
HAL Id: hal-01742725
https://hal.science/hal-01742725v1

Submitted on 11 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic-SCFlip Decoding of Polar Codes
Ludovic Chandesris, Valentin Savin, David Declercq

To cite this version:
Ludovic Chandesris, Valentin Savin, David Declercq. Dynamic-SCFlip Decoding of Polar Codes. IEEE
Transactions on Communications, In press, 66 (6), pp.2333-2345. �10.1109/TCOMM.2018.2793887�.
�hal-01742725�

https://hal.science/hal-01742725v1
https://hal.archives-ouvertes.fr

ar
X

iv
:1

70
3.

04
41

4v
1

 [
cs

.I
T

]
 1

3
M

ar
 2

01
7

1

Dynamic-SCFlip Decoding of Polar Codes

L. Chandesris†‡, V. Savin†, D. Declercq‡

ludovic.chandesris@cea.fr, valentin.savin@cea.fr, declercq@ensea.fr

†CEA-LETI / Minatec, Grenoble, France

‡ETIS, ENSEA/UCP/CNRS, Cergy-Pontoise, France

Abstract

This paper proposes a generalization of the recently introduced Successive Cancellation Flip (SCFlip)

decoding of polar codes, characterized by a number of extra decoding attempts, where one or several

positions are flipped from the standard Successive Cancellation (SC) decoding. To make such an

approach effective, we first introduce the concept of higher-order bit-flips, and propose a new metric

to determine the bit-flips that are more likely to correct the trajectory of the SC decoding. We then

propose a generalized SCFlip decoding algorithm, referred to as Dynamic-SCFlip (D-SCFlip), which

dynamically builds a list of candidate bit-flips, while guaranteeing that extra decoding attempts are

performed by decreasing probability of success. Simulation results show that D-SCFlip is an effective

alternative to SC-List decoding of polar codes, by providing very good error correcting performance,

with an average computation complexity close to the one of the SC decoder.

Index Terms

Polar Codes, successive cancellation decoding, order statistic decoding, SCFlip decoding

I. INTRODUCTION

Polar codes are a recently discovered family of error correcting codes [1], known to achieve

the capacity of any binary-input memoryless output-symmetric channel. Their construction relies

http://arxiv.org/abs/1703.04414v1

2

on a specific recursive encoding procedure that synthesizes a set of N virtual channels from N

instances of the transmission channel, where N denotes the code-length. The recursive encoding

procedure is reversed at the receiver end, by applying a Successive Cancellation (SC) decoder.

The asymptotic effectiveness of the SC decoder derives from the fact that the synthesized

channels tend to become either noiseless or completely noisy, as the code-length goes to infinity,

phenomenon which is known as “channel polarization”. However, for short to moderate code-

lengths the incomplete polarization of the virtual channels may drastically penalize the error

correction performance of the SC decoder. The main approaches proposed in the literature to

address this issue rely on either modified kernels for the recursive encoding procedure, aimed

at increasing the rate of polarization [2], [3], or enhanced versions of the SC decoder [4], [5],

[6], aimed at increasing its ability to deal with incompletely polarized channels.

The SC-List (SCL) decoder proposed in [4] significantly improves the error correction per-

formance for short to moderate block lengths, and is also known to approach the Maximum-

Likelihood (ML) decoding performance at high Signal to Noise Ratio (SNR). Moreover, to

advantageously exploit the potential of SCL decoding, especially when the size of the decoded

list is large, the concatenation of an outer Cyclic Redundancy Check (CRC) code has also been

proposed in [4], to help identifying the correct message within the decoded list. Concatenated

CRC-Polar codes under under SCL decoding is the best polar-coding system proposed so far,

and has been shown to compete with other families of modern error correcting codes, such as

Low Density Parity Check (LDPC) and Turbo codes. However, SCL decoder suffers from high

storage and computational complexity, which grows linearly with the size of the list. Several

improvements have been proposed to reduce its computational complexity, such as SC-Stack

decoding (SCS) [6], but at a cost of an increasing storage complexity.

A different approach has been proposed with SC-Flip (SCFlip) decoder, introduced in [7] for

the BEC channel, and later generalized to concatenated CRC-Polar codes over the Binary-Input

Additive White Gaussian Noise (BI-AWGN) channel in [5]. The concept of SCFLip decoding is

3

related to the ordered statistics decoding proposed in [8], whose applicability to decoding short

Polar and concatenated CRC-Polar codes has been recently investigated in [9]. The principle

is to allow a given number of new decoding attempts, in case that a failure of the initial SC

decoding is detected by the CRC. Each new decoding attempt consists in flipping one single

hard decision bit – starting with the least reliable one, according to the absolute value of the

corresponding Log-Likelihood Ratio (LLR) – of the initial SC decoding attempt, then decoding

the subsequent positions by using the standard SC decoding. The above procedure is repeated

until the CRC is verified or a predetermined maximum number of decoding attempts is reached.

The SCFlip decoder provides a tunable trade-off between decoding performance and decoding

complexity, since each new decoding attempt is only performed if the previous one failed. In

particular, the average computational complexity of the SCFlip decoder tends to the one of the

SC decoder at medium to high SNR, while competing with the CRC-aided SCL with list size

L = 2, in terms of error correction performance [5].

In this work, we propose two improvements to the SCFlip decoding, based on refining

and expanding some of the concepts we previously introduced in [10]. First, a new metric

is proposed, aimed at determining the flipping positions that are more likely to correct the

trajectory of the SCFlip decoding, i.e., those positions that, once flipped, are more likely to

lead to a successful decoding attempt. The proposed metric takes into account the sequential

aspect of the SC decoder, and is shown to yield an improved error correction performance and

a reduced computational complexity, as compared to the conventional LLR-based metric from

[5]. Secondly, we introduce a generalization of the SCFlip decoder by considering not only one

single bit-flip per new decoding attempt, but a number of ω ≥ 1 nested bit-flips. These two

improvements are materialized in a Dynamic SCFlip decoder (D-SCFlip), in which the flipping

positions are chosen dynamically by taking into consideration all the previous attempts, so that

the next attempt is guaranteed to be the one with the best probability of success according to

the optimized metric. The D-SCFlip decoder is shown to compete with the CRC-aided SCL

4

decoder with list size up to L = 16 in terms of decoding performance, while having an average

computational complexity similar to that of the standard SC decoding at medium to high SNR.

Moreover, we derive lower bounds on the Word Error Rate (WER) performance of any SCFlip

decoder with the number of bit-flips per decoding attempt bounded by a maximum value ω, and

show that the D-SCFlip tightly approaches the WER lower bounds for ω ∈ {1, 2}.

The remainder of the paper is organized as follows. Section II provides a short background

on polar codes and main SC-based decoding algorithms. Section III introduces the concept of

bit-flips of order ω ≥ 1, and defines the general structure of a SCFlip decoder relying on higher-

order bit-flips. Theoretical lower bounds on the WER performance of such a decoder are derived

in Section IV. Section V presents the proposed bit-flip metric, and investigates its efficiency in

determining bit-flips leading to successful decoding attempts. The proposed D-SCFlip algorithm

is finally described in Section VI, where Monte-Carlo simulation results are also provided for

performance evaluation and comparison with other state of the art decoding techniques.

II. PRELIMINARIES

A. Polar Codes and Successive Cancellation Decoding

A Polar Code [1] is characterized by a three-tuple (N,K, I), where N = 2n is the code-length,

K is the number of information bits, and I ⊂ {1, ..., N} is a set indicating the positions of the

K information bits. Bits corresponding to positions i 6∈ I are referred to as frozen bits and are

fixed to pre-determined values known at both the encoder and the decoder.

We denote by U = uN
1 the data vector, of length N , containing K information bits at positions

i ∈ I, and N − K frozen bits at positions i 6∈ I, which are assumed to be set to zero. The

encoded vector, denoted by X, is obtained by:

X = U ·GN

where GN is the generator matrix [1]. We further denote by Y the data received from the channel

5

and used at the decoder input. Û = ûN
1 denotes the decoder’s output, with ûi being the hard

decision estimate of the bit ui.

In SC decoding, each hard decision estimate ûi depends on both Y and the previous estimates

ûi−1
1 , and is computed according to the sign of the LLR:

Li = log

(

Pr(ui = 0|Y, ûi−1
1)

Pr(ui = 1|Y, ûi−1
1)

)

(1)

by using the hard decision function h:

ûi = h(Li) =

ui if i /∈ I

1− sign(Li)

2
if i ∈ I

(2)

where by convention sign(0) = ±1 with equal probability.

B. List decoding of Polar Codes

Due to its sequential nature, early errors occurring during the SC decoding process cannot

be reversed. To overcome this problem, SCL decoding [4] duplicates the SC decoding at each

position i ∈ I in two parallel decoding threads, continuing in either possible direction. In order

to avoid an exponentially growing complexity, the number of parallel decoding paths is limited to

a chosen, usually small, parameter L. The L surviving decoding paths are determined according

to a path metric, as discussed below. SCL decoder has a computational complexity growing as

O(L · N log(N)) and a space (memory) complexity of O(L · N) [4]. It has also been shown

to closely approach the ML decoding performance if the size of the list L is large enough.

Moreover, in [4] it has been observed that the SCL performance can be significantly improved,

by concatenating an outer CRC code, to facilitate the identification of the correct decoding path

among the list of L candidates.

The SCL decoding computes a likelihood metric for each explored path, which can be

alternatively expressed in the log-likelihood [4], or the log-likelihood ratio (LLR) [11] domain.

In the LLR domain, the path metric is defined as follows:

6

Definition 1: For a path l of length i ≤ N , the path metric is defined by:

PM [l]i =
i
∑

j=1

log(1 + exp(−(1− 2 · û[l]j) · L[l]j)) (3)

where

L[l]j = log

(

Pr(uj = 0|Y, û[l]j1)

Pr(uj = 1|Y, û[l]i1)

)

(4)

is the log-likelihood ratio of bit uj given the channel output Y and the past trajectory of the

path û[l]j1.

Note that the sum in Eq. (3) is taken over all j = 1, . . . , i, including both frozen and non-

frozen positions. However, for a frozen position j 6∈ I the decoding path is not duplicated, thus

û[l]j = uj , irrespective of the L[l]j value.

Several practical simplifications, aimed at reducing the computational complexity and/or the

latency of the SCL decoding, as well as hardware implementations have been also proposed in

the literature [12], [13], [14]. An alternative to SCL decoding is the SCS decoding proposed

in [6], aimed at reducing the computational complexity, at a cost of a small loss in the error

correction performance. Instead of exploring parallel decoding paths of the same length, the

SCS uses an ordered stack of depth D, in which paths may have different lengths, and only

the path with the largest path metric is extended. SCS decoding stops when the top path is of

length N . The advantage of this decoder is that it is able to limit the number of operations

compared to SCL decoder, especially when SC decoder is already able to decode correctly. The

worst-case complexity of the SCS decoder is O(D · N log(N)), but simulations show that the

actual computational complexity is much lower, especially in moderate to high SNR regime.

III. GENERALIZED SCFLIP DECODERS

Let C(N,K + r, I) denote the serial concatenation of an outer (K + r,K) CRC code and an

inner (N,K + r, I) polar code. Note that the subset I ⊂ {1, ..., N} contains K + r positions,

for the K information bits and the CRC of r bits.

7

The SCFlip decoder [5] consists of a standard SC decoding, possibly followed by a maximum

number of T new decoding attempts, until no errors are detected by the CRC check. Each new

decoding consists of flipping one decision of the initial SC attempt, and decoding the subsequent

positions by using the standard SC decoding. The position to be flipped is determined according

to a given metric based on the LLRs obtained after the SC decoding.

In this paper, we propose a generalization of the SCFlip decoder, by allowing a more than a

single bit-flip for each decoding attempt. Therefore, we defined the notion of bit-flip of order ω

as follows.

Definition 2: A (bit-)flip of order ω (0 ≤ ω ≤ K+r) is a set of ω indices E = {i1, . . . iω} ⊂ I,

such that i1 < · · · < iω. The associated decoding attempt, denoted by SC(E), corresponds to

the SC decoding with the hard decision function h, defined in Eq. (2), replaced by hE , defined

below:

∀i ∈ I, û[E]i = hE(Li)
def
=

h(Li) if i /∈ E

1− h(Li) if i ∈ E
(5)

This decoding attempt outputs a vector û[E]N1 , the estimation of the codeword uN
1 . To simplify

the notation, when no confusion is possible, û[E]N1 will be simply denoted by ûN
1 .

Hence, in the Generalized SCFlip (described in Algorithm 1), the decoding attempt associated

to a bit-flip of order ω corresponds to a standard SC decision for each position, except for the

the ω positions in E , for which the decision is flipped. Note that if E = ∅ (bit-flip of order

ω = 0), the decoding attempt is exactly the same as the standard SC decoding.

The exhaustive exploration of all the bit-flips of order ω ∈ {0, ..., K + r} would require a

total number of

K+r
∑

ω=0

(

K + r

ω

)

= 2K+r decoding attempts, which is obviously too complex for

a practical decoding solution. Therefore, we further equip the Generalized SCFlip decoder with

a list Lflip = {E1, E2, . . . ET} of T bit-flips of order ωt, t ∈ {1, · · ·T}.

The Generalized SCFlip algorithm proceeds to at most T +1 decoding attempts, starting with

8

Algorithm 1 Generalized SCFlip decoder

1: procedure GENERALIZED SCFLIP(Y, I, T,Lflip = {E1, . . . , ET})

2: ûN
1 ←SC(∅)

3: if CRC(ûN
1) = success then return ûN

1 ; end if

4: for t = 1, . . . , T do

5: ûN
1 ←SC(Et);

6: if CRC(ûN
1) = success then return ûN

1 ; end if

7: end for

8: return ûN
1 ;

9: end procedure

the standard SC decoding and, followed by the decoding attempts SC(Et), with Et ∈ Lflip. The

decoding process stops if:

• one of the decoding attempt verifies the CRC

• all T bit-flips from the list have been tested

The Generalized SCFlip decoder may recover the correct codeword, only if Lflip contains

the unique bit-flip of order ω ≥ 1 that corrects the SC decoding trajectory (assuming that

the initial SC decoding attempt failed). However, having the correct bit-flip in Lflip does not

guarantee successful decoding, since an earlier, erroneous decoding attempt might verify the

CRC (undetected error), so that the decoding process stops and the following bit-flips in Lflip

are not tested. The probability this happens depends on both the probability of undetected error

of the CRC and the position of the correct bit-flip within Lflip.

In view of the previous discussion, the effectiveness of the Generalized SCFlip decoder

depends directly on the way the list of tested bit-flips Lflip is determined. It also appears that

rather than a predetermined list, Lflip should actually depend on the current noise realization, so

as to increase the probability of including the correct bit-flip (i.e., correcting the SC decoding

trajectory) in front positions. Moreover, the information gathered during the decoding process

9

(e.g., LLR values computed during the initial SC decoding or the following decoding attempts)

can also be used to determine those bit-flips that are most likely to correct a given noise

realization, and thus to dynamically update the list Lflip. To do so, the candidate bit-flips have

to be evaluated by a metric that estimates their likelihood to correct a given noise realization,

which will be discussed in Section V.

Before discussing the optimization of such a metric and the method to dynamically generate

the list of bit-flips, in the next section we derive lower bounds on the WER performance of the

Generalized SCFlip decoder using bit-flips of order ≤ ω. These lower bounds will also serve as

a reference for assessing the effectiveness of the proposed D-SCFlip decoder in Section VI, and

implicitly of the bit-flip metric proposed in Section V.

IV. WORD ERROR RATE LOWER BOUND FOR GENERALIZED SCFLIP DECODERS

A. Order of a noise realization

In the following, we shall use the expression noise realization to refer to the channel noise

that corrupted the actually observed signal Y. We say that a noise realization is of order ω, if

there exits a bit-flip E of order ω, such that the observed signal Y is corrected by the SC(E)

decoding attempt (see Definition 2). The order of a noise realization can be efficiently computed

by using the Oracle-Assisted SC (OA-SC) decoder proposed in [5]. OA-SC performs the same

operations as the standard SC decoder, but instead of propagating the hard decision estimates

of the previous decoded bits, and thus risking to propagate an erroneous decision, it is helped

by an oracle to propagate the correct decisions. Hence, the oracle-assisted LLR of the bit ui,

denoted by LOA
i , can be expressed as:

LOA
i = log

(

Pr(ui = 0|Y, ui
1)

Pr(ui = 1|Y, ui
1)

)

(6)

and the hard decision estimate of ui is given by ûOA
i = h(LOA

i). Let EY = { i ∈ I | ûOA
i 6= ui}

and ωY = |EY| be the order (i.e. number of elements) of EY. Then the order of the noise

10

realization is equal to ωY, and the observed signal Y is successfully corrected by the SC(EY)

decoding.

B. WER Lower Bound

Let SCFlip-ω denote a Generalized SCFlip decoder (Algorithm 1) whose maximum bit-flip

order is equal to ω. Hence, using the notation from Section III, ω = max
E∈Lflip

|E|. Such a decoder

successfully corrects a noise realization of order ωY ≤ ω if and only if (i) the corresponding

bit-flip EY ∈ Lflip and (ii) no previous decoding attempt SC(E) satisfies the CRC check before

SC(EY). We further denote by iSCFlip-ω the ideal SCFlip-ω decoder that successfully corrects

any noise realization of order less than or equal to ω. The ideal iSCFlip-ω decoder can be seen

as an SCFlip-ω decoder such that (i) Lflip contains all the bit-flips of order less than or equal

to ω, hence the list size is given by T =

ω
∑

ω
′=1

(

K + r

ω′

)

, and (ii) the CRC error detection is

replaced by an ideal detector, which is satisfied only for the correct word.

The WER of any SCFlip-ω is lower-bounded by the WER of the iSCFlip-ω decoder. The

latter can be efficiently determined by running the OA-SC decoder to compute the order ωY of

the actual noise realization, then declaring a decoding failure if and only if ωY > ω. It is worth

noticing that this lower bound, further referred to as the ideal WER of order ω (iWER-ω), is

not necessarily achievable by the SCFlip-ω decoder and the iWER-ω lower bound can even be

better than the ML performance in some cases (an iSCFlip-ω decoder with ω = K + r would

be able to correct any noise realization). However, for small ω values, the ideal WER can be

closely approached by practical SCFlip-ω decoders, provided that the CRC is reliable enough,

as it will be shown in Sections V-VI.

Figure 1 presents the lower-bounds of SCFlip-ω decoders with ω = {0, 1, 2, 3, 4} for a CRC-

concatenated polar code with parameters (N,K + r) = (1024, 512 + 16). For ω = 0, iWER-0

corresponds to the WER of the SC decoder for a polar code of length N , with K+r information

bits. Moreover, we also plot the performance of the SC decoder with (N,K) = (1024, 512),

11

SNR (dB)
0.5 1 1.5 2 2.5 3 3.5

iW
E

R
-ω

10-6

10-5

10-4

10-3

10-2

10-1

100

ω=0

ω=1
ω=2

ω=3

ω=4

ω=0

ω=1
ω=2

ω=3

ω=4

iWER-ω
SC decoder

Fig. 1. Performance of ideal SCFlip-ω decoder for a code (N,K + r) = (1024, 512 + 16)

which is better than the iSCFlip-0 performance, due to the higher number of frozen bits. It can

be seen that iSCFlip-ω decoders exhibit significant SNR gains compared to the SC decoder,

from 0.5 dB for the iSCFlip-1, to about 1 dB for the iSCFlip-2 decoder, at WER = 10−4.

C. Impact of the code-length and coding-rate on the ideal WER

This section investigates the ideal decoding performance of iSCFlip-ω decoders, for various

code-lengths and coding rates, and small values of ω. More precisely, we investigate the relation

between iWERω for ω = {1, 2, 3} and iWER-0, as function of the coding rate R = K
N

and

code-length N :

iWERω = f
(ω)
N,R(iWER-0) (7)

The study is divided into two parts. (a) First, for a given code-length N , we observe this

function for different coding rates R. Figure 2(a) plots iWERω, for ω ∈ {1, 2, 3}, as a function

of iWER-0 (assuming BI-AWGN channel), for a code-length N = 1024 and coding rates

R ∈ {1/3, 1/2, 2/3}. It can be observed that for a given value of ω, the iWERω depends

only on iWER-0 and is practically independent of the coding rate R. (b) Second, as shown in

Fig. 2(b), a similar observation can be made if one considers a fixed coding rate R = 1/2, and

12

Ideal Word Error Rate of order 0 (i-WER-0)
10-4 10-3 10-2 10-1 100

Id
ea

l W
or

d
E

rr
or

 R
at

e
of

 o
rd

er
 ω

 (
i-W

E
R

-ω
)

10-5

10-4

10-3

10-2

10-1

100

ω=1

ω=2 ω=3

N=1024, K=341 (R=1/3)
N=1024, K=512 (R=1/2)
N=1024, K=683 (R=2/3)

(a) N = 1024, varying R ∈ {1/3, 1/2, 2/3}

Ideal Word Error Rate of order 0 (i-WER-0)
10-4 10-3 10-2 10-1 100

Id
ea

l W
or

d
E

rr
or

 R
at

e
of

 o
rd

er
 ω

 (
i-W

E
R

-ω
)

10-5

10-4

10-3

10-2

10-1

100

ω=1

ω=2 ω=3

N=256 , K=128
N=512 , K=256
N=1024, K=512
N=2048, K=1024

(b) R = 1/2 and varying N ∈ {512, 1024, 2048}

Fig. 2. iWER-ω as function of iWER-0 for varying coding rate R or varying code length N

variable code-length N . Therefore, we conclude that iWERω essentially depends on iWER-0,

and thus Eq. (7) can be approximated to:

iWERω ≃ f (ω)(iWER-0) (8)

Since iWERω = 1 − Pr(ωY ≤ ω), this analysis translates into the following interesting

property: consider two polar codes C1(N1, K1) and C2(N2, K2), with the same WER performance

under SC decoding, at SNR1 and SNR2, respectively. Then the noise realization orders ωY1
and

ωY2
are expected to follow nearly the same probability distribution.

From a practical point of view, this analysis can also be used to determine different sets of

code and decoder parameters that would be able to achieve a target WER performance (assuming

a given SNR). Indeed, iWER-0 can be easily estimated, e.g., by using the density evolution

technique [15], [16]. Hence, in order to achieve a target WER, for example of 10−4, the code

parameters (N,K + r) must be chosen such that iWER-0 ≈ 3 · 10−3 for an SCFlip-1 decoder,

or such that iWER-0 ≈ 3 · 10−2 for an SCFlip-2 decoder. Of course, the SCFlip-1 and SCFlip-2

decoders under use should be able to closely approach the corresponding lower bounds, iWER-1

and iWER-2. In the following section, we will show that these lower bounds can be indeed tightly

approached by practical decoders.

13

V. OPTIMIZED METRIC FOR GENERALIZED SCFLIP DECODERS

In order to build practical SCFlip-ω decoders that closely approach the ideal performance

of iSCFlip-ω, we first introduce an optimized bit-flip metric, adapted to bit-flips of any order

ω ≥ 1, then we propose an efficient strategy to build the bit-flips list Lflip. In this section we

describe the proposed metric, while the construction of Lflip will be discussed in the next section.

A. Proposed Metric for Generalized SCFlip Decoder

The SCFlip decoder from [5] considers only bit-flips of order 1, which are chosen according

to the absolute value of the corresponding LLR. Thus, in case the initial SC decoding fails, the

selected bit-flips of order 1 correspond to the T positions i ∈ I with the lowest |Li| values.

However, using the absolute value of the LLR as likelihood metric for a bit-flip is sub-optimal,

since it does not take into account the sequential aspect of the SC decoder. Indeed, while a

lower absolute value of the LLR indicates that the corresponding hard decision bit has a higher

error probability, it does not provide any information about the probability of being the first

error that occurred during the sequential decoding process. In other words, such a metric does

not distinguish the very first error from the subsequent ones.

We propose a new metric, aimed at evaluating the likelihood of a bit-flip Eω = {i1, . . . , iω} ⊂

I, of order ω, to correct the trajectory of the SC decoding. By correcting the trajectory of the

SC decoding, we mean that SC(Eω) successfully decodes all the bits ui with i ≤ iω (recall that

indices i1, . . . , iω are assumed to be in increasing order). Note that this does not mean that the

SC(Eω) decoding is successful, since there is no guarantee that it will successfully decode the

subsequent bits, i.e., bits ui with i > iω. For instance, for ω = 1, E1 = {i1} corrects the trajectory

of the SC decoding if and only if i1 is the first erroneous position of the SC decoding attempt,

but this does not guarantee that the SC(E1) is successful.

For any 1 ≤ ω′ ≤ ω, let Eω′ = {i1, . . . , iω′} be the bit-flip of order ω′ determined by the first

ω′ indices in Eω. Let L[Eω′]i, û[Eω′]i denote respectively the LLR and the hard decision estimate

14

computed by SC(Eω′), corresponding to bit ui. According to Definition 2, SC(Eω′) and SC(Eω′−1)

are identical for positions i < iω′ , while for i = iω′ , SC(Eω′) flips the hard decision estimate

computed by SC(Eω′−1). Hence, for any ω′ ≤ ω, one has:

L[Eω′]i = L[Eω′−1]i ∀i ≤ iω′ (9)

û[Eω′]i = û[Eω′−1]i, ∀i < iω′ and û[Eω′]iω′ = 1− û[Eω′−1]iω′ (10)

Let P (Eω) denote the probability of Eω correcting the trajectory of SC. It follows that:

P (Eω) = Pr(û[Eω]
iω
1 = uiω

1 |Y)

= Pr(û[Eω−1]iω 6= uiω , û[Eω−1]
iω−1

1 = u
iω−1

1 |Y)

= pe(û[Eω−1]iω) ·
iω−1
∏

j=iω−1+1

(1− pe(û[Eω−1]j)) · P (Eω−1)

(11)

where pe(û[Eω−1]j)
def
= Pr

(

û[Eω−1]j 6= uj|Y, û[Eω−1]
j
1 = uj

1

)

. By taking into account Eq. (10), the

above recursion can be unfolded to the following expression:

P (Eω) =
∏

j∈Eω

pe(û[Eω−1]j) ·
∏

j<iω
j∈I\Eω

(1− pe(û[Eω−1]j)) (12)

Note that the second product on the right-hand side term of Eq. (12) is taken only over

indexes j ∈ I, since pe(û[Eω−1]j) = 0 for j /∈ I. Computing pe(û[Eω−1]j) is an arduous

task, since this probability is conditional on the fact that the previous bits have been correctly

decoded by SC(Eω−1). Instead, one can compute the probability qe(û[Eω−1]j)
def
= Pr(û[Eω−1]j 6=

uj|Y, û[Eω−1]
j
1), which is conditional on the previously decoded bits, irrespective of whether they

have been correctly decoded or not, and is given by (this follows directly from the definition of

L[Eω−1]j and û[Eω−1]j):

qe(û[Eω−1]j) =
1

1 + exp (|L[Eω−1]j|)
, ∀j ∈ I (13)

Hence, we propose to use qe(û[Eω−1]j) as an approximation of pe(û[Eω−1]j), and we further

introduce a parameter α (see below) as a mean to compensate this approximation. In practice,

15

the value of α can be optimized by Monte-Carlo simulation, as shown in Section V-C. Using

pe(û[Eω−1]j) ≈
1

1+exp (α|L[Eω−1]j |)
in Eq. (12), we obtain the following metric, denoted by Mα(Eω),

which will be used to approximate the probability of Eω correcting the trajectory of SC:

Definition 3: The metric associated with a bit-flip Eω = {i1, . . . , iω} ⊂ I, of order ω, is

defined by:

Mα(Eω) =
∏

j∈Eω

(

1

1 + exp (α|L[Eω−1]j)|)

)

·
∏

j<iω
j∈I\Eω

(

1

1 + exp (−α|L[Eω−1]j |)

)

(14)

Note that for a bit flip E1 = {i1} of order 1, the above metric can be written as:

Mα(E1) =
1

1 + exp (α|Li1 |)
·
∏

j<i1
j∈I

(

1

1 + exp (−α|Lj |)

)

, (15)

where Lj are the LLR values computed by the initial SC decoding attempt. Moreover, the metric

of the bit-flip Eω can be computed recursively, using the following equation:

Mα(Eω) =
1

1 + exp (α|L[Eω−1]iω |)
·

iω−1
∏

j=iω−1+1
j∈I

(

1

1 + exp (−α|L[Eω−1]iω |)

)

·Mα(Eω−1) (16)

Indeed, by taking into account Eq. (9), it can be easily seen that the above recursion unfolds to

the expression from Eq. (14).

Using the fact that 1
1+exp(x)

= exp(−x)
1+exp(−x)

, Eq. (14) can be rewritten:

Mα(Eω) =
∏

j∈Eω

exp (−α|L[Eω−1]j)|) ·
∏

j≤iω
j∈I

(

1

1 + exp (−α|L[Eω−1]j |)

)

(17)

By taking the logarithm of this formula, and denoting M ′
α(Eω) = −

1
α
· log(Mα(Eω)), one gets

the following equivalent metric in the logarithmic domain:

M ′
α(Eω) =

∑

j∈Eω

|L[Eω−1]j|+ Sα(Eω)

where Sα(Eω) =
1

α

∑

j≤iω
j∈I

log(1 + exp(−α · |L[Eω−1]j|))
(18)

On the basis of the above considerations, the list Lflip used within a generalized SCFlip-ω

decoder should be constituted of bit-flips with the highest probability-domain metric Mα, or

16

equivalently with the lowest logarithmic domain metric M ′
α, since they are the most likely to

correct the trajectory of the SC decoding. For the sake of simplicity, the algorithms proposed

in the next sections will be defined by using the metric Mα, but it is worth mentioning that the

logarithm domain metric M ′
α is more suitable for practical implementations, due to its better

numerical stability.

B. Impact of the α parameter

In order to understand the impact of the parameter α on the proposed metric, we start by

considering two limiting cases, namely α = 0 and α→ +∞.

For α = 0, using Eq. (17), it can be seen that M0(Eω) =
(

1
2

)kI
, where kI is the number of

positions in I less than or equal to iω. Therefore, if Eω = {i1, . . . , iω} and E ′ω′ = {i′1, . . . , i
′
ω′}

are two bit-flips of order ω and ω′, M0(Eω) ≥M0(E
′
ω′)⇔ iω ≤ i′ω′ . In other words, bit-flips are

ordered by M0 according to the index of their last flipped position.

For α → +∞, we consider the equivalent logarithmic-domain metric defined in Eq. (18). It

can be seen that lim
α→+∞

Sα(Eω) = 0, thus M ′
∞(Eω) =

∑

j∈Eω
|L[Eω−1]j | is the sum of reliabilities

(i.e. absolute value of the LLR) of the flipped positions. In the particular case of bit-flips of

order 1, this metric is exactly the same as the one in [5].

In general, for 0 < α < +∞, Sα(Eω) can be seen as a penalty added to
∑

j∈Eω
|L[Eω−1]j|,

which takes into consideration the sequential aspect of the SC decoding, providing and inter-

mediate and tunable solution between prioritizing bit-flips according to either the index of their

last flipped position or the sum of reliabilities of the flipped positions.

The value of the trade-off parameter α can be optimized by Monte-Carlo simulation. It is

expected that the optimal α value decreases with the SNR. Indeed, considering Eq. (18) for a

fixed α value, and taking the limit as the SNR goes to infinity, the term Sα(Eω) tends to 0 and

becomes negligible compared to
∑

j∈Eω
|L[Eω−1]j |, and therefore the sequential characteristic of

the decoder is no longer accounted for by the considered metric. Consequently, it is expected

17

that the optimal value of α will decrease with the SNR, so that to rebalance the contribution of

the Sα(Eω) term to the value of the considered metric. This is confirmed by the Monte-Carlo

simulations presented in section V-C.

Finally, it is worth underlining the strong similarity between the derived bit-flip metric and

the path metric used by the SCL decoder (Eq. (3)). However, unlike the SCL path metric, frozen

bits do not contribute to our proposed bit-flip metric.

C. Optimization of the α parameter

This section investigates the optimization of the α parameter, so that to increase the probability

that the bit-flip EY is ranked high by the metric Mα, where EY is bit-flip correcting the SC

decoding trajectory, for the the current noise realization Y (see Section IV-A).

Let L̄α,Y denote the list of all the bit-flips E , of any order ω = 1, . . . , K+r, ordered according

to decreasing values of Mα(E). Note that the bit-flips ordering depends on both the value of α

and the current noise realization Y. We denote by rkα(EY) the rank (position) of EY within the

ordered list L̄α,Y. Let EY = {i1, . . . , iωY
}, where ωY ≥ 1 is the order of EY. Using the recursion

from Eq. (16), it follows that:

Mα({i1}) > Mα({i1, i2}) > · · · > Mα({i1, . . . , iωY
}) (19)

and therefore:

rkα(EY) ≥ ωY (20)

Finally, we define the optimal α value, denote by αopt, as:

αopt = argmin
α

E (rkα(EY)) , (21)

where E (rkα(EY)) denotes the expected value of the random variable rkα(EY), assuming that

ωY ≥ 1 (i.e., SC fails to decode the current noise realization Y).

18

iWER-0
10-4 10-3 10-2 10-1

op
tim

al
 v

al
ue

 o
f
α

0.15

0.2

0.25

0.3

0.35

0.4

0.45

simulation
model

(a) αopt as function of iWER-0

i-WER-0
10-4 10-3 10-2 10-1

E
(r

k
α

o
p

t(E
Y
))

1

2

3

4

5

6

7

simulation

(b) E
(

rkαopt(EY)
)

as function of iWER-0

Fig. 3. Optimal values as function of iWER-0 for various code-lengths N , coding-rates R, and SNR values. Each point

corresponds to a different triplet (N,R, SNR).

We have determined the αopt value by Monte-Carlo simulation, for various code parameters

(N,K + r) and SNR values. For each pair (N,K + r) and SNR value, we also determined the

corresponding iWER-0 value, i.e., the WER of the SC decoder for a polar code with parameters

(N,K+r), as explained in Section IV-B. Precisely, we have considered parameters (N,K+r) =

(256, {96, 128, 160}), (512, {192, 288, 256, 320}), (1024, {384, 512, 640}), while the SNR values

have been chosen such that iWER-0 varies from 10−4 to 10−1. Fig. 3(a) shows the scatter plot

of αopt as a function of iWER-0, while Fig. 3(b) shows the scatter plot of E
(

rkαopt
(EY)

)

as a

function of iWER-0.

Fig. 3(a) clearly indicates a correlation between αopt and iWER-0 values. Hence, we propose

to approximate the αopt value, by using a quadratic model (in semilog scale):

αmodel(iWER-0) = a1 · log(iWER-0)2 + a2 · log(iWER-0) + a3, (22)

with the following coefficients providing the best fit to the simulation data:

a1 = 0.0038, a2 = 0.0779, a3 = 0.5716

It is worth noticing that the band of the E
(

rkαopt
(EY)

)

scatter plot in Fig. 3(b) is very narrow,

19

therefore approximating αopt by αmodel should result in a negligible difference in terms of rank

expectation. Fig. 3(b) also demonstrates the effectiveness of the proposed metric in ranking in

top positions the bit-flips EY.

Finally, we describe below an efficient algorithm to compute rkα(EY). For this, one needs to

determine the number of bit-flips E , such that Mα(E) ≥Mα(EY).

Let Lm = {E |Mα(E) ≥ m}, where m ∈ [0, 1]. To determine Lm, we proceed as follows:

• First, we evaluate Mα(E1) for all the bit-flips E1 of order 1, and add to Lm those bit-flips

such that Mα(E1) ≥ m.

• For ω > 1, we evaluate Mα(Eω) for all the bit-flips Eω of order ω, such that Eω−1 ∈ Lm,

where Eω−1 denotes the bit-flip determined by the first ω − 1 elements of Eω. We add to

Lm the bit-flips of order ω, such that Mα(Eω) ≥ m.

• The algorithm stops if, at the previous step, no bit-flip of order ω is added to Lm.

Clearly, rkα(EY) is equal to the number of bit-flips in Lm, for m = Mα(EY).

VI. DYNAMIC SCFLIP DECODER

A. D-SCFlip and D-SCFlip-ω Decoders

In this section we introduce a generalized SCFlip decoding algorithm, characterized in that the

bit-flip list Lflip contains the T bit-flips E with highest Mα(E) values, according to the current

noise realization Y. In order to avoid the evaluation of Mα(E) for all possible bit-flips E , the

proposed algorithm builds the list Lflip on-the-fly, concurrently with the initial SC decoding

attempt, and then with each new decoding attempt SC(E).

The proposed algorithm, referred to as Dynamic SC-Flip (D-SCFlip), is described in Algo-

rithm 2. The description is similar to the one in Algorithm 1, except of the functions Init() and

Update(), used to initialize and update the list of bit-flips Lflip and the list of corresponding

metric values Mflip
def
= {Mα(E) | E ∈ Lflip}.

20

Algorithm 2 D-SCFlip decoder

1: procedure D-SCFLIP(Y, I, T)

2:
(

ûN
1 , {Li}i∈I

)

←SC(∅)

3: if CRC(ûN
1) = success then return ûN

1 ;

4: else Init(Lflip,Mflip, {Li}i∈I); end if

5: for t = 1, . . . , T do

6:
(

ûN
1 , {L[Et]i}i∈I

)

←SC(Et)

7: if CRC(ûN
1) = success then return ûN

1 ;

8: else Update(Lflip,Mflip, {L[Et]i}i∈I , Et); end if

9: end for

10: return ûN
1 ;

11: end procedure

Init(Lflip,Mflip, {Li}i∈I): this function evaluates Mα(E) for all the bit-flips of order 1, E = {i},

i ∈ I, and orders them according to decreasing value of Mα(E). Lflip is initialized with the T

bit-flips of order 1 with highest metric values, and the ordered metric values are stored in Mflip.

Note that the Mα(E) values computed at this step make use of the LLR values {Li}i∈I computed

during the initial SC decoding attempt (see Eq. (15)).

Update(Lflip,Mflip, {L[Et]i}i∈I , Et): After each unsuccessful decoding attempt Et, Lflip and

Mflip are updated, as described in Algorithm 3. Let Et = {i1, . . . , iωt
}, where ωt is the order

of Et. The function evaluates Mα(E), for all the all the bit-flips E = Et ∪ {i}, where i ∈ I

and i > iωt
. In case that Mα(E) > Mflip(T), Lflip and Mflip are updated by inserting E and

Mα(E) into appropriate positions. Since Mα(Et) > Mα(E), E is necessarily inserted into a

position t′ > t. Note that the Mα(E) values computed at this step make use of the LLR values

{L[Et]i}i∈I computed during the SC(Et) decoding attempt (see Eq. (16)). We also note that the

initialization of Lflip and Mflip can also result from the update procedure of Algorithm 3, by

taking Et = ∅.

21

Algorithm 3 Bit-flips update

1: procedure UPDATE(Lflip ,Mflip, {L[Et]i}i∈I , Et)

2: for i = last(Et) + 1, . . . , N and i ∈ I do

3: E = Et ∪ {i}; m = Mα(E);

4: if m >Mflip(T) then

5: Insert flip(Lflip,Mflip, E , m);

6: end if

7: end for

8: return (Lflip,Mflip);

9: end procedure

We now substantiate the ability of the D-SCFlip decoder to explore the bit-flips with highest

metric values. We denote by LY = {E1, . . . , ETY
} ⊂ Lflip the ordered list of bit-flips correspond-

ing to the decoding attempts performed by the D-SCFlip decoder for the current noise realization

Y (not including the initial SC decoding attempt). Hence, TY ≤ T , since the D-SCFlip decoder

stops as soon as a decodig attempt satisfies the CRC. Put differently, LY is determined by the

first TY bit-flips in Lflip, at the moment when the D-SCFlip decoder stops.

Proposition 1: LY contains the TY bit-flips with the highest Mα(E) values among all the

possible bit-flips E .

Proof. We have to prove that for any bit-flip E = {i1, . . . , iω} of order ω, such that Mα(E) >

Mα(ETY
), then E ∈ LY. We proceed by induction on ω. For ω = 1, the assertion follows

from the fact that Lflip is initialized with the T bit-flips of order 1 with the highest metric

values. For ω > 1, let E ′ = {i1, . . . , iω−1}. Since Mα(E
′) > Mα(E) > Mα(ETY

), it follows

from the induction hypothesis that E ′ ∈ LY. Hence, the decoding attempt SC(E ′) is necessarily

performed before SC(ETY
), and Lflip is updated after SC(E ′) by evaluating the bit-flips of order

ω that contains E ′. During this update, E is added to Lflip, in a position that necessarily precedes

that of ETY
. Therefore, E ∈ LY, which completes the proof. �

22

Finally, we denote by D-SCFlip-ω the decoder obtained by restricting Lflip to bit-flips of order

less than or equal to ω. It has a similar description to the one provided in Algorithm 2, but the

update procedure Update(Lflip,Mflip, {L[Et]i}i∈I , Et) is only executed if the order of Et is less

than ω (thus, no bit-flip of order greater than ω is added to Lflip). Similarly to Proposition 1,

it can be seen that the D-SCFlip-ω decoder explores the bit-flips E of order less than or equal

to ω, with the TY highest Mα(E) values. The purpose of the D-SCFlip-ω decoder is to assess

the effectiveness of the proposed metric in approaching the performance of the ideal iSCFlip-ω

decoder, defined in Section IV-B. We also note that limiting the maximum bit-flip order may have

some practical payoffs, or be imposed by some practical constraints (e.g., related to hardware

implementation), but such considerations are beyond the scope of this paper.

B. Practical implementation

This section discusses two practical simplifications, which allow reducing the computational

cost of implementing the proposed D-SCFlip decoder. First, to reduce the computational cost

associated with new decoding attempts, the following proposition determines the position from

which the SC decoding need to be restarted.

Proposition 2: Let E1 = {i1, i2 . . . , iω1
} and E2 = {j1, j2 . . . , jω2

} be two bit-flips, and 1 ≤

ω ≤ min(ω1, ω2) be such that iω′ = jω′ for any ω′ < ω, and iω 6= jω. Let k = min(iω, jω). Then

SC(E1) and SC(E2) decoding attempts are strictly identical in terms of LLRs and hard-decision

estimates until index k, where they differ only by the hard-decision estimate of the bit uk.

As a consequence, assuming that SC(E1) and SC(E2) are two successive decoding attempts,

the latter may start from the index k+1, after the hard-decision estimate of uk has been flipped.

The following proposition, which follows from Eq. (16), allows reducing the computational

complexity of the Update procedure. It allows avoiding the computation of the metric values

m = Mα(E) (see Algorithm 3), for bit-flips E = Et ∪ {i} which would not be inserted in the

list anyway.

23

Proposition 3: Consider the update procedure Update(Lflip,Mflip, {L[Et]i}i∈I , Et), after some

decoding attempt SC(Et), with Et = {i1, . . . , iωt
}. For any i > iωt

, let

Π(Et, i) =
i−1
∏

j=iωt+1
j∈I

(

1

1 + exp (−α|L[Et]j|)

)

(23)

Then:

(i) Mα(Et ∪ {i}) = Mα(Et) ·Π(Et, i) ·
1

1 + exp (α|L[Et]i)|)

(ii) Let iωt
< k ≤ N − 1 be the last (highest) value such that Mα(Et) · Π(Et, k) ≥ Mflip(T)

(note that for k = iωt
+ 1, Mα(Et) · Π(Et, k) = Mα(Et) ≥ Mflip(T)). Then, Mflip(T) >

Mα(Et) ·Π(Et, i) > Mα(Et ∪ {i}), for any i = k + 1, . . . , N − 1. In particular, the for loop

in Algorithm 3 (line 2) can be restricted to values i = iωt
+ 1, . . . , k.

C. Numerical Results

All the simulation results presented in this section assume a BI-AWGN channel. Concatenated

CRC-polar codes use (r = 16)-bits CRC, with generator polynomial g(x) = x16 + x15 + x2 +1.

The set I is optimized for each SNR value, according to the Gaussian Approximation method

presented in [16].

We start by investigating the impact of the parameter α on the decoding performance of the D-

SCFlip decoder. Fig. 4 shows the WER performance of the D-SCFlip decoder for a concatenated

CRC-Polar code with parameters (N,K+r) = (1024, 512+16), and several fixed α parameters,

where fixed means that the same α parameter is used for all the SNR values. Each α parameter

corresponds to the optimal αopt value for a particular SNR (Section V-C), which is indicated

in the legend. The maximum number of extra decoding attempts (i.e., not including the initial

SC decoding attempt) is set to T = 20. For comparison purposes, the WER performance of

the SC decoder for the (N,K) = (1024, 512) polar code is also shown. The dashed curve plots

the WER performance using the αmodel(iWER-0) value, which varies with the SNR. Precisely,

for each SNR value we first determine offline the corresponding iWER-0 value, by using the

24

SNR [dB]
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

W
or

d
E

rr
or

 R
at

e

10-6

10-5

10-4

10-3

10-2

10-1

100

SC decoder
α=0.3 opt@2.6dB
α=0.4 opt@2.2dB
α=0.5 opt@1.6dB
α

model
(iWER-0),

 given by Eq. (23)

Fig. 4. Impact of α on the performance of D-SCFlip for T = 20 for a code (N,K + r) = (1024, 512 + 16)

OA-SC decoder, then the value of αmodel(iWER-0), according to Eq. (22). The figure highlights

the performance loss – in the low, medium or high SNR regime – when a fixed α value is

used throughout the whole range of SNR values. It also demonstrates the effectiveness of the

proposed model, since the αmodel curve matches the envelope of the curves with a fixed α.

For all the simulation results presented in the remaining of this section, we shall assume that

α = αmodel(iWER-0).

Fig. 5 shows the WER performance of the D-SCFlip for T ∈ {10, 50, 400}, for the concate-

nated CRC-Polar code with parameters (N,K+r) = (1024, 512+16). The values of T have been

chosen such that the D-SCFlip performance is close to or outperforms the ideal performance

iWER-ω for ω = 1, 2 and 3 respectively, thus proving the ability of the proposed both metric

and decoder to correct higher-order noise realizations. The impact of saturating to a low value

of ω is also shown by considering a D-SCFlip-(ω = 1) decoder with T = 10, for which the

performance tightly approaches the ideal performance iWER-1.

Fig. 6 provides a comparison of the D-SCFlip, SCFlip [5], and SCL decoders for concatenated

CRC-polar codes, with (N,K + r) = (1024, 512 + 16). The D-SCFlip decoder has a maximum

25

SNR [dB]
1 1.5 2 2.5 3 3.5

W
or

d
E

rr
or

 R
at

e

10-5

10-4

10-3

10-2

10-1

100

ω=0

ω
=1

ω
=2

ω
=3

Ideal WER-ω
SC decoder
D-SCFlip-1 T=10
D-SCFlip T=10
D-SCFlip T=50
D-SCFlip T=400

Fig. 5. Performance of D-SCFlip decoder for several values of T and a code (N,K + r) = (1024, 512 + 16)

number of extra decoding attempts T = {10, 50, 400}. The performance of the state-of-the-art

SCFlip [5] is given for T = 10. However, as this decoder is actually a D-SCFlip-1 with α = +∞

(see Section V-B), even for higher values of T , its performance is still lower bounded by the

ideal performance iWER-1. On the contrary, the D-SCFlip decoder performance significantly

improves with increasing T values, outperforming the SCFlip decoder by 0.4 dB for T = 10,

and 0.8 dB for T = 400 (at WER = 10−4).

For T = 400, the proposed D-SCFlip decoder closely approaches the performance of the SCL

decoder with L = 16. Even though the maximum number of additional attempts (T = 400) used

by the D-SCFlip decoder is considerably higher than the size of the list (L = 16) used by the

SCL decoder, it should be understood that the trade-off of the D-SCFlip decoder is different:

it offers a low computational complexity, especially in moderate to high SNR regime, since

additional decoding attempts are performed only in case the SC decoding fails.

For comparison purposes, we have also included in Fig. 6 the WER performance of a (3, 6)-

regular LDPC code, with (N,K) = (1024, 512), under Belief Propagation (BP) decoding. The

LDPC code is constructed by using the Progressive Edge Growth (PEG) algorithm [17], and has

26

SNR [dB]
1 1.5 2 2.5 3 3.5

W
or

d
E

rr
or

 R
at

e

10-5

10-4

10-3

10-2

10-1

100

SC decoder
SC-List L={2,16}

LDPC-BP I
max

=100

SCFlip [5] T=10
D-SCFlip T={10,50,400}

Fig. 6. Comparison between D-SCFlip decoder and BP decoder of LDPC codes and SC-List decoders of polar codes at length

N = 1024 and rate R = 0.5

girth g = 8. The maximum number of iterations for the BP decoding is set to 100, since for

higher values the performance improvement is actually negligible. It can be observed that the

BP decoder is outperformed by the D-SCFlip decoder for T ≥ 50.

The average number of extra decoding attempts performed by the D-SCFlip in case the SC

decoder fails, denoted by T ′
ave, is shown in Fig. 7. One can observe that T ′

ave quickly drops

and approaches 1 for high SNR values, demonstrating the effectiveness of the proposed D-

SCFlip decoder, and implicitly of the proposed bit-flip metric, in finding the higher-order bit-

flips that correct the actual noise realization. Comparing with the SCFlip from [5], the proposed

D-SCFlip decoder requires a smaller number of extra decoding attempts at high SNR, thus

resulting in a lower computational complexity, while providing a significant gain in terms of

WER performance.

Finally, let Tave denote the overall average number of extra decoding attempts, i.e., averaged

over all the cases, irrespective of the SC decoder status (successful or not). It follows that Tave =

T ′
aveWERSC, where WERSC denotes the WER of the SC decoder. Compared to the SC decoding,

27

SNR [dB]
0 0.5 1 1.5 2 2.5 3 3.5

A
ve

ra
ge

 N
um

be
r

of
 E

xt
ra

 A
tte

m
pt

s
(T

 ' av
e
)

1

10
T=10

T=50 T=400

D-SCFlip T={10,50,400}
SCFlip [5] T=10

50

Fig. 7. Average number of extra attempts (T ′
ave) for D-SCFlip decoders and N = 1024 and rate R = 0.5

D-SCFlip decoding results in an increase of both the average computational complexity1 and

average decoding latency by a factor of only (1 + Tave), where the term 1 in the parenthesis

accounts for the initial SC decoding attempt. Note also that the contribution of Tave actually

becomes negligible in the waterfall region of the SC decoder. As a matter of comparison, the

computational complexity of the SCL decoder, with a list of size L, is L times higher than the

one of the SC decoding, while they both have the same decoding latency. D-SCFlip considerably

reduces the computational complexity, by relying on successive – rather than parallel – decoding

attempts, coupled with a judicious choice of the latter ones. While this results in a variable

decoding latency, with worst case latency given by the maximum number of decoding attempts

T , the average decoding latency is nearly the same as the latency of the SC decoding.

1We do not take into account the practical simplifications proposed in Section VI-B, and assume that the computational

complexity of each new decoding attempt is the same as the one of the initial SC decoding. The computational complexity of

the Update procedure is not taken into account, since it is linear in N , and thus negligible with respect to the computational

complexity of SC.

28

VII. CONCLUSION

In this paper, we investigated a Generalized SCFlip decoding for polar codes, characterized

by T new decoding attempts, where one or several positions are flipped from the standard SC

decoding. First, we studied the WER performance of an ideal Generalized SCFlip decoder, with

maximum bit-flip order ω, which revealed potential for significant improvements, enabled by

the use of higher-order bit-flips. Subsequently, we concentrated on proposing a practical method

to take advantage of the benefits offered by the use of higher-order bit-flips, which led to two

complementary improvements. First, a new metric was proposed, suited to bit-flips of any order,

and optimized such that the sequential aspect of successive cancellation decoder is accurately

taken into consideration. We also provided an analysis of the impact of the parameter α used

within the proposed metric, and proposed an empirical model to estimate its optimal value as

a function of iWER-0, which can be easily evaluated by using the density evolution technique.

Secondly, we investigated a method to dynamically build the bit-flips list Lflip, so that to guarantee

that new decoding attempts are performed by decreasing probability of success, according to

the proposed metric. The resulting D-SCFlip algorithm was shown to offer a substantial gain in

terms of WER performance, as compared to the state-of-the-art SCFlip decoder, while having a

lower computational complexity. Finally, we showed that the D-SCFlip decoder is an interesting

variable-latency approach, which provides a different trade-off compared to SCL decoding of

polar codes, by keeping the computational complexity close to the one of the SC decoder, while

providing decoding performance close to SCL decoding with list size L = 16.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input

memoryless channels,” IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[2] N. Presman, O. Shapira, and S. Litsyn, “Polar codes with mixed kernels,” in IEEE International Symposium on Information

Theory Proceedings (ISIT). IEEE, 2011, pp. 6–10.

29

[3] V. Miloslavskaya and P. Trifonov, “Design of binary polar codes with arbitrary kernel,” in Information Theory Workshop

(ITW). IEEE, 2012, pp. 119–123.

[4] I. Tal and A. Vardy, “List decoding of polar codes,” Information Theory, IEEE Transactions on, vol. 61, no. 5, pp.

2213–2226, 2015.

[5] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity improved successive cancellation decoder for

polar codes,” in 48th Asilomar Conference on Signals, Systems and Computers. IEEE, 2014, pp. 2116–2120.

[6] K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics letters, vol. 48, no. 12, pp. 695–697, 2012.

[7] M. Bastani Parizi, “Polar codes: Finite length implementation, error correlations and multilevel modulation,” Master’s

thesis, Swiss Federal Institute of Technology, 2012.

[8] M. P. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,” IEEE Transactions

on Information Theory, vol. 41, no. 5, pp. 1379–1396, 1995.

[9] D. Wu, Y. Li, X. Guo, and Y. Sun, “Ordered statistic decoding for short polar codes,” IEEE Communications Letters,

vol. 20, no. 6, pp. 1064–1067, 2016.

[10] L. Chandesris, V. Savin, and D. Declercq, “An improved scflip for polar codes,” in 2016 IEEE Global Communications

Conference (GLOBECOM). IEEE, 2016, pp. 1–6.

[11] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based successive cancellation list decoding of polar codes,”

CoRR, vol. abs/1401.3753, 2014. [Online]. Available: http://arxiv.org/abs/1401.3753

[12] G. Sarkis and W. J. Gross, “Increasing the throughput of polar decoders,” IEEE Communications Letters, vol. 17, no. 4,

pp. 725–728, 2013.

[13] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg, “Hardware architecture for list successive cancellation

decoding of polar codes,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 8, pp. 609–613, 2014.

[14] Y. Fan, J. Chen, C. Xia, C.-y. Tsui, J. Jin, H. Shen, and B. Li, “Low-latency list decoding of polar codes with double

thresholding,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2015, pp. 1042–1046.

[15] R. Mori and T. Tanaka, “Performance and construction of polar codes on symmetric binary-input memoryless channels,”

in 2009 IEEE International Symposium on Information Theory. IEEE, 2009, pp. 1496–1500.

[16] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Transactions on Communications, vol. 60, no. 11, pp.

3221–3227, 2012.

[17] D. A. Xiao-Yu Hu, E. Eleftheriou, “Regular and irregular progressive edge-growth tanner graphs,” IEEE Transactions on

Information Theory, vol. 52, no. 51, pp. 386–398, 2005.

http://arxiv.org/abs/1401.3753

	I Introduction
	II Preliminaries
	II-A Polar Codes and Successive Cancellation Decoding
	II-B List decoding of Polar Codes

	III Generalized SCFlip decoders
	IV Word Error Rate Lower Bound for Generalized SCFlip Decoders
	IV-A Order of a noise realization
	IV-B WER Lower Bound
	IV-C Impact of the code-length and coding-rate on the ideal WER

	V Optimized Metric for Generalized SCFlip Decoders
	V-A Proposed Metric for Generalized SCFlip Decoder
	V-B Impact of the parameter
	V-C Optimization of the parameter

	VI Dynamic SCFlip Decoder
	VI-A D-SCFlip and D-SCFlip- Decoders
	VI-B Practical implementation
	VI-C Numerical Results

	VII Conclusion
	References

