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Abstract: We study the problem of stabilizing the origin of a plant, modeled as a discrete-
time linear system, for which the communication with the controller is ensured by a wireless
network. The transmissions over the wireless channel are characterized by the so-called stochastic
allowable transmission intervals (SATI), that is a stochastic version of the maximum allowable
transmission interval (MATI). Instead of deterministic transmissions, SATI gives stability
conditions in terms of the cumulative probability of successful transmission over N steps.
We argue that SATI is well-suited for wireless networked control systems to cope both with
the stochastic nature of the communications and the design of energy-efficient communication
strategies. Our objective is to synthesize a stabilizing state-feedback controller and SATI
parameters simultaneously. We model the overall closed-loop system as a Markov jump linear
system and we first provide linear conditions for the stability of the wireless networked control
systems in a mean-square sense. We then provide linear matrix inequalities conditions for
the design of state-feedback controllers to ensure stability of the closed-loop system. These
conditions can be used to obtain both the controller and the SATI. A numerical example is
presented to illustrate our results.

Keywords: Networked control systems, switched systems, LMIs

1. INTRODUCTION

The use of wireless networks in control systems offers many
advantages in terms of ease of implementation, mainte-
nance, flexibility, and reduced costs. However, it also gen-
erates inevitable communication imperfections and con-
straints such as time-varying sampling, packet drops,
scheduling, delays, limited bandwidth and so on, which
may deteriorate the performance of the closed-loop system.
This has motivated many researchers over the two last
decades to analyse and design suitable control and esti-
mation strategies for wireless networked control systems
(WNCS), see, e.g., Heemels and van de Wouw (2010);
Hespanha et al. (2007); Zhang and Branicky (2001) and
the references therein.

A key parameter in NCS is the maximum allowable trans-
mission interval (MATI). Various works provide method-
ologies to compute bounds on the MATI to ensure sta-
bility, see, for instance, Nešić and Teel (2004); Carnevale
et al. (2007); Omran et al. (2014); Jentzen et al. (2010);
Donkers et al. (2011); Postoyan and Nešić (2016) for
stabilization; Postoyan and Nešić (2012) for estimation;
Postoyan et al. (2014) for tracking control. The MATI is a
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deterministic constraint, which may be difficult to ensure
when the network is wireless. In this case, transmissions
are uncertain and subject to various external factors such
as channel fading, shadowing, potential collisions, etc.
Those characteristics lead naturally to the use of stochastic
models for wireless channels, see, for instance, the works
Tabbara et al. (2007), Quevedo et al. (2013), Speranzon
et al. (2006), Fischione et al. (2011), and the references
therein.

An alternative stochastic notion to the MATI was intro-
duced in Varma et al. (2017), called the (η, δ)-stochastic
maximum allowable transmission interval, in short, (η, δ)-
SATI or simply SATI. The idea is that, for WNCS, the
maximum length interval N between two successful trans-
missions cannot be fixed a priori as there is no guaranty
that it will be satisfied. Stability should therefore also de-
pend on the cumulative probability η that a transmission
was successful within the interval of time of length N since
the last transmission. Now, if no successful transmission
occurs in N consecutive steps, then the transmitter has to
use maximal power to send its packet, which is modeled
via a probability δ, to be able to ensure stability. In this
context, stability depends on three parameters: N , η, and
δ. Alternatively, some related results can be found in the
works Montestruque and Antsaklis (2004); Donkers et al.
(2012); Xie and Xie (2008) through a different modelling.
Even though Donkers et al. (2012); Montestruque and



Antsaklis (2004) studied also the case when the inter-
transmission intervals are modeled by a Markov process,
the SATI modeling in Varma et al. (2017) is different in
the sense that stability depends on the aforementioned
parameters N , η, and δ, see, for instance, Varma et al.
(2017) for more details.

In Varma et al. (2017), the objective is to give a char-
acterization of the SATI when a stabilizing controller (in
a deterministic sense) is already known. In other words,
the authors considered the emulation approach in which
the controller is first designed to stabilize the origin of the
plant without the network constraints, and then the net-
work characteristics are taken into account in the stability
analysis. A drawback of this approach is that the obtained
values on N , δ, and η do depend on the initial choice of
the controller. Thus, a “bad” choice of the controller will
lead to a conservative SATI. Also, this approach does not
allow to answer the important practical question: given a
network and some of its characteristics in terms of N , η,
and δ, how should we design a stabilizing controller, if this
is possible?

To complement the existing results, we propose a method
to design stabilizing state-feedback controllers, given
(some of) the SATI parameters. We assume that the con-
troller to be designed is implemented using a zero-order
hold scheme. The overall system is modeled as a Markov
jump linear system (MJLS), see, for instance, Costa et al.
(2005), in which each mode of operation models the dy-
namics since the last transmission instant as in Varma
et al. (2017). The extension of the results of Varma et al.
(2017) to the design of state-feedback controllers is not
trivial. We first have to revisit the latter by working with
alternative MJLS conditions to ensure the mean-square
stability of the closed-loop system. The obtained matrix
inequalities are nonlinear with respect to the controller
gain, and we then resort to the use of slack variables,
like in de Oliveira et al. (1999), with particular structures
in order to derive linear matrix inequalities suitable for
the network-aware design. Our results are formulated in
terms of linear matrix inequalities (LMIs), and are thus
computationally oriented and easily implementable. It is
noteworthy that N , η, and δ are scalar parameter, and if
we find two of them, the third one can be obtained by a line
search procedure. We finally present a numerical example
for the unstable batch reactor commonly considered in the
NCS literature.

The paper is organized as follows. The problem and
the main goals are presented in Section 2. In Section
3, we provide the main results of this work, that is,
conditions in the form LMIs under which the WNCS is
stable in the mean-square sense for a given (η, δ)-SATI
and a given controller, as well as LMIs design conditions
for synthesizing state-feedback controllers such that the
WNCS is stable. Finally, in Section 4, we present numerical
results and we conclude with final remarks in Section 5.

Notation. Let R := (−∞,∞), N := {0, 1, 2, . . .}, and
N+ := N \ {0}. Given N ∈ N, we define the set NN :=
{0, 1, . . . , N}, as well as N+

N = NN \ {0}. The set Rn×m
represents the n × m real matrices, and Sn+ is the set
of positive definite matrices in Rn×n. For symmetric ma-
trices, the symbol • stands for a symmetric block. Given

M ∈ Rn×m, we denote by M ′, the transpose of M , the
identity matrix of order n by In, the n × m zero matrix
by 0n×m, and the block diagonal matrix by diag(·). For a
square matrix M , we set Her(M) := M + M ′. The oper-
ator E stands for the expectation taken over the relevant
stochastic variables, and 1(·) for the indicator function,
taking the value 1 when the condition is satisfied and 0
otherwise.

2. PROBLEM STATEMENT

2.1 Set-up description

The following discrete-time linear system is considered

x(k + 1) = Ax(k) +Bu(k)
x0 = x(0)

(1)

where k ∈ N is the time, x(k) ∈ Rn is the plant state,
u(k) ∈ Rm is the control input, and n,m ∈ N+. Our
objective is to stabilize the origin of (1) when the controller
to be designed communicates with (1) via a wireless
network. In particular, the sensors transmit their data to
the controller via the wireless channel, and the controller
is assumed to be directly connected to the actuators 1 as
depicted in Figure 5.

System Controller

Wireless Network

u

x x̂

Fig. 1. Schematic of the WNCS.

Because of the network, the controller does not have access
to x, but to x̂, the network-induced version of x, which has
the following dynamics

x̂(k) =

{
x(k), successful transmission
x̂(k − 1), otherwise.

(2)

The transmission behavior in (2) is stochastic and will be
precisely defined in Section 2.2. System (2) corresponds to
a zero-order hold strategy, in the sense that in the case the
packet is lost or not sent, the last received measurement
is used. Consequently, we want to design the control law

u(k) = Kx̂(k), (3)

to stabilize, in a stochastic sense, the origin of (1). We
define the extended state

χ(k)′ :=
[
x(k)′ x̂(k − 1)′

]
(4)

with x̂(−1) being chosen arbitrarily in Rn, and we obtain
the closed-loop system

χ(k + 1) =

{
A1χ(k), succesful transmission
A2χ(k), otherwise,

(5)

where

A1 :=

[
A+BK 0

In 0

]
, A2 :=

[
A BK
0 In

]
. (6)

The main goal of this work is to provide conditions
to design the control law (3) and some of the network

1 The forthcoming results also apply when the controller is directly
connected to the sensors but communicates with the actuators via
the network.



characteristics such that (1) is stable in some stochastic
sense.

2.2 The SATI

To model transmissions over the network, we introduce the
clock τ(k) ∈ N+ with the dynamics

τ(k + 1) =

{
1, successful communication at k
τ(k) + 1, failed communication at k,

(7)
which counts the number of time instants since the last
successful transmission. Given that, we assume that the
transmission is modeled by a Bernoulli process and the
probability of successful communication at time k ∈ N is
given by f(τ(k)) ∈ [0, δ], where δ > 0 is the maximum
success probability representing the physical limitation of
the communication system with regard to packet success,
see the work Theodore (1996), for instance. Thus, the
successful communication probability at time k depends
on the current state of the clock τ(k), due to factors that
vary over the time, like the channel quality and the used
transmission power. The cumulative probability that a
transmission is successful within the interval of length N
since the last transmission instant, represented by η, is

η := 1−
N∏
i=1

(1− fi), (8)

where we use fi = f(i) for the ease of presentation. We
assume that the probabilities fi for i ∈ N+

N are not known
a priori, but satisfy (8). The motivation for this policy
is that as long as the clock τ(k) is less than or equal
to N , communication can be tried with lower resource
consumption such as bandwidth and radio-transmit power.
On the other hand, for τ(k) > N , we have to enforce
transmission by using the maximum power so that the
transmission probability is set to its maximum value, i.e.
δ. This requires that a simple acknowledge scheme is
implemented, which is common in wireless networks.

As a result, the transmission policy is characterized by
the SATI, which involves three parameters: N the interval
length since the last successful transmission, η as defined
in (8), and the maximum probability δ.

2.3 The MJLS model

As in Varma et al. (2017), we model the overall closed-loop
system as a discrete-time Markov chain θ(k) composed by
N + 1 virtual nodes, in which the first mode θ(k) = 1
represents the successful communication, and the remain-
ing modes represent the transmission failures. Formally,
we have that

θ(k) =

{
τ(k), τ(k) ≤ N,
N + 1, τ(k) > N,

and we define the set of Markov states as M := N+
N+1. The

motivation for this model is that each mode of operation
represents the system dynamics for the corresponding
clock τ(k) ≤ N in which the success probabilities f(τ(k))
are different, as explained in Section 2.2. For τ(k) > N ,
then it is only necessary to use one virtual mode θ(k) =
N + 1, as the success probabilities are all set to δ. The
state diagram for this Markov chain of N + 1 modes of

1

2 N

N + 1
f1

1− δ

1
−
f 1

f2

1− f2 1− fN−1

fN

δ

1− fN

Fig. 2. The Markov chain for the SATI framework, adapted
from Varma et al. (2017).

operation is shown in Figure 2. The transition probability
matrix Π is given by

Π :=


f1 1− f1 0 . . . 0
f2 0 1− f2 . . . 0
...
fN 0 0 . . . 1− fN
δ 0 0 . . . 1− δ

 . (9)

In short, transmission is attempted with probabilities fi,
i ∈ N+

N , such that (8) is respected, and with a fixed success
probability δ afterwards. It is important to notice that
the transition probability matrix in (9) is not known, a
priori. Only η and δ are known and these are related to
the unknown set of probabilities {f1, . . . , fN} by (8).

In view of the above Markov chain, we define the following
MJLS from the closed-loop system in (5)

χ(k + 1) = A1+1(θ(k)>1)χ(k),
χ(0) = χ0, θ(0) = θ0,

(10)

where χ, A1, and A2 are defined in (4) and (6), respec-
tively. Thus, for θ(k) = 1, the dynamic matrix in (10)
becomes A1+1(θ(k)>1) = A1, that is, the stable mode of
the Markov chain presented in Figure 2, and for θ(k) > 1,
A1+1(θ(k)>1) = A2, representing the unstable mode of
operation.

Our aim is to propose a methodology to design K in (3),
given N , η, and δ to ensure that system (10) is mean-
square stable (MSS) as defined next.

Definition 1. (Geromel et al. (2009)). System (10) is said
to be MSS if, for every initial state (χ0, θ0),

lim
k→∞

E [χ(k)′χ(k)] = 0. (11)

2

The set of admissible controllers K is represented by

K(N, η, δ) :=
{
K ∈ Rm×n : (10) is MSS

}
. (12)

The next lemma, adapted from Costa et al. (2005), estab-
lishes necessary and sufficient conditions for the MSS of
(10).

Lemma 1. (Costa et al. (2005)). Given K, the following
statements are equivalent.

(1) K ∈ K(N, η, δ), for K(N, η, δ) defined in (12).



(2) There exists Pi ∈ S2n+, i ∈M, such that

Pi −A′1+1(i>1)

∑
j∈M

ΠijPjA1+1(i>1) > 0 (13)

holds for all i ∈M, where Π is in (9) under (8). 2

The result in Lemma 1 cannot be used for our purpose
since it involves the probabilities Πij in (9) which we
do not know. Hence, we first provide in the next section
LMI conditions that depend only on the SATI parameters
N, η, and δ that ensure that the closed-loop is MSS for a
given K. Although these new conditions are linear in the
decision variables for a given controller gain, they become
nonconvex when K is a variable. To overcome this issue,
we derive LMI conditions for the design of K such that
the closed-loop is MSS by imposing some structures on
the problem variables, as well as exploring the form of the
closed-loop matrices in (6).

3. MAIN RESULTS

3.1 First stability result

The next lemma is needed in the following.

Lemma 2. We have that η =
∑N
i=1 fi

∏i−1
j=1(1− fj). 2

Proof. Define gm := 1−
∑N
i=m fi

∏i−1
j=m(1− fj), for m ∈

N+
N . For m = N , gN = 1 − fN (recalling that

∏N−1
j=N (1 −

fj) = 1) and gm = (1−fm)gm+1, for m ∈ N+
N−1. By taking

m = 1 and considering the previous recursive formula, we

can write that g1 =
∏N−1
i=1 (1 − fi)(1 − fN ) =

∏N
i=1(1 −

fi) = 1 − η, where the last equality is obtained from (8),
thus η = 1− g1. �

The next theorem provides sufficient conditions for the
MSS of system (10), givenK,N , η, and δ. Those conditions
are different with respect to the ones given in Varma
et al. (2017) in the sense that they are related to a
“primal” MJLS Lyapunov-like inequality set, whereas in
Varma et al. (2017) a “dual” formulation was used, see,
for instance, Costa et al. (2005). This difference is essential
for the forthcoming design results.

Theorem 1. Given the controller gain K, N ∈ N+, η ∈
[0, 1], δ ∈ [0, 1], if there exists P1, PN+1, S ∈ S2n+ such
that

PN+1 > A′2 [(1− δ)PN+1 + δP1]A2, (14)

P1 > A′1
[
(1− η)(A′2)N−1PN+1(A2)N−1 + ηS

]
A1, (15)

S > (A′2)iP1Ai2 ∀i ∈ NN−1, (16)

holds, then K ∈ K(N, η, δ). 2

Proof. By Lemma 1 and considering the structure of the
transition probability matrix in (9), we have that system
(10) is MSS if there exists Pi ∈ S2n+, i ∈ M (M is the
set of Markov states), such that the following inequalities
hold

PN+1 > A′2 [δP1 + (1− δ)PN+1]A2, (17)

P1 > A′1 [f1P1 + (1− f1)P2]A1, (18)

Pm > A′2 [fmP1 + (1− fm)Pm+1]A2, (19)

for m ∈ {2, . . . , N}. Inequality (17) corresponds to (14),
thus it remains to show that (15)-(16) implies (18)-(19).

For that, by changing the indexes of (16), we have that
S > (A′2)i−1P1Ai−12 holds for all i ∈ N+

N , and so by

multiplying this inequality by fi
∏i−1
j=1(1 − fj) for a fixed

i, and summing the results up for all i ∈ N+
N , we get that

ηS ≥
N∑
i=1

fi(A′2)i−1P1Ai−12

i−1∏
j=1

(1− fj) (20)

holds, where the term on the left hand side comes from the
alternative definition of η presented on Lemma 2. From
(15), and considering (20) and the definition of η taken
from (8), we can write that

P1 > A′1 [f1P1 + (1− f1)Γ2]A1 (21)

holds, where Γ2 :=
∏N
i=2(1− fi)(A′2)N−1PN+1(A2)N−1 +∑N

i=2 fi(A′2)i−1P1Ai−12

∏i−1
j=2(1 − fj). We apply a small

perturbation ε2 > 0 on (21) such that

P1 > A′1 [f1P1 + (1− f1)(Γ2 + Iε2)]A1, (22)

also holds. Defining P2 > 0 such that Γ2 < P2 < Γ2 + Iε2
and considering (22), we get (18). Finally, for showing that
(19) is satisfied, we define

Γm :=

N∏
i=m

(1− fi)(A′2)N−m+1PN+1(A2)N−m+1

+

N∑
i=m

fi(A′2)i−m+1P1Ai−m+1
2

i−1∏
j=m

(1− fj), (23)

for m ∈ {2, . . . , N}. We can rewrite (23) by means of the
following recursive relation

Γm = A′2 [fmP1 + (1− fm)Γm+1]A2,

for m ∈ {2, . . . , N − 1}, and ΓN = A′2[fNP1 + (1 −
fN )PN+1]A2. Thus, by beginning from P2 > Γ2, and
considering the similar reasoning applied to (21) and (22),
we can always apply a small perturbation εm+1 > 0 on

Pm > A′2 [fmP1 + (1− fm)Γm+1]A2

such that

Pm > A′2 [fmP1 + (1− fm)(Γm+1 + Iεm+1)]A2

also holds, for all m ∈ {2, . . . , N −1}. By defining Pm+1 >
0 such that Γm+1 < Pm+1 < Γm+1 + Iεm+1, it is always
possible to satisfy Pm > A′2 [fmP1 + (1− fm)Pm+1]A2

and set Pm+1 > Γm+1 for all m ∈ {2, . . . , N − 1}, up
to PN > A′2[fNP1 + (1−fN )PN+1]A2 = ΓN . Thus, we get
that (19) also holds. �

3.2 Conditions for network-aware design

The result in Theorem 1 is useful for studying the MSS
of (10) for a given state-feedback controller K and SATI
constraints N, η, and δ. However, when we want to design
K, the set of solutions of (14)-(16) becomes non-convex
due to the products between K and P1, PN+1, and S
via the closed-loop matrices (6). Also, the structure of
(6) along with the powers of A2 in (16) adds difficulties.
We overcome these obstacles by using slack variables that
consider the change of structure in (6), and also by noting
that Ai2 is indeed linear in K. Considering that, we provide
LMI conditions in Theorem 2 below for obtaining K such
that the closed-loop system (10) is MSS for given SATI
constraints N, η, and δ. In order to ease the exposition, we
set



Ã1 :=

[
A 0
In 0

]
, Ã2 :=

[
A 0
0 In

]
, B̃ :=

[
B
0

]
, (24)

as well as

S̃i :=

[
Φi 0
0 In

]
(25)

where Φi :=
∑i−1
j=0A

j , i ∈ NN−1.

Furthermore, we define the following partitions for the
variables G̃1, G̃2, Ỹ arising in Theorem 2 below

G̃1 :=

[
G G
G3 G4

]
, G̃2 :=

[
G1 G2

G G

]
, Ỹ ′ :=

[
Y ′

Y ′

]
(26)

along with R̃ and H̃i,

R̃ :=

[
R1 R2

G G

]
, H̃i :=

[
Hi1 Hi2

G G

]
, (27)

for all i ∈ NN−1. Matrices G̃1, G̃2, R̃, and H̃i are slack
variables from which the controller may be obtained. The
next theorem presents the main result of this paper.

Theorem 2. For given N ∈ N+, η ∈ [0, 1], and δ ∈ [0, 1], if

there exist Q1, QN+1,M,X ∈ S2n+, G̃1, G̃2, R ∈ R2n×2n,

Ỹ ∈ Rm×2n, and H̃i ∈ R2n×2n, i ∈ NN−1, partitioned as
in (26)-(27) such thatHer(G̃2)−QN+1 • •

δd(Ã2G̃2 + B̃Ỹ ) QN+1 •
δn(Ã2G̃2 + B̃Ỹ ) 0 Q1

 > 0 (28)

 Her(G̃1)−Q1 • •
ηd(Ã1G̃1 + B̃Ỹ ) M •
ηn(Ã1G̃1 + B̃Ỹ ) 0 X

 > 0 (29)

[
Her(R̃)−M •

(Ã2)N−1R̃+ S̃N−1B̃Ỹ QN+1

]
> 0 (30)[

Her(H̃i)−X •
(Ã2)iH̃i + S̃iB̃Ỹ Q1

]
> 0, ∀i ∈ NN−1, (31)

holds, where ηn =
√
η, δn =

√
δ, ηd =

√
1− η, and

δd =
√

1− δ. Then, K = Y G−1 ∈ K(N, η, δ). 2

Proof. The idea is to show that, if (28)-(31) holds, then
by taking K = Y G−1, we have that (14)-(16) is also
satisfied. Fixing the structure of the variables as in (26)-
(27) has two roles. The first one is that we are able to have
a one-to-one relation between the problem variables and
the control gain K due to the different structure of the
dynamic matrices in (6). The second one is that, by fixing
the structure of the slack variables instead of QN+1, Q1,
and S, we have less conservative results. Thus, notice that
if (28)-(29) holds, then by writing down the first diagonal
blocks of (28)-(29), we have that[

Her(G1) •
G+G′2 Her(G)

]
> 0,

[
Her(G) •
G3 +G′ Her(G4)

]
> 0,

and also from (30) and (31), we have that[
Her(R1) •
G+R′2 Her(G)

]
> 0,

[
Her(Hi1) •
G+H ′i2 Her(G)

]
> 0,

for all i ∈ NN−1. Considering that for any square matrix
U we have that if Her(U) > 0, then U is non singular, it
follows that G,G1, G4, R1, and Hi1 are nonsingular. Thus,
by setting K = Y G−1 and from (29), we can rewrite

Ã1G̃1 + B̃Ỹ as follows

Ã1G̃1 + B̃Ỹ =

[
AG+BY AG+BY

G G

]
=

[
A+BY G−1 0

I 0

] [
G G
G3 G4

]
= A1G̃1.

Furthermore, for (28), we have that

Ã2G̃2 + B̃Ỹ =

[
AG1 +BY AG2 +BY

G G

]
=

[
A BY G−1

0 I

] [
G1 G2

G G

]
= A2G̃2,

and similarly for (31)

Ãi2H̃i + S̃iB̃Ỹ =

[
Ai ΦiBY G

−1

0 I

] [
Hi1 Hi2

G G

]
= (A2)iH̃i,

where Φi =
∑i−1
j=0A

j , and A1 and A2 are the closed-

loop matrices given in (6). Note that the matrix Ỹ , along
with the blocks G on the slack variables in (26) and (27)
allows us to recover the control gain, given the previous
manipulations. Besides, the powers of A2 in (6) depend
linearly on K. Thus, we can rewrite (28)-(31) as followsHer(G̃2)−QN+1 • •

δdA2G̃2 QN+1 •
δnA2G̃2 0 Q1

 > 0 (32)

Her(G̃1)−Q1 • •
ηdA1G̃1 M •
ηnA1G̃1 0 X

 > 0 (33)

[
Her(R̃)−M •
(A2)N−1R̃ QN+1

]
> 0 (34)[

Her(H̃i)−X •
(A2)iH̃i Q1

]
> 0, i ∈ NN−1, (35)

Bearing in mind the technique of de Oliveira et al. (1999),

we have that if (32) holds, then G′2Q
−1
N+1G2 ≥ Her(G̃2)−

QN+1, and thusG′2Q−1N+1G2 • •
δdA2G2 QN+1 •
δnA2G2 0 Q1

 > 0,

also holds. By applying the congruence transformation
diag(G−12 , I, I) to the inequality above , we can write thatQ−1N+1 • •

δdA2 QN+1 •
δnA2 0 Q1

 > 0,

holds. Applying successively the Schur complement with
respect to the first block to the inequality above leads to

Q−1N+1 > A
′
2[(1− δ)Q−1N+1 + δQ−11 ]A2 (36)

and thus, by defining PN+1 = Q−1N+1 and P1 = Q−11 , we get
(14). On the other hand, by means of the similar reasoning
that was applied to (32), we have that (33) yields

P1 > A′1[(1− η)M−1 + ηS]A1, (37)

where S = X−1. Furthermore (34) yields M−1 >
(A′2)N−1PN+1(A2)N−1, and so considering (37), we have
(15). Finally, we have that (35) implies (16) with a similar
reasoning. Therefore, by Theorem 1, K ∈ K(N, η, δ). �



The result in Theorem 2 may provide a stabilizing state-
feedback controller K for a given maximum packet rate
success δ, and parameters N and η. As we are going to see
in the example in Section 4, condition (28)-(31) guarantees
the MSS of the WNCS for given SATI parameters, but the
resulting controller may also stabilize the plant for greater
values of N and smaller η. Besides, since N , η, and δ are
scalar parameters, we can obtain the controller and the
SATI by means of simple search procedures.

4. NUMERICAL EXAMPLES

We consider the unstable batch reactor as in Walsh et al.
(2002). The system is exactly discretized by means of
a zero-order hold with rate T = 50 ms, leading to the
following values for A and B

A =

 1.0795 −0.0045 0.2896 −0.2367
−0.0272 0.8101 −0.0032 0.0323

0.0447 0.1886 0.7317 0.2354
0.0010 0.1888 0.0545 0.9115


B′ =

[
0.0006 0.2567 0.0837 0.0837
−0.0239 0.0002 −0.1346 −0.0046

]
.

We study the network-aware design for different character-
istics of the (η, δ)-SATI by means of Theorem 2. For that,
we set the maximum packet rate success to δ = 0.2 and
use the conditions of Theorem 1 to construct a controller,
if possible, for different values of N and η. For solving the
LMIs in Theorem 1 and 2, we used the parser YALMIP,
see Löfberg (2004), along with the solver MOSEK Aps
8.1, see MOSEK (2017). For every LMI L in Theorems 1
and 2, we impose the restriction L ≥ Iε, for ε = 1e−4.
Figure 3 shows whether a stabilizing controller was found
by Theorem 2, represented by circles, or not, represented
by crosses. The solver can find stabilizing controllers up
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Fig. 3. Solution (circles) or unfeasible (crosses) pairs (N, η)
of the conditions of Theorem 2, for δ = 0.2.

to N = 30 for a maximum packet rate success of δ = 0.2,
even for the worst-case scenario defined by η = 0, that is,
when no communication is attempted. Even though the
extreme situations of Figure 3 can be achieved, the choice
of η must also be motivated by the system performance
over the time, which will be addressed on future work. On
the other hand, feasible solutions for (28)-(31) becomes
rarer for N > 30, and some numerical inconsistencies can
be found in terms of η. For instance, the solver is able to

find a controller for N = 31 and η = 0.5, but it did not
find a solution for the pair N = 31 and η = 1.0, which is
not intuitive in the sense that we would expect to obtain
solutions for larger values of the cumulative probability
η. This may be explained by the summation Φi in (30)-
(31) whose elements can grow arbitrarily large, leading to
numerically ill-posed problems for great values of N .

Next we construct two controllers with the goal of com-
paring their performance in terms of N and η. The first
one, with gain KSATI, is obtained by means of Theorem 2
with N = 2, a cumulative probability of success of η = 0.2,
and a maximum packet rate success of δ = 0.4. The second
one, with gain KLQR, is designed by solving a discrete-time
linear quadratic regulator problem for Q = I4 and R = I2.
The control gains for both cases are given by

KSATI :=

[
0.3330 −0.6397 0.1613 −0.6449
1.9403 0.1250 1.6043 −0.8239

]
KLQR :=

[
0.0153 −0.8159 −0.2394 −0.7515
2.3250 0.0801 1.6225 −1.0657

]
.

We then study the impact on the stability through The-
orem 1 for δ = 0.4 by increasing N and obtaining the
smallest η possible such that the closed-loop is still MSS
for both controllers. The result is shown in Figure 4. Two
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Fig. 4. Minimum η feasible for the SATI controller (black
line) and the LQR controller (dashed grey line).

interesting behaviors can be noted, the first one is that
for both controllers the system is still MSS for η = 0 until
some N , that is precisely the case where no communication
is attempted (lower values of η means that fewer power
resources are used to communicate). Above this limit, it
is necessary to increase the cumulative probability η in
order to get the MSS of the WNCS, where the maximum
value of N in which the WNCS is still MSS is given by
Nmax = 9 for the SATI controller and Nmax = 6 for
the LQR controller. Thus, the control given by the LQR
problem for this choice of Q and R performs worse in terms
of the maximum length N than the one calculated via
Theorem 2. This is intuitive, as the conditions shown in
Theorem 2 are optimized for the (η, δ)−SATI restrictions.
Note that Q and R could be chosen in order to improve
the behavior in terms of N and η, even though there is no
systematic procedures to tune Q and R for a given SATI.
Besides the SATI controller can achieve greater values of



N and smaller values of η compared to the ones used in
the design.

We also briefly discuss the behavior of the closed-loop
states over the time in a network modeled by a SATI
policy. By calculating a controller via Theorem 2 with
N = 1, δ = 0.2, and η = 0, the closed-loop system will
be stable for a SATI of δ = 0.2 and η = 0 from N = 1
up to N = 13. Conversely, a controller obtained with the
same values of δ and η, but for N = 14 would guarantee
the stability from N = 1 up to N = 42.

5. CONCLUSION

In this work, we have extended the results of Varma
et al. (2017), which deals with stabilization of linear
WNCS using emulated controllers under conditions on
the SATI co-design, to co-design. For that purpose, we
have reworked the stability analysis in Varma et al. (2017)
and then derived suitable linear matrix inequalities for
analyzing the stability of the closed-loop system. The
latter may then be used to construct a mean-square
stabilizable controller given constraints on the SATI.

REFERENCES

Carnevale, D., Teel, A., and Nešić, D. (2007). A Lyapunov
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Postoyan, R. and Nešić, D. (2016). Time-triggered control
of nonlinear discrete-time systems. In IEEE Conference
on Decision and Control, Las Vegas, U.S.A., 6814–6819.
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