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Abstract

A parallel program needs to manage the trade-off between the
time spent in synchronisation and computation. This trade-off is sig-
nificantly affected by its parallelism degree. A high parallelism de-
gree may decrease computing time while increasing synchronisation
cost. Furthermore, thread placement on processor cores may im-
pact program performance, as the data access time can vary from
one core to another due to intricacies of the underlying memory archi-
tecture. Alas, there is no universal rule to decide thread parallelism
and its mapping to cores from an offline view, especially for a program
with online behaviour variation. Moreover, offline tuning is less pre-
cise. We present our work on dynamic control of thread parallelism
and mapping. We address concurrency issues via Software Transac-
tional Memory (STM). STM bypasses locks to tackle synchronisation
through transactions. Autonomic computing offers designers a frame-
work of methods and techniques to build autonomic systems with
well-mastered behaviours. Its key idea is to implement feedback con-
trol loops to design safe, efficient and predictable controllers, which
enable monitoring and adjusting controlled systems dynamically while
keeping overhead low. We implement feedback control loops to auto-
mate management of threads and diminish program execution time.
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1 Introduction

Multi-core processors accelerate computation using high thread parallelism
(number of simultaneously active threads). A program for multi-cores ex-
ecutes in parallel and needs to scale when the number of cores increases.
However, writing a parallel application is difficult, as parallel programming
encompasses all the difficulties of sequential programming and introduces ex-
tra problems on coordination of interactions among concurrently executing
tasks [1]. High thread parallelism may shorten execution time, but it may
potentially increase synchronisation time.

Moreover, multi-core processors incorporate complex memory hierarchies,
which consist of several levels of cache to alleviate penalties caused by the
data access to main memory. Consequently, parallel applications need to
evolve to efficiently exploit the potential of their underlying architecture.
Depending on the level of cache where data are placed, access latency dif-
fers for different cores. To alleviate access latency, threads can be fixed to
certain cores to improve their resource usage, e.g. cache, main memory and
interconnections.

The conventional way to address synchronisation is via locks. However,
locks are notorious for various issues such as deadlocks as well as the vul-
nerability to thread failures [2, 3]. Moreover, it is not straightforward to
analyse interactions among concurrent operations. Transactional memory
(TM) has emerged as an alternative parallel programming technique that
handle synchronisation through transactions rather than locks [4]. Access
to shared data is enclosed in transactions that are speculatively executed
without blocking by locks. Various TM schemes have been developed in-
cluding Hardware Transactional Memory (HTM) [4], Software Transactional
Memory (STM) [5] and Hybrid Transactional Memory (HyTM) [6]. This
paper presents the work on thread management under STM systems where
the synchronisation time mainly originates from transaction aborts. There
are different ways to reduce the number of aborts [2], such as the design of
contention management policies (resolve conflicts among transactions), the
way to detect conflicts (detect at early stage or later stage), the setting of
version management (handles the storage policy for permanent and transient
data copies) and the level of thread parallelism.

Online parallelism adaptation has recently begun to receive attention for
STM. It is onerous to determine a parallelism degree offline especially for
the one with online behaviour fluctuations [7, 8]. Therefore, the natural so-
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lution consists of monitoring the program online and altering its parallelism
when necessary. Furthermore, application performance is affected by diverse
placements of threads. When the active thread number varies, locations that
threads are pinned to may also need to be adjusted accordingly in order to
optimise usage of the memory hierarchy. Pinning multiple threads to specific
cores is called thread mapping [9]. One previous work [9] has presented ap-
proaches on adjusting thread mapping online for STM. Alas, previous studies
for TM either only addressed adaptation of online parallelism or thread map-
ping.

The diversity of TM applications and their supporting TM platforms
together with the complexity of multi-core processor architecture make it
difficult to decide the configurations of various parameters offline. Dynamic
interactions among applications, TM platforms and underlying hardware can
impact system performance. All the aforementioned issues are preferred to
be dealt with online. Autonomic computing [10] is a technique that can au-
tomatically manage systems given high-level objectives. We introduce feed-
back control loops into STM systems to achieve autonomic computing, more
specifically, to automatically regulate thread parallelism and mapping on-
line. Literature [11, 7, 12, 13, 14, 15, 16, 17, 18, 19] has shown insight into
implementing feedback control loops to regulate online parallelism degree for
TM. Their methods either depend on offline training data or takes long pro-
filing time online. In this paper, we present effective frameworks for thread
management on TinySTM [5]. The main contributions of our paper are as
follows:

1. We illustrate two approaches that automatically adjust a program to its
near-optimal parallelism degree in order to improve system performance
online.

2. We propose two phase detection functions.

3. We present an approach which can adjust both thread parallelism and
mapping through coordination of feedback control loops.

The rest of this paper is organized as follows. Section 2 presents the
relevant background. Section 3 details the profiling procedures and the online
parallelism adaptation methods. Next, Section 4 gives the approach which
integrates the control of thread parallelism and mapping. Section 5 shows the
implementation details. The results are illustrated in Section 6. Section 7
discusses the limitations of our frameworks. Section 8 reviews the related
work. Lastly, Section 9 concludes the paper and proposes future work.
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2 Background

2.1 Background on Software Transational Memory

Transactional memory (TM) is an alternative synchronisation technique. In
TM, data access to shared memory is enclosed in transactions which are
executed speculatively without being blocked by locks. Each transaction
makes a sequence of tentative changes to shared memory. When a transaction
completes, it can either commit making the changes permanent to memory
or abort discarding the previous changes made to memory [4]. Two metrics
are often used in TM to indicate system performance, namely commit ratio
and throughput. Commit ratio (CR) [11, 7, 12] equals the number of commits
divided by the sum of number of commits and aborts; it measures the level
of conflicts or contention among current transactions. Throughput is the
number of commits in one unit of time; it directly indicates progress of useful
work. We propose to use logic time to mark the profile period. This is due to
the fact that various TM applications vary in the size of transaction leading to
significant variation of execution time. TM can be implemented in software,
hardware or with a combination of the two (hybrid). Different mechanisms
explore the design trade-off that impacts performance, programmability and
flexibility. In this paper, we focus on STM systems and utilise TinySTM [5]
as our experimental platform. TinySTM is a lightweight STM system that
adopts a shared array of locks to control the concurrent accesses to memory
and applies a shared counter as clock to manage its transaction conflicts.
Their locks are utilised to indicate ownership of transactions rather than
stalling threads.

Performance of STM systems has been continuously improved. Studies to
improve STM systems mainly focus on the design of conflict detection, ver-
sion management and conflict resolution. Conflict detection decides when to
check read/write conflicts. Version management determines whether logging
old data and writing new data to memory or vice versa. Conflict resolution,
which is also known as contention management policy [20], handles the ac-
tions to be taken when a read/write conflict happens. The goal of the above
designs is to reduce wasted work. The amount of wasted work resides in the
number of aborts and the size (the number of operations inside an abort)
of aborts. Higher contention in a program leads to larger amount of wasted
work. The time spent in wasted work is the synchronisation time in the STM
view.
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2.2 Thread Parallelism and Mapping

Apart from diminishing wasted work, one way to improve STM system per-
formance is to trim computing concurrency. High parallelism may accelerate
computation but resulting in high contention, thus high synchronisation cost.
Hence parallelism degree can significantly affect performance of a program.
Furthermore, modern computing systems carry a complex memory hierarchy
that gives different access latency to main memory from different cores, thus
the mapping of threads to the cores impact the application’s performance.
Fig. 1 illustrates the access latency from the core to different memory levels1.

L1 cache

L2 cache

Primary Memory

 ~1ns

 ~6ns

 ~185ns

32 KB

3072 KB

64 GB

Figure 1: An illustration for access latency of diverse memory levels.

Depending on the number of cores and the memory hierarchy, there can
be many different strategies to implement thread mapping. Using exhaustive
search (which is utilised for optimisation on some conventional parallel pro-
gram) by trying all the cases to analyse the best placement strategy is not
feasible, especially when a large number of cores are involved. On a unified
memory system, we can categorise thread mapping strategies into four main
groups [22] based on cache sharing.

• Compact: threads are placed on sibling cores. This strategy can ben-
efit the applications whose threads possess a significant amount of joint
data access. Placing threads on sibling cores which share all the levels
of memory structure allows threads to reuse the data which already re-
sides in the cache. Threads sharing data being scheduled on the cores
which do not share cache can result in excessive data movement and
high network traffic [23].

• Scatter: threads are distributed across processors. Equal distribution
of threads is also addressed as thread balancing [24]. This strategy
averts cache sharing among cores in order to reduce contention on the
same cache. Applications that show disjoint data access may benefit
from this strategy.

• Round-Robin: threads are placed on the cores where a higher level
of cache (e.g. L3) is shared but not the lower level of cache (e.g. L2).

1The latency is measured by lmbench [21] on our platform. The L3 cache latency is
skipped in the figure.
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This strategy can only be applied on the platforms where the L2 cache
is shared by more than one core.

• Linux: the default Linux scheduling strategy. It is based on dynamic
priority-based strategy that allows threads to migrate to idle cores to
balance the run queues.

2.3 Background on Autonomic Computing

Autonomic computing [25], proposed by IBM in 2003, is a concept that brings
together many fields of computing with the purpose of creating self-managed
computing systems. Autonomic computing proposes a general structure of
feedback loop to take adaptive and reconfigurable computing into account
[26]. Feedback control loops, on one form or another, have been adopted as
cornerstones of software-intensive and self-adaptive systems [27, 28, 29]. A
classic feedback control loop is illustrated in Fig. 2 in the shape of a MAPE-K
(Monitor, Analyse, Plan, Execute, Knowledge) loop.

Managed Elements

sensors Effectors

Monitors
Knowledge

Execute

Autonomic Element

Analyse Plan
Autonomic Manager

Figure 2: A MAPE-K control loop. It incorporates an autonomic manager,
sensors, effectors as well as managed elements among which the autonomic
manager plays the main role.

In general, a feedback control loop is composed of (1) an autonomic man-
ager (also known as a controller in control theory and control engineering),
(2) sensors (to collect information), (3) effectors (to carry out changes), (4)
managed elements (any software or hardware resource). An autonomic man-
ager is composed of five elements: a monitor (used for sampling input data),
an analyser (to analyse data obtained from the monitor), knowledge (knowl-
edge of the managed system), plan (to utilise the knowledge of the system
to carry out computation) and execute (to perform changes). The above five
elements of the autonomic manager can overlap with each other.
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2.3.1 Synchronous Programming language–Heptagon

We utilise Heptagon to implement the controller. Heptagon [30, 31] is a syn-
chronous programming language which allows us to describe reactive systems
by means of generalised Moore machines, i.e. mixed synchronous dataflow
equations and automata with parallel and hierarchical composition. Fig. 3
illustrates a small program which is referenced as a node in Heptagon. This
program defines a task (delayable) that can be either idle or active. The
program calls one state at each reactive step. It remains in the Idle state
until the occurrence of the input r requests the launch of the task. Another
input c (which will be controlled by another controller) can either allow the
activation, or temporarily block the launch request, thus leading the automa-
ton to shift to a waiting state (the Wait state). When active, the task can
terminate and return to the Idle state upon the notification input e. This
task yields two outputs: a representing activity of the task a, and s being
emitted at the instant when it becomes active. The two outputs are the con-
trol decisions, the effectors receive the two outputs and make control actions
to the managed elements.

1 node delayable(r,c,e:bool) returns(a,s:bool)

2 let

3 automaton

4 state Idle

5 do a = false ; s = r and c

6 until r and c then Active

7 | r and not c then Wait

8 state Wait

9 do a = false ; s = c

10 until c then Active

11 state Active

12 do a = true ; s=false

13 until e then Idle

14 end

15 tel

Figure 3: A delayable task in graphical and textual syntax.

3 Autonomic Parallelism Adaptation

In this section, we detail the design of two feedback control loops to dynam-
ically determine near-optimum parallelism. We firstly introduce a simple
model which searches near-optimum parallelism, then we present a more so-
phisticated model (probabilistic model) based on the probability theory which
predicts the near-optimum parallelism.

We measure three metrics from the STM system, namely the number of
commits, the number of aborts and execution time. The number of commits
and the number of aborts are addressed as commits and aborts subsequently.
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We choose CR (its value is between 0 and 1) and throughput to denote
program performance, as CR and throughput are both sensitive to parallelism
variation. Either is, by itself, not sufficient to represent program performance
as:

• A high throughput shows fast program execution whereas a low through-
put indicates slow program progress. Nevertheless, a low throughput
may be caused by low parallelism or by a low number of transactions
taking place.

• CR indicates the conflicts among threads. A high CR means low syn-
chronisation time whereas a low CR means high synchronisation cost
for most STM. However, a low CR can bring a high throughput when a
large number of transactions are executing concurrently, whereas a high
CR may give low throughput due to a small number of transactions are
running.

We continuously measure the CR to detect contention fluctuation and en-
able corresponding control actions. The correctness of the control actions
are verified by checking if the throughput is improved after the actions for
parallelism adaptation.

3.1 Overview of the Profiling Algorithm

We firstly give an overview of the profiling procedure and later describe the
simple model and probabilistic model through the prism of control theory.
The profiling algorithm is also shared by the approach presented later in
Section 4.

To achieve autonomic parallelism adaptation which provides a program
with its optimum parallelism, we propose to periodically explore the paral-
lelism and select the value that achieves the highest throughput. By observ-
ing CR, we can obtain the contention information of programs. CR usually
fluctuates in a certain range within the same phase. When the current par-
allelism produces a different CR which falls out of the current CR range,
the program enters a new phase. The CR fluctuation can trigger a new
parallelism adaptation action. In an application, CR always diminishes with
increment of parallelism degree due to increase of conflicts among threads. A
notable exception would be an application with few write transactions mak-
ing its CR always remain 1. Initially, the upper and lower CR thresholds of
the CR range are both set to be 0 and are trained in the later profile stage.
The detail of the profiling procedure is illustrated in Fig. 4.
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1st thread profile starts 

non- ac�on interval (�med by Tx)

...

thread profile interval 

Program starts 
 A thread profile starts

decision points decision points 

 one profile length ...
...

 one profile lengthdecision points 

Figure 4: Periodic profiling procedure. At each decision point, the control
actions are taken.

The profiling procedure starts once the program starts. Initially the pro-
gram creates a pool of threads, among which only 2 threads are awakened
and the rest are suspended in the simple model. Per contra, all threads are
set to be active in the beginning in the probabilistic model. At each decision
point, which corresponds to one state of the automaton in Fig. 5(b), the
control loops (see Section 3.2 and Section 3.3) are activated to adapt the
parallelism or suspend the parallelism adaptation. A profile length is a fixed
number of commits. At the end of one profile length is the decision point. A
thread profile interval is composed of a continuous sequence of profile lengths,
within which the parallelism is adjusted and the program phase is computed.
The non-action interval consists of one or a continuous sequence of profile
lengths, within which the parallelism regulation is suspended. The dura-
tion of thread profile interval and non-action interval are not fixed values
as indicated in Fig. 4. The choice of the profile length mainly depends on
the total amount of transactions in an application. The applications with
the same magnitude of transactions share the same profile length. This is
further explained in Section 5.

3.2 Feedback Control Loop of the Simple Model

Fig. 5(a) gives the structure of the complete platform that is an instantiation
of a MAPE-K feedback control loop. The autonomic element is composed of
the STM system, benchmarks, inputs, outputs and the autonomic manager.
The autonomic manager, which can be also regarded as the controller, is
described as an automaton as shown in Fig. 5(b). This automaton consists
of four states, and one state is called at each decision point corresponding to
Fig. 4.
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(a) The instantiation of MAPE-K-shape
feedback control loop for simple model.
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     tn
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 stop 
profile

(b) The structure for the autonomic manager of
Fig. 5(a) in automaton shape.

Figure 5: The feedback control loop of the simple model. th stands for
throughput and tn means the number of thread. The boolean value true
means unconditional state shift.

3.2.1 Control Objective

Under control theory terminology, the control objectives of our feedback con-
trol loop are to maximise throughput and diminish global execution time.

3.2.2 Inputs and Outputs

As shown in Fig. 5(a), the inputs are commits, aborts and execution time.
The outputs, which are also known as control actions, are increment or decre-
ment of parallelism degrees and settings on profile flags which enable or dis-
able control actions.

3.2.3 Decision Functions

Three decision functions cooperate to take decisions: a parallelism decision
function (adjusts parallelism), a profile decision function (enables the actions
of adjusting parallelism) and a phase decision function (computes a CR range
which determines the program phase). The first two functions are given in
the next paragraph and the phase function is presented lastly in this section.
We describe our parallelism controller as an automaton, since an automaton
can elucidate the relations among the decision functions and how the decision
functions are designed.

The automaton commences at the state increase tn, as the parallelism is
set to be the minimum at the starting point. At each instance of increase tn,
one thread is awakened if the current throughput is greater than the maxi-
mum throughput that is recorded in the current thread profile interval. The
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initial value of maximum throughput is 0. In each thread profile interval,
the parallelism can either continuously increase or decrease. The action on
whether to increment or decrement parallelism is determined by the profile
decision function. The state shifts to stop profile when the throughput of
the current instance is less than the maximum value. At the final decision
point of a thread profile interval (at state stop profile), the parallelism is set
to be the value which yields the maximum throughput. The automaton then
shifts from stop profile to no tn control which corresponds to the non-action
interval in Fig. 4. At each decision point of a non-action interval, the profile
decision function checks if the controller needs start parallelism adaptation.
More specifically, when the CR falls into a certain range, the program re-
mains in no tn control state. Otherwise a boolean value is set indicating
the direction of the parallelism regulation (increment or decrement). The
automaton shifts its state to increase tn if CR is higher than the upper CR
threshold. Otherwise the state shifts to decrease tn when CR is less than
the lower CR threshold. At each instance of decrease tn, one thread is sus-
pended. The automaton remains in decrease tn when the throughput shows
improvement at each instance. In case the value of the upper threshold is
1 and is identical to the current program CR, a higher parallelism degree is
assigned to the program. This situation happens when only read operations
or no conflicts across transactions.

The throughput often fluctuates before reaching the optimum value as
shown in Fig. 6. To prevent a parallelism profiling procedure from terminat-
ing at a local maximum throughput, parallelism profiling procedure contin-
ues until the throughput decreases over 10% of the maximum value recorded.
10% is an empirical value based on results analysis which can be tuned. This
value is consistent with the value of δ in Section 4.2.

thread number0

th
ro

u
g

h
p

u
t local optimum point

global optimum point

 10% variation

Figure 6: Throughput fluctuation. The throughput may continuously rise
and descend before reaching its maximum point.

The parallelism decision function is called at state increase tn and de-
crease tn. Parallelism adaptation is activated when a program enters a new
phase. A new phase is denoted by when CR fluctuates out of a certain
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range. It is onerous to determine such a CR range offline, especially for
some programs with online performance variation. Additionally, a constant
CR range impedes programs to search its optimum parallelism. Therefore,
it becomes necessary to dynamically resolve a CR range. We add a phase
decision function to reach this goal which is called at stop profile state. The
phase decision function is called at the end of a thread profile interval where
a new CR range is prescribed. The two thresholds of the CR range are the
CR values produced by running with one more or one less parallelism degree
than the optimum. We refer to this CR range decision function as simple
phase decision function.

3.3 Probabilistic Model

The approach to manipulate the parallelism degree by one at each decision
point can engage long profiling time before the optimum value is decided.
This section presents a probabilistic model which predicts a favourable par-
allelism degree after one profile length based on the CR and current active
thread number.

The probabilistic model shares the same inputs, outputs and control ob-
jectives as the simple model. It also incorporates three decision functions.
Since the phase decision function is equivalent to that in Section 3.2.3, we
only describe the parallelism decision function and the profile decision func-
tion in this section.

3.3.1 Decision Functions

We firstly present the parallelism decision function.
Let L0 be a fixed period. Assuming that the average length of transactions

(including the aborted and committed transactions) is L and the current
number of active thread is n, then the number of transactions N (N =
commits+ aborts) executed during the L0 period can be expressed as: N =
L0

L
· n = α · n.
A transaction can commit during the L0 period if it encounters no conflict

with the rest of concurrently active transactions. We assume that the con-
flict probability p between two transactions is independent from the active
threads at the current phase, thus independent from the number of active
transactions. The transactions executed in a sequence within the same thread
cause no conflicts among each other.

We assume that during the L0 period, the executed transactions are ho-
mogeneous, and approximately of same length L. Then, during L0, each
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thread approximately executes the same number of transactions N
n
. There-

fore, during this same period, the number of transactions causing potential
conflicts with one transaction is the total number of transactions N , minus
the transactions on the current thread of this transaction: N − N

n
.

For a transaction i, let Xi be a random variable, with Xi = 1 if the
transaction is committed, and Xi = 0 if it is aborted. By approximation of
the execution of a STM program, we assume that a transaction is aborted if
it conflicts with at least one other transaction during the L0 period. Then,
the probability of a commit can be expressed in Equation 1.

P (Xi = 1) = (1− p)(N−N
n
) = qα(n−1) (1)

where q = 1− p stands for the probability of no conflict between two trans-
actions.

Equation 1 can hold provided that there is a large amount of transactions
executed during the L0 period making the conflict probability p between two
transactions approach a constant.

Under the terminology of probability theory, Xi is a random variable. Xi

follows a Bernoulli distribution with its parameter qα(n−1). Let T represent
the throughput. In a unit of time, the throughput is equivalent to the com-
mits, which can be expressed as T =

∑
Xi. Further, CR can be expressed as

CR = T
N
. Hence T follows a binomial distribution, T ∼ B(N, qα(n−1)). The

expected value of T is:

E[T ] = N · qα(n−1) = αnqα(n−1) (2)

Hence the expected value of CR is:

E[CR] =
E[T ]

N
= qα(n−1) (3)

Equation 2 can be rewritten as a function from n to T as shown in Equa-
tion 4.

T (n) = α · n · qα(n−1) (4)

To obtain the value of n where T reaches the maximum, we compute the
derivative of Equation 4: T ′(nopt) = 0 → nopt = − 1

α ln(q)
, where nopt stands

for the optimum parallelism degree.

From Equation 3, we can obtain q = CR
1

α(n−1) . Then we can derive the
following equation:

nopt = − n− 1

ln(CR)
(5)
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where n represents the number of active threads. In case CR = 0, nopt =
0. The further details of the derivation are stated in [32, 33].

predict
    tn

 stop 
profile

 no tn
control

th dec
(CR<CR_LOW and tn>tn_min)

((CR>CR_UP or CR=1 ) and  tn<tn_max)

.

verify

 OR 

tr
ue

true truestart

CR range

th
 in

c

Figure 7: The controller structure of the probabilistic model described as an
automaton. th and tn represent throughput and thread number, respectively.

In this paragraph, we describe an automaton to elucidate the relations
of the three decision functions and the design of the profile decision func-
tion. As illustrated in Fig. 7, the automaton commences (with the max-
imum parallelism) from predict tn state which yields an estimation of the
optimum parallelism degree. The predicted parallelism is applied for one
subsequent profile length and the automaton unconditionally shifts its state
to verify state. The new parallelism degree is only applied subsequently
when the throughput during the verification time is larger than the through-
put recorded before prediction. This leads the state to shift to CR range
state where a new CR range is prescribed. The stop profile state disables
the parallelism profile action either when the parallelism does not alter after
verification or when a new CR range is resolved. Otherwise it recovers the
previous value of the parallelism degree (CR range remains unchanged in
this case). Contrary to the simple model, the probabilistic model requires
an individual state to obtain the CR range. The simple model continuously
increases or decreases the parallelism degree until the optimum throughput
is reached, therefore, it requires no additional state for CR range decision.

4 Autonomic Thread Management

Apart from thread parallelism, thread mapping may impact program perfor-
mance, as the data access time can vary from one core to another. Fixing
threads on specific cores can diminish data access time, thereby reduce the
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overall execution time of a program. This section will investigate the issues
on thread mapping and its coordination with parallelism. We describe two
feedback control loops which collaborate to improve system performance.

4.1 The Overview of MAPE-K Loop for Parallelism
and Mapping Management

In this section, the instantiation of MAPE-K loop as illustrated in Fig. 5(a)
is complemented with the control of thread mapping strategies. Accordingly,
its effectors are capable of carrying out changes on thread mapping strategies.
However, its overall structure is similar as in Fig. 5(a). We assign the same
control objectives to the MAPE-K loop. It has the same inputs, hence the
same sensors. The following three sections concentrate on the designs of the
autonomic manager. Specifically, the autonomic manager incorporates two
automata with one slave loop determining thread mapping strategy and one
master loop deciding the parallelism degree as well as controlling the former
loop.

The autonomic manager consists of two automata which include four deci-
sion functions cooperating to make decisions: a parallelism decision function,
a thread mapping decision function (decides the thread mapping strategy),
a phase decision function (computes the CR range) and a thread profile de-
cision function (enables/disable the thread profile action). At each decision
point as illustrated in Fig. 4, one corresponding decision function reacts to
make its decision. We firstly detail the master loop which determines the
parallelism degree and the program phase. Then we describe the coordina-
tion policy which elucidates the relations between the master and slave loops.
The slave loop, which is the thread mapping decision function, is presented
lastly.

4.2 The Master Loop

The master loop makes use of the probabilistic model as our parallelism de-
cision function rather than the simple model, for the following reasons:

• The time spent in parallelism prediction is shorter. The simple model
responds slowly to program phase changes and requires longer time
for optimum parallelism detection. Per contra, the probabilistic model
responds rapidly to phase variation and needs short thread profile time
despite the fact that it may over-react to phase fluctuations.

• It shortens the thread profile interval. It requires extra profile lengths
to decide the best mapping strategy. Together with the long profile
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time imposed by the simple model, the thread profile interval is de
facto at risk to exceed the length of a program phase.

Two control decisions need to be taken: thread parallelism degree and
thread mapping strategy. This brings up the question on which decision
should be made first. The parallelism degree can affect the choice of the
best thread mapping strategy. Intuitively, the thread mapping strategy may
in turn affect the parallelism prediction. Fig. 8 shows how the best map-
ping strategy varies with 2, 4 and 8 thread number for one application (i.e.
EigenBench). Linux is the best choice when the parallelism degree are 2
and 4 and Round-Robin shows the best performance for 8 threads. Our
MAPE-K loop chooses to predict parallelism prior to mapping under the
scrutiny as stated below:

1. The prediction of the thread mapping strategy requires knowledge of
the parallelism degree. Some TM applications do not scale with an
increment of its parallelism degree regardless of the mapping strategy
that is applied. It is unnecessary to predict the mapping strategy when
the behaviour of a program is unstable.

2. The parallelism degree demonstrates more significant performance im-
pacts than that of the thread mapping strategy, as later illustrated in
performance evaluation in Section 6.

3. The impact of the thread mapping strategy on parallelism prediction
is trivial. This is based on observation of application performance.
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2 threads
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Figure 8: Performance difference for four mapping strategies when the par-
allelism degree varies.
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The master loop, which is shown in Fig. 9, forms an automaton similar to
the one in Fig.7, with the CR range state being substituted by the mapping
state to dictate the optimum mapping strategy. The phase decision function
is called at the state stop profile. Additionally, when the decision function
yields identical parallelism degree as the previous result, the automaton shifts
to the state no profile directly without shifting to the state verify.

predict
    tn
 

mapping
 
 

 stop 
profile

  no
thread
control

(CR<CR LOW and tn>tn min)

((CR>CR_UP or CR=1 ) and tn<tn_max )

.

m
ap

pi
ng

_fl
ag

=
tr

ue

 

verify

  or

 

start
 

 

 

 
th dec or (! m

apping_flag)

 

if (th inc and tn change and tn<=half_core_num)
   mapping_flag=true
else
  mapping_flag=false
 

 
true

true

true

Figure 9: The automaton for parallelism and mapping decision. th and tn
represent throughput and thread number, respectively. The boolean value
true means unconditional state shift.

We present a different phase decision function in this section. The deriva-
tion of the CR range is based on the optimum CR value. The optimum CR
(CRopt) is the value which is yielded by the optimum parallelism degree or
together with its optimum thread mapping strategy. The upper and lower
thresholds of the CR range are the optimum CR plus or minus a factor (δ) of
itself, as denoted in Equation 6. The initial value of δ is set to be 10% 2 and
is later continuously modified. A low δ value can split a program into many
short phases which is detrimental to performance, as the thread controllers
over-react to environment changes. A high δ almost can never trigger the
control actions. CR should not experience an abrupt jump while program
still remains in the same phase. δ gradually rises at each false control ac-
tion to diminish over-reaction of controllers. More specifically, δ increments
1% each time when the new predicted parallelism degree equals the previous
value or the new value delivers worse performance, meaning that the sensors
overreact to the CR fluctuation when the program still executes at the same
phase. To ensure that the controller can be still responsive to phase changes,
CR range stops expanding when δ reaches 15%. We address this CR range

2The initial value 10% is from the work of Ansari et al. [7]
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decision function as advanced phase decision function in contrast with the
simple phase decision function in Section 3.2.3.

CR = CRopt ± δ ∗ CRopt (6)

4.3 Coordination Policy

The cost of setting a thread mapping strategy can be high, therefore, the
frequency of adjusting the strategy should be low. The frequency of switching
mapping strategies brings non-trivial impacts on application performance, as
the improvement of memory resource utilisation obtained by thread mapping
can be forfeited by its potentially associated cost of thread migration. The
thread mapping loop can only be invoked by the master loop under the
following conditions:

• The predicted parallelism degree is no more than half of the core num-
ber. When the active thread number is equivalent to the core number,
there is little interest to profile thread mapping strategies. This is due
to the fact that the threads of our TM applications tend to behave sim-
ilarly, e.g. the performance is not affected when two threads change
their affinity. Furthermore, some TM applications experience signifi-
cant performance degradation when their parallelism degrees increase,
or their performance becomes unstable. Therefore, thread mapping is
less interesting under such circumstances. When the parallelism degree
surpasses this value, applications progress with the default mapping
strategy (Linux).

• The new parallelism degree differs from its value before prediction. To
further alleviate the cost of thread migration, yet ensure the controller
to be responsive to phase changes, the mapping strategies are only re-
profiled if the thread number fluctuates more than the core number
that shared by two L2 caches. This is a tuning parameter which can
be chosen to strengthen the responsiveness of control algorithms.

In addition, it is worth noting that the slave loop can be activated or
disabled externally based on user requirements. In this case, the control loop
becomes the probabilistic model described in Section 3.3 with the difference
in the phase decision function.

4.4 The Slave loop for Thread Mapping Adaptation

The slave loop as illustrated in Fig. 10 performs the decision of optimum
thread mapping strategy. It is invoked when certain conditions are satis-
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Figure 10: The automaton for thread mapping decision. th stands for
throughput.

fied which have been detailed in Section 4.3. We obtain the optimum map-
ping strategy by selectively profiling the four strategies and comparing their
throughputs. The automaton starts with Linux state where Linux strat-
egy is profiled. Next, its state unconditionally shifts to RR state profiling
Round-Robin strategy. Round-Robin is an intermediate strategy be-
tween Compact and Scatter, hence is profiled preceding to the other two.
The automaton only shifts to the Compact state if the throughput yields by
Round-Robin shows improvement contrasting with Linux, the automaton
returns to RR state otherwise. The Scatter state is only invoked if Compact
produces lower throughput than that of Round-Robin. The automaton re-
mains in the Compact state when Compact outperforms Round-Robin.
Compact and Scatter map the threads to cores in the opposite way making
it less likely that both can outperform their intermediate strategy Round-
Robin. In the end, Scatter is only selected as the optimum strategy when it
gives higher throughput than that of Round-Robin. The state shifts back
to RR state otherwise.

In the worst case, all the mapping strategies are profiled when Scatter
is the optimum strategy. Whereas only Linux and Round-Robin are tried
in the best case when Linux is the optimum.

5 Implementation

There are two methods for collecting application profile information in a par-
allel program. A master thread can be employed to record the interesting
information of itself. An alternative way is to collect the information from all
threads. The first method requires little synchronisation cost for information
gathering but the obtained information may not represent the global view.
Furthermore, the master thread must be active during the whole program
execution possibly resulting in its termination prior to the other threads,
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meaning that the fair execution time among threads can not be guaranteed.
The latter method may suffer from synchronisation cost but the profile in-
formation represents the global view. More importantly, the latter method
enables threads to be scheduled in a way that they can progress equally. We
choose the second method. The synchronisation cost of information gathering
is negligible for most of our applications. A thread is only suspended when it
completes its current running transaction (a transaction commits). This can
prevent a transaction from abolishing its completed tasks. All threads are
awakened when reaching a thread barrier and threads are re-adjusted after
exiting the barrier.

1 /*control functions*/

2 control_funcs(time,commits,aborts){

3 ...

4 adjust thread number;

5 adjust thread mapping strategy;

6 compute CR range;

7 decide control decision frequency;

8 ...

9 }

1 //entry point

2 stm_thread_init(){//tinystm sys call

3 ...

4 control_funcs();//suspend threads

5 ...

6 }

1 //entry point

2 stm_thread_exit(){//tinystm func call

3 ...

4 control_funcs();//awake threads

5 ...

6 }

1 //entry point.

2 /*The info of all threads are*/

3 / *synchronised at this entry point*/

4 stm_commit() {//tinystm sys call

5 ...

6 commit sensor;//collect commits

7 time sensor; //record time

8 ...

9 control_funcs();// all the control

10 ...

11 }

1 stm_abort(){//tinystm func call

2 ...

3 abort sensor;//collect aborts;

4 ...

5 }

1 stm_init(){//tinystm func call

2 ...

3 time sensor;

4 ...

5 }

Figure 11: The three entry points of the monitor and the control functions
for TinySTM.

We have implemented a monitor to collect the profile information and
control the dynamic parallelism. The monitor is a cross-thread lock which
is composed of variables accessed by threads concurrently. The major vari-
ables of the monitor are commits, aborts, two FIFO queues recording the
suspended and active threads, the best parallelism degree, the best mapping
strategy and the throughput. More technical details are documented in [33].
Fig. 11 illustrates the designed monitor that incorporates three entry points.
The first entry point is upon thread initialisation, where some initial values
(e.g. thread id) are set for the threads. All the threads (in the probabilistic
model) or only two pass (in the simple model) the first entry. The second en-
try point is upon a transaction committing, where commits are accumulated
and where the control functions take actions. The third entry point is upon
a thread exiting, where one suspended thread is awakened when one thread
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exits. The monitor suspends and awakens threads by calling the pthread
functions, i.e. pthread cond wait() and pthread cond signal(). Additionally,
thread affinity is set up by Linux system function call pthread setaffinity np().
In control terminology, the monitor and the Linux function call are the ef-
fectors which carry out the decisions made by our autonomic manager. The
control functions (control funcs()) in Fig. 11 are partially programmed by
Heptagon language.

A time overhead is added to each transaction when calling and releasing
a monitor. The overhead caused by calling a lock is negligible on the transac-
tion with medium and long length. Nevertheless this overhead is significant
for the transaction with a small number of operations. This is the case for
intruder and ssca2 (two applications described in the later section). Such
an overhead can be reduced through diminishing the frequency of calling
the monitor, i.e. the monitor is called every 100 commits rather than every
commit.

The profile length determines the frequency of control actions. The ap-
plications with the same magnitude of transactions share the same pro-
file length. For instance, genome and vacation (two benchmarks from
STAMP [34]) share the same profile length as the total number of transac-
tions in the two applications are on the same magnitude (i.e. 106).

To avoid thread starvation, we employ round-robin thread rotation to pe-
riodically awaken early suspended threads and suspend the running threads
having executed longest time. Alas, this procedure brings thread migration
which can be costly. To reduce its influence, a new awaken thread is mapped
to the core where a thread is just suspended. The residual active threads
keep their mapping in preference to migrating all the active threads whenever
a thread changes its status.

6 Performance Evaluation

We present performance evaluation on six different STAMP [34] benchmarks
and two applications from EigenBench [35]. EigenBench and STAMP
are widely used for performance evaluation on TM systems. The data sets
of our selected applications cover a wide range of parameters from short-
length to long-length transactions, from short to long program execution
time, from low to high program contention. Table 1 presents the qualita-
tive summary of each application’s online transactional characteristics: Tx
(transaction) length or Tx size (the number of instructions per transaction),
execution time, and contention (the global contention). The classification is
based on the application executed with its static optimum parallelism on our
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platform. A transaction with execution time between 10 µs and 1000 µs is
classified as medium-length. The contention between 0.3 and 0.6 is classi-
fied as medium. The execution time between 10 seconds and 30 seconds is
classified as medium.

Application Tx length Execution time Contention
EigenBench medium long medium
ssca2 very short short low
intruder short medium high
genome medium short high
vacation medium medium low
yada medium medium high
labyrinth long long low

Table 1: Qualitative summary of each application’s online transactional char-
acteristics. The classification is based on the application execution with its
optimum parallelism on our platform.

6.1 Platform

We evaluate the performance on a SMP machine with 4 processors of 6 cores
each. Each core has a L1 cache (32KB). Every pair of cores share a L2 cache
(3072KB) and every 6 cores share a L3 cache (16MB). This UMA machine
holds 2.66GHz frequency and 64GB RAM. We utilise TinySTM as our STM
platform.

6.2 Benchmark Settings

loops 16667
A1 35536
A2 1048576
A3 8192
R1 30
W1 30
R2 20
W2 200
R3i 10
W3i 30
R3o 10
W3o 10
NOPi 0
NOPo 0
Ki 1
Ko 1
LCT 0

(a) one phase

*R1 0 35
*W1 0 45

loops 3333 *R2 0 200
A1 95536 *W2 0 100
A2 1048576 *R3o 0 10
A3 819200 *W3o 0 10
NOPi 0 *R1 1 300
NOPo 0 *W1 1 220
Ki 1 *R2 1 100
Ko 1 *W2 1 50
LCT 0 *R3i 1 0
M 2 *R3o 1 0

*W3o 1 0

(b) two phases

Figure 12: Inputs of two EigenBench applications for 24 threads.

Two applications from EigenBench are evaluated, i.e. one application
with one phase and one with two phases. They are selected and config-
ured to serve as complementary benchmarks to STAMP for performance
evaluation on special issues. EigenBench, with one phase, gives stable
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online behaviour, hence it is ideal to demonstrate the overhead of control
actions. Fig. 12(a) provides its input data set. The application with two
phases is designed to verify if a change of parallelism requires a change of
thread mapping strategies. Fig. 12(b) shows its inputs. This application is
necessary, as most of the transactions in each STAMP application usually
hold very similar behaviour [9] making them unsuitable for evaluation of the
dynamic thread mapping strategies. EigenBench includes three different
arrays which provide shared transactional access (Array1), private transac-
tional access (Array2) and non-transactional access (Array3). Such a design
enables us to easily tune the parameters (called data sets) of EigenBench to
serve for different evaluation purposes. An approach to create several phases
is to provide several input data sets and execute them in a sequence, as each
data set can give individual behaviour.

We have evaluated 6 different applications from STAMP, namely in-
truder, ssca2, genome, vacation, yada and labyrinth. Two applications
namely bayes and kmeans from STAMP are not taken into account in the
paper. Since bayes exhibits non-determinism [36]: the ordering of commits
among threads at the beginning of an execution can dramatically affect the
execution time. The number of commits shows significant differences during
each execution for kmeans, therefore, it is also excluded from performance
evaluation. The inputs of the six applications are detailed in Fig. 13.

ssca2 -s20 -i1.0 -u1.0 -l3 -p3 intruder -a8 -l176 -n109187
genome -s32 -g32768 -n8388608 vacation -n4 -q60 -u90 -r1048576 -t4194304
yada -a15 -i inputs/ttimeu1000000.2 labyrinth -i random-x1024-y1024-z7-n512.txt

Figure 13: The inputs of STAMP applications.

6.3 Results

We firstly illustrate the performance evaluation for the simple model and
probabilistic model introduced in Section 3. The results on coordination of
parallelism and thread mapping from Section 4 are presented next. We set the
maximum parallelism degree to be 24 which is the number of the available
cores. We restricted the minimum parallelism degree to be 2, as we are
only concerned with parallel applications. All the applications are executed
10 times and the results are the average execution time. Additionally, we
implemented the SimpleAdjust algorithm proposed by Ansari et al. [7]. This
algorithm starts the program with 8 threads and increments or decrements
the parallelism degree by one when CR is beyond the range of 0.3 and 0.6.
We presented the performance comparison with our models.
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6.3.1 Parallelism Adaptation

Due to the page limit, we only illustrate the execution time difference between
the different static parallelism degrees (up to 12) and adaptive parallelism
for three selected applications (i.e. genome, intruder and labyrinth) in
Fig. 14. The details of performance comparison are summarised in Table 2
and Table 3.
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Figure 14: Time comparison for selected applications on static and adaptive
parallelism.

In the two tables, the results of both models are compared against the
best (the static parallelism degree which gives the best performance), average
(the average performance of the static parallelism degrees from 2 to 24) and
worst case (the static parallelism degree which performs the worst) results
of static parallelism. This comparison indicates that our models can out-
perform the static parallelism when an unknown application is considered.
The performance of our models are also compared with the SimpleAdjust.
The digits in the brackets are the static parallelism degrees which gives the
best and the worst performance respectively. The symbol plus (+) means
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performance gain against the compared value. It is worth noting that some
of TM applications scale poorly when their parallelism rises (e.g. genome,
vacation and EigenBench) due to TM mechanisms. For example, a highly
contended phase results in continuous aborts from the same transactions,
and thus slows down program progress. According to Table 2 and Table 3,
our adaptive models outperform the majority of the static parallelism. The
probabilistic model shows better performance on applications: genome, va-
cation and labyrinth against the simple model, but it indicates performance
degradation on yada and intruder against the simple model. Both models
present similar performance on EigenBench and ssca2. Our simple model
shows significant performance loss on genome and labyrinth. labyrinth
and a phase of genome perform the best with the maximum thread num-
ber and suffer from significant performance loss before reaching this value.
Ansari et al. starts the applications with 8 threads while our simple model
starts with the minimum. The performance penalty caused by the simple
model on the two applications can be significantly diminished when starting
the program with a higher thread number. The probabilistic model demon-
strates overwhelming performance enhancement on this circumstance, as less
time is spent in profiling the optimum thread number.

benchmarks best case average worst case Ansari [7]

EigenBench (one phase) -7% (12) +10% +50% (2) +25%
genome -57% (4) +95% +99% (20) -30%
vacation -45% (8) +79% +92% (24) +39%
labyrinth -52% (24) +5% +67% (2) -42%
yada -3% (8) +66% +91% (22) +29%
ssca2 -14% (24) +11% +62% (2) -9%
intruder -6% (6) +62% +71% (24) +14%

Table 2: Performance comparison with simple model. The higher value, the
better performance. Plus (+) means performance gain against the compared
value. The digits in the brackets are thread numbers.

benchmarks best case: average worst case Ansari [7]

EigenBench (one phase) -5% (12) +11% +51% (2) +27%
genome +3% (4) +97% +99% (20) +21%
vacation -18% (8) +83% +93% (24) +50%
labyrinth +8% (24) +42% +80% (2) +14%
yada -17% (8) +61% +90% (22) +19%
ssca2 -16% (24) +10% +61% (2) -10%
intruder -31% (6) +53% +64% (24) -7%

Table 3: Performance comparison with probabilistic model.
Fig. 15 elucidates the online parallelism variation with simple, proba-

bilistic model and model of Ansari et al for genome and intruder. The
results given are based on one execution whose performance is the closest
to the average execution time. As indicated in the figures, the probabilis-
tic model is likely to give abrupt parallelism changes contrasting with the
simple model, since the probabilistic model only requires one profile length

25



for parallelism prediction making it respond fast to CR changes. genome
experiences three phases online. The first phase is short (two or three profile
lengths) which contains both read and write operations. During the second
phase, the transactions only include read operations resulting in CR = 1,
hence the maximum parallelism is applied. The third phase is highly con-
tended, hence low parallelism is given. As shown in Fig. 15(a), the simple
model spends some time before reaching the optimum parallelism, thus some
staircases reflect in the figure. The probabilistic model reacts fast to respond
the CR and phase change, thus some abrupt parallelism changes are shown.
Since less time is spent in reaching the optimum parallelism, the probabilistic
model outperforms the simple model and Ansari’s model on genome. Per
contra, the simple model shows better performance than that of the proba-
bilistic model on intruder. A sudden CR fluctuation is not always a sign of
a new phase, therefore, the probabilistic model over-reacts to CR fluctuation
resulting in performance loss. In contrast, the simple model avoids it.
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Figure 15: Online parallelism variation controlled by the simple model and
probabilistic model.

The autonomic parallelism adaptation aims to regulate the parallelism
which retains throughput at the optimum level at each phase. Ideally the
throughput from the adaptive models should rival the one with the static
parallelism which achieves the maximum throughput. We only present the
online throughput changes of two applications genome and intruder here,
more details are given in [33]. Fig. 16 elucidates their online throughput
variation with static and adaptive parallelism. The black line with crosses
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represents the throughput produced by the simple model, and the blue line
with dots gives the throughput yielded by the probabilistic model.
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Figure 16: Online throughput variation of genome and intruder. The
black line with crosses is the simple model and the blue line with dots is the
probabilistic model.

6.3.2 Parallelism and Thread Mapping Adaptation

In the following paragraphs, we address the model which only adjusts par-
allelism as dynamic parallelism model. We address the model that regu-
lates both parallelism and thread mapping strategy as dynamic thread control
model. We compare the performance of all the static parallelism with the two
models. It is worth noting that despite the same parallelism prediction func-
tion, the dynamic parallelism model and probabilistic model (Section 6.3.1)
differ in performance in certain cases, as their phase decision functions differ.

Fig. 17 illustrates the execution time comparison with different static par-
allelism and the two autonomic models forEigenBench, yada and labyrinth.
The two models show the same performance on labyrinth. Thread mapping
gives little impact on labyrinth, as its optimal parallelism degree equals the
core number. Table 4 and Table 5 detail the performance comparison. Ac-
cording to the tables, our two models outperform the majority of the static
parallelism. The dynamic thread control model shows positive performance
rise against the dynamic parallelism model on applications: EigenBench,
yada and intruder, but it indicates a performance degradation on genome
and vacation. Both models bring the similar performance to labyrinth and
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Figure 17: Time comparison for selected applications on static and adaptive
parallelism.

ssca2. Both thread models outperform the best case of static parallelism on
EigenBench and labyrinth. Both thread models show performance degra-
dation on vacation, intruder and ssca2 against the best case, yet brings
significant performance improvement comparing with the average value and
the worst case. The dynamic parallelism model indicates better performance
against the algorithm of Ansari for most of the applications while the dy-
namic thread control model outperforms it on all the applications. This
means that thread mapping can further bring performance improvement.Fig. 18 demonstrates the online variation of parallelism degree for both
models and the change of near-optimum thread mapping strategies controlled
by the dynamic thread control model. In order to illustrate the performance
impact of thread mapping strategies, the results presented in the two figures
are the best results out of 10 executions. As shown in the figures, Eigen-
Bench shows variation of the optimum strategy, whereas yada keeps the
same strategy during its whole execution since yada only incorporates one
phase.
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benchmarks best case average worst case Ansari [7]

EigenBench (two phases) +14% (2) +95% +99% (24) -2%
genome +16% (4) +97% +99% (20) +29%
vacation -13% (8) +83% +94% (24) +52%
labyrinth +7% (24) +42% +80% (2) +14%
yada -11% (8) +63% +91% (22) +23%
ssca2 -4% (24) +19% +65% (2) +1%
intruder -48% (6) +46% +59% (24) -20%

Table 4: Performance comparison with dynamic parallelism model. The
higher value, the better performance. Plus (+) means performance gain
against the compared value. The digits in the brackets are thread numbers.

benchmarks best case average worst case Ansari [7]

EigenBench (two phases) +24% (2) +96% +99% (24) +9%
genome +0% (4) +97% +99% (20) +12%
vacation -26% (8) +81% +93% (24) +47%
labyrinth +6% (24) +41% +80% (2) +14%
yada +10% (8) +70% +93% (22) +38%
ssca2 -4% (24) +19% +65% (2) +1%
intruder -9% (6) +61% +70% (24) +11%

Table 5: Performance comparison with dynamic thread control model.
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Figure 18: Online parallelism variation by the two models for EigenBench
and yada.

Lastly, Fig. 19 presents the comparison of online throughput variation
for two applications. The dynamic parallelism model rivals the maximum
throughput of the static parallelism at each phase. The dynamic thread
control model can exceed the best throughput at certain phases. Note that,
the static parallelism degrees are applied with the default mapping strategy
Linux.
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Figure 19: Online throughput variation of EigenBench and yada. The
black line with crosses is the dynamic parallelism model and the blue line
with dots is the dynamic thread control model.

7 Discussion

The autonomic managers described in this paper are partially implemented
in Heptagon, as Heptagon provides a straightforward way of programming
automata. Moreover, automata can better elucidate the relations among
the control decision functions. Nevertheless, our automata can be otherwise
written by other programming languages (e.g. C\C++). We evaluate our
approaches on STAMP and EigenBench, nevertheless, the probabilistic
model can be applied to the TM applications whose threads may change
their behaviour during their lifetime but show similar behaviour at each time
slot. The simple model can extend to TM applications with heterogeneous
threads, however, it performs worse than the probabilistic model when the
optimum parallelism degree of the applications is high.

To avoid thread starvation, we employ round-robin thread rotation to pe-
riodically awaken early suspended threads and suspend the running threads
having executed longest time. Round-robin thread rotation is necessary for
applications with a set amount of transactions allocated to each thread. This
is the case for EigenBench, without thread rotation the suspended threads
starve, which not only slows down its execution, but also changes its online
behaviour. In some applications such as yada, the transactions are allo-
cated to each thread dynamically, and are not assigned to the suspended
threads, hence applications likewise require no round-robin thread rotation.
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Table 6 lists the effect of execution time on diverse applications stemming
from round-robin thread rotation.

Application Effect Applications Effect Application Effect Application Effect
EigenBench (one phase) yes intruder no genome no vacation yes
EigenBench (two phases) yes ssca2 no labyrinth no yada no

Table 6: The effect of round-robin thread rotation on applications.

Compact is favoured when CR is low and Scatter is likely to be se-
lected when CR is high. When CR is high, the dynamic thread control model
favours higher parallelism. Some mapping strategies do not bring a significant
performance difference for certain applications, therefore, the decision of op-
timum mapping strategies can differ at each execution. When the parallelism
is approaching the maximum core number, the thread mapping profiling is
disabled as little performance impact can be received from thread mapping.

7.1 Overhead Analysis

The overhead of our approaches mainly originate from two aspects which are
caused by the effectors of the feedback control loops.

Thread migration. This stems from two points: switching among the
four mapping strategies and periodically awaking or suspending the threads
to ensure their fair execution time. A good mapping strategy can lead to
decrement of cache misses, therefore, overcomes performance degradation
caused by re-mapping threads. For example, as we have demonstrated that
the dynamic thread control model outperforms the dynamic parallelism model
on yada. The former model gives 19% fewer cache misses to the latter
one, but causes 6% more thread migration. Nevertheless, frequent thread
migration may forfeit the performance gain obtained by lower cache misses.

The cost of calling the monitor. Two factors contribute to this cost:
the operation of requesting and releasing the monitor and the time spent in
waiting for the monitor. The latter cost increases significantly with higher
active number of threads and gives significant impact on the applications with
short-length transactions. However, this cost is trivial, more specifically it is
less than 2% for the transaction with medium length and long length. This
overhead is higher for the short-length transaction, however, it is diminished
through lower calling frequency of the monitor as described in Section 5.

7.2 Limitations

Performance penalty can occur when program parallelism varies, yet is trivial
on shared memory. To further reduce the penalty, a thread is only suspended
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when its current transaction commits (Section 5). We have described two
phase decision functions to compute CR ranges to trigger or disable control
actions. The simple phase decision function shows its limitations on phase
detection for vacation. Since its CR tends to fluctuate frequently over the
CR range, yet the program remains at the same phase. Therefore, both the
simple model and probabilistic model overreact to such changes and perform
unstably. vacation suffers from the same performance loss with the advanced
phase decision function. Its performance is further forfeited with mapping
strategy profiling.

The parallelism decision function are based on ideal situations, thus the
predicted parallelism de facto may be sub-optimum for certain applications
(e.g. yada). However, such performance loss can be compensated by the
performance gain from thread mapping. In general, the gain obtained with
a dynamic approach over a static one is directly related to the diversity of
application phases. The more distinct are the phases, the higher gain is.
Hence our proposed dynamic approaches are more interesting to the appli-
cations with salient behaviour variation online. It is also worth noting that
thread mapping is not necessary for all the applications, e.g. the application
(e.g. labyrinth, ssca2) with low contention and its parallelism degree equals
the core number. Therefore, both dynamic parallelism model and dynamic
thread control model illustrate similar performance on the two applications.
Additionally, profiling the mapping strategy gives penalty to genome and
vacation, as genome contains occasional sudden variation of contention and
contention of vacation fluctuates frequently. A refined phase decision func-
tion can improve the performance of vacation. The dynamic parallelism
model can respond immediately. In contrast, the dynamic thread control
model requires extra profiling lengths to search a better mapping strategy,
meanwhile the applications have already entered a new phase.

Our instrumentation adds a time stall at commit time. This makes the
contention management policy act similar as a backoff policy (except the
backoff policy gives proportional time stall based on the retry times). There-
fore, some applications show slightly better or worse performance than the
ones without instrumentation.

Due to the impact of thread migration between switch of mapping strate-
gies, the predicted strategy can be sub-optimum. In this work, we focus
on performance evaluation on UMA. Our mapping strategies do not take
into account of the NUMA [9]. Furthermore, with the influence of mem-
ory location and thread migration, our parallelism models do not scale well
on NUMA systems. The performance on NUMA has been illustrated in our
work in [33]. The possible solutions would be (1) implementing new mapping
strategies which takes into account of the distributed memory on NUMA (2)
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and setting memory affinity [37, 38].
The metrics (i.e. commits, aborts) that serve as inputs to the feedback

control loops are TM-specific, therefore, our approaches are not applicable
to the non-TM platforms. However, it is possible to apply our approaches
to non-TM platforms, if we substitute the CR and throughput with thread
contention and instruction throughput. We leave this for future work.

8 Related Work

8.1 Parallelism Adaptation

State-of-the-art approaches, which address parallelism adaptation for TM or
non-TM systems, can be classified into two categories: with and without
feedback control loops.

8.1.1 Parallelism adaptation without feedback control

Raman et al. [39] presented an a library which is built on top of Pthreads
library to facilitate the writing of parallel programs and improve their per-
formance (by adjusting task scheduling and thread parallelism degrees) when
their working environments differ. Its mechanisms of online parallelism adap-
tation requires a developer to modify programs in order to specify certain
environment features. We provide an API that does not require such instru-
mentation to source code.

DOPE [39] and Parcae [40] were compiler-based approaches for dynamic
parallelism adaptation. Both approaches paused program execution while
altering its parallelism degree. Our two methods for parallelism control per-
form without halting program execution.

8.1.2 Parallelism adaptation with feedback control

Feedback control loops have been adopted as cornerstones of software-intensive
and self-adaptive systems [27]. It has been been addressed in previous works
[11, 7, 12, 13, 14, 15, 16, 17, 18, 19, 41, 42, 43, 44] to dynamically adapt
thread parallelism using control techniques for both TM and non-TM sys-
tems. These works either require offline training procedures to obtain an
initial form of a function for parallelism prediction, or demand to incremen-
t/decrement the thread number progressively in order to search its optimal
value. A notable exception in [45] described a Markov chain-based model
which is able to perform parallelism prediction relying on sampling four on-
line metrics. Both of our models on parallelism control only sample two
metrics. Fewer sampling metrics cause less online overhead.
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Heiss et al. [18] proposed two approaches to dynamically adjust thread
number: (1)adjusting by one until performance becomes worse and (2) de-
termining the number of thread number to regulate by a more sophisticated
control function called Parabola Approximation (PA). The coefficients of PA
function are continuously improved based on the throughput. Similarly,
Ansari et al. [11, 7] proposed to adapt the parallelism online by detect-
ing the CR changes of applications. The parallelism is regulated if the CR
falls out of the pre-set CR range or is not equal to a single predefined CR
value. Ansari et al. gave five different algorithms that searched the best par-
allelism degree linearly or exponentially. Likewise, Chan et al. [41] presented
two approaches which simply increase and decrease the parallelism degree by
one based on the CR and commit rate (the number of commit per unit time).
Ravichandran et al. [15] presented a model which adapts the thread number
in two phases: exponential and linear. Similarly, in [42] the parallelism de-
gree is incremented cubically and later regulated linearly. During decrement,
linear decrements are followed by multiplicative decrements. Our parallelism
control models can resolve the CR range which is adaptive to the online pro-
gram behaviour rather than a fixed value as in [11, 7]. Additionally to the
simple model that searches the optimal parallelism degree, we presented a
probabilistic model which does not require the linear or exponential search
phases, thus it can shorten the profiling time.

Rughetti et al. [12, 13] utilised a neural network (machine-learning ap-
proach) to enable performance prediction of STM applications. The neural
network is trained to predict the wasted transaction execution time which
in turn is utilised by a control algorithm to regulate parallelism. In [16],
Rughetti et al. integrated the machine learning approach with and ana-
lytic approach, which not only reduced the number of training samples but
also improved the prediction precision than that of a pure analytic model.
A similar work from Di Sanzo et al. [17] proposed to estimate the trans-
action abort probability rather than the wasted time. Nevertheless their
approach of concurrency regulation is limited to the optimistic concurrency
control where transactions are aborted and resumed right upon conflicts. Di-
dona et al. [14] provides an approach to dynamically predict the parallelism
based on the workload (duration and relative frequency, of read-only and
update transactions, abort rate, average number of writes per transaction)
and throughput, through one feedback control loop its prediction can be con-
tinuously corrected. Instead of using machine learning techniques, in [19],
the parallelism degree was predicted by a Collaborative Filtering (CF) pre-
diction technique. CF could estimate a preferred parallelism degree through
exploiting preferences and ratings by the user from a set of training data.
Analogising with above approaches, our methods do not need offline training
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procedure to form prediction functions.
Some works have addressed parallelism adaptation on non-TM platforms.

Sridharan et al. [43] proposed to linearly search the optimal parallelism
degree. A program progresses with a non-optimal degree during the search
period and it is likely that the program may already enter a new phase
during the search. We proposed a probabilistic model which skips the search
procedure and can compute a near-optimal parallelism degree. Sridharan et
al. gave another approach in [44]. However, this approach requires to reset
the parallelism degree to be 1 and to resume a new prediction. Resetting
parallelism degree can slow down program execution. Both of our approaches
on parallelism adaptation do not perform parallelism reset.

In [46] we have provided the simple and probabilistic models to regulate
the parallelism degree. A weak point of the two models is that their phase
decision functions either require additional profile lengths to make decisions
or are not sensitive enough to phase changes under certain conditions. This
work presented an advanced phase decision function that is more adaptive
and sensitive to phase changes. Moreover, this work enhances application
performance with thread mapping control. The thread mapping control is
served as a slave loop to the main loop: parallelism control loop.

8.2 Parallelism and Thread Mapping Adaptation

Some works targeted for non-TM systems. Wang et al. [47] gave an offline
compiler-based approach for OpenMP programs. Two machine learning al-
gorithms (that require offline data training), namely feed-forward Artificial
Neural Network (ANN) and Support Vector Machine (SVM) are employed,
to dictate parallelism degree and task mapping rules respectively. Tournavi-
tis et al. [48] enhanced the work of Wang et al. by adding a profile-driven
approach to the static compiler analysis. Without a compiler assistance,
Emani et al. [8] utilised a number of different offline trained experts to per-
form prediction. However, the above works only dealt with task mapping
rather than mapping threads to cores. Moreover importantly, our work does
not require offline training.

Diener et al. [49] described two methods, i.e. Exhaustive Search and
Heuristic Algorithm, to resolve thread placement issues. The authors pro-
posed a data sharing metric used to measure how much a certain thread
placement can benefit from data sharing. This is calculated by aggregating
the shared cache access between two threads with a high metric indicating
high data sharing among caches. Both methods require to perform simula-
tion of the applications in order to obtain data sharing metrics. Contrasting
with the above offline approaches, our feedback control loops regulate both
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parallelism and thread mapping strategies online without offline simulation
for STM systems.

One previous work from Castro [9] investigated the online thread map-
ping on STM applications. Castro utilised an offline training procedure to
obtain a predictor of the optimum thread mapping strategy and employed
it to estimate a thread-to-core mapping solution online. No prior literature
has addressed the issue on coordination of parallelism and thread mapping
for TM systems, with an exception of our work in [32]. In that work, the
thread mapping decision function is only called from a single state of its au-
tomaton where all the mapping strategies are profiled. Whereas in this work,
the thread mapping decision function forms a complete automaton which is
controlled by a master loop. Furthermore we selectively profile the mapping
strategies which reduce the performance penalty. Additionally, comparing
with our work in [32], we designed a better phase decision function which
can better prevent controller over-react to CR fluctuations.

8.3 Coordination of Feedback Control Loops

Gueye et al [50, 51] and Rutten et al [26] proposed the concepts of coordi-
nation of feedback control loops. Gueye et al designed two feedback control
loops to adapt the frequency of CPU and the number of cluster nodes, re-
spectively. An additional control loop is introduced to the system which
coordinates the control actions of the former two loops. The three control
loops function in parallel. The coordination loop delays the control actions
of the loop which controls the number of cluster nodes until the maximum
point of frequency has reached. In this case, the loop which controls the
cluster node commences to add nodes.

Likewise, we adopt the concept of control loop coordination with one
loop working as a master loop and one as a slave loop. However, our control
loops serve with distinguishing control objectives and demonstrate significant
differences in the loop designs.

9 Conclusion and Future Work

In this paper, we investigated autonomic management of thread parallelism
and mapping on a STM system. We examined the performance of different
static parallelism and concluded that online regulation of parallelism and
thread mapping is necessary to the TM application performance. Next, we
presented our approaches, i.e. utilising feedback control loops to automat-
ically manage threads online. Their performance was then compared with
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static parallelism. Lastly, we analysed the implementation overhead and
discussed the advantages as well as limitations of our work.

Thread migration impacts system performance and causes performance
degradation. Four different thread mapping strategies are selectively profiled
in order to obtain the optimum one. Such a profiling procedure is relatively
costly, as it brings thread migration and also imposes the program to work
partly under unsuitable mapping strategies. We plan to design a thread
mapping strategy predictor which can predict the optimum thread mapping
strategy in one step. Compilers are able to analyse and provide sufficient
information (e.g. the memory-intensive and computation-intensive code) of
applications as well as their underlying hardware. This information together
with online profile information can construct the predictor for the optimum
strategy. Furthermore, our approach on thread control for STM system can
be transferred to HTM or Hybrid systems which can demonstrate better
performance by taking advantage of hardware support in future work.
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