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Models for Music Analysis from a Markov Logic
Networks Perspective

H. Papadopoulos and G. Tzanetakis

Abstract—Analyzing and formalizing the intricate mechanisms
of music is a very challenging goal for Artificial Intelligence.
Dealing with real audio recordings requires the ability to handle
both uncertainty and complex relational structure at multiple
levels of representation. Until now, these two aspects havebeen
generally treated separately, probability being the standard way
to represent uncertainty in knowledge, while logical represen-
tation being the standard way to represent knowledge and
complex relational information. Several approaches attempting a
unification of logic and probability have recently been proposed.
In particular Markov Logic Networks (MLNs) which combine
first-order logic and probabilistic graphical models have attracted
increasing attention in recent years in many domains.

This paper introduces MLNs as a highly flexible and expressive
formalism for the analysis of music that encompasses most ofthe
commonly used probabilistic and logic-based models. We first
review and discuss existing approaches for music analysis.We
then introduce MLNs in the context of music signal processing
by providing a deep understanding of how they specifically
relate to traditional models, specifically Hidden Markov Models
and Conditional Random Fields. We then present a detailed
application of MLNs for tonal harmony music analysis that
illustrates the potential of this framework for music processing.

Index Terms—Statistical Relational Learning, Markov Logic
Networks, Hidden Markov Models, Conditional Random Fields,
Music Information Retrieval, Tonal Harmony, Chord, Key, Mu -
sical Structure

I. I NTRODUCTION

T HE fascinating task of understanding how human be-
ings create and listen to music has attracted attention

throughout history. Nowadays, many research fields have con-
verged to the particular goal of analyzing and formalizing the
complex mechanisms of music. The development of computer
hardware technology has made possible the development of
Artificial Intelligence (AI) techniques for musical research in
several directions such as composition, performance, music
theory, and digital sound processing. The recent explosion
of online audio music collections and the growing demand
of listening to music in a personalized way have motivated
the development of advanced techniques for interacting with
these huge digital music libraries at the song level. Using
computers to model human analysis of music and to get insight
into the intellectual process of music is a challenge that is
faced by many research communities under various names
such as Intelligent Audio Analysis [1], Machine Listening [2],
or Music Artificial Intelligence.
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A. Towards a Unified Musical Analysis

In the growing field of Music Information Retrieval (MIR),
a fundamental problem is to develop content-based methods to
enable or improve multimedia retrieval [3]. The exploration of
a large music corpus can be based on several cues such as the
audio signal, the score or textual annotations, depending on
what the user is looking for. Metadata and textual annotations
of the audio content allow for searching based on specific
requests such as the title of the piece or the name of the
composer. When not looking for a specific request, but more
generally for some music pieces that exhibit certain musi-
cal properties, search engines are based on annotations that
describe the actual music content of the audio, such as the
genre, the tempo, the musical key, and the chord progression.
Manual annotation of the content of musical pieces is a very
difficult, time-consuming and tedious process that requires a
huge amount of effort. It is thus essential to develop techniques
for automatically extracting musical information from audio.

Although there have been considerable advances in music
storage, distribution, indexation and many other directions
in the last decades, there are still some bottlenecks for the
analysis and extraction of content information. Music audio
signals are very complex, both because of the intrinsic nature
of audio, and because of the information they convey. Often
regarded as an innate human ability, the automatic estimation
of music content information proves to be a highly complex
task, for at least two reasons.

On the one hand, music signals are extremely rich and
complex from a physical point of view, in particular becauseof
the many modes of sound production, of the wide range of pos-
sible combinations between acoustic events, and also because
signal observations are generally incomplete and noisy. On
the other hand, music audio signals are also complex from a
semantic point of view: they convey multi-faceted and strongly
interrelated information such as harmony, melody, metric,and
structure. For instance, chords change more often on strong
beats than on other positions of the metrical structure [4].

Recent work has shown that the estimation of musical
attributes would benefit from a unified musical analysis that
considers the complex relational structure of music as well
as the context1 [5], [6]. Although there is a number of ap-
proaches that take into account interrelations between several
dimensions in music (e.g. [7]), most existing computational
models for music analysis tend to focus on a single music
attribute. This is contrary to the human understanding and

1For instance, the use of specific instruments can be established based on
knowledge of the composition period.
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perception of music that is known to process holistically the
global musical context [8]. In practice, most existing MIR
systems have a relatively simple probabilistic structure and
are constrained by limited hypotheses that do not model
the underlying complexity of music. Dealing with real audio
recordings requires the ability to handle both uncertaintyand
complex relational structure at multiple levels of representa-
tion. Existing approaches for music retrieval tasks typically
fail to capture these two aspects simultaneously.
B. Statistical Relational Learning and Markov Logic

Real data such as music signals exhibit both uncertainty
and rich relational structure. Until recent years, these two
aspects have been generally treated separately, probability
being the standard way to represent uncertainty in knowledge,
while logical formalisms are the standard way to represent
knowledge and complex relational information. Music retrieval
tasks would benefit from a unification of both representations.
As reflected by previous works, both aspects are important
in music, and should be fully considered. However, tradi-
tional probabilistic graphical models and machine learning
approaches are not able to cope with rich relational structure,
while logic-based approaches are not able to cope with the
uncertainty of audio and need a transcription step to apply
logical inference on a symbolic representation.

Appealing approaches towards a unification between logic
and probability have emerged within the field of Statistical
Relational Learning (SRL) [9]–[11]. They combine first order
logic, relational representations and logical inference,with
concepts of probability theory and machine learning [12].
Ideas from probability theory and statistics are used to address
uncertainty while tools from logic, databases, and program-
ming languages are introduced to represent structure. Many
representations in which statistical and relational knowledge
are unified within a single representation formalism have
been proposed. They include relational Markov networks [13],
probabilistic relational models [14], probabilistic inductive
logic programming [15] or Bayesian logic programs [16]. We
refer the reader to [11], [12] for a survey of SRL.

Among these approaches, Markov Logic Networks (MLNs)
[17]–[19], which combine First-Order Logic (FOL) and prob-
abilistic graphical models (Markov networks) have received
considerable attention in recent years. Their popularity is due
to their expressiveness and simplicity for compactly represent-
ing a wide variety of knowledge and reasoning about data with
complex dependencies. Multiple learning and inference algo-
rithms for MLNs have been proposed, for which open-source
implementations are available (e.g. theAlchemy2 andProbCog
3 software packages). MLNs have been successfully applied in
many domains and used for various tasks in AI, such as collec-
tive classification [20] and natural language processing [21].
C. Goal of the Paper

A MLN is a statistical relational learning framework that
combines probabilistic inference with first-order logicalrea-
soning. In this paper, we examine the current existing models
for music processing and discuss their limitations from an

2http://alchemy.cs.washington.edu
3http://ias.cs.tum.edu/research/probcog

artificial intelligence perspective. We then present MLNs as
a highly flexible and expressive formalism for the analysis
of music audio signals that encompasses most currently used
probabilistic and logic-based models. Our research to dateon
the use of MLNs for music analysis has shown that they offer a
very interesting alternative to the most commonly used hidden
Markov models as a more expressive and flexible, yet concise
model for content information extraction. We have proposeda
single unified MLN model for the joint estimation of chords
and global key [22] and we have explored the use of MLNs
to integrate structural information to enhance chord estimation
[23]. Here, we aim to provide a deeper understanding of the
potential of MLNs for music analysis. Very few papers try
to explain the deep-seated reasons why MLNs work. To be
of real interest to the MIR community, we believe that an
understanding of how they specifically relate to commonly
used models is needed. To this purpose, we first focus on the
theoretical foundations of Hidden Markov Models (HMMs)
and Conditional Random Fields (CRFs) and compare the
relative capabilities of these models in terms of formalism.
This allows us to show how they can be elegantly and flexibly
embedded in a more general multilevel architecture with
MLNs, which offers new perspectives for music analysis.

Within the music analysis area, we present an application
for tonal harmony music analysis [24]. Here tonal harmony
analysis is understood as segmenting and labeling an audio
signal according to its underlying harmony [25]. In traditional
computational models, it is not easy to express dependencies
between different semantic and temporal levels. We design
in the MLN framework a multi-level harmony description of
music, at the beat (chords), bar/phrase (local key, including
modulations) and global semantic structure time scales, in
which information specific to the various strata interact.

II. BACKGROUND

Previous work on music content estimation can be classified
into two main categories, probabilistic and logic-based models.
In the following section, specific emphasis will be given to
applications related to tonal harmony analysis.

A. Probabilistic vs. Logic for Music Processing

1) Probabilistic Approaches for Music Content Analysis:
Probabilistic graphical models form a large class ofstructured
prediction modelsand are popular for MIR tasks that involve
predicting structured objects. In particular hidden Markov
models [26] have been quite successful in modeling various
tasks where objects can be represented as sequential phenom-
ena, such as chord [27] and local key [28] estimation, beat
tracking [29], note segmentation [30] and melody transcription
[31]. The objects of interest are modeled as hidden variables
that are inferred from some observations. For instance, in a
typical chord estimation HMM, the unknown chord progres-
sion is inferred from the observation of chroma vectors. An
important limitation of HMMs is that it is hard to express
dependencies in the data. Strong independence assumptions
between the observation variables are made (e.g. each chroma
observation is independent from the other etc.). A relevant
musical description of audio would ideally consider multiple
and typically interdependent observations.

http://alchemy.cs.washington.edu
http://ias.cs.tum.edu/research/probcog
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Other formalisms that allow considering more complex
dependencies between data have been explored. Variants of
HMMs, such as semi-Markov models can better model the
duration distributions of the underlying events [32]. N-grams
can model long-range chord sequences without making the
simplifying Markovian assumption, as in HMM-based ap-
proaches, that each chord symbol depends only on the pre-
ceding one [33]. The tree structure presented in Paiementet
al. [7] allows building a graphical probabilistic model where
contextual information related to the meter is used to model
the chord progression in order to generate chords. Dynamic
Bayesian networks (DBN) allow the joint modeling of several
musical attributes [5].

However, the use of graphical models that allow more com-
plex dependencies than HMMs for music content estimation
remains limited in the MIR field. HMMs belong to the class
of Bayesian network models [34] that are used to represent
the joint probability distributionp(y, x) between the hidden
statesy and the observationsx, where bothx and y are
random variables. HMMs aregenerative modelsin the sense
that they describe how the output (the hidden statesy) proba-
bilistically generates the input (the observationsx), the outputs
topologically preceding the inputs. According to Baye’s rule,
the calculation of the conditional distributionp(y∣x) from
p(y, x) requires to compute the marginal distributionp(x).
This requires enumerating all possible observation sequences,
which is difficult when using multiple interdependent input
features that result in a complex distribution. This generally
leads to intractable models, unless the observation elements
are considered as independent from each other. But ignoring
these dependencies may impair the performances of the model.

In fact, in all the previously mentioned applications, the
observation sequencex is already known and visible in both
training and testing datasets. We are only interested in predict-
ing the values of the hidden variables, given the observations.
A discriminative framework that directly models the condi-
tional distributionp(y∣x) is thus sufficient. Indiscriminative
models, the assumptions of conditional independence between
the observations and the current state that are posed for the
HMMs are relaxed and there is no need to model the prior
distribution over the input,p(x). This is in particular the case
of Conditional Random Fields (CRFs) [35]. Many works have
demonstrated that CRFs overcome several of the limitationsof
HMMs and offer lot of potential for modeling linear sequence
structures. In particular they offer attractive properties in terms
of designing flexible observation functions, with multiple
interacting features, and modeling complex dependencies or
long-range dependencies of the observations.

CRFs have been successfully applied in various fields other
than music audio signal processing, including natural language
processing, bioinformatics, computer vision and speech pro-
cessing. There has been recently an increasing interest in using
CRFs for modeling music-related tasks, and we review here
these works. A tutorial on CRF in the context of MIR research
can be found in Essid (2013) [36].

In the context of audio music content estimation, a first
attempt to use CRFs is presented in Burgoyneet al. (2007)
[37] for the purpose of chord progression estimation. Only

the property of discriminative learning with few parameters
versus generative learning with HMM is exploited. The other
possibilities of the framework, such as using richer features
or modeling complex dependencies are not considered and the
implemented model does not yield to results that outperforma
classic HMM. Very recently, CRFs have been applied to beat
tracking [38], and to singing voice separation [39].

Other audio tasks that can be seen as a labeling sequential
data problem have been modeled in a CRF framework. Audio-
to-score alignment has been the most extensive application
of CRFs in MIR [40], [41]. It has been shown that existing
models for this task can be reformulated with CRF of dif-
ferent structures (semi-Markov CRF, Hidden CRF). The use
of CRFs allows designing flexible observation functions that
incorporate several features characterizing different aspects of
the musical content. The calculation of each state conditional
probability is based on audio frames from an arbitrary past
or future, improving the matching of a frame with a score
position. CRFs have been employed in automatic music tran-
scription [42] in a post-processing step to reduce single-frame
errors in a multiple-F0 transcription. They have also been used
in the context of audio-tagging [43], and musical emotion
evolution prediction [44]. Finally, the ability of CRFs to use
multiple dependent features has also been exploited in the
symbolic domain, as for symbolic music retrieval [45] and
for the automatic generation of lyrics [46].

2) Logic-Based Approaches for Music Content Analysis:
A major advantage of the logic framework is that its ex-
pressiveness allows modeling music rules in a compact and
human-readable way, thus providing an intuitive description
of music. For instance, background knowledge, such as music
theory, can be introduced to construct rules that reflect the
human understanding of music [47]. Another advantage is
that logical inference of rules allows taking into account all
events including those which are rare [48]. Inductive Logic
Programming (ILP) [49] refers to logical inference techniques
that are a subset of FOL. These approaches combine logic
programming with machine learning. They have been widely
used to model and learn music rules, especially in the context
of harmony characterization and in the context of expressive
music performance. Approaches based on logic have focused
on symbolic representations, rather than on audio.

In the context of harmony characterization, pattern-based
first-order inductive systems capable of learning new concepts
from examples and background knowledge [50], or counter-
point rules for two-voice musical pieces in symbolic format
[51] have been proposed. An inductive approach for learning
generic rules from a set of popular music harmonization ex-
amples to capture common chord patterns is described in [52].
Some ILP-based approaches for the automatic characterization
of harmony in symbolic representations [53] and classification
of musical genres [54] have been extended to audio [55].
However, they require a transcription step, the harmony char-
acterization being induced from the output of an audio chord
transcription algorithm and not directly from audio.

In the context of expressive music performance, algorithms
for discovering general rules that can describe fundamental
principles of expressive music performance, such as rules
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about tempo and expressive timing, dynamics and articulation,
have also been proposed [47], [56]–[58]. The inductive logic
programming approaches are not directly applied to audio,
but on symbolic representations. This generally requires a
transcription step, such as melody transcription [47].

B. Tonal and Harmony Music Content Estimation

Since we present an application of MLNs for tonal harmony
music analysis, we briefly review in this section existing
work on chord, key and structure estimation. The automatic
estimation of each of these musical attributes by itself is an
important topic of study in the area of content estimation of
music audio signals. We review below only works that are
directly related to the proposed model. We refer the reader to
[59]–[61] for recent reviews on each of these topics.

1) Chord and Local Key Estimation:Harmony together
with rhythm are two of the faces of Western tonal music that
have been investigated for hundreds of years [62]. Harmony
is structured at different time-scales (beat, bar, phrase-level,
sections, etc.). Pitches are governed by structural principles
and music is organized around one or more stable reference
pitches. Achord is defined as combination of pitches, and the
system of relationships between pitches corresponds to akey.
A key, as a theoretical concept, implies a tonal center that is the
most stable pitch called the tonic, and a mode (usually major
or minor). A piece of music generally starts and ends in a
particular key referred to as the main orglobal keyof the piece.
However, it is common that the composer moves between
keys. A change between different keys is called amodulation.
Western tonal music can be conceived of as a progression of a
sequence of key regions in which pitches are organized around
one stable tonal center. Such a region is defined here as alocal
key, as opposed to the global key. Tonality analysis describes
the relationships between the various keys in a piece of music.
Tonality and key are complex perceptual attributes, whose per-
ception depends on the listener’s level of music training. More-
over, numerous phenoma in a music piece (ambiguous key, ap-
parent tonality, no tonality etc.) contribute to make the problem
of local key estimation challenging, and little work has been
conducted on this topic (see [28], [60] for more details).

Chords and (local) keys reflect the pitch content of an audio
signal at different time-scales. They are intimately related,
specific chords indicating a stable tonal center while a given
key implying the use of particular chords. Previous works have
explored the idea of using chords to find the main key of a
musical excerpt [63]–[66]. But the question of how the chord
and the key progressions can be jointly modeled and estimated
remains scarcely addressed. The few existing works on the
topic present serious limitations, as the analysis window size
for key estimation is empirically set to a fixed value [67],
[68] (resulting in undetected key changes for pieces with a
fast tempo and chord rather than key estimation for pieces
with a slow tempo), or they do not fully exploit the mutual
dependency between chords and keys [28] (the local key is
estimated from a fixed chord progression).

2) A Structurally Consistent Description of Muisc:Music
structure appears at several time scales, from musical phrases
to longer semantically meaningful sections that generallyhave

multiple occurrences (with possible variations) within the
same musical piece. Previous works have revealed that the
semantic structure can be used as a cue to obtain a “structurally
consistent” mid-level representation of music. In the workof
Dannenberg [69], music structure is used to constrain a beat
tracking program based on the idea that similar segments of
music should have corresponding beats and tempo variation.
A work more closely related to this article is [70], in which
the repetitive structure of songs is used to enhance chord
extraction. A chromagram [71], [72] is extracted from the
signal, and segments corresponding to a given type of section
are replaced by the average of the chromagram over all the
instance of the same segment type over the whole song, so that
similar structural segments are labeled with the exact same
chord progression. A limitation of this work is that it relies
on the hypothesis that the chord sequence is the same in all
sections of the same type. However, repeated segments are
often transformed up to a certain extent and present variations
between several occurrences. Moreover, in the case that one
segment of the chromagram is blurred (e.g. because of noise
or percussive sounds), this will automatically affect all same
segments, and thus degrade the chord estimation.

III. MLN S AND THEIR RELATIONSHIP TOPROBABILISTIC

GRAPHICAL MODELS

In this section, we introduce Markov logic networks for
music signal processing and clarify the relationship of MLNs
to both HMMs and CRFs. As examined in Sec.II , HMMs
are the most common models used for music processing. In a
labeling context, a HMM can be viewed as a particular case of
CRF, which itself is a special case of Markov network. CRFs
serve here as a bridge between HMMs and MLNs.

Notations: We will use the following notations. We consider
probability distributions over sets of random variablesV =
X ∪Y , whereX is a set of input variables that we assume are
observed (X is a sequence of observations), andY is a set of
output variables that we wish to predict (the “hidden states”).
Every variable takes outcomes from a setV = X ∪ Y that
can be either continuous or discrete. We focus on the discrete
case in this paper. An arbitrary assignment toX is denoted
by a vectorx = (x1, . . . , xN). Given a variableXn ∈ X , the
notationxn denotes the value assigned toXn by x.When there
is no ambiguity, we will use the notationsp(y, x) andp(y∣x)
instead ofp(Y = y,X = x) andp(Y = y∣X = x).

The extraction of music content information can be often
seen as a classification problem, in the sense that we wish to
assign a class or a labely ∈ Y (e.g. a chord label) that is
not directly observed to an observationx ∈ X (e.g. a chroma
vector). Note that thex are generally fixed observations,
rather than treated as random variables. We can approach
this problem by specifying a probability distribution to select
the most likely classy ∈ Y we wish to predict for a given
observationx ∈ X . In general, the set of variablesX ∪ Y

have a complex structure. A popular approach is to use a
(probabilistic) graphical modelthat allows representing the
manner in which the variables depend on each other. A graphi-
cal model is a family of probability distributions that factorize
according to an underlying graph. The idea is to represent
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a distribution over a large number of random variables by a
product of potential functions4 that each depend on only a
smaller subset of variables.

In a probabilistic graphical model, there is a node for each
random variable. The absence of an edge between two vari-
ablesa and b means that they areconditionally independent
given all other random variables in the model5. The concept
of conditional independence allows decomposing complex
probability distributions into a product of independent factors
(see Fig.1 for an example).

Graphical models include many model families. There are
directed and undirectedgraphical models, depending on the
way the original probability distribution is factorized. Many
concepts of the theory of graphical models have been devel-
oped independently in different areas and thus have different
names. Directed graphical models are also commonly known
a Bayesian networksand undirected models are also referred
to asMarkov random fieldsor Markov networks.

A. Hidden Markov Models

Hidden Markov models [26], belong to the class of di-
rected graphs, and are standard models for estimating a
sequential phenomenon in music. They make strong inde-
pendence assumptions between the observation variables to
reduce complexity. A HMM computes a joint probability
p(y, x) between an underlying sequence ofN hidden states
y = (y1, y2, . . . , yN) and a sequence ofN observationsx =
(x1, x2 . . . , xN ). A HMM makes two independence assump-
tions. First, each observation variablexn is assumed to depend
only on the current stateyn. Second it makes the Markov as-
sumption that each state depends only on its immediate prede-
cessor6. A HMM is specified using 3 probability distributions:

● The distribution over initial statesp(y1);
● The state transition distributionp(yn∣yn−1) to transit from

a stateyn−1 to a stateyn ;
● The observation distributionp(xn∣yn) of an observation

xn to be generated by a stateyn.

Fig. 1. Graphical model of a HMM describingp(y, x) for a sequence of
three input variablesx1, x2, x3 and three output variablesy1, y2, y3. Because
of the conditional independence between variables, the model simplifies in:
p(x1, x2, x3, y1, y2, y3) = p(y3∣y2) ⋅p(y3∣x3) ⋅p(y2∣y1) ⋅p(y2∣x2) ⋅p(y1) ⋅
p(y1∣x1). Both the observations and the hidden state are random variables
and thus represented as unshaded nodes.

The joint probability of a state sequencey and an obser-
vation sequencex factorizes as the product of conditional
distributions. In this directed graph model, each observation
has a “parent label” and the joint probability of the sequence
factorizes into pairs of terms, one term corresponding to pairs

4Also referred to asfactors functionor local functionsin the literature.
5Formally, given a third random variablec, two random variablesa andb

are conditionally independentif and only if p(a, b∣c) = p(a∣c)p(b∣c). Note
that in contrast two random variablesa andb arestatistically independentif
and only if p(a, b) = p(a)p(b).

6This actually corresponds to the standard case of first-order HMMs.
Higher-order HMMs calledk-order HMMs exist where the next state may
depend on pastk states.

of labels and a second term corresponding to each observation
with its parent label (see Fig1 for an example):

p(y,x) =
N

∏
n=1

p(yn∣yn−1)p(xn∣yn) (1)

where we assume an unconditional prior distribution over the
starting state and for timen = 1 we write the initial state
distributionp(y1) asp(y1∣y0).
B. Conditional Random Fields

In many real-word schemes that involve relational data, in
particular in music, the entities to be classified are related
to each other in complex ways and their labels are not
independent. Moreover, any successful classification would
need to rely on multiple highly interdependent features that
describe the objects of interest. CRFs are generally better
suited than HMMs to including rich, overlapping features and
thus to represent much additional knowledge in the model7. A
CRF is a probabilistic model for computing the conditional
probability p(y∣x) of the output y given the sequence of
observationsx. A CRF may be viewed as a Markov network
globally conditioned on the observations.

A Markov networkis a model for the joint distribution of a
set of variablesV = (V1, V2, . . . , Vn) ∈ V [75]. It is composed
of an undirected graphG and a set ofpotential functions
φk. The graph has a node for each variable and there is a
potential function for each clique in the graph8. A potential
function is a non-negative real-valued function of the state of
the corresponding clique. A potential between connected nodes
can be viewed as some correlation measure, but it does not
have a direct probabilistic interpretation and its value isnot
restricted to be between0 and1. The joint distribution of the
variables represented by a Markov network can be factorized
over the cliques of the network by:

p(V = v) = 1

Z
∏
k

φk(v{k}) (2)

where,v is an assignment to the random variablesV andv{k}
is the state of the kth clique (i.e., the state of the variables that
appear in that clique).Z, known as thepartition function, is
given byZ = ∑v∈V∏k φk(v{k}).

CRFs can be arbitrarily structured (e.g. skip-chain CRFs
[76],semi-Markov CRFs [77], segmental CRF [78]). Here,
we focus on the canonical linear-chain model introduced in
Lafferty et al. (2001) [35], that assumes a first-order Markov
dependency between the hidden variablesy (see Fig.2).

Fig. 2. Graphical model view of a linear chain-structured CRF. The single,
large shaded node corresponds to the entire fixed observation sequencex, and
the clear nodes correspond to the label variables of the sequencey.

For a linear-chain CRF, the cliques consist of an edge
betweenyn−1 and yn as well as the edges from those two

7For a discussion about the advantages and disadvantages of CRF vs. HMM,
see for instance Murphy (2012) [34], chapter 19. For furtherreading on CRFs,
we recommend the tutorials [73] and [74].

8In an undirected graph, aclique is a set of nodesΩ forming a fully
connected subgraph: for every two nodes inΩ, there exists an edge connecting
the two.
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labels to the set of observationsx (see Fig.2). The probability
of a particular label sequencey given observation sequencex
can be factorized into a normalized product of strictly positive,
real-valued potential functions, globally normalized over the
entire sequence structure:

p(y∣x) = 1

Z(x)

N

∏
n=1

Fn(x, y) (3)

The normalization factorZ(x) sums over all possible state
sequences so that the distribution sums to1. Fn(x, y)
is a set of feature functions designed to capture use-
ful domain information that have the formFn(x, y) =
exp(∑K

k=1 λkfk(yn−1, yn, x)), wherefk are real-valued func-
tions of the state, andλk is a set of weights. Eq. (3) writes:

p(y∣x) = 1

Z(x)
N

∏
n=1

exp(
K

∑
k=1

λkfk(yn−1, yn, x)) (4)

whereZ(x) = ∑
y

N

∏
n=1

exp (
K

∑
k=1

λkfk(yn−1, yn, x)).
In contrast to HMMs, the feature functions of CRFs can

not only depend on the current observation but on observations
from an arbitrary past or future for the calculation of each state
probability. Feature functions can belong to any family of real-
valued functions, but in general they are binary functions,and
we will focus on this case here.

We also write the model in the case where the observations
are restricted to a single framexn, for convenience of future
comparison to HMMs (see Fig.3):

p(y∣x) = 1

Z(x)

N

∏
n=1

exp(
K

∑
k=1

λkfk(yn−1, yn, xn))

= 1

Z(x)
exp(

N

∑
n=1

K

∑
k=1

λkfk(yn−1, yn, xn)) (5)

Fig. 3. Graphical model of a HMM-like linear-chain CRF describing p(y∣x).
Here, it is an undirected graphical model: compared to the HMM in Fig. 1,
the arrowheads of the edges have disappeared. The shaded nodes indicate that
the corresponding variables are observed and not generatedby the model.

C. HMM vs. CRF

The joint distributionp(y, x) of a HMM can be viewed as
a CRF with a particular choice of feature functions. We now
describe how it is possible to translate a HMM into the feature
functions and weights of a CRF.

For each state transition pair(i, j), i, j ∈ S (where S

represents a set of hidden states) and each state-observation
pair (i, o), i ∈ S, o ∈ O (where O represents the set of the
observations), let define a binary feature function of the form:

f
trans
i,j (yn−1, yn, xn) = 1(yn−1 = i) ⋅ 1(yn = j)

f
obs
i,o (yn−1, yn, xn) = 1(yn = i) ⋅ 1(xn = o)

where1(x = i) denotes an indicator function ofx that takes
the value1 when x = i and 0 otherwise. In other words,
f trans

i,j (yn−1, yn, xn) returns1 when yn−1 = i and yn = j, and
0 otherwise.

Let also define the set of weightswtrans
i,j = logp(yn =

j∣yn−1 = i). We have:

∑
i,j∈S

w
trans
i,j ⋅ f

trans
i,j (yn−1, yn, xn) = log p(yn = j∣yn−1 = i)

Similar equations are obtained withwobs
i,o = logp(xn = o∣yn =

i)9.We can then rewrite Eq. (1) as:

p(y,x) =
N

∏
n=1

p(yn∣yn−1)p(xn∣yn)

=
N

∏
n=1

exp( log p(yn∣yn−1) + log p(xn∣yn))

=

N

∏
n=1

exp( ∑
i,j∈S

w
trans
i,j ⋅ f

trans
i,j (yn−1, yn, xn)

+∑
i∈S

∑
o∈O

w
obs
i,o ⋅ f

obs
i,o (yn−1, yn, xn))

(7)

We refer to a feature function generically asfk, where fk

ranges over both all of thef trans
i,j and all of thefobs

i,o , and
similarly refer to a weight generically aswk. The previous
equation writes:

p(y,x) =
N

∏
n=1

exp(
K

∑
k=1

wk ⋅ fk(yn−1, yn, xn))

From the definition of conditional probability, we have:

p(y∣x) = p(y,x)
p(x) =

p(y,x)
∑
y

p(y,x)

DenotingZ(x) = ∑
y

p(y, x), we finally obtain:

p(y∣x) = 1

Z(x)

N

∏
n=1

exp(
K

∑
k=1

wk ⋅ fk(yn−1, yn, xn))

= 1

Z(x)
exp(

N

∑
n=1

K

∑
k=1

wk ⋅ fk(yn−1, yn, xn)) (10)

Eq. (10) defines the same family of distributions as Eq. (5).
For a labeling task, a HMM is thus a particular case of linear-
chain CRF for a suitable choice of clique potentials, where
each potential feature is either a state feature function ora
transition feature function. In practice, the main difference
between using HMMs and HMM-like CRFs lies in the way
the model parameters are learnt. In the case of HMMs they
are learned by maximizing the joint probability distribution
p(x, y), while in the case of CRF they are learned by maxi-
mizing the conditional probability distributionp(y∣x), which
avoids modeling the observations distributionp(x).

For convenience (see Sec.IV-B3), we also write the condi-
tional probability of the CRF in its direct translation froma
HMM from Eq. (7) as a product of factors:

p(y∣x) = 1

Z(x)

N

∏
n=1

Φtrans(yn−1, yn, xn)Φobs(yn, xn) (11)

where Φtrans(yn−1, yn, xn) and Φobs(yn, xn) are exponential
family potential functions, respectively over state and obser-
vation configurations, that are derived from the transitionand
observation probabilities of the HMM. Here we have removed
the unused variableyn−1 in the state-observation pairs.

D. Markov Logic Networks

1) MLN Intuitive Idea: MLNs have been introduced by
Richardson & Domingos [17] and are a combination of

9For state-observation pairs, the variableyn−1 could be removed but we
keep it to stay consistent with the definition of linear-chain CRF (Eq. (3)).
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Markov networks and first-order logic (FOL). A MLN is a set
of weighted FOL formulas10, that can be seen as a template
for the construction of probabilistic graphical models. We
present in this section a short overview of the main concepts
of Markov logic, with specific examples from the modeling of
musical concepts. We refer the reader to Domingos & Lowd
(2009) [19] for a thorough review.

MLNs are meant to be intuitive representations of real-
world scenarios. In general, FOL formulas are first used to
express knowledge. Then a Markov network is constructed
from the instantiation of these formulas. The knowledge base
is transformed into a probabilistic model simply by assigning
weights to the formulas, manually or by learning them from
data. Inference is then performed on the Markov network.

2) Definitions and Vocabulary:A Markov network, as
presented in Sec.III-B , is a model for the joint distribution of
a set of variablesV = (V1, V2, . . . , Vn) ∈ V , often represented
as a log-linear model with each clique potential replaced by
an exponentiated weighted sum of features of the state:

p(V = v) = 1

Z
exp(∑

j

wjfj(v)) (12)

whereZ is a normalization factor, andfj(v) are features of
the statev. A feature may be any real-valued function of
the state, but here (and in the literature of Markov logic)11,
we focus on binary features,fj(v) ∈ {0,1}. The most direct
translation from the potential function form Eq. (2) to the log-
linear form Eq. (12) is obtained with one feature corresponding
to each possible statev{k} of each clique, with its weight being

log (φk(v{k})).
In first-order logic, the domain of discourse is defined by a

set of four types of symbols.Constants(e.g.CMchord (“C ma-
jor chord”),GMchord) represent objects in the domain; the set
of constants is here assumed finite12. Variables (e.g.x,y) take
objects in the domain as values.Predicatesrepresent properties
of objects (e.g.IsMajor(x), IsHappyMood(x)) and rela-
tions between them (e.g.AreNeighbors(x,y)). Functions
represent mappings from tuples of objects to objects.

A predicate can be grounded by replacing its
variables with constants (e.g. IsMajor(CMchord),
AreNeighbors(CMchord,GMchord)). A predicate takes
as outputs either True (synonymous with 1) or False
(synonymous with 0). Aground predicateis called anatomic
formula or an atom. A positive literal is an atomic formula
and anegative literal is the negation of an atomic formula.
A world is an assignment of a truth value (0 or 1) to each
possible ground predicate.

A first-order knowledge base(KB) is a set of formulas
in first-order logic, constructed from predicates using logical
connectives (⇒: “if . . . then” (implication);⇔: “if and only if”

10First-order logic is also known as predicate logic because it uses
predicates and quantifiers, as opposed to propositional logic that deals with
simple declarative propositions and is less expressive. The adjective ”first-
order” distinguishes first-order logic, in which quantification is applied only
to variables, from higher-order logic in which quantification can be applied
to predicate and function symbols. For more details, see e.g. [79], [80].

11Also as in the case of CRFs presented in Sec.III-B .
12Markov logic have originally been defined only for finite domains [17]

but have since been extended to infinite domains [81]. In thispaper we are
only concerned with finite domains.

(equivalence);∧: “and” (conjunction);∨: “or” (disjunction);
⌝: (negation)) and quantifiers (the universals∀: “for all”; ∃:
“there exists”).

In general, in Markov logic implementations, formulas are
converted toclausal form, also known asconjunctive normal
form (CNF) for automated inference. Every KB in FOL can be
converted to clausal form [82]. A clausal form is a conjunction
of clauses, aclausebeing a disjunction of literals.

3) MLN formal definition: A first-order KB can be seen
as a set of hard constraints on the set of possible worlds: if
a world violates even one formula, it has zero probability. In
a real world scheme, logic formulas aregenerally, but not
alwaystrue. The basic idea in Markov logic is to soften these
constraints to handle uncertainty: when a world violates one
formula in the KB, it is less probable than one that does not
violate any formulas, but not impossible. Markov logic allows
contradictions between formulas by weighting the evidenceon
both sides. The weight associated with each formula reflects
how strong a constraint is, i.e. how unlikely a world is in which
that formula is violated. The more formula a possible world
satisfies, the more likely it is. Tab.I shows a KB and its conver-
sion to clausal form, with corresponding weights in the MLN.

Definition 1 Formally, a Markov logic networkL [17] is
defined as a set of pairs(Fi,wi), whereFi is a formula in
first-order logic andwi is a real number associated with the
formula. Applied to a finite set of constantsC (to which the
predicates appearing in the formulas can be applied), it defines
a ground Markov networkML,C as follows:

1) ML,C contains one binary node for each possible
grounding of each predicate (i.e. each atom) appearing inL.
The value of the node is 1 if the ground predicate is true, and
0 otherwise.

2) ML,C contains one featurefj for each possible ground-
ing of each formulaFi in L. The feature value is 1 if the
ground formula is true, and 0 otherwise. The weightwj of the
feature is the weightwi associated with the formulaFi in L.

A MLN can be viewed as atemplate for constructing
Markov networks: given different set of constants, it will
produce different networks. Each of these networks is called a
ground Markov network. A ground Markov networkML,C

specifies a joint probability distribution over the setV of
possible worlds, i.e. the set of possible assignments of truth
values to each of the ground atoms inV 13. From Def. (1) and
Eq. (12), the joint distribution of a possible worldV given by
ML,C is:

p(V = v) = 1

Z
exp(∑

i

wini(v)) (13)

where the sum is over indices of MLN formulas andni(v) is
the number of true groundings of formulaFi in v (i.e. ni(v)
is the number of times theith formula is satisfied by possible
world V ), andZ = ∑

v′∈V

exp(∑
i

wini(v′)).

13The ground Markov network consists of one binary node for each possible
grounding of each predicate. A worldV ∈ V is a particular assignment of
truth value (0 or 1) to each of these ground predicates. If∣V ∣ is the number
of nodes in the network, there are2∣V ∣ possible worlds.
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TABLE I
EXAMPLE OF A FIRST-ORDERKB AND CORRESPONDING WEIGHTS IN THEMLN.

Knowledge First-order Logic formula Clausal Form Weight

A major chord implies a happy mood. ∀x IsMajor(x)⇒ IsHappyMood(x) ⌝IsMajor(x) ∨ IsHappyMood(x) w1 = 0.5

If 2 chords are neighbors on the circle
of fifths, either both are major chords
or neither are.

∀x ∀y AreNeighbors(x, y)⇒ (IsMajor(x)⇔ IsMajor(y)) ⌝AreNeighbors(x, y)∨ IsMajor(x)∨ ⌝ IsMajor(y), w2 = 1.1
⌝AreNeighbors(x, y)∨ ⌝ IsMajor(x) ∨ IsMajor(y) w2 = 1.1

Assumptions in practical applications:To ensure that the
number of possible worlds forML,C is finite, and that the
MLN will give a well-defined probability distribution over
those worlds, three assumptions about the logical represen-
tation are typically made: different constants refer to different
objects (unique names), the only objects in the domain are
those representable using the constant and function symbols
(domain closure), and the value of each function for each tuple
of object is always a known constant (known functions). For
more details, see [17].

Remark:MLNs are usually defined as log-linear models.
However, Eq. (13) can be rewritten as a product of potential
functions:

p(V = v) = 1

Z
exp(∑

i

wini(v)) = 1

Z
∏
i

φi(v{i})ni(v) (14)

with φi(v{i}) = ewi . This shows that any discrete probabilistic
model expressible as products of potentials can be expressed
with a MLN. This includes Markov and Bayesian networks.

4) Example:Fig. 4 shows the graph of the ground Markov
network defined by the two formulas in Tab.I and the constants
CMchord (CM) andGMchord (GM). The grounding process is
illustrated in Fig.5. There are 3 predicates and 2 constants.
They result in 8 nodes that are binary random variables
denoted byV , and that each represent a grounded atom.

The graphical structure ofML,C follows from Def. (1):

● Each possible grounding of each predicate inFi becomes
a node in the Markov network. Each node has a binary
value: 1(“True”) or 0 (“False”).

● Each possible grounding of each formula becomes a
feature in the Markov network.

● All nodes whose corresponding predicates appear in the
same formula form a clique in the Markov network. Each
clique is associated with a feature.

The Markov network grows as the number of constants and
formula groundings increases, but the number of the formulas
(or the templates) stays the same.

Fig. 4. Ground Markov network obtained by applying the formulas in Tab.I
to the constantsCMchord (CM) andGMchord (GM).

For the Markov network in Fig.4, a world is an
assignment of a truth value to each possible ground
predicate inV = (IsMajor(CM),IsMajor(GM),IsHappy-
Mood(CM),IsHappyMood(GM),AreNeighbors(CM,CM),Are-
Neighbors(CM,GM),AreNeighbors(GM,CM),AreNeighbo-

Fig. 5. Illustration of the grounding process of the ground Markov network
in Fig. 4. Adapted from [83].

rs(GM,GM)). Some elements inV may correspond to the
same template formulaFi with different truth assignments,
and ni(x) only counts the assignments which make
Fi true. For instance, there are two groundings for
formula: ∀ x IsMajor(x) ⇒ IsHappyMood(x). For
v = (1,1,1,0,1,1,1,1) where 1 is true and 0 is false,
n1(x) = 1 because onlyIsMajor(CM)⇒ IsHappyMood(CM)

gives true value whileIsMajor(GM) ⇒ IsHappyMood(GM)

does not. For detailed examples of the computation of joint
distribution of a possible worldV from Eq. (13) in Markov
logic, we refer the reader to Chenget al. (2014) [84].

E. MLNs vs. HMM and CRF

In a labeling task context, we knowa priori which pred-
icates are evidence and which ones will be queried. The
ground atoms in the domain can be partitioned into a set of
evidence atoms (observations)x and a set of query atomsy.
The conditional probability distribution ofy given x is [18]:

p(y∣x) = 1

Z(x) exp( ∑
i∈FY

wini(x, y)) (15)

where FY is the set of all MLN clauses with at least one
grounding involving a query atom andni(x, y) is the number
of true groundings of theith clause involving query atoms.

This can also be written:

p(y∣x) = 1

Z(x) exp( ∑
i∈GY

wigi(x, y)) (16)

where GY is the set of ground clauses inML,C involving
query atoms, andgi(x, y) = 1 if the ith ground clause is true
in the data and 0 otherwise.

Comparing Eq. (16) and Eq. (10), we can see that for a
labeling task, a HMM can be expressed in Markov logic by
producing a clause for each state-transition pair(i, j), i, j ∈ S

and each state-observation pair(i, o), i ∈ S, o ∈ O, and giving
a weighwi,j = log p(yn = j∣yn−1 = i) and wi,o = log p(xn =
o∣yn = i) respectively. Eqs. (16) and (5) show that a linear-
chain CRF can be expressed in Markov logic by producing a
clause corresponding to each feature function of the CRF, with
the same weight as the CRF feature. These graphical models
can be specified very compactly in Markov logic using a few
generic formulas (see SectionIV-C1).



MANUSCRIPT T-ASL-05679-2016.R1 9

F. MLNs, First-order Logic & Probabilistic Graphical Models

Markov Logic generalizes both first-order logic and most
commonly-used statistical models. FOL is the special case of
MLNs obtained when all weights are equal and tend to infinity.
In addition to add flexibility in knowledge bases using weights,
Markov logic allows contradictions between formulas. Other
interesting features include building a MLN by merging sev-
eral KBs, even if they are partly incompatible [19].

From a probabilistic point of view, Markov logic allows very
complex models to be represented very compactly (e.g. only
three formulas for a hidden Markov model). Any discrete prob-
abilistic models expressible as products of potentials canbe
expressed with a Markov logic network. MLNs thus generalize
most commonly-used probabilistic graphical models, which
includes Markov networks and Bayesian networks14. They
also facilitate the incorporation of rich domain knowledgethat
can be combined with purely empirical learning, and allows
reasoning with incomplete data [86], [87].

Several implementations of Markov logic exist that com-
prise a series of efficient algorithms for inference, as well
as weight and structure learning. In practical applications,
MLNs distributions are typically unique in the sense that they
represent a large number of variables that have implicit/explicit
dependencies between each other. In this context, algorithms
that combine probabilistic methods with ideas from logical
inference have been developed. This is out of the scope of this
article, but we refer the reader to Domingos & Lowd (2009)
[19], Chapters 3 and 4 for a detailed description of these
algorithms, and also to [88]–[90] for more recent reviews.

IV. A PPLICATION: MLN M ULTI -SCALE TONAL HARMONY

ANALYSIS

In this section, we instantiate Markov logic networks for
music signal processing, within the context of tonal harmony
analysis, and show how they compare with probabilistic graph-
ical model commonly used in MIR. Starting from a classic
HMM for chord progression estimation, we then propose a
new chord estimation model based on CRF that integrates
richer features. We show how these models can be translated
into Markov logic that offers further flexibility in terms of
modeling the complex relational structure of music. We finally
present a MLN that is able to model complex tonal and
harmony relational structure at several time scales.

A. Generalities

1) Music Theory Foundations and Hypothesis:Musical
elements are highly organized. At the highest level, when
listening to a piece of music, we can feel in general a structure
and divide the piece into several segments that are semantically
meaningful, as for instance verse or chorus sections in a
Western popular music song. These segments are in general
related to the metrical structure, which itself is a hierarchical
structure. The most salient metrical level, called thebeat level

14MLNs can also be applied to time-changing domains: dynamic Bayesian
networks can be equivalently modeled with MLNs [85]. Approaches such as
[5] for music could thus be modeled by a MLN, then possibly enriched, e.g.
with longer-term dependencies, as in the application presented in Sec.IV-C3.

corresponds to the foot-tapping rate. Beats are aggregatedin
larger time units calledmeasuresor bars.

In the time space, chords and local keys can be viewed
respectively as local and more global elements of tonal har-
mony. In this paper, the chord and (local) key progressions
are estimated using a restricted chord lexicon composed of
I = 24 major (M) and minor (m) triads (CM, . . . , BM, Cm,
. . . , Bm), and considering 24 possible keys (CM key, . . . , BM
key, Cm key, . . . , Bm key) based on the major and harmonic
minor scales and 12 pitches that compose an octave range of
Western music. We will also reasonably assume that within a
given measure, there cannot be any key modulation.

As mentioned in Sec.II-B, chords, keys and the semantic
structure are highly interrelated. We propose a model for tonal
harmony analysis of audio that takes into account (part of)
this complex relational structure. Our model allows a joint
estimation of local keys and chords. Moreover, following
the idea of designing a “structurally consistent” mid-level
representation of music, we show that the MLN framework
allows incorporating prior structural information to enhance
chord and key estimation in an elegant and flexible way.

Although a long-term goal is to develop a fully automatic
model that integrates an automatic segmentation, we follow
the previous approach for “structurally consistent” analysis
[70] and assume that the metrical and semantic structures are
known. The segmentation of the song in beats, downbeats and
structure is given as prior information.

2) Signal Processing Front-end:The front-end of all the
models described in this section is based on the extraction of
chroma feature vectors that describe the signal. The chroma
vectors are 12-dimensional vectors that represent the intensity
of the twelve semitones of the Western tonal music scale,
regardless of octave. We perform abeat synchronousanalysis
and compute one chroma vector per beat15.

3) About the Model Parameters:In what follows, the
parameters of the models are derived from expert knowledge
on music theory. All considered models allow training but we
left this aspect for future work. In Markov logic, the weights
can be learned either generatively or discriminatively. Werefer
the reader interested in MLNs learning to [19], [92], [93].

Note that in the more general case, the weights of a MLN
have no obvious probabilistic interpretation since they are
interpreted relative to each other when defining the joint
probability function. The weight of a clause specifies the
probability of a world in which this clause is satisfiedrelative
to a world in which it is not satisfied. According to the
heuristic discussed in [17], the weight of a formulaF is the
log odds between a world whereF is true and a world where
F is false, other things being equal. However, ifF shares
variables with other formulas (as it is typically the case) this
correspondence does not hold, as the weight ofF is influenced
not only by its probability, but also by the other formulas that
share the same variable. We refer the reader to [83], [94], [95]
for more details.

15This is done by integrating a beat-tracker as a front-end of the system
[91]. As a matter of fact we consider half-beat and not beat locations, as it
was found to give better results because there are chord changes on half beats.
For the sake of simplicity, we will nevertheless use the term“beat-level”.
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As seen in Sec.III-E, when translating a HMM or a linear-
chain CRF into a MLN, there is a one-to-one correspondence
between probabilities and weights in the MLN. When making
the model more complex by adding new formulas, there
may not be any longer a one-to-one correspondence between
weights and probabilities of formulas. This is why in general
the weights of a MLN are learned from the data. According
to [17], a good way to set the weights is to write down the
probability with which each formula should hold, treat these
as empirical frequencies, and learn the weights from them.
B. HMMs vs. CRFs for Tonal Harmony

1) Baseline HMM for Chord Estimation (HMMChord):We
consider here a model for chord estimation that will serve as
a baseline for comparison with CFR and MLNs. We utilize
the baseline model for chord estimation proposed in [96] that
we briefly describe here.

Let ci, i ∈ [1,24] denote the 24 chords of the chord lexicon.
We observe a succession ofxn = on, n ∈ [0,N − 1] 12-
dimensional chroma vectors,n being the time index, and
N being the total number of beat-synchronous frames of
the analyzed song. The chord progression is modeled as an
ergodic 24-state HMM with a hidden variable and a single
observable variable at each time step. Each hidden state
yn, n ∈ [0,N − 1] is a chordci, i ∈ [1,24] of the lexicon
and is observed through a chroma observation, with emission
probabilitypobs

HMM (xn∣yn). A state-transition matrix based on
musical knowledge that reflects chord transition rules is used
to model the transition probabilitiesptrans

HMM(yn∣yn−1)16.
2) Baseline CRF for Chord Estimation (CRFChord):From

Sec. III-C, we equivalently model the previous HMM for
chord estimation by a linear-chain CRF where the obser-
vations consist of a unique chroma feature, by using a set
of transition binary featuresf trans

i,j (yn−1, yn, xn) with weight
of wtrans

i,j = log(ptrans
HMM (yn = cj ∣yn−1 = ci)), and a set

of observation featuresf chroma
i,o (yn−1, yn, xn) with weights

wchroma
i,o = log(pobs

HMM(xn = on∣yn = ci)).
3) Enriched CRF for Chord Estimation (CRFPriorKey):

Some chords are heard as more stable within an established
tonal context [98]. Variouskey templates, which represent the
importance of each of the 24 triads within a given key have
been proposed in the literature, as the set of 24 24-dimensional
WMCRkey templatesT l

key, l ∈ [1,24] proposed in [28]. Such
prior information about keys and chords relationship can
be incorporated in the CRF through additional observation
features. At each time instantn an observation is written
xn = (on, qn), whereon is a chroma feature andqn is a key
feature. For the key features, we assume that, at each time
stepn, the current local keyqn = kl, l ∈ [1,24] is known. We
factorize the observation function of Eq. (11) in two terms:

Φobs(yn, xn) = Φobs(yn, on) ⋅Φobs(yn, qn) (17)

Φobs(yn, on) is computed as in the previous section. For
Φobs(yn, qn), we add an observation feature that reflects the
correlation measure between the chord being played and the

16This transition matrix was originally proposed in the context of key
estimation [97], but has been used for chords in our previouswork [28],
[96]. Chords and key are musical attributes related to the harmonic structure
and can be modeled in a similar way.

current local key:f key
i,l
(yn−1, yn, qn) = 1 if qn = kl andyn = ci,

and 0 otherwise. The key templates valuesT l
key(i), can be

viewed as a correlation measure that indicates the likelihood of
a keyqn is kl, l ∈ [1,24], given that the underlying stateyn is
chordci, i ∈ [1,24], and are used as weightsw

key
i,l

, i, l ∈ [1,24]
for the key features in the CRF.

4) Inference in HMM and CRF:For the HMM and the
linear-chain CRF, the most likely sequence over time can be
estimated in a maximum likelihood sense by decoding the
underlying sequence of hidden statesy from the sequence of
observationsx using the Viterbi decoding algorithm [26]17:

ŷ = argmax
y

p(y∣x) (18)
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le MLN FOR JOINT CHORDS, LOCAL KEYS AND STRUCTURE

DESCRIPTION. THE “ X” ON THE LEFT INDICATE THE

PREDICATES AND RULES THAT ARE USED FOR EACH MODEL.

Predicate declarations

// Observed predicates:

x x x x x x Observation(chroma!,time)
x x LocKey (key!,time)

x x x x x x Succbeat(time,time)
x x Samebar(time,time)

x x x Succstruct(time,time)
// Unobserved predicates (querry):

x x x x x x State(chord! time)
x x LocKey(key!, time)

Weight Formula

CHORD RULES

x x x x x x Prior observation chord probabilities:

wchord
0

State(CM,0)
⋯ ⋯

wchord
0

State (Bm,0)

x x x x x x Probability that the chroma observation has been emitted bya chord:

wchroma
CM,chroma0

Observation(Chroma0,n) ∧ State(CM,n)

wchroma
C♯M,chroma0

Observation(Chroma0,n) ∧ State(C♯M,n)

⋯ ⋯

wchroma
Bm,chromaN−1

Observation(ChromaN−1,n) ∧ State(Bm,n)

x x x x x x Probability of transition between two successive chords:

wtrans
CM,CM State(CM,n1) ∧ Succbeat(n2,n1) ∧ State(CM,n2)

wtrans
CM,C♯M State(CM,n1) ∧ Succbeat(n2,n1) ∧ State(C♯M,n2)

⋯ ⋯

wtrans
Bm,Bm State(Bm,n1) ∧ Succbeat(n2,n1) ∧ State(Bm,n2)

LOCAL KEY RULES

x x x x Probability that the key observation has been emitted by a chord::

w
key
CMk,CMk

LocKey(CMk,n) ∧ State(CM,n)

w
key
CMk,C♯Mk

LocKey(C♯Mk,n) ∧ State(CM,n)

⋯ ⋯

w
key
Bmk,Bmk

LocKey(Bmk,n) ∧ State(Bm,n)

x x Prior observation key probabilities:

w
key
0

LocKey(CMk,0)
⋯ ⋯

w
key
0

LocKey(Bmk,0)

x x Probability of transition between two successive keys:

w
transKey
CMk,CMk

LocKey(CMk,n1) ∧ Succbeat(n2,n1) ∧ LocKey(CMk,n2)

w
transKey
CMk,C♯Mk

LocKey(CMk,n1) ∧ Succbeat(n2,n1) ∧ LocKey(C♯Mk,n2)

⋯ ⋯

x x Minimum local key length:

wkeyDur LocKey(CMk,n1) ∧ Samebar(n2,n1) ∧ LocKey(CMk,n2)
⋯ ⋯

wkeyDur LocKey(Bmk,n1) ∧ Samebar(n2,n1) ∧ LocKey(Bmk,n2)

SEMANTIC STRUCTURE RULES

x x x Probability that similar segments have the same chord progression:

wstruct State(CM,n1) ∧ Succstruct(n2,n1) ∧ State(CM,n2)
⋯ ⋯

wstruct State(Bm,n1) ∧ Succstruct(n2,n1) ∧ State(Bm,n2)

C. MLN for Tonal Harmony Analysis

In this section, we start with a basic model for chord
recognition that we progressively enrich with additional music

17For HMM, we use the HMM Matlab toolbox [99]; for CRF, we use the
UGM Matlab toolbox [100].
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TABLE III
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le EVIDENCE FOR JOINT CHORD, LOCAL KEY AND

STRUCTURE DESCRIPTION. THE “ X” ON THE LEFT

INDICATE THE EVIDENCE PREDICATES THAT ARE

GIVEN TO EACH MODEL.

OBSERVATIONS

x x x x x x // A chroma vector is observed at each time frame:

Observation(Chroma0,0)

⋯

Observation(ChromaN-1,N-1)

x x x x x x // The temporal order of the frames is known:

Succbeat(1,0)
⋯

Succbeat(N-1,N-2)

ADDITIONAL PRIOR (LOCAL) KEY INFORMATION

x x // Prior information about the key at each time instant is given

LocKey(CMk,0) (If the key is CM at time instant 0)

⋯

LocKey(GMk,N-1) (If the key is GM at time instant N-1)

x x // Minimum local key length

(// Beats [0:3] belong to the same bar and are likely to be in the same key)

Samebar(1,0)

Samebar(2,1)
Samebar(3,2)

(// Beats [4:7] belong to the same bar and are likely to be in the same key)

Samebar(5,4)

Samebar(6,5)

Samebar(7,6)
⋯

ADDITIONAL SEMANTIC STRUCTURE PRIOR INFORMATION

x x x // Prior information about similar segments in the structure:

Succstruct(1,10)

Succstruct(2,11)

⋯

dimensions and relational structure links. The structure of the
domain is represented by a set of weighted logical formulas.
In addition to this set of rules, a set of evidence literals
represents the observations and prior information. Given this
set of rules with attached weights and the set of evidence
literals, MaximumA Posteriori (MAP) inference is used to
infer the most likely state of the world.

We first describe how the two structuresHMMChord and
CRFPriorKeycan be expressed in a straightforward way using
a MLN. We then build a more complex model that incorporates
structural information at various time scales. For this, we
propose the use of sometime predicatesthat indicate links
between time instants and thus that have time as argument. We
consider three time scales related to the semantic and metrical
structures of a music signal:
● The micro-scale corresponds to the beat-level and is

related to the chord progression. It is associated to the
Succbeat(time,time) time predicate that indicates two suc-
cessive beat positions;
● The meso-scalecorresponds to the bar level and is

related to local key progression. It is associated to the
Samebar(time,time) time predicate that indicates frames
belonging to a same bar;
● Themacro-scalecorresponds to the global structure level.

It is associated to theSuccstruct(time,time) time predicate
that indexes structurally similar segments.

1) Beat-Synchronous Level: Chord Estimation:
a) Chord Recognition (MLNChord):The chord progres-

sion modeled byHMMChord, and consequentlyCRFChordof

sectionsIV-B1 andIV-B2, can be equivalently modeled in the
MLN framework considering three generic formulas, given in
Eqs. (19), (20), and (21), which reflect the constraints given
by the three distributions defining the generative stochastic
process of the HMM. The three generic formulas are described
in Tab. II in the section “Chord rules”.

Description of the predicates:To model the chord pro-
gression at the beat-synchronous frame level, we use an
unobservable predicateState(ci,n), meaning that chordci

(that is hidden) is played at framen, and two observable
ones, the predicateObservation(on,n), meaning that we
observe chromaon at framen, and the temporal predicate
Succbeat(n2,n1), meaning thatn2 and n1 are successive
frames. They are also used for evidence, see in Tab.III .

Choice of the logical formulas:As detailed in [83], condi-
tional probability distributionsp(b∣a) (“if a holds thenb holds
with some probability”) are well represented using conjunc-
tions of the formlog(p) a ∧ b that are mutually exclusive (in
any possible world, at most one of the formulas is true). In
practice, in MLN implementations, the set of formulas must
also be exhaustive (exactly one of the formulas should be true
for every given world and every binding of the variables)18.

For each of the three distributions of the HMM, we use
mutually exclusive and exhaustive sets of formulas. This is
achieved in Tab.II using the symbol!. When the predi-
cateState(chord!,time) is declared, this means there is
one and only one possible chord per time instant. In the
same way, because the observation predicateObservation

is declared as functional, ifObservation(Chroma1,n)

is true at time instantn, Observation(Chroma0,n),
Observation(Chroma2,n), etc. is automatically false.

The prior observation probabilities are described using:

w
chord
0 State(ci,0) (19)

for each chordci, i ∈ [1,24], and withwchord
0
= logp(y0 = ci)

denoting a uniform prior distribution of chord symbols.

The conditional observation probabilities are described
using a set of conjunctions of the form:

w
chroma
i,o Observation(on,n) ∧ State(c

i,n) (20)

for each combination of chroma observationon and chordci,
and with the weightswchroma

i,o defined in Sec.IV-B2.

The transition probabilities are described using:

w
trans
i,j State(ci,n1) ∧ Succbeat(n2,n1) ∧ State(c

j,n2)
(21)

for all pairs of chords(ci, cj), i, j ∈ [1,24], and with the
weightswtrans

i,j defined in Sec.IV-B2.

Evidence consists of a set of ground atoms that give chroma
observations corresponding to each frame, and the temporal
succession of frames over time using the beat-level temporal
predicateSuccbeat. Evidence is described in Tab.III .

b) Incorporating Prior Information About Key (MLNPri-
orKey): Prior key information can be incorporated in the
MLN model, equivalently than in the case of the model

18Indeed cases not mentioned in the set of formulas (e.g. not writing down
the formula Observation(Chroma1, n) ∧ State(CM, n) with weight wchroma

CM )
obtain by default an implicit weight of 0. As a result ground formulas not
mentioned have a higher probability, since forpi ∈ [0,1], 0 ≥ log pi.
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CRFPriorKeydescribed in Sec.IV-B3 by simply adding a new
template formula that reflects the impact of key features.

Assuming that, at each time instant, the current local key
kl, k ∈ [1,24] is known,LocKey is added as a functional pred-
icate in Tab.II (LocKey(key!,time)) and given as evidence
in the MLN by adding in Tab.III the evidence predicates:

LocKey(kl,0),LocKey(kl,1),⋯,LocKey(kl,N-1) (22)

An additional rule about key and chord relationship is
incorporated in the model. For each pair(kl, ci) of key
kl, l ∈ [1,24] and chordci, i ∈ [1,24], we add the rule:

w
key
i,l LocKey(kl,n) ∧ State(ci,n) (23)

with values of the weightswkey
i,l

, i, l ∈ [1,24] defined in Sec.
IV-B3. This rule “translates” the CRF key observation features.

2) Bar level: Joint Estimation of Chords and Local Key
(MLNLocalKey): Using MLNs, the key can be estimated
jointly with the chord progression by simply removing the
evidence predicates about key listed in Eq. (22), and by con-
sidering the predicateLocKey as a query along with the pred-
icateState. LocKey(key!,time) becomes an unobservable
predicate and local keys are estimated from the chords, under
the assumption that a chord implies a tonal context.

In addition to the template formula reflecting rules about
chords and key relationships, we add rules to model key
modulations in the same way that we add chord transition rules
(see Eq. (21)). For this, we use the following set of generic
formulas, see Tab.II , Sec. “Local key rules”:

w
transKey
ij LocKey(ki,n1)∧Succbeat(n2,n1)∧LocKey(k

j,n2)
(24)

for all pairs of keys(ki, kj), i, j ∈ [1,24]. Key modulations are
modeled similarly to chord transitions and we usew

transKey
ij =

wtrans
ij (see footnote16).

We also add a rule to capture our hypothesis from Sec.
IV-A1 that key changes inside a measure are very unlikely.
We add evidence indicating frames belonging to a same bar
using the temporal predicateSamebar(n2,n1) (see Tab.III ).
We include in the model the template formula:
wkeyDur LocKey(kl,n1)∧Samebar(n2,n1)∧LocKey(k

l,n2)
(25)

for each keykl, l ∈ [1,24], and with weightwkeyDur, reflecting
how strong the constraint is, manually set. In practice,wkeyDur

is a positive value (in our experiments,wkeyDur = − log(0.95))
to avoid key changes inside a measure.

3) Global Semantic Structure Level (MLNStruct):Follow-
ing the idea of designing a “structurally consistent” mid-level
representation of music [69], we show that prior structural
information can be used to enhance chord and key estimation
in an elegant and flexible way within the framework of
MLNs. As opposed to [70], we do not constrain the model
to have the exact same chord progression in all sections of
the same type, but we onlyfavor same chord progressions
for all instances of the same segment type, so that variations
between similar segments can be taken into account. Here, we
focus on popular music where pieces can be segmented into
specific repetitive segments with labels such aschorus, verse,
or refrain. Segments are considered as similar if they represent
the same musical content, regardless of their instrumentation.

Prior structural information at the global semantic level is
incorporated using the time predicateSuccstruct. The position
of segments of same type in the song is given as evidence (see
Fig. 6 for an example). LetK denote the number of distinct
segments. Each segmentsk, k ∈ [1,K] may be characterized
by its beginning position (in frames)bk ∈ [1,N], and its length
in beatslk. For each pair of same segment type(sk, sk′), the
position of matching beat-synchronous frames (likely to bethe
same chord type) is given as evidence19:

Succstruct(sk(bk),s’k(bk′)) ⋯ (26)

Succstruct(sk(bk+lk-1),s’k′(bk′+lk′-1))

Fig. 6. Position of similar frames within a pair of same segments.
The following set of formulas is added to the Markov logic

network to express the constraint that two same segments
should have a similar chord progression:

wstruct State(ci,n1)∧Succstruct(n2,n1)∧State(c
i,n2)

for all chordci, i ∈ [1,24], and with weightwstruct, reflecting
how strong the constraint is, manually set. In practice,wstruct
will be a small positive value (in Sec.V wstruct= − log(0.95))
to favor similar chord progressions in same segment types.

4) A Multi-scale Tonal Harmony Analysis (MLNMulti-
Scale): The two modelsMLNLocalKeyand MLNStruct can
be unified by simply combining all the formulas into the same
MLN. In this model, the chord and local key progressions
are jointly estimated relying on the metrical and the semantic
structure. In Sec.IV-A3, we mentioned that when adding
formulas that share variables with others, this has an influence
on the weights in the MLN, and it may be needed to modify
them (in general by training). However, in our case, we
obtained good results by combining the rules about local key
and structure without changing the weights.

5) Inference in MLN: The inference step consists in
computing the answer to a query. Finding the most likely
state of the worldy consistent with some evidencex
is generally known in Bayesian networks asMaximum
Probability Explanation(MPE) inference, while in Markov
networks it is known as MaximumA Posteriori (MAP)
inference. In Markov logic, the problem of finding the most
probable configuration of a set of query variables given
some evidence reduces to finding the truth assignment that
maximizes the sum of weights of satisfied clauses:

argmax
y

p(y∣x) = argmax
y

1

Z(x) exp(∑
i

wini(x, y)) (28)

This problem is generally NP-hard. Both exact and approxi-
mate weighted satisfiability solvers exist [19], [88], [101]. We
use here exact inference with the toulbar2 branch & bound
MPE inference [102] implemented in the ProbCog toolbox20.

19Note that the valuessk(bk), . . . , s′k′(bk′ +lk′−1) in Eq. (26) correspond
to beat time-instants. Note also that herelk′ = lk.

20Although manageable on a standard laptop, the MLN inferencestep has
a high computational cost compared to the Viterbi algorithms for HMM and
CRF (≈ 2min for MLNChord against6s for HMMChord for processing 60s
of audio on a MacBook Pro 2.4GHz Intel Core 2 Duo with 2GB RAM).We
plan to explore the use of approximate algorithms and also totake advantage
of the current developments on scalable inference [88]–[90].
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TABLE IV
CHORDS LABEL ACCURACYEE RESULTS.

Pop test-set Mozart test-set

HMMChord 74.02 ± 14.61 52.80 ± 6.04

CRFChord 74.14 ± 14.59 52.94 ± 5.69

CRFPriorKey 75.42± 14.10 53.59± 5.62

MLNChord 74.02 ± 14.61 52.80 ± 6.04

MLNPriorKey 75.31± 13.48 53.41± 5.76

MLNLocalKey 72.59 ± 14.68 52.62 ± 6.44

V. EVALUATION AND DISCUSSION

In this section, we analyze and compare the performances
of the various models on two test-sets of different music styles
annotated by trained musicians originally proposed in [28].

A. Test-sets and Evaluation measures

The Mozart test-setconsists of 5 movements of Mozart
piano sonatas corresponding to 30 minutes of audio music.
The Pop test-setcontains 16 songs from various artists and
styles that include pop, rock, electro and salsa. Details can be
found in [28] and annotation are available on demand. As in
[103], we map the complex chords in the annotation (such as
major and minor6th, 7th, 9th) to their root triads.

Tonal analysis at the micro- and meso-scale rules (impact of
chords and local key rules) is evaluated on both test-sets while
the incorporation of macro-scale rules (impact of semantic
structure rules) is only evaluated on thePop test-setsince the
considered scenario of incorporating semantic structure rules
is not relevant for classical music21.

For chord and key evaluation, we considerlabel accuracy,
which measures how the estimated chord/key is consistent with
the ground truth.EE (Exact Estimation) results correspond
to the mean and standard deviation of correctly identified
chords/keys per song. Parts of the pieces where no key can
be labeled (e.g. when a chromatic scale is played) have
been ignored in the evaluation, and “Non-existing chords”
(noise, silent parts or non-harmonic sounds) are uncondi-
tionally counted as errors. For local key label accuracy, we
also consider theME score, which gives the estimation rate
according to the MIREX 2007 key estimation task22.

Paired samples t-testat the5% significance level are used to
measure whether the difference in the results from one method
to another is statistically significant or not.

B. Beat level - Equivalence With HMM, CRF and HMM

The main interest of the proposed model lies in its simplicity
and expressivity for compactly encoding physical content and
semantic information in a unified formalism. As an illustration
of the theory, results show that the HMM and linear-chain
CRF structures can be concisely and elegantly embedded in a
MLN. Although the inference algorithms used for each model
are different, a song by song analysis shows that chord pro-
gressions estimated by the two models are quasi identical and
the difference in the results betweenHMMChord, CRFChord
andMLNChord in Tab. IV is not statistically significant.

21This would require a much more complex model since in classical
music, parts structurally similar often present strong variations such as key
modulations that would need to be taken into account.

22The score is obtained using the following weights: 1 for correct key
estimation, 0.5 for perfect fifth relationship between estimated and ground-
truth key, 0.3 if detection of relative major/minor key, 0.2if detection of
parallel major/minor key. Fore more details, see http://www.mirex.org.

To illustrate the flexibility of MLNs, we also tested a
scenario where some partial evidence about chords was added
by adding evidence predicates of the formState(cGT

i ,0),
State(cGT

i ,9), State(cGT
i ,19),⋯, State(cGT

i ,N −1), as prior
information of10% of the ground-truth chordscGT

i , i ∈ [1,24].
We tested this scenario on theFall out boysongThis ain’t a
scene its an arms racefor which theChordMLN estimation
results are poor. They were increased from60.5% to 76.2%,
showing how additional evidence can easily be added and have
a significant impact.

C. Bar level - Key as Prior Information or Query

TABLE V
LOCAL KEYS EE EXACT AND ME MIREX ESTIMATION RATE.

Pop test-set Mozart test-set

MLNLocalKey
EE 54.12 ± 34.69 83.06 ± 19.38

ME 71.80 ± 35.08 90.61 ± 16.36

[28] best
EE 61.31 ± 36.50 80.21 ± 13.56

ME 73.18 ± 27.56 84.81 ± 11.86

EE 59.90 ± 31.50
MLNMultiScale

ME 76.28± 28.19

1) Prior Key Information: The MLN formalism incorpo-
rates prior information about key in a simple way with minimal
model changes. It improves in general the chord estimation re-
sults (compare linesMLNChordandMLNPriorKeyin Tab.IV).
Fig. 7 shows an excerpt of thePink Floyd song Breathe
in E minor key. In the first instance of the Verse, at [1:15-
1:20]min (dashed grey circle on measureD-1), the underlying
Em harmony is disturbed by passing notes in the voice and
estimated as EM withMLNChord. Prior key information favors
Em chords and removes this error inMLNPriorKey.

Note that the overall improvement is not statistically signif-
icant for thePop test-set, because the WMCR key templates
are not adapted model chord/key relationships for some of the
songs. A detailed discussion on the choice of relevant key
templates according to the music genre (out of the scope of
this article) can be found in [28].

2) Local Key Estimation:By considering the key as a
query (i.e. by simply removing the evidence predicates about
key), the model can jointly estimate chords and keys. For our
datasets, this does not help improving the chord estimation
results in average, which are even degraded for thePop test-
set (see the last line in Tab.IV). This is due to some special
musical cases. For instance, thePink Floyd song Breathe
mainly consists of successive AM and Em chords. The correct
key should be E dorian key, but modal keys are not modeled
here. The algorithm estimates A Major key almost all the time.
As a result, in the jointly estimated chord progression, most of
the Em chords are labeled as EM chord (that are more likely
than Em chords in A Major key).

Nevertheless, the key progression can be fairly inferred with
our algorithm. In Tab.V, we report the local key estimation
results obtained with our algorithm and with a state-of-theart
algorithm tested on the same dataset [28]. In [28], the local
key is modeled with a HMM that takes as input either chord
or chroma observations. From a modeling prospective, it is
difficult to make a fair comparison with [28] because the ob-
servations, the key templates and the modeling hypothesis are
different from our MLN algorithm. In particular, in [28], the
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metrical structure is explicitly taken into account in the model
to infer the key progression. But to get an idea of the perfor-
mances of the proposed model against the state-of-the art, we
report the best results of all configurations tested in [28].

Local key estimation results are especially high for the
Mozart test-setand significantly better than in [28]. Results for
thePop test-setare not as satisfying, again because the WMCR
templates do not always reflect accurately the tonal contentof
pieces in this test-set23. However, thanks to its flexibility, the
MLN allows room for improvement. Indeed, when incorpo-
rating information about the structure (seeMLNMultiScalein
Tab.V), key estimation results are comparable to the state-of-
the-art results in [28], and even better for the MIREX score.

Note that local key estimation results without the rule on key
transitions (see Eq. (24) in Sec.IV-C2) turned out to be poor.
Also, with the chosen parameter settings, the rule that disfavors
key changes inside a measure using the predicateSamebar
(see the rule expressed by Eq. (25) in Sec.IV-C2) did not have
a significant impact on the results probably because in rule (24)
the weight in the clauses corresponding to transitions between
two same keys is already high enough compared to those
corresponding to transition from a key to a different one24.

D. Global Semantic Structure Level
TABLE VI

CHORD EE RESULTS WITH SEMANTIC STRUCTURE INFORMATION. Stat.
Sig.: STATISTICAL SIGNIFICANCE BETWEENMLNStructAND OTHERS.

EE Stat. Sig.

MLNChord 74.02 ± 14.61 }yes
MLNStruct 75.31± 15.62 }no

[70] 74.44 ± 15.13

1) Structurally Consistent Chord Progression Estimation:
In Tab. VI , we compare the results of the modelMLNStruct
with the baselineMLNChord modified to account for the
structure in a similar way to [70], by replacing chromagram
portions of same segments types by their average. The basis
signal features (chroma) are the same for both methods.

The proposed approach compactly encodes physical signal
content and higher-level semantic information in a unified
formalism. Global semantic information can be concisely
and elegantly combined with information at the beat-level
time-scale so that chord estimation results are significantly
improved, and more consistent with the global structure, as
illustrated in Fig.7. For instance (see the plain black rectangle
measuresD-1 and D-13), the ground-truth chord of the first
bar of the verse is Em.MLNChord correctly estimates the
second instance of this chord, but makes an error for the first
instance (EM instead of Em). This is corrected byMLNStruct
that favors same chord progression in same segment types.

The results obtained with the proposed model fairly com-
pare with the previous approach [70]. The difference is not
statistically significant, but the proposed model allows for
taking into account variations between segments by favoring
instead of exactly constraining the chord progression to be
the same for segments of the same type. For instance, in

23In fact the results in [28] we report here for thePop test-setare obtained
with other key templates (the Krumhansl key templates [98]).

24However, in our experiments, we saw that, as it could be expected,
decreasing the value of thewkeyDur weight would have the impact of favoring
key changes inside a measure.

measuresD-6:D-7 and D-18:D-19 of the two verses of Fig.
7 (see the two dashed black rectangles), the position of theD-
19:D-20 chord change is more accurate withMLNStructthan
with MLNChord, presumably because of the similarity with
the D-7:D-8 chord change. Also it can be seen that the two
MLNStructchord progressions are not exactly the same (com-
pare measuresD-6 and its counterpartD-18 in MLNStruct),
which illustrates the flexibility of the proposed model (seethe
four plain grey rectangles for another example). We expect that
music styles such as jazz music, where repetitions of segments
result in more complex variations due to improvisation would
further benefit from the flexibility of the proposed model.

TABLE VII
CHORD EE RESULTS OBTAINED FOR THEPop test-set, WITH A

MULTI -SCALE TONAL HARMONY DESCRIPTION.
MLNChord MLNPriorKey MLNLocalKey

74.02 ± 14.61 75.31 ± 13.48 72.59 ± 14.68

MLNStruct MLNMultiScale-PriorKey MLNMultiScale

75.31 ± 15.62 76.31± 13.58 74.34 ± 14.32

2) Multi-scale Tonal Harmony Analysis:The combination
of all the previously described rules results in a tonal harmony
analysis at multiple temporal and semantic levels. This allows
improving the analysis at both the micro and meso time scales.
The chord progression estimated withMLNChord is signifi-
cantly improved with theMLNMultiScale-PriorKey. Moreover,
the results ofMLNMultiScale-PriorKeyare also better than
both those obtained withMLNStructandMLNPriorKey, which
illustrates the benefit of using multiple cues for the analysis.
Also, as seen in Sec.V-C2, incorporating structure information
allows significantly improving local key estimation results.
Moreover, some of the errors in the chord progression esti-
mated byMLNLocalKeyare removed when incorporating rules
on structure information inMLNMultiScale(see Tab.VII ).

The two grey dashed rectangles in Fig.7 (measuresD-3
and D-15) illustrate the effect of the combined rules. With
MLNChord the position of the right boundary is not accurate
for chordD-3 but it is correct for chordD-15. Local key infor-
mation withMLNPriorKey is not sufficient to correct theD-3
boundary. When similar chord progression in same segment
types is enforced withMLNStruct, the model relies on chord
D-3 and the position change is incorrect for both instances. But
when combining the two rules inMLNMultiscale, the position
of chord change is correct for both instances.

VI. CONCLUSION AND FUTURE WORK

In this article, we have introduced Markov logic as a
formalism that enables intuitive, effective, and expressive
reasoning about complex relational structure and uncertainty
of music data. We have shown how MLNs relate to hidden
Markov models and conditional random fields, two models
that are typically used in the MIR community, especially
for sequence labeling tasks. MLNs encompass both HMM
and CRF, while being much more flexible and offering new
interesting prospects for music processing.

To illustrate the potential for music processing of Markov
logic networks, we have progressively designed a model for
tonal harmony analysis, starting from a simple HMM. The
final proposed model combines harmony-related information
at various time-scales (analysis frame, phrase and global
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Fig. 7. Pink Floyd songBreathe. The first 4 lines (beats, downbeats, chords, structure) correspond to the ground truth annotations. The others indicate the
results obtained with the various proposed models. Analysis in the text: i) Dashed grey circle (comparison betweenMLNChord andMLNPriorKey), ii) plain
black rectangles (comparison betweenMLNChord and MLNStruct), iii) dashed black rectangles and plain grey rectangles (comparison of the flexibility of
MLNStructversus [70]), iv) dashed grey rectangles (combination of all the rules inMLNMultiScale-PriorKey, structure and local key given as prior information).

structure) in a single unified formalism, resulting in a more
elegant and flexible model, compared to existing more ad-
hoc approaches. This work is a new step towards a unified
multi-scale description of audio, and toward the modeling of
complex tasks such as music functional analysis.

The proposed model has a great potential of improvement in
the future. Context information (metrical structure, instrumen-
tation, chord patterns, etc.) could be compactly and flexibly
embedded in the model moving toward a unified analysis
of music content. Here, relational structure has been derived
from background musical knowledge. Learning from labelled
examples might overcome some of the shortcomings of the
proposed model. The possibility of combining training with
expert knowledge [86] may help leverage music complexity.

An appealing property of MLNs is their ability of construct-
ing new formulas by learning from the data and creating new
predicates by composing base predicates (predicate invention
[104]). This should be of particular interest to the MIR
community in the incoming years, considering the current
expansion of annotated databases. As more and more comple-
mentary heterogeneous sources of music-related information
are becoming available (e.g. video, music sheets, metadata,
social tags, etc.), the development of multimodal approaches
for music analysis is becoming essential. This aspect should
strongly benefit from the use of statistical relational models.

MLNs are currently becoming more and more attractive
to many research fields, leading to an increasing number of
compelling developments, including interesting connections
with deep learning [105] and deep transfer [106]. We believe
that MLNs open new interesting perspectives for the field of
music content processing.
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sentation of musical chords: a proposed syntax for text annotations,”
in ISMIR, 2005.

[104] S. Kok and P. Domingos, “Statistical predicate invention,” in ICML,
2007.

[105] H. Poon and P. Domingos, “Sum-Product Networks: A New Deep
Architecture,” inUAI, 2011.

[106] J. Davis and P. Domingos, “Deep transfer via second-order markov
logic,” in ICML, 2009.

http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
http://www.cs.ubc.ca/~schmidtm/Software/UGM.html

	I Introduction
	I-A Towards a Unified Musical Analysis
	I-B Statistical Relational Learning and Markov Logic
	I-C Goal of the Paper

	II Background
	II-A Probabilistic vs. Logic for Music Processing
	II-A1 Probabilistic Approaches for Music Content Analysis
	II-A2 Logic-Based Approaches for Music Content Analysis

	II-B Tonal and Harmony Music Content Estimation
	II-B1 Chord and Local Key Estimation
	II-B2 A Structurally Consistent Description of Muisc


	III MLNs and their relationship to Probabilistic Graphical Models
	III-A Hidden Markov Models
	III-B Conditional Random Fields
	III-C HMM vs. CRF
	III-D Markov Logic Networks
	III-D1 MLN Intuitive Idea
	III-D2 Definitions and Vocabulary
	III-D3 MLN formal definition
	III-D4 Example

	III-E MLNs vs. HMM and CRF
	III-F MLNs, First-order Logic & Probabilistic Graphical Models

	IV Application: MLN Multi-scale Tonal Harmony Analysis
	IV-A Generalities
	IV-A1 Music Theory Foundations and Hypothesis
	IV-A2 Signal Processing Front-end
	IV-A3 About the Model Parameters

	IV-B HMMs vs. CRFs for Tonal Harmony
	IV-B1 Baseline HMM for Chord Estimation (HMMChord)
	IV-B2 Baseline CRF for Chord Estimation (CRFChord)
	IV-B3 Enriched CRF for Chord Estimation (CRFPriorKey)
	IV-B4 Inference in HMM and CRF

	IV-C MLN for Tonal Harmony Analysis
	IV-C1 Beat-Synchronous Level: Chord Estimation
	IV-C2 Bar level: Joint Estimation of Chords and Local Key (MLNLocalKey)
	IV-C3 Global Semantic Structure Level (MLNStruct)
	IV-C4 A Multi-scale Tonal Harmony Analysis (MLNMultiScale)
	IV-C5 Inference in MLN


	V Evaluation and Discussion
	V-A Test-sets and Evaluation measures
	V-B Beat level - Equivalence With HMM, CRF and HMM
	V-C Bar level - Key as Prior Information or Query
	V-C1 Prior Key Information
	V-C2 Local Key Estimation

	V-D Global Semantic Structure Level
	V-D1 Structurally Consistent Chord Progression Estimation
	V-D2 Multi-scale Tonal Harmony Analysis


	VI Conclusion and Future Work
	VII Acknowledgment
	References

