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ON THE ROLE OF HYDROGEN BONDING 

ON WATER ABSORPTION IN POLYMERS 

Pierre Gilormini1 and Jacques Verdu 

Laboratoire PIMM, ENSAM, CNRS, CNAM, 151 Bd de l'Hôpital, 75013, Paris, France 

ABSTRACT.  A kinetic model is proposed for the absorption of water in polymers. The 

process of bonding-debonding water molecules is described by two opposite reactions with 

different rate constants, and the key role of the concentration of traps by hydrogen bonding in 

the polymer matrix is highlighted. These three parameters are combined such that an equation 

is obtained that generalizes the model proposed by Carter and Kibler, with an additional, 

crossed, term. Numerical application is performed for the diffusion-absorption of water in a 

plane polymer sheet, and the parameter ranges where a quasi-Fickian water uptake curve is 

obtained are defined. The associated apparent diffusivity is shown to obey a hyperbolic 

variation with equilibrium water uptake for homologous series of polymers, which is in 

agreement with previous experimental observations. 
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1. Introduction

The absorption of water by a polymer sample results from a sequence of two distinct 

processes: water dissolution in a superficial polymer layer, which can be considered as almost 

instantaneous, and water diffusion into the sample core, which is driven by the gradient of 

chemical potential. 

First, let us consider water solubility. A first type of theories on the relationship 

between structure and solubility links the capability of a polymer to absorb water to its free 

volume content [1,2]. This is consistent with the fact that the crystalline phase does not absorb 

water in a semi-crystalline polymer, but many free-volume rich substances absorb very small 

amounts of water, like apolar liquids or elastomers for instance. A way to reconcile these 

observations is to consider that free volume is needed for water diffusion, but does not play a 

role in solubility. A second kind of theories [3,4] involves the role of polar groups that can 

establish relatively strong hydrogen bonds with water molecules. This is supported, in 

particular, by a wide survey of water solubility values that allows to distinguish four polymer 

families: family A (polymers with low polarity, e.g., hydrocarbon polymers such as 

polyethylene, polypropylene, polystyrene, halogenated polymers such as polytetra-

fluorethylene, poly(vinylidene fluoride), poly(vinyl chloride), polyalkylsiloxanes, etc.), family 

B (moderately polar polymers such as poly(ethylene terephthalate), bisphenol A 

polycarbonate, poly(methyl methacrylate), polyamide 11, polysulfones, etc.), family C (polar 

polymers such as polyetherimides, etc.), and family D (polymers with high concentrations of 

polar groups able to act as hydrogen donors in hydrogen bonds, such as polyamide 6, amine 

crosslinked epoxies of high alcohol content, etc.). The order of magnitude of water uptake 

mass fraction at equilibrium is below 0.3% for family A, between 0.3 and 2% for family B, 

between 2 and 5% for family C, and above 5% for family D. Another evidence favoring this 

second type of theories results from the quantitative analysis of water equilibrium 
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concentrations in families of polymers that differ only by their concentration of a given polar 

group, for instance polyesters for ester groups [5], polysulfones for sulfone groups [6], or 

amine cured epoxies for alcohol groups [7]. In all these families, the water equilibrium 

concentration increases regularly with the concentration of polar groups. This trend led Van 

Krevelen and Hoftyzer [3] to assume that water absorption is a molar additive property, i.e., 

that each elementary group i in the polymer is characterized by its molar contribution Hi to 

water equilibrium content, with Hi independent of the polymer structure. The molar 

equilibrium water content H in a given constituent repeat unit (CRU) would then simply be 

the sum of the His found in the CRU. Typical orders of magnitude of Hi at saturation are less 

than 0.01 moles water per mole CRU for hydrocarbon and halogenated groups, about 0.1 for 

such polar groups as ethers, ketones or esters, which are unable to establish hydrogen bonds 

with themselves, and between 1 and 2 for such groups as alcohols, acids or amides able to act 

as hydrogen donors in hydrogen bonds. The quantitative relationship between polymer 

structure and water solubility is probably more complex than a mere molar additive rule [6,7] 

but, no doubt, water solubility is closely related to the content of polar groups in the polymer 

and to the strength of the hydrogen bonds that they are able to establish with water molecules. 

Not all polar sites are able to establish a complex with a water molecule, and only those able 

to give a complex will be considered in what follows; these active sites will be called "traps". 

Now, let us consider water diffusion. Its relationship with polymer structure has been 

investigated much less than for solubility. As mentioned above, diffusion needs free volume 

to operate, but it also depends on polymer-water interactions, as was first observed in the case 

of polyethylene [8] and for several polymer families afterwards, for which a quasi-hyperbolic 

relationship was found between diffusivity and water equilibrium concentration at saturation 

[9]. This result is consistent with the assumption that the bonds between traps and water 

molecules hinder water diffusion. 
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Therefore, according to the above set of observations, two kinds of water molecules 

coexist in a polymer sample exposed to a wet environment: mobile (free) molecules diffusing 

through the sample and bound (immobile) molecules temporarily delayed at traps by 

hydrogen bonds. This work will be limited to the case where free molecules can be captured 

at vacant traps only (no cluster formation) and, indeed, bound molecules can be released by 

the decomposition of polymer-water complexes. Therefore, the trajectory of a water molecule 

through a sample can be depicted as a series of random flights from one trap to another, with 

more or less long waiting times at these polar sites. Therefore, the global diffusion rate is 

expected to be a decreasing function of the concentration of traps and of the strength of 

polymer-water bonds. 

Concerning the ratio between the concentrations of free water and bound water at 

equilibrium, a first indication can be derived from the study of homologous polymer series 

containing a single type of polar group, for instance sulfones in aromatic polysulfones as 

studied by Gaudichet-Maurin et al. [6]. These polymers can be described as matrices with low 

polarity containing highly polar sulfone groups whose volume fraction is relatively small. 

There is no reason to assume that the solubility and diffusivity of free water in these matrices 

vary strongly from one polysulfone to another. Bisphenol A polycarbonate, in which the 

unique polar group is an ester of low contribution to water absorption [8] is supposed to have 

water absorption properties close to those of aromatic polysulfones matrices. According to 

Table 1, the concentration of free water in these polymers would be less than 0.54%, i.e., less 

(and probably considerably less) than 50% of the whole water equilibrium concentration in 

the polysulfones. Similar observations could be inferred from series of aliphatic polyamides, 

where the best model for an apolar matrix would be polyethylene in which the equilibrium 

mass uptake would be less than 0.01% [8] against 5-10% for polyamides of the polyamide 6 
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type [6]. All these data lead to assume that the mass ratio between free water and bound water 

at equilibrium is considerably less than unity. 

Polymer Sulfone concentration 

(mol/kg) 

Equilibrium water mass 

uptake at 90% RH (%) 

PSU 2.3 1.02 

PPSU 2.5 1.58 

PES 4.3 2.97 

PC 0 0.54 

Table 1. Concentration of sulfone groups and water equilibrium concentration in three 

aromatic polysulfones and in polycarbonate, according to Gaudichet-Maurin et al. [6]. 

Regarding now diffusion kinetics, it seems clear that a Langmuir-type model, as 

proposed by Carter and Kibler [10] and often used in the field of composite materials since 

the 80s (see for instance [11]), is a pertinent approach. Despite that, there are numerous cases 

of moderately hydrophilic polymers (in which plasticization and clustering effects are 

negligible, so that diffusivity is not concentration dependent) for which diffusion appears 

Fickian in a routine analysis based on the proportionality of mass uptake with respect to the 

square root of time up to 50% of equilibrium value or even on a visual comparison of the 

experimental sorption curve with a theoretical one, as illustrated by the examples of 

copolyamides [12], acrylic polymers [13], amine cured epoxies [14], or polysulfones [15]. 

Therefore, the present paper will address the following questions: 
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 (i) In which conditions does a Langmuir-type absorption-diffusion process lead to a quasi-

Fickian water uptake curve? 

 (ii) When this applies, what is the relation between the resulting apparent diffusivity and the 

diffusivity of free water molecules in the polymer? 

(iii) Does this relation reflect the quasi-hyperbolic dependence with respect to the equilibrium 

water uptake that is observed experimentally when polymers differ only by their 

concentration of a given polar group [9]? 

2. Quasi-Fickian transport in the Carter and Kibler model

Forty years ago, Carter and Kibler [10] proposed a Langmuir-type model to describe 

anomalous (non-Fickian) diffusion of water in polymers, where trapped and mobile water 

molecules were accounted for. Introducing a probability per unit time 𝛾 for a mobile water 

molecule to bond, and a probability per unit time 𝛽 for a trapped water molecule to unbond, 

the model writes the following equation to govern the evolution of the local concentration 𝑐஻ 

of bound water (in moles per unit polymer mass): 

డ௖ಳ

డ௧
= 𝛾 𝑐ெ − 𝛽 𝑐஻ (1) 

where 𝑐ெ  denotes the local concentration of mobile water. In the case of one-dimensional 

diffusion, as applies for instance in a plane sheet, the resulting balance of water molecules in a 

volume element writes as 

𝐷
డమ௖ಾ

డ௫మ
=

డ௖ಾ

డ௧
+

డ௖ಳ

డ௧
 (2) 

where it is assumed that mobile water molecules obey Fick's law with diffusivity 𝐷. 
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An analytical solution was given by Carter and Kibler to the system of coupled linear 

differential defined by Eq. (1) and Eq. (2) in the case of an initially dry sheet of thickness 𝑒 

with a constant concentration of mobile water 𝑐ெ = 𝑐ெ
ஶ prescribed on both free faces of the 

plate. The latter condition assumes that the ambience around the sheet is well-stirred and has a 

water activity unaffected by the amount of water absorbed by the specimen. The equilibrium, 

uniform, concentration 𝑐ஶ of water in the plate, mobile plus bound, is readily deduced from 

Eqs. (1) and (2): 

௖ಮ

௖ಾ
ಮ = 1 +

ఊ

ఉ
 (3) 

where 𝛾/𝛽  is the relative contribution 𝑐஻
ஶ 𝑐ெ

ஶ⁄  of bound water. Note that 𝛾 can be positive or 

zero, but 𝛽 must be strictly positive, otherwise an endless water uptake would result because 

trapped water molecules cannot be released. The analytical solution involves an infinite sum 

of a complicated series to obtain either the total water uptake, or the mobile water uptake, or 

the bound water uptake, with respect to time. A simpler, approximate, solution was also 

provided by Carter and Kibler for the evolution of the total water uptake, or average water 

concentration 𝑐̅(𝑡), where the usual infinite series for Fickian diffusion is involved, with a 

limited validity in terms of 𝛽  and 𝛾  values. Our comparison between the exact and 

approximate solutions has shown that the latter is acceptable for 𝛽 and 𝛾 not greater than 

0.02  (where  = 𝐷 𝜋ଶ/𝑒ଶ), which is a precise statement of the less definite rule (𝛽 and 𝛾 

≪ 0.5 ) given by Carter and Kibler. Therefore, the calculations reported below used the 

exact solution. 

In the range where the approximate solution applies, the water uptake is strongly non-

Fickian, in agreement with the initial purpose of the model, but a systematic analysis of the 

results obtained in larger ranges of 𝛽 and 𝛾 values shows that quasi-Fickian transport can also 

be obtained in addition to the purely Fickian case recovered exactly for any positive 𝛽 value 
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when 𝛾 = 0 (no bound water). Of course, the notion of a quasi-Fickian transport is quite 

arbitrary and must be defined precisely. In this study, ten √ 𝑡 values for water uptakes equal 

to 5%, 10%, 15%, ..., 50% of the equilibrium value were computed, and a linear least squares 

fit was applied to this set of (√ 𝑡, 𝑐̅/𝑐ெ
∞ )  pairs. This is similar to what might be done 

routinely when dealing with Fickian diffusion results where the very beginning of the 

experimental water uptake might be somewhat noisy and imprecise. According to the present 

definition, a quasi-Fickian transport is obtained if the standard deviation of 𝑐̅/𝑐ெ
∞  values is 

found less than one percent in the fitting procedure, and an apparent diffusivity 𝐷′ can then be 

deduced from the slope of the least-squares line. Figure 1 illustrates this notion of a quasi-

Fickian transport with 𝛽 ⁄ = 0.25, 𝛾 ⁄ = 4.5, and 𝑐ெ
∞ = 1, where a standard deviation of 

0.74% and an apparent diffusivity 𝐷ᇱ = 0.06 𝐷  have been obtained. The water uptake 

evolution given by the approximate solution is also shown in order to stress that it may lead to 

significant errors when used beyond its limited range of validity. 

Figure 1.  Example of a quasi-Fickian transport (solid line) given by the Carter and Kibler 

model with 𝛽 ⁄ = 0.25, 𝛾 ⁄ = 4.5, and 𝑐ெ
ஶ = 1. The least-squares fitted line deduced from 

the range shown is plotted (dotted line). For comparison, the water uptake given by the 

approximate expression of the exact solution is also plotted (dashed line). 
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Figure 2 shows the domain where a quasi-Fickian transport is obtained with the Carter 

and Kibler model, and the associated apparent diffusivities. In this graph, the range of validity 

of the approximate solution is extremely small, a purely Fickian transport is obtained along 

the horizontal axis (𝛾 = 0), and a quasi-Fickian transport is obtained for sufficiently large 𝛾 

and 𝛽 values, in particular. The apparent diffusivity 𝐷′ is found lower than the diffusivity 𝐷 of 

mobile water molecules, except along the horizontal axis, where 𝐷ᇱ = 𝐷 of course, and it 

decreases when the vertical axis is approached, which is consistent with the endless water 

uptake mentioned above when 𝛽 = 0. For a given polymer, i.e., for fixed 𝛾, 𝛽 , and 𝐷 , a 

decrease in the sheet thickness increases  and therefore the (𝛽 ⁄ , 𝛾 )⁄  pair moves towards 

the origin of the graph along a straight line, which ends up necessarily with a non-Fickian 

transport. The decrease of 𝐷ᇱ/𝐷  when the sheet thickness increases illustrates that the 

apparent diffusivity is not a material parameter, in contrast to 𝐷 . This variation may 

nevertheless be moderate for limited thickness variations if the initial (𝛽 ⁄ , 𝛾 )⁄  pair is large 

enough, because of the almost radial shape of the 𝐷ᇱ/𝐷 contours in Figure 2. 

Since 𝑐ஶ 𝑐ெ
ஶ⁄  can increase indefinitely in Eq. (3) by increasing 𝛾  or decreasing 𝛽 , 

none of these two parameters is able to display that a polymer has a definite absorption 

capacity that is independent from these probabilities per unit time and is limited by a given 

number of traps per unit polymer mass. This deficiency of the Carter and Kibler model, 

although questions (i) and (ii) given at the end of Section 1 could be addressed, has motivated 

the kinetic model that follows.  
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Figure 2.  Map of  log 𝐷′ 𝐷⁄  (values given on the contour lines) when a quasi-Fickian 

transport with diffusivity 𝐷′ is obtained from the Carter and Kibler model. The transport is 

non-Fickian in the gray area where no contour line is shown. 

3. A kinetic model for water absorption in polymers

The key component in the proposed kinetic model is a given concentration 𝑝 (in moles per 

polymer unit mass) of traps in the dry polymer that are able to establish a complex with a 

water molecule. The kinetics of bonding a water molecule 𝑊 at a trap 𝑃 to give a complex 

𝑃𝑊  and of unbonding a water molecule from a complex 𝑃𝑊  can be described by two 

opposite reactions: 

𝑃 + 𝑊 → 𝑃𝑊   (𝑘ଵ) and 𝑃𝑊 →  𝑃 + 𝑊   (𝑘ଶ) (4) 
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where 𝑘ଵ is a second order rate constant (in mol kg-1 s-1) and 𝑘ଶ a first order rate constant (in

s-1). Therefore, the concentration of bound water molecules (or water complexes) at a given 

point in a polymer sample is governed by 

డ௖ಳ

డ௧
= 𝑘ଵ (𝑝 − 𝑐஻) 𝑐ெ − 𝑘ଶ 𝑐஻ = 𝑘ଵ𝑝 𝑐ெ − 𝑘ଶ 𝑐஻ − 𝑘ଵ𝑐ெ 𝑐஻ (5) 

in terms of the concentrations of mobile water and of traps, since the current concentration of 

traps that are available to bond additional water molecules is 𝑝 − 𝑐஻. Thus, Eq. (5) leads to an 

extended variant of Eq. (1): 

డ௖ಳ

డ௧
= 𝛾 𝑐ெ − 𝛽 𝑐஻ − 𝛿 𝑐ெ  𝑐஻ (6) 

where 𝛾 = 𝑘ଵ𝑝, 𝛽 = 𝑘ଶ , and 𝛿 = 𝑘ଵ , with an additional and crossed term with respect to 

Eq. (1) of the Carter and Kibler model, where the role of a concentration of traps was ignored. 

Because the balance of water molecules in a volume element is unchanged formally, Eq. (2) 

still applies, and Eq. (6) together with Eq. (2) forms the core of the proposed kinetic model of 

water absorption in polymers for one-dimensional diffusion. It may be noticed that Eq. (6) is 

similar to the equation obtained fifty-five years ago by McNabb and Foster [16] for the non-

Fickian diffusion of hydrogen in iron and ferritic steels by accounting for a limited population 

of traps. That paper has been largely unnoticed by the polymer community, even by Carter 

and Kibler [10], except by Yamabe et al. [17] and Beckman and Teplyakov [18] in the context 

of hydrogen absorption or permeation in polymers, for instance, or by Gurtin and Yatomi [19] 

and Dewimille and Bunsell [20] for water absorption. Nevertheless, these references used at 

most a simplified version of the model that amounts finally to the Carter and Kibler approach. 

For an initially dry plate where a constant concentration of mobile water 𝑐ெ = 𝑐ெ
∞  is 

maintained on the free faces at  𝑥 = 0 and 𝑥 = 𝑒, the evolution of the concentration of bound 

water at the free faces is obtained immediately from Eq. (6) as 
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𝑐஻(0, 𝑡) = 𝑐஻(𝑒, 𝑡) =
௖ಾ

ಮ ఊ

ఉା௖ಾ
ಮ ఋ

{1 − exp[−(𝛽 + 𝑐ெ
ஶ 𝛿)𝑡]} (7) 

Therefore, the lifetime of a polymer-water complex is 1/(𝛽 + 𝑐ெ
ஶ 𝛿) and depends on the free 

water concentration, whereas a lifetime of 1/𝛽 is obtained with the Carter and Kibler model 

(𝛿 = 0). In other words, the decomposition of a polymer-water complex is as slow as the 

concentration of free water is large in the kinetic model. Moreover, the equilibrium 

concentration 𝑐ஶ, mobile plus bound, is now given by 

௖ಮ

௖ಾ
ಮ = 1 +

ఊ

ఉା௖ಾ
ಮ ఋ

(8) 

where the contribution of bound water 

𝑐஻
ஶ =

ఊ ௖ಾ
ಮ

ఉା௖ಾ
ಮ ఋ

=
௣

ଵା ௞మ ൫௞భ௖ಾ
ಮ൯⁄

≤ 𝑝 (9) 

is limited by the concentration 𝑝 of traps, whatever the positive values of the parameters 𝑘ଵ, 

𝑘ଶ, and 𝑐ெ
ஶ . This is physically sound and contrasts with the trend mentioned at the end of 

Section 2 about the Carter and Kibler model. As mentioned in Section 1, the concentration of 

bound water molecules at equilibrium in polymers is expected to be much larger than the 

concentration of mobile water molecules, and it will be assumed in what follows that 

𝑐஻
ஶ 𝑐ெ

ஶ⁄ ≥ 10, i.e.: 

𝛾 ≥ 10 (𝛽 + 𝑐ெ
∞  𝛿) (10) 

The pair of differential equations of the model, namely Eq. (6) and Eq. (2), is non 

linear because of the crossed term, and therefore it was solved numerically by applying a 

standard finite difference scheme (comparable to what Caskey and Pillinger [21] implemented 

for the McNabb and Foster model [16]) to obtain 𝑐ெ(𝑥, 𝑡) and 𝑐஻(𝑥, 𝑡), with initial conditions 

𝑐ெ(𝑥, 0) = 0  and 𝑐஻(𝑥, 0) = 0 , where 0 ≤ 𝑥 ≤ 𝑒 . For symmetry reasons, one half of the 

sheet thickness was considered, with a constant concentration 𝑐ெ = 𝑐ெ
∞  prescribed at the free 
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surface 𝑥 = 0  and mirror symmetry imposed to 𝑐ெ  and 𝑐஻  at 𝑥 = 𝑒/2 . In addition to 

normalizing 𝛽 and 𝛾 by  like in Section 2, 𝛿 was adimensionalized by dividing by  𝑐ெ
∞⁄ . As 

a result, a computed adimensionalized total water uptake history 𝑐̅(√ 𝑡)/𝑐ெ
∞  is kept 

unchanged if the data are modified such that 𝛽 ⁄ , 𝛾 ⁄  and 𝑐ெ
∞ 𝛿 ⁄  are unchanged. This 

allows analysis of the effects of the 6 parameters that come into play in the problem (𝑒, 𝐷, 𝑐ெ
∞ , 

𝛽, 𝛾, and 𝛿) by exploring a three-dimensional space of dimensionless parameters. Of course, 

the available analytical solutions for the Fickian case (𝛾 = 0) and for the Carter-Kibler case 

(𝛿 = 0) were used in preliminary tests to assess the precision of the numerical procedure. It 

may be noticed that taking 𝛿 = 0 in the kinetic model recovers the Carter and Kibler model 

formally only, since this would imply 𝑘ଵ = 0 and consequently 𝑝 should tend to infinity to 

allow a finite 𝛾 value (otherwise the trivial Fickian case is recovered). 

 Once a water uptake history has been computed, it can be tested as described in 

Section 2 to check if it is quasi-Fickian or not, and an apparent diffusivity 𝐷′ is deduced if this 

is the case. In practice, since Eq. (10) is assumed to apply, the conditions for a quasi-Fickian 

transport were finally found equivalent to defining minimal 𝛾 ⁄  values in the (𝛽 ⁄ , 𝑐ெ
∞  𝛿 ⁄ ) 

plane, and Figure 3 shows the results that were obtained. Note that the 𝛽 ⁄ = 0  axis 

corresponds to all traps being occupied by water molecules (𝑐஻
∞ = 𝑝), according to Eq. (9). 

Recall that, in addition, the origin of the (𝛽 ⁄ , 𝑐ெ
∞  𝛿 ⁄ ) plane should be excluded because of 

no stationary water uptake being reached. Figure 3 shows that a quasi-Fickian transport is 

always obtained if 𝛾 ⁄  is large enough, for a given (𝛽 ⁄ , 𝑐ெ
∞  𝛿 ⁄ ) pair, but time to reach the 

equilibrium water uptake may then be extremely long. The condition stated by Eq. (10) is 

sufficient to define the minimum 𝛾 ⁄  value beyond the limits of Figure 3, since the plane that 

it defines is visualized by straight, parallel and equidistant contour lines. An example of a 

typical quasi-Fickian transport is shown in Figure 4 with 𝛽 ⁄ = 0.25, 𝛾 ⁄ = 4.5, 𝑐ெ
∞  𝛿 ⁄ =
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0.2 , and 𝑐ெ
∞ = 1 , where a standard deviation of 0.99% and an apparent diffusivity 𝐷ᇱ =

0.11 𝐷 have been obtained. 

Figure 3.  Map of minimal 𝛾 ⁄  values (given on contour lines) such that Eq. (10) is satisfied 

and a quasi-Fickian transport is observed, for any positive 𝛽 ⁄  and 𝑐ெ
∞  𝛿 ⁄  values. 



15 

Figure 4.  Example of a quasi-Fickian transport (solid line) given 

by the kinetic model with 𝛽 ⁄ = 0.25, 𝛾 ⁄ = 4.5, 𝑐ெ
∞  𝛿 ⁄ = 0.2, and 𝑐ெ

∞ = 1. 

The least-squares fitted line is also shown (dotted line). 

The curve in Figure 4 can be split into a water uptake in the polymer sheet for bound 

molecules 𝑐஻̅ and a water uptake for mobile molecules 𝑐ெ̅, and the evolutions of these two 

components are shown in Figures 5 and 6. It can be observed in Figure 5 that the bound water 

uptake increases more slowly with our kinetic model than with the Carter and Kibler model 

and that a stationary state is obtained faster, with a smaller water concentration: this is a 

natural effect of parameter 𝛿 in Eqs. (6) and (9) (recall that 𝛿 = 0 in the Carter and Kibler 

model). The much higher level reached by the Carter and Kibler model in Figure 5 explains 

the differences of the equilibrium values obtained in Figures 1 and 4. In contrast, the same 

levels are obtained with both models for the mobile water uptake (Figure 6), since the same 

boundary condition of a constant concentration of mobile water has been applied to the sheet 

faces. Nevertheless, a stationary state is reached faster with our kinetic model, which can be 

related to the shorter lifetime of bound water discussed below Eq. (7). A two-stage mobile 

water uptake is noticed in Figure 6 for both models. The first stage obeys a diffusivity equal 
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to 𝐷, since it corresponds to a very low content in trapped water molecules (flat beginning of 

the curves in Figure 5) that also explains the coincidence with the Carter and Kibler model 

(negligible crossed term in Eq. (6)). The increasing role of bonding in the second stage 

reduces the flux of mobile molecules, lowers their apparent diffusivity, and makes the two 

models more dissimilar. 

 Figure 5.  Bound water uptake (solid line) given by the kinetic model 

with 𝛽 ⁄ = 0.25, 𝛾 ⁄ = 4.5, 𝑐ெ
∞  𝛿 ⁄ = 0.2, and 𝑐ெ

∞ = 1. The 𝛿 = 0 case 

(Carter and Kibler model) is also shown for comparison (dashed line). 
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Figure 6.  Mobile water uptake (solid line) given by the kinetic model 

with 𝛽 ⁄ = 0.25, 𝛾 ⁄ = 4.5, 𝑐ெ
∞  𝛿 ⁄ = 0.2, and 𝑐ெ

∞ = 1. The 𝛿 = 0 case 

(Carter and Kibler model) is also shown for comparison (dashed line). 

4. Correlation between apparent diffusivity and water uptake

The aim of this Section is to explain the quasi hyperbolic dependence that is observed 

between the diffusion coefficient and the equilibrium water uptake for certain homologous or 

quasi homologous series of polymers [9]. It is noteworthy that the retarding role of hydrogen 

bonding on water diffusion was envisaged, more than 40 years ago, by Bramhall [22] in the 

case of wood; however this role was analyzed only from the point of view of thermodynamics 

in a case where no homologous series can be defined. 

Consider a homologous series of polymers differing only by the concentration of a 

given polar group, e.g., amorphous aliphatic polyamides. These polymers have the same 

matrix, in which the mobile water equilibrium uptake and diffusivity can therefore be 

supposed constant. In contrast, the bound water uptake (and then the overall water uptake) is 

expected to increase with the concentration p of traps presumably sharply linked to the 
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concentration of polar groups, and the apparent diffusivity 𝐷ᇱ is expected to decrease. The 

trend of an increasing 𝑐஻
ஶ when 𝑝 increases has already been obtained above with the kinetic 

model through Eq. (9); therefore, 𝑐ஶ  increases with 𝑝  as well. The second trend of a 

decreasing 𝐷ᇱ can be analyzed through the results obtained with the kinetic model when 𝑝 is 

increased while 𝑘ଵ, 𝑘ଶ , 𝑐ெ
ஶ and  are kept constant. Equivalently, 𝛽 ⁄  and 𝑐ெ

∞  𝛿 ⁄  are kept 

constant and 𝛾 ⁄  is increased in a range where a quasi-Fickian transport applies according to 

Figure 3. This has been performed in Figure 7 for three sets of parameter values and for a 

wide range of water uptakes (over more than one decade) in each case. It can be observed that 

a quite straight line is obtained for a given homologous series in a logarithmic plot of 𝐷ᇱ/𝐷 

vs. the total water uptake 𝑐ஶ, with a slope that is very close to −1. This is in very good 

agreement with the experimental results [9] reported in Section 1. Moreover, varying both 

𝛽 ⁄  and 𝑐ெ
∞  𝛿 ⁄  by a factor of 10 or 0.1 has essentially the effect of shifting the curve along 

itself, with a slight translation along the perpendicular direction, as shown in Figure 7. It may 

be added finally that varying either 𝛽 ⁄  or 𝑐ெ
∞  𝛿 ⁄  by a factor of 10 or 0.1 has the same 

effect, and therefore, quite remarkably, the essential variations of 𝐷ᇱ/𝐷 vs. the total water 

uptake 𝑐ஶ for any 𝛽 ⁄  and  𝑐ெ
∞  𝛿 ⁄  values is described in Figure 7. Therefore, the apparent 

diffusivity in a polymer during water absorption can be approximated as follows: 

஽ᇱ

஽
≈

௖ಾ
ಮ

௖ಮ
=

ଵ

ଵା
ം 

ഁశ೎ಾ
ಮ ഃ

=
ଵ

ଵା 
೛

೎ಾ
ಮశೖమ/ೖభ

(11) 

when a quasi-Fickian transport is observed and Eq. (10) applies. 
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Figure 7.  Examples of the correlation between the water uptake 𝑐ஶand the apparent 

diffusivity 𝐷ᇱ given by the kinetic model when a quasi-Fickian transport is observed and 

Eq. (10) applies. 𝛽 ⁄ = 0.25, 𝑐ெ
∞  𝛿 ⁄ = 0.2 (solid line), 𝛽 ⁄ = 2.5, 𝑐ெ

∞  𝛿 ⁄ = 2 (dashed 

line), and 𝛽 ⁄ = 0.025, 𝑐ெ
∞  𝛿 ⁄ = 0.02 (dotted line), with 𝑐ெ

ஶ = 1 in all cases. 

5. Identification of model parameters

An identification procedure of the five parameters involved in the model, D, 𝑐ெ
ஶ, 𝑝, 𝑘ଶ, and 𝑘ଵ 

(or, equivalently, D, 𝑐ெ
ஶ, 𝛽, 𝛾 and 𝛿), may consider a series of homologous polymers, which 

allows deducing D and 𝑐ெ
ஶ from the Fickian water uptake that applies in the case where p is 

close to 0.  For a given polymer in the series, p can be bracketed between a lower value equal 

to the concentration of absorbed water (see Eq. (9)) and an upper value derived from the 

molecular structure of the polymer. As Eq. (11) suggests, the 𝑘ଶ/𝑘ଵ ratio can then be deduced 

from the apparent diffusivity or water uptake. Finally, parameter 𝑘ଶ can be evaluated from the 

Arrhenius equation using a preexponential factor of the order of 10-13 s (i.e., the reciprocal of 

the period of a molecular vibration as applies to a unimolecular first order process) and an 
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activation energy equal to the dissociation energy of hydrogen bonds and thus equal to the 

heat of dissolution of water in the polymer. The latter is about 30 kJ/mol for polymers in 

family A [8] as listed in Section 1, between 30 and 40 kJ/mol for family B [23], between 40 

and 43 kJ/mol for family C [23], and above 43 kJ/mol for family D [7]. 

An alternative or complementary identification strategy can also be considered if very 

thin polymer plates are available, since the beginning of the corresponding water uptake is 

identical to what is obtained with the Carter and Kibler model. Accordingly, D can be 

deduced from the initial slope of the curve and 𝑐ெ
ஶ  is given directly by the well-known 

intermediate plateau. According to (8), the equilibrium water uptakes obtained for various 

ambient moistures give the  𝛿/𝛾 and 𝛽/𝛾 ratios once 𝑐ெ
ஶ is obtained in each case. Finally, a 

numerical fit of the model to a whole water uptake curve would lead to the last parameter 

needed, e.g., 𝛾.  

6. Conclusion

A given polymer can be considered as a matrix of low polarity containing polar sites able to 

trap water molecules with strong hydrogen bonds to form complexes of finite lifetime. The 

process of bonding-debonding water molecules was described here by two opposite reactions 

with different rate constants, and the key role of the concentration of traps was highlighted. 

These three parameters could be combined such that an equation is obtained that generalizes 

the model proposed by Carter and Kibler, with an additional, crossed, term. Numerical 

application was performed for the diffusion-absorption of water in a plane polymer sheet, and 

the parameter ranges where a quasi-Fickian water uptake curve is obtained were defined. The 

associated apparent diffusivity was shown to obey a hyperbolic variation with equilibrium 
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water uptake for homologous series of polymers, which is in agreement with previous 

experimental observations. 

This work opens a series of questions, among which the following ones: 

(i) About equilibrium properties: is it possible to establish the relationships between the 

matrix structure (e.g., aliphatic, rubbery for polyethylene vs. aromatic, glassy for 

polysulfones) and its properties D and 𝑐ெ
ஶ? How to derive the sorption isotherm from the 

proposed kinetic model? 

(ii) Our kinetic model is restricted to the case where no water clusters are formed: how to take 

them into account? This would lead to consider a series of equilibria for polymer-water 

complexes PW, PW2, PW3, etc., but how to estimate the values of the rate constants 

associated with each complex size? 

(iii) Our approach assumes implicitly that all traps are identical, i.e., they have the same 𝛽 and 

𝛾 values. However, a theory [6,7] suggests that a trap would actually be a pair of polar 

groups, and the energy involved when a water molecule is bonded would depend on the 

distance between the two polar groups. As a consequence, the lifetime of the 

corresponding complex, i.e., the 𝛽 value, would vary from one trap to another. This leads 

to the following question: how to define a pertinent distribution of 𝛽 values to generalize 

our model? 

We think that the proposed kinetic model complemented with the answers to the above 

questions would constitute a significant step towards the understanding of water absorption 

mechanisms in polymers. 
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