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Abstract
After the detonation of an oxygen-deficient homogeneous high explosive, a phase of turbulent combustion, called afterburning,
takes place at the interface between the rich detonation products and air. Itsmodelling is instrumental for the accurate prediction
of the performance of these explosives. Because of the high temperature of detonation products, the chemical reactions are
mixing-driven. Modelling afterburning thus relies on the precise description of the mixing process inside fireballs. This work
presents a joint numerical and experimental study of a non-reacting reduced-scale set-up, which uses the compressed balloon
analogy and does not involve the detonation of a high explosive. The set-up produces a flow similar to the one caused by
a spherical detonation and allows focusing on the mixing process. The numerical work is composed of 2D and 3D LES
simulations of the set-up. It is shown that grid independence can be reached by imposing perturbations at the edge of the
fireball. The results compare well with the existing literature and give new insights on the mixing process inside fireballs. In
particular, they highlight the fact that the mixing layer development follows an energetic scaling law but remains sensitive to
the density ratio between the detonation products and air.

Keywords Homogeneous high explosives · Afterburning · Turbulent mixing · LES · Compressed balloon method

1 Introduction

Despite a continuous effort, the calculation of the blast pro-
duced by an oxygen-deficient high explosive (HE) is still a
challenge. Contrary to ideal HEs for which all the chemical
energy is liberated during the detonation, oxygen-deficient
HEs generate detonation products that can still exothermi-
cally react with air during a phase called afterburning, which
results in an enhancement of the blast. Detonation products
appear as an intensely glowing, burning cloud of gas and soot
called a fireball.

Previous studies have shown that the combustion pro-
cess inside fireballs is mainly driven by the turbulent mixing
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of detonation products with air [1]. Rayleigh–Taylor (RT)
instabilities [2,3] and, then,Richtmyer–Meshkov (RM) insta-
bilities [4,5] allow the growth of a turbulent mixing layer at
their edge. The mixing process is thus a key parameter in the
phenomenology of fireballs as it controls both the flamemean
radius, its wrinkling, and the local speed of sound. Conse-
quently, it also drives the total heat released by afterburning
reactions and the blast profile.

Very recent 3D numerical simulations of TNT explosions
performed by Milne et al. [6] seem to confirm the key role
of turbulent mixing. They indeed obtained results in good
agreement with experimental data by resolving the mixing
layer while considering instantaneous chemical reactions.

The objective of the present study is to better understand
themixing processes occurring inside HE fireballs by using a
non-reacting reduced-scale set-up. This study relies on both
numerical work and experimental work. The set-up, which is
essentially a spherical shock tube similar to the one used by
Boyer [7] in 1959, consists of bursting air-pressurised glass
spheres. Even though it does not involve the detonation of
a HE, it produces a similar flow, which is representative of
the one following a spherical detonation [8]. This analogy
is often referred to as the compressed balloon method. The
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numerical study consists in two-dimensional (2D) and three-
dimensional (3D) large-eddy simulations (LES) of the set-up
and allows investigating the influence of the initial density
ratio and energy, which are key parameters in the develop-
ment of the mixing layer.

The results of the numerical and experimental work are
presented and compared in this paper. In Sect. 2, the phe-
nomenology associated with afterburning is described in
detail. In Sect. 3, the configuration, experimental set-up and
numerical methods are described. Then, the results of the
2D numerical study, which focuses on mesh independence,
are presented and discussed in Sect. 4. Section 5 is dedi-
cated to the analysis of the experimental data, and finally, in
Sect. 6, the results of the 3D numerical study are presented
and compared to the experiment. Throughout this study, spe-
cific attention is paid to the effect of the initial energy and
density ratio.

2 Phenomenology

2.1 Flow induced by a spherical detonation

After the spherical detonation of a HE, the expansion of
detonation products creates a complex flow for which four
characteristic steps have been identified by Anisimov et
al. [9,10] and Kuhl et al. [11,12] (Fig. 1). First, during
what is called the strong blast wave phase, an intense shock
wave is transmitted into the atmosphere, and the interface
between the detonation products and air is swept outwards.
This region is referred to as the interface or the mixing layer
in the remainder of the text, and the objective of this work
is to understand its dynamics. Perturbations of the interface
due, for example, to local inhomogeneities in the explosive
material [11,13] arise, but their amplitude remains small. An
expansion wave propagates inwards. Simultaneously, due to
the spherical expansion of the detonation products, the pres-
sure gradient close to the interface builds up which creates
a secondary shock wave inside the fireball. After the expan-
sion wave has reflected at the centre of the fireball, it starts
propagating outwards and interacts successivelywith the sec-
ondary shock wave and the interface. The flow is reversed
behind the expansion wave so that the radii of the secondary
shockwave and themixing region then start to decrease. This
phase is referred to as the implosion phase. The deceleration
of the interface allows the growth of flow structures in the
mixing layer from the small initial perturbations through RT
instabilities [2,3] since the interface is naturally unstable [14].
The combustion of detonation products in a turbulent diffu-
sion flame brings energy to the mean flow, which results in
a lower pressure drop behind the primary shock wave. The
inward-propagating secondary shock wave is then reflected
at the centre and starts propagating outwards. Its interac-

Fig. 1 Theoretical time-versus-distance wave diagram of a cylindrical
or spherical explosion

Fig. 2 Schematic representation of the structures resulting from the RT
instability

tion with the mixing layer, called the reshock phase, causes
the fireball to grow again. Mixing is enhanced due to RM
instabilities [4,5] resulting in a further increase of the reac-
tion rate. Eventually, an asymptotic mixing phase is reached
when the radius of the fireball becomes steady, even though
combustion still occurs. The heat released by afterburning
yields an improved blast and an augmented impulse, which
is defined as the temporal integral of the positive phase of the
overpressure signal (i.e., P − P0 > 0).

2.2 Rayleigh–Taylor instability

Mixing in HE fireballs is mainly driven by the RT instabil-
ities occurring during the strong blast wave phase and the
implosion phase. RT instability is caused by the acceleration
of a heavy fluid (density ρh) by a lighter one (density ρl). It
develops at the interface between the two fluids from small
initial perturbations, which cause a misalignment of the den-
sity and pressure gradients. It is present without heat release.
The associated baroclinic torque gives birth to vortical struc-
tures resulting in the formation of bubbles of light fluid into
the heavy one, and spikes of heavy fluid into the light one,
as represented in Fig. 2.
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Three characteristic steps of development of the RT insta-
bility have been identified by Youngs [15] for small initial
perturbations. He stated that the effects of viscosity result
in the appearance of a most unstable mode of wavelength
λm, which corresponds to the initially fastest growing per-
turbations. For a planar interface submitted to a constant
acceleration g, one has:

λm ≈ 4π

(
ν2

gA

) 1
3

, (1)

where A = (ρh − ρl)/(ρh + ρl) is the Atwood number, and
ν is the average kinematic viscosity defined as:

ν = μh + μl

ρh + ρl
, (2)

in which μh and μl are the respective dynamic viscosity of
the heavy fluid and the light fluid.

First, perturbations corresponding to the most unstable
wavelength grow symmetrically in shape and exponentially
in time until their amplitude h is such that h ≈ 1/2λm. In a
second phase, nonlinear effects cause the saturation of their
growth and their shape becomes asymmetric. If the range
of wavelengths in the initial perturbation is large, and since
large structures develop more slowly than small ones dur-
ing the initial exponential growth, but faster after saturation,
the flow is then dominated by larger and larger structures
until the wavelength of the dominant structure λd is approx-
imately 10λm. From this point, the knowledge of the initial
state is lost and the evolution of the instability is self-similar,
i.e., the bubbles height and diameter are proportional. Under
a constant acceleration g, the height hb (respectively, hs) of
the bubbles (respectively, spikes) evolves quadratically with
time [15–17]:

hb,s ≈ αb,sAgt
2 (3)

where αb and αs are the growth rates of bubbles and spikes,
respectively.

In the case of a cylindrical or spherical geometry, the
initial growth of the instability from small perturbations is
described by the Bell–Plesset equation [14,18] and is no
longer exponential but follows instead aGauss hypergeomet-
ric function [19,20].However, this equation tends towards the
one for the planar case when the wavelength of the pertur-
bations is small compared to the radius of curvature of the
interface.

Fig. 3 View of the exterior of the vessel showing the two high-speed
cameras used for schlieren (left) and glass fragments observation (right)

3 Methodologies and configurations

3.1 Experimental set-up

The experimental study of HE afterburning faces multiple
technical challenges. First the timescales are very small,
requiring data acquisition rates as large as 1GHz. Then, the
large power density, the presence of shock waves, and the
projection of debris call for specific protection measures for
the diagnostics. Finally, the opacity of the fireball due to soot
hinders the observation of mixing processes. Therefore, this
study aims at reproducing similar flows, at a reduced scale,
by bursting air-pressurised glass spheres. The experimental
data are used as a reference for a numerical study and allows
testing the influence of the initial density ratio and energy on
the mixing process.

The experimental set-up consists of two main compo-
nents: a glass sphere pressurised with air and a steel vessel
with optical access, shown in Fig. 3, for the protection of
the optical diagnostics. The spheres are made of hand-blown
≈1-mm-thick borosilicate glass, sealed to a metallic base
equipped with a gas inlet. They are mounted on the top of
a mast at the centre of the vessel. The vessel is cubic and
1m wide. Three faces are equipped with windows to allow
optical access. An optical head used for photonic Doppler
velocimetry (PDV) is mounted on the upper face. A pneu-
matic hammer, mounted on the mast, was designed to break
the sphere once it is pressurised. However, as the spheres
were too fragile to sustain the desired level of pressure, it has
never been used in practice (see Sect. 5).



Fig. 4 Experimental set-up as seen from above

A schematic of the installation is represented in Fig. 4.
The diagnostics are: (1) a high-speed numerical schlieren
camera to study the flow and determine the wave diagram,
(2) pressure sensors tomeasure the blast, and (3) a high-speed
video of the sphere and PDV to determine the velocity of the
glass fragments.

Both videos are recorded at a rate of 75,000 frames per
second and a resolution of 512 × 512 pixels, which corre-
sponds to around 0.4mm per pixel. Four pressure sensors
are used and placed on two pencil gauges. Two (numbers 1
and 3 in Fig. 4) are located at 0.362m from the centre of the
sphere, and two (numbers 2 and 4) at 0.422m. A copper tape
is stuck to the sphere at the impact location of the hammer.
Both tape and hammer are part of the triggering circuit so
that measurements are triggered when the hammer and the
tape come into contact and close the circuit.

The experimental wave diagram is obtained by measuring
the shocks and interface positions on the high-speed camera
frames after having calibrated them to determine their effec-
tive resolution. The reference length used for calibration is
the sphere diameter.

3.2 Numerical method

The numerical study is conducted with the AVBP solver [21]
in the framework of large-eddy simulation (LES). The
compressible Navier–Stokes equations are solved using a
two-step Taylor–Galerkin low-dissipation centred scheme
called TTG4A [22,23], which is third order in space and
fourth order in time. No subgrid scale model is used for the
2D computations, and the sigma subgrid scale model [24] is
used for the 3D simulations. This model has the advantage of
introducing no subgrid scale viscosity for pure diverging and
rotating flows, which is well adapted to the configurations
studied in this paper. The gas is represented using a multi-
species approach and a perfect gas equation of state with
temperature-dependent heat capacities and transport coeffi-
cients.

Themeshes are unstructured and divided into two zones: a
spherical one, well resolved, centred on the sphere, and wide
enough to cover the area swept by themixing layer, and a sec-
ond one ensuring a continuous transition to the boundaries

of the domain, where the cells are larger. For the 2D simu-
lations, the domain is a disc of diameter 90cm, and a free
outlet boundary condition is imposed on the boundary of the
domain. For the 3D simulations, the domain is a cube (side
of length 0.5m) representing one-eighth of the experimental
confinement vessel. An adiabatic slip wall boundary condi-
tion is imposed on the three faces representing the walls of
the vessel, and the three other faces are treated as symmetries.

In order to reproduce the experimental initial condi-
tions, the initial temperature is uniform in the computational
domain (299K) and the velocity is zero everywhere. The ini-
tial pressure in the vessel is set to 1.0bar, and a constant
pressure P1 is imposed inside a spherical zone representing
the glass sphere. The resulting pressure jump is smoothed
over a few cells via a hyperbolic tangent function in order to
reduce spurious numerical oscillations at the start-up of the
computation. For the 2D simulations, the high-pressure zone
is located at the centre of the domain, whereas, for the 3D
ones, it is located in the corner representing the centre of the
vessel. The glass from which the spheres are made and the
mast are not taken into account in the simulations.

The numerical wave diagram is obtained by post-proces-
sing either the whole field in the case of 2D simulations
or 2D cuts of the 3D field. First, an azimuthal average,
f , and root mean square, frms, of the flow variables f =
ρ, P, T , ur , uθ , uϕ, Yk are computed on spherical shells. ρ

is the density of the fluid, P is the pressure, and T is the tem-
perature. ur , uθ , uϕ designate, respectively, the radial, the
azimuthal, and the polar components of the flow velocity,
and Yk is the mass fraction of species k. Then, the shocks
and interface positions are determined by using dedicated
numerical sensors. The shock sensor is similar to the one
proposed by von Neumann and Richtmyer [25] for shock
handling in numerical simulations. It allows the determina-
tion of the shock position by peak detection. It makes use
of the gradient of the mean radial velocity ur and is positive
only in compression regions. Its expression is:

ηshock = ∂ur
∂r

(
∂ur
∂r

−
∣∣∣∣∂ur∂r

∣∣∣∣
)

(4)

The gas composition inside and outside the glass sphere is
initially identical. However, in the numerical simulation, two
oxygen species (with identical thermodynamic and transport
properties) have been artificially defined, thus allowing the
quantitative measurement of their mixing. The interface cor-
responds to the region where these two species mix, and
is defined as the transition zone where 0.1YO2,0 � YO2 �
0.9YO2,0, with YO2,0 the initial mass fraction of oxygen in
the vessel. Changing the threshold values changes the quan-
titative evaluation of the thickness of the mixing layer (by a
few percent) but not the relative evolution between cases.



Table 1 Studied configurations

Case P1 (bar) ∅ (mm) A

A 22.5 51 0.91

B 22.5 73 0.91

C 45.0 51 0.96

3.3 Configurations

For a given HE, considering an unconfined spherical explo-
sion, the only parameter impacting the afterburning process
is the mass of the charge. However, a change in mass causes
both a change in the total energy and a change in the den-
sity ratio at the interface between detonation products and
air. Indeed, the density of the detonation products is a func-
tion of the detonation velocity, which depends on the charge
radius. Using the compressed balloon analogy, it is possi-
ble to decouple these two parameters, which are also the
ones driving the growth of RT instabilities, as recalled in
Sect. 2. Therefore, three configurations, listed in Table 1,
have been studied and simulated numerically. They allow
the independent investigation of the influence of the initial
energy (through a variation of the initial inner sphere diam-
eter, ∅, case B) and the initial density of the pressurised gas
on the mixing process (case C). Case A is the reference one,
mimicking the conditions of the study of Boyer [7] for cross-
validation.

3.4 Scaling law

In order to compare the experimental and numerical results,
and the different configurations in the same frame, Sachs
scaling law [26] is used and adapted to pressurised vessels.
Scaling laws are derived from the conservation ofmomentum
so that, for a given type of energy source (here pressurised
glass spheres), the blast profile in scaled coordinates only
depends on the scaled distance and is independent of the
initial energy. Time and distance are rescaled according to
the following equations [27]:

r → λ =
(
2π( j − 1)

P0
E1, j

) 1
j

r = srr (5)

t → τ = c0

(
2π( j − 1)

P0
E1, j

) 1
j

t = st t (6)

where j = 2 for 2D axisymmetrical flows and j = 3 for 3D
spherically symmetrical flows, and where

Table 2 Scaling coefficients

Case 2D 3D

sr (m−1) st (s−1) sr (m−1) st (s−1)

A 7.4 2563.5 14.8 5117.3

B 5.2 1790.9 10.3 3575.1

C 5.2 1812.7 11.7 4061.6

E1, j ( j = 2) = πr21
P1

γ1 − 1
(7)

E1, j ( j = 3) = 4

3
πr31

P1
γ1 − 1

(8)

is the total energy of the gas initially contained in the sphere.
c0 is the sound speed, and r1 is the initial sphere radius. The
subscripts 0 and 1 refer to the fluid outside and inside the
sphere, respectively. The scaling coefficients used for cases
A, B, and C for both the 2D and 3D geometries are given in
Table 2.

4 2D numerical study

The objective of the 2D study is to investigate the effects
of the mesh resolution on the mixing process and the influ-
ence of initial geometric perturbations of the interface on the
development of RT instabilities in the mixing layer.

In the following, for clarity, computations will be refer-
enced using a notation of the form C_Mx_Ay. C is the label
of the case, M refers to the cells size in the central area of
the mesh, and A refers to the initial amplitude of the geomet-
ric perturbations imposed on the interface. The values x and
y associated with the last two parameters are both given in
tenths of a millimetre. For example, the computation refer-
enced as A_M5_A10 is a simulation of case A performed on
the grid with a cell sizeΔ = 0.5mm and an initial amplitude
of perturbations h0 = 1.0mm.

4.1 Global phenomenology

Without geometric perturbation, i.e.,when the interface is ini-
tially round, the natural instability of the interface is captured
by the simulations. Figure 5 presents, in logarithmic scale,
the density gradient obtained with simulation A_M2.5_A0.

For this simulation without initial perturbations, the insta-
bility grows from the numerical roundoff errors. Since the
interface is naturally unstable, as predicted by the theory on
RT instabilities [14,19], these small errors are sufficient to
give birth to a highly convoluted, seemingly turbulent mix-
ing layer. Figure 5 also highlights the evolution of the primary
and secondary shock waves as well as their interaction with
the mixing layer. The secondary shock wave is moving out-
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Fig. 5 Density gradient in logarithmic scale obtained with 2D simulation A_M2.5_A0 showing the characteristic steps of the flow. Zoom on one
quarter (the computational domain includes the full disc). All pictures have the same scale

wards in Fig. 5a, inwards in Fig. 5b and outwards again in
Fig. 5c, d.

The four characteristic phases presented in Sect. 1 (strong
blast wave, implosion, reshock, and asymptotic mixing) can
also clearly be identified on the wave diagram presented
in Fig. 6a, which is obtained using data from calculation
A_M2.5_A10, i.e., with initial perturbations. The implo-
sion phase begins at τ = 1.0 when the expansion wave
(not tracked) interacts with the mixing layer internal border,
which translates into a decrease of its radius. The reshock
phase begins when the secondary shock wave enters the mix-
ing layer at τ = 2.3 and ends when it emerges from the
mixing layer at τ = 2.7. The evolution of the mixing layer
thickness η = sr (rint,max−rint,min), plotted in Fig. 6b, is first
exponential during the strong blast wave phase and is quite
linear during the implosion and reshock phases. As the accel-
eration of the interface is quite constant during the strong
blast wave phase, and since the wavelength of the perturba-
tions is small compared to the interface radius (λmax < 0.1 r1,
see Sect. 4.3), the initial evolution of the mixing layer thick-
ness is consistent with the theory on RT instability.

Figure 6c shows the temporal variation of the turbulent
kinetic energy in the computational domain. One can see
a fast exponential growth during the strong shock phase,
which turns into a fairly linear increase during the implosion
phase, and then a stagnation during the last two phases.About
half of the turbulent kinetic energy is produced during the

strong blast wave phase and the second half is produced dur-
ing the implosion phase, i.e., while the interface is strongly
decelerated. The initial exponential increase is, for exam-
ple, consistent with simulations of HE fireballs performed
by Kuhl et al. [11,28].

Figure 6d shows the evolution of the ratio between the
actual area of the mixing layer internal boundary (i.e., the
isosurface YO2 = 0.1YO2,0) and the area of the sphere whose
radius is equal to the internal boundary mean radius. This
parameter gives an indication of the wrinkling of the internal
boundary and is useful to understand the afterburning phe-
nomenon. The flame in homogeneous HE fireballs is indeed
of the diffusion type: it is located in the mixing layer, on
the stoichiometric isosurface, whose shape is governed by
the local flow. As the stoichiometric zone is suspected to be
located close to the internal boundary of the mixing layer,
its wrinkling indicates how the flame would behave in a fire-
ball. The surface ratio appears to grow quadratically during
the strong blast wave phase and linearly during the implosion
phase. It then decreases almost linearly during the reshock
phase and is almost constant afterwards.

4.2 Mesh influence without initial perturbation

In order to evaluate the influence of mesh resolution on the
simulation of the mixing layer, computations of case A were
performed on several meshes having the same topology but



Analysis of mixing in high-explosive fireballs using small-scale pressurised spheres

(a) (b) Mixing layer thickness

(d) Surface ratio(c) Turbulent kinetic energy

Fig. 6 Temporal evolution of main characteristics of simulation A_M2.5_A10

a different resolution in the central area. Resolutions of 0.5,
0.25, and 0.125mmwere used corresponding to meshes with
1, 2.5, and 8million cells, respectively. For these simulations,
no perturbation is imposed so that the interface is initially
circular. The effect of spatial resolution is assessed by com-
paring the wave diagrams, the evolution of the mixing layer
thickness η and the evolution of the turbulent kinetic energy,
k.

The wave diagrams, presented in Fig. 7, show that the
mesh resolution has no visible influence on the shocks
but mildly thickens the mixing layer, especially its exter-
nal boundary. The evolution of the mixing layer thickness
shown in Fig. 8 illustrates that a larger cell size increases the
growth rate during the implosion phase. This phenomenon
is caused by the difference in the wavelength of numerical
perturbations resolved on each grid. The wavelength of the
most unstable mode λm can be estimated with (1), which
is however established for the planar case since an equiva-
lent expression for the cylindrical geometry is not available.
Considering the initial acceleration g, which is given by [10]:

g = c21
r1

(
ρ0

ρ1

) 1
2

(9)

where c1 is the sound speed inside the sphere, themost unsta-
ble wavelength for case A is found to be λm = 1.56 ×
10−2 mm, which is not resolved on any of the present grids.
It should however be noticed that this wavelength is sev-
eral orders of magnitude lower than the characteristic size of
the debris that are observed experimentally (∼ 10mm). The
effective most unstable mode is then the one with the lowest
wavelength that can be resolved on the grid, which is, for a
mesh with cells size Δ, the one corresponding to λ = 4Δ.
Since the most unstable mode has a lower wavelength on a
more refined grid, it grows faster, but it also saturates faster
and for a lower amplitude (i.e., when h ≈ 0.5λ). After
saturation, a higher wavelength leads to a faster growth of
the turbulent structures. Therefore, the mixing layer thick-
ness grows faster on a coarser mesh. Since saturation occurs
before the beginning of the implosion phase, it explains why
the influence of the resolution is most visible during that
phase. Accordingly, the turbulent kinetic energy, shown in



Fig. 7 Influence of the mesh resolution on the wave diagram without
initial geometric perturbations (2D case)

Fig. 8 Influence of the mesh resolution on the mixing layer thickness
evolution without initial geometric perturbations (2D case)

Fig. 9, grows faster and reaches higher levels on the coars-
est mesh. This preliminary study of the influence of spatial
resolution in the 2D case leads to the conclusion that mesh
convergence for a case without initial perturbations is far
from being reached. A 3D study might be in order, but first
it is out of reach in terms of computational power and, more
importantly, it will now be shown that adding perturbations
to the initial field has a first-order influence on the evolution
of the mixing process.

4.3 Effect of initial geometric perturbations

Using the same three meshes, the initial location of the inter-
face is perturbed by a sum of sinusoids:

rint,i = rint,0 + h0
2

∑
n cos (nθ + φn)

max
(∑

n cos (nθ + φn)
) (10)

where θ is the azimuth, rint,0 is the interface radius without
initial perturbations, h0 is the initial amplitude, chosen to be
identical for all modes, n is an integer designating the mode
number, and φn is a phase associated with mode n. The phase

Fig. 9 Influence of the mesh resolution on the turbulent kinetic energy
evolution without initial geometric perturbations (2D case)

is chosen randomly for each mode, but the set of phases is
the same for all the simulations.

Two constraints on the perturbation wavelengths are to
be considered. First, they have to be small enough so that
the structures they create can interact to form a turbulent
mixing layer in a self-similar regime instead of a succession
of independent mushroom-like structures. Then, the wave-
lengths must be large enough to be resolved on the grid. This
last constraint also applies to the amplitude of the perturba-
tions. Consequently, n is chosen between 40 and 80 which
corresponds, for the sphere diameter considered in case A, to
wavelengths varying from 4 to 2mm, which is the minimal
wavelength that can be resolved on the coarsest grid. The
initial amplitude h0 is 1mm, which is twice the coarsest grid
cell size.

The wave diagrams obtained on the three meshes are
shown in Fig. 10. The propagation of the shocks is still unaf-
fected by the resolution, but now the location of the mixing
layer boundaries is also very close. Figure 11 illustrates that
the mixing layer thickness follows a similar evolution on all
the grids. Nevertheless, grid convergence does not seem to
be perfectly reached with the coarsest mesh, as the behaviour
of the mixing layer slightly differs from the two other cases.
These observations are confirmed by the evolution of the
turbulent kinetic energy, presented in Fig. 12. For a given
wavelength content of the geometric perturbations and a
given initial amplitude, the mixing layer thickness evolution
is thus grid independent.

Because of their initial amplitude, the perturbations satu-
rate rapidly (∼ τ = 0.07), and the initial exponential growth
phase is almost not observed here. Despite the initial broad
spectrum, the development of the mixing layer is domi-
nated by a single angular mode whose wavelength grows
as the interface radius increases during the strong shock
wave phase. This result is consistent with what is observed
on HE fireballs [29]. This mode corresponds to n = 60
on all grids. The self-similar regime does not seem to be



Fig. 10 Influence of the mesh resolution on the wave diagram with
initial geometric perturbation of the interface

Fig. 11 Influence of the mesh resolution on the mixing layer thickness
evolution with an initial geometric perturbation of the interface

Fig. 12 Influence of themesh resolution on the turbulent kinetic energy
evolution with an initial geometric perturbation of the interface

reached until almost the end of the implosion phase as the
flow clearly retains memory of the initial perturbations until
then. The increase in the interface acceleration towards the
centre seems to freeze the spectrum of perturbations before
wavelengths greater than the currently dominant one have
time to grow sufficiently.

Table 3 Summary of the experimental tests

Test label ∅ (mm) mglass (g) P1 (bar)

A1 51 24.1 28.0

A2 31.5 28.5

B1 73 53.4 20.0

B2 51.0 24.0

4.4 Conclusions of the 2D study

The 2D simulations highlight the natural instability of the
spherical interface. They also indicate that grid independence
can be reached when taking into account initial perturba-
tions on the interface. Their initial amplitude determines the
regime of development of the instability, and their initial
spectrum has a strong influence on their evolution. It should
be pointed out that this grid convergence study is partial
since it does not cover the whole parameter space. More-
over, it has the inherent limitations of 2D geometry so that its
conclusions should be taken with care regarding generality.
Nevertheless, it gives some confidence to the analysis of post-
detonation turbulent mixing using numerical simulations.
The phenomenology captured by the simulation is consistent
with other simulations found in the literature [11,28], even the
ones concerning HE fireballs. It shows that the compressed
balloon analogy, which was known to be well representative
of the blast-related characteristics of the flow produced by
the detonation of a HE, can also be applied to study mixing
inside fireballs.

5 Experimental study

Four tests, described in Table 3, have been conducted experi-
mentally using the set-up described in Sect. 3. Cases A1 and
A2 correspond to case A of the numerical simulations (see
Table 1), and tests B1 and B2 match with case B. These tests
thus allow the evaluation of the effect of the initial energy
on the flow, considering a constant Atwood number, thanks
to a variation of the sphere diameter and a constant initial
overpressure.

From a qualitative point of view, all the distinctive fea-
tures of a detonation-induced flow are visible. The schlieren
records, some of which are presented in Fig. 13, show the
four phases described in Sect. 1. The primary shock wave is
visible in Fig. 13b as well as the external boundary of the
mixing layer. The secondary shock wave can also be dis-
tinguished at the top of Fig. 13c where it appears as an arc
emerging from the turbulent area.

After the sphere is shattered, glass fragments are set in
motion by the flow. They can be seen in Fig. 13b, c, inside



(a) (b)

(c)

Fig. 13 Schlieren images of the experiment (test A1) after background-
removal and contrast enhancement. a Before explosion. b Strong blast
wave phase. c End of reshock phase. The secondary shock is visible
near the top left corner of the picture (c)

the turbulent region, as dark blurry circular zones and sharp
black strips, respectively. A fraction of the initial total energy
is thus converted into kinetic energy of the glass fragments
and is not available to the flow. Since fragments are not taken
into account in the simulations, the energy dissipated by their
motion has to be subtracted from the initial energy in order
to be able to compare the experimental and numerical data
using the scaling law presented in Sect. 3. The evolution of
the position of the fragments has been determined using the
high-speed video frames and their velocity deducted from the
frame rate.When possible, this value has been comparedwith
the one measured by PDV. The agreement between the two
techniques is good. Although evolving velocities are mea-
sured with both methods, the kinetic energy of the fragments
is calculated using the value taken by the velocity when it
reaches a plateau. This value, noted, vglass, is given in Table 4.
By knowing the total mass of glass of the sphere, it is then
possible to determine the kinetic energy of the glass frag-

ments. By subtracting it from the actual initial total energy
of the gas, the total energy that would have been needed to
achieve the same flow in the absence of glass is determined.
This energy is then used for scaling with (5) and (6). The
corresponding pressure calculated using (8) is noted P ′

1. The
corrected pressure and the scaling coefficients of each exper-
imental test are gathered in Table 4.

It should be noted that the presence of the fragments may
also affect the mixing in several ways. They indeed mod-
ify the pressure gradient across the interface and thus the
baroclinic torque. Another important effect is their wake.
Unfortunately, at this point, as a quantitative assessment of
these effects seems out of reach, only the energy deficit due
to their motion is accounted for.

Due to the residual strain in the glass caused by the metal–
glass sealing, the 73-mm-diameter sphereswere not as strong
as expected. Thus, the pressure P ′

1 reached experimentally
during tests B1 and B2 is slightly lower than the one planned
for case B (i.e., 22.5bar). It is to be noted that the low velocity
of the fragments obtained during test A2 is due to their size.
The sphere indeed shattered differently than in the other tests
and produced larger debris.

Figure 14 presents the wave diagrams of the four present
experiments together with the data of Boyer et al. [7]. The
agreement is good, especially regarding the evolution of the
primary shock wave, which is the easiest to track. Similar
to the experimental data of Boyer et al., the regression of
the external border of the mixing layer during the implosion
phase is hardly visible. However, schlieren records in the
present study show that the turbulent structures located close
to the centre tend to be driven towards it during that phase.
The secondary shock wave location, as well as the inter-
face external radius, shows more discrepancy, which can be
attributed to several factors. First, the properties of the glass,
such as its thickness or its resistance to fracturing, have an
influence on the fragments behaviour and thus on the flow.
The spheres used here were, for example, thicker and heavier
than the one used by Boyer, which weighed between 15 and
18g. Then, Boyer et al. plotted their wave diagram using pic-
tures obtainedwith a traditional streak camera with a rotating
drum, which offered a better time and spatial resolution than
the high-speed digital camera used in thiswork. Finally, since
the spheres shattered during pressurisation, the gas inlet was
still opened when the spheres broke. Thus, a jet of air was

Table 4 Corrected pressure and
scaling coefficients

Test P0 (mbar) T0 (K) vglass (ms−1) P ′
1 (bar) E ′

1 (J) sr (m−1) st (s−1)

A1 971 283 88 22.6 392 14.6 4922

A2 286 59 25.4 440 14.0 4760

B1 970 276 80 16.7 845 11.3 3755

B2 277 80 20.8 1059 10.5 3497



Fig. 14 Comparison of experimental wave diagrams with data from
Boyer [7]. From left to right on each data set: secondary shock wave,
interface external radius and primary shock wave

pushing upwards along the centre of symmetry of the flow,
which explains why the secondary shock wave reflections do
not occur at the origin.

Nevertheless, the four experimental tests show very sim-
ilar results despite the variation of initial conditions. In
particular, the variation of the sphere diameter between tests
A1, A2 on the one hand, and B1, B2 on the other hand,
does not seem to affect the dynamics of the mixing layer.
Consequently, the mixing process seems to scale with the
initial energy. This important conclusion is verified in the
3D numerical study presented in the next section.

6 3D numerical study

The 2D simulations conducted in Sect. 4 have shown that
grid independence can be achieved when the initial pertur-
bation of the interface is accounted for. This conclusion will
now be checked in 3D. The influence of the initial energy
is investigated by comparing simulations A and B. Results
are then compared to the experimental data from the present
study that were presented in Sect. 5. The effect of the initial
density ratio is finally studied by comparing results of sim-
ulations of cases B and C. Simulations will be named using
the same rationale as in the 2D study.

6.1 Phenomenology

The 3D simulations, similar to the 2D simulations, reproduce
all the features of the flow as shown in Fig. 15 which shows
the density gradient in a 2D cut of the flow obtained with
simulation A_M10_A0. In Fig. 15a all the hydrodynamic
phenomena occurring inside fireballs are visible. From the
sphere centre, located in the bottom left corner, one first goes
through the expansion wave, which appears as a gradation

(a) Strong blast wave phase (b) End of the implosion phase

(d) Asymptotic mixing phase(c) End of the reshock phase

Fig. 15 Density gradient in logarithmic scale obtained with the 3D
simulation A_M05_A0 showing the characteristic steps of the flow.
Zoom on the central area

of grey, then the secondary shock wave, the interface and
finally the primary shock wave. This figure also shows that
the interface is naturally unstable, as expected from theory.

Figure 16 shows a 3D view of the external boundary of
the mixing layer for case A_M10_A0 with the same time
sequence as Fig. 15. It highlights the fact that the turbulent
structures created by RT instabilities have similar shapes and
sizes and are evenly distributed on the interface until the
end of the implosion phase. The most unstable mode corre-
sponds to the lowest wavelength resolved on the grid, which
is n ≈ 40 on the grid used here forwhichΔ = 1mm.Despite
being non-reacting, these simulations are qualitatively very
similar to those of the afterburning of aHEperformed byBal-
akrishnan [13] or Kuhl [28], which confirms once more the
validity of the compressed balloon method to study mixing
inside HE fireballs.

6.2 Influence of initial perturbations and grid
convergence

As in the 2D study, a composite sinusoidal perturbation has
been added to the initial shape of the interface to study the
influence of themesh on the development of themixing layer.



(a) Strong blast wave phase (b) End of the implosion phase

(d) Asymptotic mixing phase(c) End of the reshock phase

Fig. 16 3D view of the external boundary of the mixing layer (isosur-
face YO2 = 0.9YO2,0) obtained with simulation A_M10_A0

The initial radius of the interface is:

rint = rint,0

+ h0
2

∑
n

[
cos

(
nθ + φθ,n

) + cos
(
nϕ + φϕ,n

)]
max

(∑
n cos

(
nθ + φθ,n

) + cos
(
nϕ + φϕ,n

)])
(11)

where θ andϕ are the azimuthal andpolar angle,n is themode
number, andφθ,n andφϕ,n are randomphases associatedwith
mode n and applied on the θ and ϕ coordinates, respectively.

Two meshes have been used with a resolution of 1.0
and 0.5mm in the central area, corresponding to 32 and
255 million cells, respectively. The same constraints on the
perturbations wavelength and amplitude as in the 2D study
were applied here. The mode wavelengths chosen here cor-
respond to values of n going from 20 to 40, i.e., wavelengths
between 8 and 4mm, which is the smallest wavelength that
can be resolved on the coarsestmesh. The initial amplitude of
the perturbations is h0 = 2mm. The resultingwave diagrams
are plotted in Fig. 17.

The agreement between the two diagrams is good despite
the larger external radius of the mixing layer on the finest
grid at the beginning of the implosion phase. However, it
should be kept in mind that, for a reason of computational
cost, the finest mesh used here has the same resolution as the
coarsest grid used in the 2D study. It shows that some level
of grid independence can also be achieved in 3D when initial

Fig. 17 Influence of the mesh resolution on the wave diagram with
initial geometric perturbation of the interface for 3D simulations

perturbations are accounted for. The rest of the 3D study will
then be performed on the coarsest grid.

6.3 Comparison with the experimental results

The wave diagram obtained with simulation A_M10_A20
is compared with the ones from the experiments in Fig. 18
which shows the temporal evolution of the positions of the
primary and secondary shock waves and the position of the
external boundary of the mixing layer. The numerical results
showaqualitative agreement on the behaviourwith the exper-
iment and show the same features. The mixing layer radius
is correctly predicted until the implosion phase, and the sec-
ondary shock wave velocity after its reflection at the centre
is correctly captured. However, there is a mismatch between
numerical and experimental data. The difference is attributed
to the presence of the glass fragments which heavily modify
the flow by confining it during the first moments after the
sphere shattering and which are not taken into account in the
simulations. The shock waves thus follow a slower forma-
tion process in the experiments than in the simulation, which
explains the gap between experimental and numerical shock
waves. The same observations were made by Boyer et al. [7]
when comparing their experimental data with 1DLagrangian
simulations made by Brode [30]. Besides, the differences
cannot be attributed to the scaling method since the two data
sets coincide for τ = 0.

Figure 19 shows a comparison of a schlieren image from
test A1 with an image of the gradient of the density field
from simulation A_M05_A20 plotted in logarithmic scale.
The image from the simulation is superimposed on the exper-
imental picture. The scale of both pictures is approximately
the same, and they correspond to a scaled time τ ≈ 1. The
numerical and the experimental images show a good qualita-
tive agreement. The primary shock is faster in the simulation,
which is consistent with the wave diagrams (Fig. 18). The



Fig. 18 Comparison of the numerical wave diagram from simulation
A_M10_A20 (solid line) with experimental data (symbols). From left to
right on each data set: secondary shock wave, interface external radius,
and primary shock wave

Fig. 19 Comparison of a schlieren picture from test A1 with a cut of
the density gradient field from simulation A_M05_A20 at time τ ≈ 1

mixing layer has the same external radius and shows quali-
tatively similar structures on both images. Even though most
of the physics is accounted for in the simulation, it should be
kept in mind that the presence of the glass fragments is only
considered as a correction of the initial energy of the gaseous
phase. It should also be noted that the experimental image
represents the density gradient field integrated along the line
of sight, whereas the numerical picture is a 2D cut across the
3D field. The shape of the vortical structures created by the
RT instability is thus sharper.

6.4 Influence of the initial energy

The influence of the initial energy on the flow is assessed
by comparing simulations of cases A and B for which
only the sphere diameter differs, the thermodynamic con-

Fig. 20 Comparison of the wave diagrams obtained with the two dif-
ferent radii

ditions remaining unchanged. The wave diagrams, plotted in
Fig. 20, show that, considering a constant Atwood number
(A = 0.91), the mixing process scales according to the ini-
tial total energy. As recalled in Sect. 5, this phenomenon is
also observed on the experimental data since themixing layer
external radius is the same for all the four tests (Fig. 18) for
which the Atwood number is almost constant since it varies
between 0.91 and 0.93.

Applied to HE, an important conclusion of this observa-
tion is that, considering a given HE, the potential change in
the mixing process caused by variation of mass is not due
to the induced variation of initial energy, but is rather a con-
sequence of the variation of the density ratio between air
and detonation products at the end of the detonation, as will
be shown in the next section. This result is consistent with
the theory describing RT instability. The evolution of RT
structures indeed depends on three parameters: the Atwood
number, the perturbations wavelength and the acceleration of
the interface. The first two are unchanged between the two
cases, and the last one scales with the initial total energy.

The evolution of themixing layer thickness η, presented in
Fig. 21, confirms the observationsmade on thewave diagram.
Only a slight difference is visible for late times during the
asymptotic mixing phase.

6.5 Influence of the initial density ratio

The influence of the initial density ratio has been investigated
by comparing cases A and C for which only the initial pres-
sure differs, all other parameters remaining unchanged. The
comparison of the wave diagrams obtained with simulations
A_M10_A20 and C_M10_A20 is presented in Fig. 22. This
time, the mixing layer is clearly affected by the change in the
initial condition. It is wider and penetrates deeper towards
the centre when the initial density ratio is higher.

The evolution of the mixing layer thickness is plotted
in Fig. 23. It does not seem to be affected by the pressure



Fig. 21 Influence of the initial internal energy on the mixing layer
thickness

Fig. 22 Comparison of the wave diagrams obtained with the two dif-
ferent internal pressures

ratio during the strong blast wave phase but then grows
faster during the implosion phase when the initial density
ratio (or initial Atwood number) is higher. After reshock,
the gap remains roughly constant. As a consequence, for an
unconfined explosion, the initial density ratio between HE
detonation products and air is, along with the wavelength
of perturbations, one of the key parameters governing the
mixing process inside fireballs.

7 Conclusions

The compressed balloonmethod is usually used to determine
the blast produced by aHEchargewithout having to dealwith
the complexity related to the detonation products equation of
state [8]. In this study, the same method has been used, both
experimentally and numerically, to study the mixing process
inside HE fireballs. This approach has proven successful in
reproducing the distinctive features of such flows and yields
results consistent with the few numerical simulations of HE
fireballs available in the literature [6,13,28]. Furthermore, it

Fig. 23 Mixing layer thickness comparison between cases A and C

has the advantage of allowing the initial energy to be decou-
pled from the initial density ratio, which is not possible when
using HE.

Numerical simulations were carried out in 2D and 3D
and compared with a fair agreement to the experiments. The
simulations first highlight the importance of the effect of ini-
tial perturbations on the flow. In particular, their wavelength
affects the growth of the mixing layer, and their initial ampli-
tude determines the growth regime of the RT instability. It
implies that the initial perturbations have to be known in order
to predict the mixing inside a fireball. Then, the mixing pro-
cess seems to scale with the initial energy but rather depends
on the initial density ratio. These observations are consistent
with the theory of RT instability, whose development mostly
depends on three factors: the perturbations wavelength, the
interface acceleration, and the Atwood number.

The influence of the perturbations wavelength and ampli-
tude has now to be investigated in greater detail. Reacting
cases, for which the spheres are filled with the hot combus-
tion products of a rich propane/air mixture, will be studied
next, both experimentally and numerically, in order to focus
on the combustion process.
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