin et al., 2012). 265 
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Whereas in Guérin et al. (2012), the dose was only recorded in the grain-size classes of interest, 266 

in this study every quartz grain in the range from 180 to 250 µm in diameter is treated as an 267 

independent dosimeter; this allows us to obtain beta dose rate distributions from potassium feldspar to 268 

quartz grains. For each set of simulations (i.e. for each grain size distribution and potassium content), 269 

ten different random close packing configurations were used. For each configuration, the emission and 270 

tracking of 20,000,000 primary particles were simulated at the calculation centre of the French National 271 

Institute of Nuclear and Particle Physics (IN2P3). The uncertainties on the different numbers given in the 272 

following are obtained by taking the standard errors on individual values from the 10 different simulated 273 

configurations.  274 

 4. Results 275 

4.1. Multi-grain aliquots OSL, IRSL and age control 276 

For the inter-comparison sample studied here, the quartz OSL signal is dominated by the fast 277 

component. The SAR protocol (Murray and Wintle, 2000; 2003) was used with a preheat temperature of 278 

200°C, held for ten seconds, and a cutheat temperature of 180°C before test dose measurements. The 279 

net signal intensity used in further calculations was derived from the sum of the OSL in the first 0.8 s of 280 

stimulation minus a background signal (calculated from the following 2.4 s of stimulation, i.e. early 281 

background subtraction). Nine aliquots were first exposed to a SOL 2 solar simulator for 3 hours and 282 

then given a dose of 5 Gy in the luminescence reader. The measured to given dose recovery ratio 283 

(0.97±0.05) showed that our SAR protocol was well-suited to measure equivalent doses for this sample. 284 

21 equivalent doses were measured using multi-grain aliquots of quartz; the average recycling ratio was 285 

0.99±0.07, and the resulting equivalent dose and age (4.73 ±0.23 ka) are shown in Table 2.  286 

The IRSL from ~3 mm aliquots of K-rich feldspars was also measured (n=6); the corresponding 287 

equivalent dose is 6.90 ±0.30 Gy. A g-value of 2.8±0.2 %/decade was obtained from fading 288 
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measurements performed on the same aliquots. Using the fading correction from Huntley and Lamothe 289 

(2001), the resulting age of 4.28 ±0.27 ka is in good agreement with the quartz OSL age, which confirms 290 

that the quartz OSL signal was well reset at the time of deposition (cf. Murray et al., 2012). A post-IR 291 

IRSL at 290 °C (pIR-IR290; Thiel et al., 2011) dose of 13.7±0.6 Gy was obtained from six different aliquots, 292 

giving an apparent age of 6.69 ±0.36 ka. This age overestimation of ~2 ka is not surprising given the 293 

young age of the sample since it is well-known that residual, difficult-to-bleach doses affect post-IR IRSL 294 

De determination from young samples. It corresponds to a residual dose of ~6 Gy for this signal, which 295 

fits within the variability of observed residual doses for well-bleached samples (i.e., samples sufficiently 296 

exposed to sunlight to reset the quartz OSL signal; see, e.g., Buylaert et al., 2011). This further indicates 297 

that the quartz OSL from this sample is most likely unaffected by poor-bleaching.  298 

4.2. Single grain OSL De and dose rate distributions. 299 

The single grain De measurements were all made using the SAR protocol with a preheat at 260 300 

°C for ten seconds, and a cutheat at 220 °C prior to test dose response measurement (note that thermal 301 

transfer is negligible for this sample, cf. Nielsen et al., 2006). The net signal used in De calculations was 302 

derived from the sum of the OSL in the first 0.05 s of stimulation minus a background signal (time 303 

average of the last 0.2 s; total stimulation time: 1s). Dose estimates from individual grains were 304 

accepted if they passed the following rejection criteria (derived from Thomsen et al., 2005; 2007; 2012): 305 

an error on the first test dose signal of less than 20% and a recycling ratio consistent with unity at two 306 

standard deviations. Recuperation was negligible for all samples. Note that the purity of the quartz 307 

extracts was examined on multi-grain aliquots using an IR-test (IRSL/BLSL ratios < 1%; Murray et al., 308 

submitted). 309 

Fig. 2 shows the relationship between the first (‘natural’) test dose signal and measured 310 

equivalent dose for single grains (i) from the international calibration standard “Risø calibration quartz” 311 
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(batch 54, heated and then given a 4.81 Gy dose using a secondary-national standard 137Cs source in 312 

scatter free-geometry, Fig. 2a), (ii) from fractions of quartz from the inter-comparison sample exposed 313 

to a solar simulator for three hours and then given gamma doses of respectively 1.92, 4.81 and 9.62 Gy 314 

(Figs. 2b, c ,d), and (iii) from natural quartz from the inter-comparison sample (Fig. 2e).  315 

4.2.1. Single grain gamma dose distributions 316 

Table 3 lists a number of statistical characteristics of the equivalent dose distributions of figure 317 

2, and resulting De measurements derived using different statistical models: the Central Age Model 318 

(CAM; Galbraith et al., 1999), the CAMUL (Arnold et al., 2009) and a simple unweighted arithmetic mean; 319 

where relevant, dose recovery ratios are also given; all dose recovery ratios are within 10% of unity. 320 

Furthermore, they are all consistent with unity, within two standard errors (except for the 1.92 Gy dose 321 

recovery test, where the CAMUL gives a measured to given dose ratio equal to 0.93±0.03). 322 

The Risø calibration quartz and the inter-comparison sample show different average 323 

luminescence intensities in response to a fixed test dose of 2.2 Gy (first test dose signal). Furthermore, 324 

the average luminescence intensity of the signals induced by gamma irradiations in dose recovery 325 

experiments depends on the given dose. As a consequence, the average relative uncertainties on 326 

individual dose estimates vary between the different samples: 13% for the Risø calibration quartz (given 327 

dose: 4.81 Gy) and 27%, 21 % and 13 % for the inter-comparison sample for given doses of 1.92, 4.81 328 

and 9.62 Gy, respectively (see Table 3). However, the relative overdispersion (OD) values from the CAM 329 

show little variation between Risø calibration quartz and the inter-comparison sample, or as a function 330 

of dose for the latter (16% on average; cf. Table 3); the different OD values for the gamma dose 331 

recovery experiments are statistically indistinguishable, which confirms the pattern seen by Thomsen et 332 

al. (2007; 2012) in the low dose region. Similar conclusions can be drawn for the CAMUL, when the 333 

absolute OD (in Gy) is expressed as a fraction of the central dose. Fig. 3 shows a standardised residual 334 
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analysis in the form of quantile-quantile plots (see Galbraith and Roberts, 2012, for other examples of 335 

such plots and their discussion). Quantile-quantile plots can be used to visually assess the normality of 336 

the distribution of residuals from the models. The standardised residuals ((di-δ)/σi, where di is the ith 337 

measurement of dose, σi its associated uncertainty – i.e., the quadratic sum of the analytical uncertainty 338 

and the overdispersion – and δ is the central value determined with the model) are sorted and plotted 339 

against the estimates expected from a normed and centred Gaussian distribution. The 1:1 line indicates 340 

the expected fit to the data if residuals are normally distributed. 341 

 Interestingly, from Fig. 3 it can be seen that for the gamma dose distributions, the standardised 342 

residuals from both the CAM and the CAMUL are consistent with a normal distribution, i.e. the observed 343 

residuals plotted against a normal distribution fall on a 1:1 line, despite a few outliers in the tail regions. 344 

In other words, it appears that the intrinsic overdispersion can be well described either by the same 345 

relative or the same absolute uncertainty; this makes the choice between normal and lognormal age 346 

models arbitrary at this stage. 347 

4.2.2. Dose rate distributions to single grains 348 

One of the differences between laboratory gamma dosed and the natural De distributions lies in 349 

the different dose rates to which individual quartz grains have been exposed in sedimentary media. Fig. 350 

4 shows the results of the GEANT4 simulations of the single-grain beta dose rate distribution from 351 

potassium feldspar grains for the inter-comparison sample. This distribution is positively skewed 352 

(skewness: 1.07) and can be fitted by a lognormal distribution (red line), which is in agreement with 353 

previously published work (Mayya et al., 2006). The positive skewness can be understood as a result of 354 

few quartz grains being close to potassium feldspar grains (high dose rate tail of the distribution), 355 

whereas most quartz grains are at some distance – compared to the range of beta particles – from beta 356 

radioactive sources (mode of the distribution). The distribution has a relative standard deviation of 357 
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31.2±1.4 %. Note that the presence of hot-spots does not lead to any distinguishable bi-modality in the 358 

resulting dose rate distribution. 359 

Grain to grain variations in gamma and cosmic dose rates can reasonably be assumed to be 360 

negligible in this sample, given the range of these radiations (>tens of cm). We assume that there is no 361 

other source of dispersion in beta dose rates to quartz grains – which is difficult to prove but supported 362 

by the absence of heavy minerals such as zircons, apatites, etc. from the SEM-EDS analysis (these could 363 

be potential sources of uranium and thorium). As a consequence, the relative standard deviation of the 364 

total dose rates to single grains of quartz (15.6±0.7 %) is obtained by multiplying the dispersion in beta 365 

dose rates from potassium by the relative contribution of this component to the total (50 %).  366 

4.2.3. Over-dispersion in the inter-comparison natural sample 367 

 Equivalent doses measured for the natural portion of the inter-comparison sample are plotted 368 

against natural test dose responses in Fig. 2e. Standardised residual analyses from the CAM and the 369 

CAMUL are shown in Fig. 5. As for the gamma dosed populations, both models provide good fits to the 370 

experimental data, and the resulting equivalent doses are consistent with each other. 371 

At least two contributions to the OD from the natural equivalent dose population have been 372 

quantified at this stage: (i) an intrinsic OD (i.e. the OD resulting from the measurement protocol; in 373 

other words we regard this intrinsic OD to originate from unrecognised/unquantified uncertainties 374 

inherent in the measurement, rather than as so-called ‘natural variations in the OSL properties’ giving 375 

rise to different true equivalent doses – cf. Galbraith et al., 2005). Our best estimate of this is 376 

determined from the gamma dose recovery tests in the dose range of interest (section 4.2.1); and (ii) an 377 

extrinsic OD (i.e. the OD resulting from all environmental factors external to the grains, such as the 378 

degree of light exposure before burial and grain-to-grain variations in dose rate). In this sample, we 379 

17 
 



consider the extrinsic OD to be dominated by the dispersion in dose rates (section 4.2.2), since we are 380 

confident that the sample was well bleached at deposition.  381 

In this sample, we have determined the intrinsic OD from the CAM (15±3 % at ~5 Gy) and the 382 

standard deviation in dose rates (15.6±0.7 %); these can be summed quadratically to give a minimum 383 

estimate of OD that should be observed in the natural sample, of 22±3%. This compares very favourably 384 

with the measured OD (23±2 %); thus, it seems that the natural OD for the well-bleached inter-385 

comparison sample can be fully explained by two contributions: the intrinsic OD and the dispersion in 386 

dose rates.  387 

4.3. Factors influencing the dispersion in dose rates 388 

 Given that it appears that dose rate variations contribute about 50% to the total OD in our 389 

sample, it is now useful to investigate the factors influencing the dispersion in dose rate to single grains. 390 

This was done by varying several parameters of the GEANT4 model. Mayya et al. (2006) have already 391 

shown the effect of average potassium concentration on dose rate distributions in sands where 392 

potassium is located in potassium-rich feldspar grains: the skewness and dispersion of dose rate 393 

distributions increase as the number of potassium-rich grains is decreased (relative to the number of 394 

quartz grains). This can be understood by considering that the average distance between source and 395 

dosimeter grains is increased as the potassium content is decreased because of a reduction in the 396 

number of feldspar grains; as a result, fewer quartz grains are close to potassium sources and most are 397 

at a distance from any source. Similarly, one would then also expect that the average grain size of the 398 

sediments would have a similar effect on dose rate distributions: as the grain size is increased, the 399 

distances between source and dosimeter grains is also increased, which should lead to more skewed 400 

and more dispersed distributions. 401 
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 Two parameters were thus varied in the simulations: firstly, the potassium content was varied 402 

by changing the fraction of potassium-rich feldspar grains, while keeping the grain size distributions 403 

similar for quartz and feldspar; secondly, the grain size distributions of the whole sample were 404 

multiplied by different scaling factors, so that the sorting of the sediments remained untouched but the 405 

simulated grain size distributions went from fine/very fine sands up to medium/coarse sands (Fig. 6). 406 

Fig. 7 shows frequency histograms of beta dose rate distributions to quartz grains for various grain size 407 

distributions and average matrix (bulk) potassium concentrations. The relative standard deviation of 408 

these distributions is plotted in Fig. 8, for different grain sizes, as a function of average potassium 409 

content. As expected, the relative dispersion increases when the potassium content is decreased and/or 410 

when the grain size is increased, up to 135±19 % for a mean grain size of 637 µm with a K content of 411 

0.14%.  412 

 We have compared our results, in terms of relative standard deviation in beta dose rates from 413 

potassium feldspar, with those presented by Mayya et al. (2006) in their Fig. 4. For 1% potassium and a 414 

unique grain size (200 µm), Mayya et al. (2006) found a relative standard deviation of ~28%; for a mean 415 

grain size of 255 µm, we found 20%  and only 9% for 149 µm. It is not straightforward to understand 416 

these differences, partly because the two approaches are so different (in particular, Mayya et al. 417 

focused on determining the minimum dose due to the presence of hotspots: Morthekai, Pers. Com.), 418 

and parameters may have different values. For example, the emission of beta particles in their paper is 419 

considered to be point-like, whereas in the Monte Carlo simulations the initial position within the 420 

emitting grains is sampled homogeneously. Straggling effects are taken into account in our Monte Carlo 421 

modelling, but not in Mayya et al. (2006). Furthermore, in their paper the minimum distance between a 422 

quartz grain and the closest hotspot – defined as the distance between the centres of the two 423 

corresponding grains (Morthekai, Pers. Com.) – is 0; in other words, two grains can overlap, which is 424 

physically unrealistic. This may seem to be negligible, but it most likely explains the important high dose 425 
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tails in their Fig. 3. b (it should be emphasized that this did not affect the minimum dose due to the 426 

presence of hotspots). Finally, there is an apparent peak in the dose distributions for very low doses (cf. 427 

Fig. 3a), which according to the original authors is a numerical artefact (Morthekai, Pers. Com.); this 428 

could contribute to the relative standard deviation in dose rates. It is very difficult to know at this stage 429 

if one or more of these factors can explain the difference between our results and those from Mayya et 430 

al. (2006). Nonetheless, despite these differences, the tendencies observed when parameters are varied 431 

(in particular potassium content) remain the same. Because Monte Carlo simulations have fewer 432 

approximations and closely mimic nature and because we model a more representative sediment 433 

matrix, we tend to believe that the results of our simulations are better representative of the deviation 434 

in dose rates due to the presence of hotspots compared to the approximate analytical treatment in 435 

Mayya et al. (2006). 436 

 It should be emphasised here that, for a given potassium content and assuming that beta dose 437 

rates from potassium are the only source of grain to grain dose rate variations, the dispersion on total 438 

dose rates to quartz grains will decrease as the total dose rate is increased; this is because the relative 439 

contribution to dose rate from potassium is decreased. In other words, the dispersion values from Fig. 8 440 

should always be scaled by the relative contribution of beta dose rates from potassium to the total. In a 441 

comprehensive study of more than 4,000 sediment samples from various contexts and geographical 442 

locations, Ankjærgaard and Murray (2007) have shown that beta dose rates account on average for 443 

~67% of the total dose rates (when working on sand-sized grains previously etched with concentrated 444 

HF, i.e. not accounting for any alpha dose rate contribution). Moreover, for 95% of the samples, 40K 445 

contributed between 40 and 92 % of the total beta dose rate. In other words, the contribution to the 446 

total dose rate to quartz grains from the beta dose rate derived only from potassium ranged from 27 to 447 

62% in almost all cases. Fig. 9 shows the modelled dispersion in total quartz dose rates as a function of 448 

potassium content for three samples in each of which the total dose rate is fixed (at 1, 2 and 3 Gy.ka-1). 449 
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The known likely range of potassium-derived beta dose rate contribution to the total (27 to 62%, 450 

derived above) are shown as dashed lines in Fig.9; these indicate the likely standard deviations to be 451 

expected for well-sorted sands of different mean grain sizes, for typical K concentration. 452 

5. Discussion 453 

5.1. Typical OD for well-bleached samples 454 

Many age models (FMM, MAM, IEU) require the input of an OD value before the model can be 455 

used to identify a representative dose component(s). Determining an accurate OD representative of a 456 

well-bleached population is, therefore, at the heart of most single-grain studies. Sometimes, the intrinsic 457 

OD determined by a dose recovery experiment is used as a minimum value (e.g., Thomsen et al., 2007); 458 

in other studies the OD is allowed to vary between fixed values (e.g., Jacobs et al., 2008b).  459 

The results from our Monte Carlo simulations show that a typical OD value for a well-bleached 460 

sample will depend on grain size, potassium content, and total dose rate. Considering  the effect of 461 

potassium feldspar grains on dispersion in single-grain dose rates, there is no a priori limit on the OD of 462 

a natural sample and certainly no typical OD for well-bleached samples. This could explain the wide 463 

range of ODs observed in natural samples presumed to be well-bleached (but presumably affected by 464 

beta dose rate heterogeneities, see Fig. 1 of Thomsen et al., 2012, and references therein; see also, e.g., 465 

Jacobs, 2010; Jacobs et al.,  2011; 2012; 2013; Gliganic et al., 2012). 466 

 5.2. When to use the dose rate model   467 

It should be emphasised that the model presented here is expected to be used in cases where 468 

single grain dose rates need to be simulated to disentangle different sources of OD in single grain De 469 

measurements. In this study, the model successfully explains the discrepancy between the observed OD 470 

in the natural De distribution and the intrinsic OD resulting from the measurement protocol, for a single 471 
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sample. It is difficult to predict how well it might perform on a variety of samples. Nevertheless, our 472 

understanding of the processes involved allows us to be confident that dispersion in beta dose rates 473 

arising from the distribution of potassium will be most important when the average grain size is in the 474 

sand and gravel range (rather than silt or clay), the potassium content is low (<1%), and the total dose 475 

rate is small  (<1 Gy.ka-1).   476 

5.3. Implications for the use of different age models 477 

Interestingly, in the literature so-called age models (e.g., CAM, MAM, FMM) are actually dose 478 

determination models. Very few studies focus on dose rates during burial, even fewer consider dose 479 

rate distributions in the analysis of single-grain dose distributions. The simulation results presented in 480 

this study raise important questions concerning how luminescence ages are calculated. In particular, it is 481 

not clear how individual data should be weighted; each single grain equivalent dose estimates is not 482 

measured with the same precision, and each grain has received a different unknown dose rate; thus a 483 

dose distribution is not equivalent to an age distribution.  484 

In the ideal case of a single ‘true dose’ (i.e., every grain has absorbed the same dose), the central 485 

dose (in this section, by central dose we mean the value most appropriate for use with an average dose 486 

rate to derive an age) is commonly derived using the logged or the unlogged central age model (see 487 

section 2).  An alternative approach, commonly used in multi-grain analyses, is to use the unweighted 488 

arithmetic mean; this approach discards analytical uncertainties on individual dose estimates on the 489 

grounds that these uncertainties are trivially small compared to the variability in De measurements. The 490 

use of this latter approach inherently implies that the main source of dispersion is unknown and is much 491 

bigger than all known sources of analytical uncertainty.  492 

The intrinsic dispersion in the De data can generally be equally well described by normal and 493 

lognormal distributions. However, the dose rate distribution from potassium feldspar grains is   494 
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positively skewed and can only be best described by a lognormal distribution; each individual dose 495 

component of this distribution is sampled in the lab as a normal or a log normal distribution. In many 496 

cases dose recovery distributions can be adequately fitted using the CAM (which assumes a log normal 497 

distribution); this has been demonstrated here by the Gaussian distribution of the residuals from the 498 

CAM (Fig.3 – right panel), using the inter-comparison sample. Given that log normal distributions can 499 

describe both the natural dispersion arising from dose rates, and the measurement induced dispersion 500 

in the data, suggests that the use of logged models best represent De distributions in natural samples, 501 

and so provide the best estimates of OD.  502 

The question is how best to determine the burial dose from a distribution of single grain De 503 

values, in the absence of the knowledge of the underlying dose rate distribution. Almost all dose rates 504 

based on high resolution gamma spectrometry, Neutron Activation Analysis (NAA), beta counting or any 505 

other analytical technique are arithmetic means of repeated measurements of the spatially averaged 506 

radioactivity in the sample. Thus, we typically know only an average dose rate in the sample. The dose 507 

distribution on the other hand is known at the single grain level and different measures of central 508 

tendency can be applied to derive a representative dose. If an age is derived by dividing a geometric 509 

mean De by an arithmetic mean dose rate, then the age is likely to be underestimated to some degree 510 

(since unweighted geometric means are systematically lower than unweighted arithmetic means). For 511 

example, consider a sample in which the distribution of dose rates dominates the natural dispersion. 512 

Suppose this to be a well-bleached, well-behaved sample in which the uncertainty on the measurement 513 

of dose is negligibly small (e.g., 1%). All grains must by definition record the same age. First, consider a 514 

10 ka old fine-grain sample with a uniform dose rate of 1 Gy/ka. We measure 3 grains, each with a dose 515 

of 10 Gy: the average age is 10 ka and the CAM age is 10 ka with no overdispersion. Now let us consider 516 

a less homogeneous (coarse grained) sample, of the same age and average dose rate, from which we 517 

sample three representative grains which have experienced dose rates of 0.6, 0.9 and 1.5 Gy/ka 518 
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resulting in doses of 6, 9 and 15 Gy. We still observe the average dose rate (1 Gy/ka), the dose 519 

distribution is positively skewed, and the individual grain ages of course remain at 10 ka; the average 520 

age is 10 ka but the CAM age (using a geometric mean of De values) is 9.3 ka. Thus, it appears that if the 521 

scatter in the measured equivalent dose distribution arises primarily as the result of grain to grain 522 

variability in the dose rates (which is much larger than the intrinsic variability due to measurement), and 523 

one measures an average dose rate, then it is more appropriate to use the simple mean rather than the 524 

geometric mean De. 525 

 More generally, the equivalent dose derived from measured De distributions using any age 526 

model should be as close as possible to the average of the true underlying dose rate distribution. 527 

Sometimes, this will be best estimated using the CAM (or geometric mean); for instance, when all grains 528 

have received the same dose and the dominant source of dose dispersion is multiplicative error 529 

properties. However, in those cases where the dose rate distribution is unknown but the natural dose 530 

distribution is considerably overdispersed compared to a (gamma) dose recovery experiment, it seems 531 

reasonable to assume that the dominant source of dispersion is dose rate (in any case, it is unlikely to be 532 

explained by multiplicative error properties, because these should be entirely accounted for by the dose 533 

recovery experiments). In such cases the central dose may be best estimated by using an unweighted 534 

arithmetic average; the CAM will bias the results to give an equivalent dose inappropriate to the average 535 

dose rate, and so an underestimate of the age. Obviously, this approach has the drawback that one 536 

gives equal weight to individual De values that are known with different degrees of precision. 537 

To some extent, the above problem could be circumvented if a geometric mean dose rate was 538 

available. However, only direct measurement of single-grain dose rate distributions would allow the 539 

calculation of geometric mean dose rates; in general, such data is not obtainable experimentally. For the 540 

inter-comparison sample, the geometric mean of the GEANT4 simulated single-grain beta dose rates 541 
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from potassium is ~5% lower than the arithmetic mean; in the absence of uncertainties on De 542 

measurements (or if they are negligible compared to other sources of dispersion), using a geometric 543 

mean to calculate a central dose (e.g., CAM) together with an average dose rate would thus result in an 544 

age underestimation of ~2% compared to that using the arithmetic mean for equivalent dose and dose 545 

rate (since beta dose rate from potassium contributes ~50 % of the total). In a worst case scenario, the 546 

difference between geometric and arithmetic means of beta dose rates from potassium could be as 547 

much as 50% (based on a simulation assuming [K] = 0.14 %, mean grain size of 637 µm – cf. Fig. 8). Then 548 

the discrepancy arising from the division of a geometric mean equivalent dose estimate by an average 549 

dose rate would result in an age underestimation of 25%. Although this effect depends on potassium 550 

content, grain size and total dose rate, it should be noted that the consequence of using a geometric 551 

mean is a systematic age underestimation, not a random variation about some mean. In absence of 552 

modelled data such as presented in this study (or a better analytical approach), it appears that 553 

arithmetic means of De should give us the most accurate age. 554 

5.4. A case study: the inter-comparison sample 555 

In this sub-section, we discuss in practice the choice of an appropriate analysis model for De 556 

calculation, following the simulation results obtained for the inter-comparison sample.  557 

In the natural De distribution of the well-bleached inter-comparison sample, three main factors 558 

contribute to variations in De estimates, each with similar magnitudes: known measurement 559 

uncertainties, an intrinsic source of scatter in single-grain doses (measureable, but of unknown origin; 560 

Thomsen et al., 2005; Galbraith et al., 2005), and finally dose rate variations. Fig. 10 shows the 561 

relationship between the absolute (Fig. 10a) or relative (Fig. 10b) errors and individual dose estimates 562 

for the gamma dose recovery distribution obtained using the inter-comparison sample. The data are 563 

highly scattered, and no clear trend is observable; if anything, there may be a weak tendency for the 564 
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relative uncertainties to decrease with dose. Both the CAM and CAMUL indicate that the data are 565 

overdispersed, with a magnitude similar to the dispersion of measurement uncertainties. Finally, Fig. 10 566 

(c, d) shows the same plots of uncertainty as a function of dose for the distribution of De estimates from 567 

the natural inter-comparison sample. Again there is no unique trend, although overdispersion is 568 

increased presumably due to variations in external beta dose rates. In all four cases it is difficult to 569 

ascertain which age model, i.e. CAM, CAMUL or unweighted arithmetic average, to use.  570 

It is interesting to note that experimentally, for the equivalent dose populations investigated in 571 

this study, the CAM-based equivalent doses are greater than CAMUL results (Table 3), because – even 572 

though there is no clear trend in the graphs from Fig. 10 – average relative uncertainties appear to 573 

decrease slightly with increasing dose (thus placing more weight on higher dose estimates when using 574 

CAM), and inversely for absolute doses (with the consequence of lowering CAMUL central dose).  575 

The fact that we measure non-zero intrinsic OD values tells us that we underestimate our 576 

uncertainties on individual De estimates, possibly due to variability in grain to grain natural OSL 577 

properties that is not accounted for by analytical uncertainties. When applying our GEANT4 based dose 578 

rate model, the only source of systematic variation in De distributions that we know of – albeit only 579 

through modelling – is the variation in dose rates to individual grains; it is difficult to justify using this 580 

source of dispersion in the weighting of De estimates (as is the case when using e.g. the CAM), as dose 581 

rate variability is independent of uncertainties of dose estimates. We may then decide to simply ignore 582 

our uncertainties in central De estimations and calculate unweighted averages of equivalent doses. Not 583 

only are the dose recovery tests satisfactory (cf.  Table 3), but doing so we would also compare 584 

arithmetic means of equivalent doses with arithmetic means of dose rate. In the case of the inter-585 

comparison sample, (i) the three identified sources of dispersion in De (analytical uncertainties, intrinsic 586 

and extrinsic OD) are of comparable sizes and (ii) the intrinsic OD is reasonably well-fitted by both 587 
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normal and lognormal distributions of corresponding uncertainties (cf. standardised residual analyses of 588 

the CAM and the CAMUL); it is not surprising that all three models (including an unweighted arithmetic 589 

average) give a set of consistent ages. In general, we argue that only a careful analysis of the sources of 590 

dispersion can lead to an informed decision regarding the most appropriate De determination model on 591 

a sample by sample basis. 592 

Our study has not considered issues related to changes in OSL sensitivity of the grains between 593 

nature and laboratory irradiations; any such changes can be a source of additional intrinsic over-594 

dispersion in De populations (undetected by gamma dose recovery experiments; see, e.g., Stokes, 595 

1994a, b; Singhvi et al., 2011). But given that there is a satisfactory agreement between the observed 596 

OD and the predicted OD (from intrinsic OD and beta dose rate variation), we think this sensitivity 597 

change effect must be negligible. From a dose rate perspective, the presence of highly radioactive 598 

minerals such as, e.g., zircons will also induce additional extrinsic over-dispersion. Our Geant4 model 599 

was designed to describe the effect of potassium feldspar grains on extrinsic over-dispersion, because 600 

this was considered the most likely and most important source – at least for beta dose rates. 601 

Nevertheless, similar models using the same architecture can be used to predict the effect of uranium 602 

and thorium sources of any given geometry and size distributions.  603 

6. Conclusion 604 

We have developed a new model to quantify the effect of grain size and potassium 605 

concentration (feldspar hotspots) on the grain-to-grain dose rate variations for well sorted sediments. 606 

The model is successfully tested using experimental data obtained from a well characterised sediment 607 

sample, and predictions are made for other sediments with similar sorting but different grain sizes and K 608 

concentrations. The model provides estimates of minimum expected extrinsic overdispersion for various 609 

grain size distributions, potassium contents and total dose rates. These estimates, together with an 610 
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analysis of over-dispersion in laboratory dose recovery data (intrinsic overdispersion), allow us to 611 

investigate the sources of variability in equivalent dose measurements from individual grains in our test 612 

sample. It is shown that consideration of beta dose rate variability has an important bearing on the use 613 

of statistical models such as CAM, MAM, FMM, IEU, etc. for deriving the representative equivalent dose 614 

that corresponds to the average dose rate estimate. Furthermore, our results imply that, for well 615 

bleached samples, unweighted arithmetic mean dose together with the average dose rate may provide 616 

a more accurate estimation of age, particularly in cases where the dispersion in measured De values is 617 

dominated by extrinsic over-dispersion rather than measurement uncertainties. This conclusion has 618 

important implications for the analysis of more complicated dose distributions affected by incomplete 619 

bleaching and post-depositional mixing. 620 
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Figure captions 769 

Fig. 1: example of a Geant4 simulation of beta emission from potassium feldspars. The grains are 770 
randomly packed using the LSD algorithm (Donev et al., 2005). Blue spheres represent potassium-rich 771 
feldspar grains, whereas grey ones represent quartz grains. Electron tracks  generated inside feldspar 772 
grains are shown in red, while secondary photon tracks are shown in green. 773 

Fig. 2: single grain OSL natural test dose response as a function of dose for (a) Risø calibration quartz 774 
(annealed by heating and then given a 4.81 Gy gamma dose), quartz from the intercomparison sample 775 
bleached in a daylight simulator (Hönle SOL 2) at a distance of 80 cm for 3 hours and then given gamma 776 
doses of 1.92 Gy (b), 4.81 Gy (c) and 9.62 Gy (d), and natural (e). 777 

Fig. 3: Q-Q plots of the standardised residuals from CAMUL (left) and CAM (right). Risø calibration quartz 778 
(a); quartz from the intercomparison sample: bleached and given gamma doses of 1.92 Gy (b), 4.81 Gy 779 
(c) and 9.62 Gy (d). 780 

Fig. 4: Geant4-simulated beta dose rate distribution from potassium-rich feldspar grains to single grains 781 
of quartz in the intercomparison sample. 782 

Fig. 5: Q-Q plots of the standardised residuals from CAMUL (left) and CAM (right), for the natural De 783 
distribution from the intercomparison sample. 784 

Fig. 6: The different grain size distributions simulated with Geant4, corresponding to well-sorted sands. 785 
While the shape of the distributions is unchanged, the grain sizes are multiplied by different factors to 786 
investigate the effect of mean grain size on the single-grain dose rate distributions. The shaded bar 787 
indicates the 180-250 µm fraction, from which each grain is treated as an independent dosimeter. 788 

Fig. 7: Examples of beta dose rate distributions from potassium feldspar in well-sorted sands for 789 
different potassium contents and mean grain sizes. The relative standard deviation is indicated in each 790 
case (RSD). Left: the potassium content is fixed (1.10%) but the mean grain size increases from top to 791 
bottom. Right: the mean grain size is fixed (360 µm) but the potassium content increases from top to 792 
bottom. 793 

Fig. 8: Relative standard deviation, obtained with Geant4 simulations, of single grain beta dose rate 794 
distributions from potassium, as a function of potassium content for different grain sizes. 795 

Fig. 9: Relative standard deviation, obtained with Geant4 simulations, of total dose rates to single grains 796 
of quartz, as a function of potassium content for different grain sizes. Total dose rate is 1 Gy.ka-1 (a), 2 797 
Gy.ka-1 (b), 3 Gy.ka-1 (c). The dashed lines indicate the range of most likely values for potassium content 798 
in each case (see text for details). 799 

Fig. 10: Single grain OSL absolute (left) and relative (right) uncertainties as a function of dose. (a), (b): 800 
intercomparion sample, 4.81 Gy gamma distribution. (c), (d): intercomparison sample, natural 801 
distribution. Inset in (c): without the 3 high uncertainty points. 802 
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K (%) U (ppm) Th (ppm) 

Water 
content 

(%) 

Gamma 
dose-rate 
(Gy.ka-1) 

Beta dose-
rate (Gy.ka-1) 

Cosmic 
(Gy.ka-1) Total (Gy.ka-1) 

Fraction 
contributed by 

beta from K 

1.06 ± 0.02 0.42 ± 0.02 1.38 ± 0.04 12 0.33 ± 0.01 0.74 ± 0.03 0.17 1.24 ± 0.06 0.50 
 

Table 1: Radiometric and dose-rate data for the inter-comparison sample, as measured in IRAMAT-CRP2A. 



Quartz OSL Feldspar IRSL at 50 °C Feldspar postIR-IRSL at 290 °C 
De (Gy) Age (ka) De (Gy) Age (ka)a De (Gy) Age (ka) 

4.73 ± 0.23 3.81 ± 0.26 6.90 ± 0.30 4.28 ± 0.27 13.7 ± 0.6 6.69 ± 0.36 
 

Table 2: Ages obtained for the intercomparison sample, using quartz OSL, feldspar IRSL at 50 °C and 
post-IR IRSL at 290 °C. 

a the Huntley and Lamothe fading correction model was applied. 



 

    
CAM CAM-UL Unweighted average 

 

Given dose 
(Gy) nb 

Avg. 
error 
(%)c De (Gy) OD (%) 

Recovery 
ratio De (Gy) OD (Gy) 

OD (% of 
De) 

Recovery 
ratio De (Gy) 

Recovery 
ratio 

InterComp. 1.92 ± 0.03 85 27 1.86 ± 0.06 17 ± 3 0.97 ± 0.03 1.79 ± 0.07 0.35 ± 0.05 0.20 0.93 ± 0.03 1.88 ± 0.08 0.98 ± 0.04 

 
4.81 ± 0.07 71 21 4.74 ± 0.16 15 ± 3 0.98 ± 0.03 4.58 ± 0.17 0.88 ± 0.12 0.19 0.95 ± 0.03 4.63 ± 0.12 0.96 ± 0.02 

 
9.62 ± 0.14 108 13 9.63 ± 0.28 15 ± 2 1.00 ± 0.02 9.49 ± 0.28 1.5 ± 0.2 0.16 0.99 ± 0.02 9.81 ± 0.33 1.02 ± 0.03 

 
Nat 123 23 4.51 ± 0.15 23 ± 2 

 
4.38 ± 0.16 1.2 ± 0.1 0.28 

 
4.56 ± 0.19 

 Risø Cal.a 4.81 ± 0.07 369 13 108 ± 1 15 ± 1 
 

106 ± 1 18 ± 1 0.17 
 

108 ± 1 
  

Table 3: Statistics of the different single-grain quartz De distributions. 

a for the Risø calibration quartz, all measured equivalent doses are given in seconds rather than in Gy, as the result is used for dose-rate 
calibration of the reader. 

b Number of accepted grains. 

c Average relative uncertainty on individual dose estimates. 
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