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Abstract

We consider the problem of indifference pricing of reinsurance contracts that contain a

reinstatement clause. We define the indifference price relative to both a monetary utility func-

tion and a risk measure, to take into account both the risk reduction and the relief of capital

immobilization provided by reinsurance. We characterize the indifference price as the unique

solution to a fixed point equation and we bound the price by two easily computable values,

if one has access to losses simulations. We illustrate our results on a European catastrophe

insurance portfolio, and we conduct a simulation study for comparison and reproducibility

purposes, where we include the case of dependence between claim arrivals, using Hawkes

processes.
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1 Introduction

Risk pricing is a major issue for insurance companies for at least two obvious practical reasons:

in the direct selling of insurance contracts to individual agents, companies have to compute and

propose a premium to their clients and on the other hand, when insurance companies transfer

a part of their underwritten risk through reinsurance, they also have to agree on a premium

amount.

Several theoretical and practical premium calculations principle are available [21, 13, 8], and the

actuarial science literature includes systematic studies of these premium principles, in particular

in relation with stochastic orders [16]. The indifference pricing, also called sometimes the zero

utility principle asserts that the buyer’s price should be such that the buyer is indifferent between

paying nothing a not having a reinsurance (say) contract or paying the price now to receive

reinsurance payments over suffered claims. ”Indifferent” means here that her expected utility

should be the same, with or without the contract, the price being the adjustment variable

to achieve equality. Instead of expected utility, we consider in this paper the more practical

point of view of monetary utility functions and convex risk measures (see Section 2.1 for precise

definitions). Let us briefly describe our approach.

1.1 Summary of the Approach

When a reinsurance contract is purchased, it lowers the direct exposition of the insurance com-

pany, and potentially improves its wealth. Consequently, the needed regulatory capital is ex-

pected to decrease, which lowers the cost of immobilizing capital. In this paper, we measure

the effect of the reinsurance contract on the ceding company’s wealth using a monetary utility

function U , and we measure the effect of capital immobilization using a convex or coherent risk

measure ρ.

Let us assume that the firm supports a cost of capital c, with 0 < c < 1. We denote R the net

result of the insurance company without a given reinsurance layer, and RXL(p) the net result

with the layer, when paying a price p. We define the indifference premium, relative to the pair

(U, ρ), as the solution of the equation

U [R− c ρ(R)] = U
[
RXL(p)− c ρ(RXL(p))

]
.

This price takes into account both the change in utility due to the layer addition and the change

in reserves because of the cost of capital. When the reinsurance contract contains reinstatements,

the total premium paid by the ceding company is a random variable (see Equation (2.5)), and

we cannot directly apply the cash additivity property (Definitions 2.1 and 2.2) of U and ρ to

compute p explicitly. However, using both the convexity of ρ and the concavity of U , it is possible

to bound p by two simple values, that are easily computable using simulations of the underlying

risks. We also characterize the indifference price p as the solution to a well-posed fixed point

equation, which allows for numerical approximation of the price.

We provide numerical values of the indifference prices on a class of contracts with increasing limit

and fixed capacity, on an underlying natural catastrophes risk corresponding to a real insurance

portfolio (AXA). The shape of the obtained prices is comparable with indifference prices obtained

from a set of simulated data. We include in our simulation study the case of Hawkes processes

for claim arrival simulation.

The equation defining the indifference price can be written U(R) = U(RXL(p)), where U(X) :=

U(X − cρ(X)). The functional U can be seen a cash super-additive monetary utility function,

in the sense that U(R + m) ≥ U(R) + m, for each nonnegative constant value m. The random

variables R and RXL mentioned above are observed only at a terminal maturity time t, typically

one year. To better understand the interpretation of the cash super-additivity inequality, note
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that U(1) = 1 + c, which says that the overall monetary utility of having 1 Euro of capital at

time t is equal to 1 plus the utility of the relief from having to hold capital, equal to 1× c. We

discuss this further in Section 3.1.

1.2 Related Literature

The literature on reinsurance problems is large: we refer the reader to the monographs [1] and

[8] and the references therein. Comparatively, there are little references concerning the pricing

of reinsurance contracts containing reinstatements. Early references are [23], [24] and [3]. In

particular, Sundt [24] provides a formula for the pure premium of contracts with reinstatements,

which is adapted in [3] to the standard outputs of CAT models, known as event loss tables.

The presence of reinstatements make the determination of the total aggregate losses distribution

not obvious: several solutions are derived in [26] and [22]. This last reference also contains

a comparison of the properties of different premium calculation principles, based on moments

or on comonotonic risk measures. To avoid computing the probability law of the aggregate

losses, Hürlimann [17] provides a distribution free approximation to pure premiums of layers

with reinstatements, using maximal distributions for certain stochastic orders under moment

constraints on the claim arrival process, and on the claim size distribution. The authors of [15]

take an optimal contract point of view: the reinsurance contract parameters are chosen in order

to minimize the expected distance between the loss and the premium income.

In a time dynamic setting, [25] and [26] study the ruin probability of a cedent having reinsurance

with reinstatements, first with a pure premium assumption and then under standard deviation

and PH-transform principles. The authors of [2] characterize the finite time ruin probability in a

continuous time model, as the solution to a partial integro-differential equation and as the fixed

point of a well behaved operator, which makes a numerical approximation possible.

The paper is organized as follows: in Section 2, we provide some introductory definitions and

properties of risk measures and monetary utilities, then we precisely describe the class of reinsur-

ance contracts we are interested in. We define the indifference price relative to both a monetary

utility and a convex risk measure in Section 3, then we give some properties along with upper and

lower bounds, for which we perform a simple asymptotic analysis. Section 4 contains numerical

examples, from a real portfolio and from losses simulation.

2 Model and Assumptions

2.1 Monetary Risk Measures and Utility Functions

The indifference price considered in this paper is relative to both a monetary utility function and

a risk measure. For clarity of the paper, we briefly provide here some definitions and intuitions,

we refer the reader to [11] (Chapter 4) for a more complete treatment.

Risk Measures. Motivated by some imperfections of traditional risk measures such as the

Value-at-Risk (VaR), which is recommended by the Solvency II European regulatory requirement

for insurance companies, Artzner & al. [4] and Frittelli and Rosazza-Gianin [12] introduced the

notions of coherent and convex risk measures. These objects map a class X of random variables

with R. Typically, we take X = L∞(P) or X = Lp(P) with p ≥ 1, where (Ω,F ,P) is a fixed

probability space.

Definition 2.1. ρ : X → R is a law invariant coherent risk measure if

1. ρ is monotone, in the sense that X ≤ Y almost surely implies that ρ(X) ≥ ρ(Y ).

2. ρ is cash-additive: ∀m ∈ R, ρ(X +m) = ρ(X)−m.
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3. ρ is convex : For each X and Y in X and for all λ ∈ [0, 1], ρ(λX + (1− λ)Y ) ≤ λρ(X) +

(1− λ)ρ(Y ).

4. ρ is positively homogeneous: ∀λ ∈ R+, ρ(λX) = λρ(X).

5. ρ is law-invariant: X
d
= Y implies that ρ(X) = ρ(Y ), where

d
= denotes equality in distri-

bution.

If ρ satisfies conditions 1. to 4. in Definition 2.1, then it is called a coherent risk measure, as

introduced in [4]. We briefly discuss here the economic interpretations behind these properties.

Let us start with property 2., which gives a unit to the value ρ(X): it says that ρ(X) has the

same unit as m ∈ R. Since here m ∈ R is considered as a constant value of capital (Euros, Dollars

etc.), then ρ(X) also represents a capital amount. In particular, ρ(X + ρ(X)) = 0, so ρ(X) is

the constant amount of capital such that, when put in reserve in front of the risky position X,

the new position X+ρ(X) becomes riskless, from the point of view of ρ. Property 1. is the most

obvious: it states that if a revenue Y is bigger than a revenue X in all states of nature, we want

to associate to it a lower risk value, and in particular a lower amount of reserve. The convexity

property 3. corresponds to the idea that rational agents should prefer diversification, and under

property 4., it is equivalent to the subadditivity of risks. The positive homogeneous property

4. says that ρ is not sensitive to the size of positions, which is a strong assumption to make.

On the other hand, it also says that the risk measurement procedure should be independent of

the underlying currency, which would correspond to multiplication by a positive constant. Note

that if ρ is positively homogeneous, then ρ is normalized, in the sense that ρ(0) = 0. Finally,

property 5. is of a more probabilistic nature, and says that risk measurement only depends on

the underlying distribution, and not on the specific origin of the risk.

Monetary Utility Functions. Risk measures are given a particular orientation: note that

here positive random variables represent gains, so we consider non increasing risk measures, and

cash-invariant with a minus sign. By opposition, a monetary utility is non decreasing, concave

and cash-invariant with a plus sign.

Definition 2.2. U : X → R is a coherent monetary utility if

1. U is monotone, in the sense that X ≤ Y almost surely implies that U(X) ≤ U(Y ).

2. U is cash-additive: ∀m ∈ R, U(X +m) = U(X) +m.

3. U is concave : For each X and Y in X and for all λ ∈ [0, 1], U(λX + (1 − λ)Y ) ≥
λU(X) + (1− λ)U(Y ).

4. U is positively homogeneous: ∀λ ∈ R+, U(λX) = λU(X).

Consequently, if ρ is a coherent risk measure, U(X) := −ρ(X) defines a coherent monetary

utility function. Except for the cash-invariance and positive homogeneity properties discussed

above, the remaining properties of a monetary utility are standard assumptions in the economic

literature. Note however that the class of monetary utility functions do not contain expected

utilities as a particular case. On the contrary, the only expected utility function which is also

cash-additive is linear, corresponding to a risk neutral agent. We refer the reader to the book [9]

for a comprehensive treatment of monetary utility functions. Let us now give some examples of

risk measures and monetary utilities that will be used in Section 4.

Examples

For a given random variable X, FX denotes its survival function defined by FX(x) := P(X > x)

and qX denotes its tail quantile function, defined as the generalized inverse of FX :

qX(u) := inf{x ∈ R | FX(x) ≤ u}.
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Distortion Risk Measures. Consider a distortion function ψ : [0, 1] → [0, 1], i.e. a non

decreasing function with ψ(0) = 0 and ψ(1) = 1. Assuming that ψ is left-continuous, we defined

the distortion risk measure ρ associated to ψ by:

ρ(X) :=

∫ 1

0
q−X(u)dψ(u). (2.1)

Such risk measures are monotone, cash-additive, positively homogeneous and law invariant. The

only missing property to make them coherent is the convexity property 3. of Definition 2.1.

If the probability space (Ω,F ,P) has no atoms, then one can prove that a risk measure of the

form (2.1) is convex if and only if the distortion function ψ is concave. Various examples of

concave distortions are standard in the actuarial science literature (see eg. [27]), such as the

proportional-hazard transform ψPH(u) := ur, with 0 < r < 1 (see Figure 6 and the associated

example), or the Average Value-at-Risk (AVaR) distortion ψα(u) := min(uα , 1) (which is the main

example used in Section 4), which make these risk measures coherent.

Note that the class of distortion risk measures coincides with the class of comonotone risk mea-

sures. The next example provides a monetary utility (or equivalently, a risk measure) which is

coherent, but not comonotone (see eg. [19], Section 3.2).

The Semi-deviation utility. For 0 ≤ δ ≤ 1 and 1 ≤ p < +∞, define the semi-deviation

utility as follows :

U(X) := E[X]− δE
[
(X − E(X))p−

]1/p
. (2.2)

U is a positively homogeneous law-invariant monetary utility function. U favors the random

variables with high expectation, and penalizes the (semi) deviations of X away below its average

E[X].

Dual Representation. Assume that X = L∞(P). A law invariant coherent monetary utility

U can be written as follows [4, 18]:

U(X) = inf
Q∈Q

EQ[X], X ∈ X ,

where Q denotes a set of admissible scenarios, which is a subset of the setM1(P) of probability

measures Q that are absolutely continuous with respect to P. This representation says that a

coherent monetary utility is always a worst case expectation, over a set of possible scenarios. For

instance, if U(X) = −
∫ 1
0 q−X(u)dψ(u), where ψ is a distortion function, then Q is the so-called

core of ψ ◦ P, defined by

Q = {Q ∈M1(P) |Q(A) ≤ ψ(P(A)), for all A ∈ F} .

2.2 Non Linear Contract with Reinstatements

The Contract Payoff

Let u0 be the initial surplus of an insurance company, and let β be the gross premium income per

time unit, so that the surplus process R accumulated between times 0 and t, without reinsurance,

is given by

R(t) = u0 + βt−
Nt∑
i=1

Xi (2.3)

where {Nt, t ≥ 0} is a non decreasing integer valued pure jump process modelling the number

of claims up to time t, and {Xi, i ∈ N∗} is a sequence of independent and identically distributed

(i.i.d.) random variables modelling the individual claim sizes of the insurance portfolio.
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In an Excess-of-Loss (XL) reinsurance contract with retention ` and limit m, the reinsurer covers

the part of each claim that exceeds `, up to the upper bound `+m. The reinsurer’s part Zi and

the insurer’s part Ci related to a claim Xi are then given by

Zi = (Xi − `)+ − (Xi − `−m)+

and Ci = min(Xi, `) + (Xi − `−m)+.

Let

Z(t) :=

Nt∑
i=1

Zi

be the aggregate liability of the reinsurer. It can be limited to a maximal amount M . When

M is a multiple of the individual maximum cover m, i.e when M = (k + 1)m, we say that

the reinsurance contract contains k reinstatements. In that case the aggregate liability of the

reinsurer is given by Rk(t) := min(Z(t), (k+1)m). Each arrival of a new claim that consumes part

of the layer is followed by the reconstitution of the layer cover, up to the remaining reinstatements.

For the j-th reinstatement, the cedent pays a premium Pj given by

Pj := cjp0
1

m
min [max(Z(t)− (j − 1)m, 0),m] , (2.4)

where p0 is the premium paid by the cedent at initiation of the contract, and where cj , j = 1, . . . , k

are reinstatements premium, expressed as a percentage of p0.

So the total premium paid by the cedent during the considered period is given by:

P (t) := p0 +
1

m

k∑
j=1

(cj p0) min [max(Z(t)− (j − 1)m, 0),m] . (2.5)

In other words, the payments are made following a pro-rata-capita principle: first, a premium p0
is paid by the insurance company at initiation of the contract. Then, after arrival of each claim

using up the layer cover, the cover is reinstated, in exchange of a premium payment Pj given in

(2.4). Note that Pj is proportional to the fraction of the total layer capacity m that is used by a

claim. Note also that a new claim arrival which is greater than `, i.e. a jump of Z(t), can either

use up one reinstatement layer, or go through two reinstatements partly. For more clarity, we

provide the Example 2.1 below, with detailed payments at each claim occurence. The wealth

process of the cedent with reinsurance can be written as

RXL(t) = u0 + βt−
Nt∑
i=1

Ci − P (t)

= u0 + βt−
Nt∑
i=1

Xi +

Nt∑
i=1

Zi − P (t)

= R(t) +

Nt∑
i=1

Zi − P (t). (2.6)

Remark 2.1. Note that the reinsurance contracts described above can include an aggregate de-

ductible L (see for instance [17]). In the present work, we take L = 0 for simplicity, but all the

results remain valid if L > 0. Moreover, in the numerical results provided in Section 4.2, one

can consider that the simulated distributions correspond to losses above L, instead of losses above

0.
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In what follows, we will denote for simplicity

Ñ(t) :=
1

m

k∑
j=1

cj min [max(Z(t)− (j − 1)m, 0),m] , (2.7)

so that the random total payment writes P (t) = (1 + Ñ(t))p0. The random variable Ñ(t), which

lies between 0 and k, represents the number of used reinstatements, and does not have to be an

integer.

Example 2.1. Let us consider a concrete example, allowing to better understand these contracts

payoffs. Assume that the insurance company enters an XL contract with one year maturity,

including two reinstatements and covering the losses between 200 and 300 (` = 200 and m = 100).

The initial premium required by the reinsurer is given by p0 = 10. The costs of the first and second

reinstatements correspond respectively to 80% and 50% of the initial premium p0 (c1 = 0.8 and

c2 = 0.5).

Assume that the first four losses are given by the following amounts:

1. X1 = 250: we have then C1 = 200 and Z1 = 50. The insurance company has to reinstate

half of the layer, to do so it pays 50 ∗ 1
100 ∗ 80% ∗ 10 = 4.

If there were no more claims, the value of Ñ(t) would be 80%∗ 1
100 ∗min[max(50, 0), 100] =

0.4.

2. X2 = 290: we have then C2 = 200 and Z2 = 90. The ceding company has to reinstate 90%

of the layer. For this, it uses what is left of the first reinstatement (50) and a part of the

second one (40). So it pays : 50 ∗ 1
100 ∗ 80% ∗ 10 + 40 ∗ 1

100 ∗ 50% ∗ 10 = 6.

If there were no more claims, Ñ(t) would be now equal to 0.4+50∗ 1
100∗80%+40∗ 1

100∗50% =

1.

3. X3 = 330: in that case all the layer has to be reinstated, but only 60% of the second

reinstatement is available, the layer is then reinstated only up to this limit and the company

pays: 60 ∗ 1
100 ∗ 50% ∗ 10 = 3.

All the reinstatements have been used and the value of Ñ(t) is now
∑k

j=1 cj = 1.3.

4. X4 = 300, the insurance company was only covered for the losses between 200 and 260, we

have then here Z4 = 60 and C4 = 240. The contract stops and the ceding company is not

reinsured for the rest of the year.

The total premium paid in this example amounts to P = 10 + 4 + 6 + 3 = 23. This value could

have been lower if all the reinstatements had not been used before the end of the contract.

Reinstatement clauses allow the ceding insurance company to delay its premium payment in time,

and to pay for new covers only when needed. In practice, it is usual that a pro-rata-temporis is

also applied. For the reinsurer, the reinstatement clause has the obvious advantage to limit its

total exposition.

3 Indifference Pricing and Bounds

The objective of this paper is the numerical approximation of the indifference price p0 of a

reinsurance layer with reinstatements, that we define as a solution of an equation indicating that

the utility of an insurance company, when it buys the contract and pays the price p0, is equal

to its utility when it does not enter the transaction. Since the contract contains reinstatements,

the total premium paid is random (see equation (2.5)). It is then not possible to use directly the

cash-additivity property to calculate the indifference price. In the next sections we will bound

this price by two easily computable values, when one has access to losses simulations. We will

also show how to numerically compute p0 as the fixed point of a well behaved function.
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3.1 Cost of Capital and Cash Super-additivity

Recall the definitions of R and RXL given respectively in (2.3) and (2.6). For simplicity, we

momentarily drop the dependence of R and RXL on t and insist on the fact that RXL(p0)

depends on p0.

Assumption 3.1. The cedent maximizes its concave monetary utility function U , meaning that

U satisfies properties 1, 2 and 3 of Definition 2.2, and compute its needed regulatory capital using

a convex risk measure ρ, i.e. satisfying properties 1, 2 and 3 of Definition 2.1. Moreover, U and

ρ are normalized, in the sense that U(0) = ρ(0) = 0.

Note that even if the class of concave monetary utilities coincides with the class of convex

risk measures, we do not assume that U and ρ described in the previous assumption satisfy

U = −ρ. Typical examples used in practice correspond to the coherent case, where both U and

ρ are additionally positively homogeneous. Indeed, a common choice for U in insurance and

reinsurance practice is merely the expectation: the concave utility is just the expected return.

Another common choice is the expected return, penalized by the standard deviation. A standard

choice for a coherent ρ in practice is the so-called Average Value-at-Risk defined in Section 2.1.

Definition 3.1. We say that p0 is the indifference price of a given XL layer relatively to the

pair (U, ρ), if p0 solves the equation

U (R− c ρ(R)) = U
(
RXL(p0)− c ρ(RXL(p0))

)
(3.1)

where c is a given cost of capital.

This definition takes into account both the improvement of the total exposition due to the layer

addition and the expected drop of the needed capital.

When the contract contains an unlimited number of free reinstatements (or when there are no

reinstatements), then it is straightforward to determine the value of p0, solution to (3.1). Indeed,

in that case Ñ(t) is equal to 0 and using the cash additivity properties of U and ρ, (3.1) can be

rewritten

U (R− c ρ(R)) = U

(
R(t) +

Nt∑
i=1

Zi

)
− p0 − c ρ

(
R(t) +

Nt∑
i=1

Zi

)
−cp0,

which entails that

p0 =
U
(
R(t) +

∑Nt
i=1 Zi

)
− U(R)

1 + c
, (3.2)

where U(X) := U(X− c ρ(X)). However, when the contract contains a clause of limited number

of reinstatements, the random variable Ñ(t) is not equal to 0 in general, and we cannot simply

use the cash-additivity property to compute p0.

Equation (3.1) can be written U(R) = U(RXL(p0)). The functional U is cash super-additive,

indeed:

U(R+m) = U(R) + (1 + c)m ≥ U(R) +m, for m ≥ 0.

The cash additivity property has been largely discussed and criticized, since it requires that

risky positions and reserve amounts are expressed in the same numéraire. However, insurance

companies and financial institutions in general determine today the reserve amount to cover

future risky positions. The cash-additivity property implicitly means that future risky amounts

are discounted, using a deterministic discount factor. Otherwise, as discussed in [10], one should
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use cash-subadditive risk measures (or cash super-additive monetary utilities) since if r denotes

a deterministic interest rate, then ρ(R−m) = ρ(R) + m
1+r ≤ ρ(R) +m, for m ≥ 0.

Now we want to take into account the cost of collecting now an amount m of capital, we would

get ρ(R−m) = ρ(R) + m
1+r (1 + c). For simplicity, we will still assume that future risky incomes

are already discounted, and we define c as the cost of raising capital, on top of the deterministic

risk free interest rate. This is coherent with the fact that U(R+m) = U(R)+(1+c)m. We refer

to [10] for a much more detailed discussion and analysis of cash-additivity and its relaxations.

3.2 A Fixed Point and Pricing Bounds

We begin this subsection by proving that Equation (3.1) has a unique solution.

Proposition 3.1. If U and ρ are cash-additive, monotonic (respectively non-decreasing and non-

increasing), and respectively concave and convex, then there exists a unique p0 solving Equation

(3.1). Moreover, there exists a continuous nonincreasing function ϕ such that ϕ(p0) = p0.

Proof. Again, we will drop here the dependence in t of R, RXL and Ñ for simplicity of notation.

Recall that

RXL = R+

Nt∑
i=1

Zi − (1 + Ñ)p0.

Using cash-additivity, we can write (3.1) as

p0 =
U
(
R+

∑Nt
i=1 Zi − p0Ñ

)
− U(R)

1 + c
. (3.3)

Now by concavity of U and convexity of ρ, the map p 7→ U
(
R+

∑Nt
i=1 Zi − pÑ

)
is concave, and

thus continuous. By the assumed monotonicity properties, this map is also non-increasing. Let

ϕ(p) :=
U
(
R+
∑Nt
i=1 Zi−pÑ

)
−U(R)

1+c , so that (3.3) is equivalent to ϕ(p0) = p0. We already know that

ϕ is continuous and non-increasing, and since ϕ(0) > 0, ϕ admits a unique fixed point. Note that

the case where ϕ(0) = 0 is excluded because it would imply that Zi = 0 almost surely, which

has no interest in practice. �

Note that in the above proposition and in its proof, we do not assume that U or ρ are positively

homogeneous: this proposition covers the class of concave monetary utilities and convex risk

measures, which are not necessarily coherent.

On top of proving existence and uniqueness of a solution to (3.1), we showed that the indifference

price relative to the pair (U, ρ) can be characterized as the unique fixed point of a monotonic

function, which allows for a numerical approximation of p0, that we carry out in Section 4.2.

We can also directly bound p0 using both the concavity of U and the convexity of ρ. To derive

the bounds provided in Theorem 3.1 below, we need to introduce the following γ-dilatations.

For U and ρ satisfying Assumption 3.1, and for γ > 0, we define

Uγ(X) := Uγ(X)− cργ(X), X ∈ X , (3.4)

where Uγ and ργ are the γ-dilatations of U and ρ, defined by

Uγ(X) := γU(
1

γ
X) and ργ(X) := γρ(

1

γ
X). (3.5)

By convexity of ρ and concavity of U , one can prove that γ 7→ ργ is non increasing and that

γ 7→ Uγ is non decreasing (see Proposition 3.4 in [5]). Moreover,

U0 := U0 − cρ0 := lim
γ→0+

Uγ − c lim
γ→0+

ργ

9



is well defined, where ρ0 is the lowest coherent risk measure dominating ρ and similarly, U0 is

the greatest coherent monetary utility dominated by U (Proposition 3.8 in [5]). This criteria U0

naturally appears in the formulation of Theorem 3.1 below.

Lemma 3.1. Assume that U is concave and ρ is convex. Then for every λ ∈ (0, 1), and for

every X and Y in X ,

ρ(X + Y ) ≤ ρλ(X) + ρ1−λ(Y ) and ρ(X − Y ) ≥ ρ 1
λ

(X)− ρ 1−λ
λ

(Y )

and we have by symmetry similar inequalities for U :

U(X + Y ) ≥ Uλ(X) + U1−λ(Y ) and U(X − Y ) ≤ U 1
λ

(X)− U 1−λ
λ

(Y ).

Proof. We only prove the inequalities for ρ, that imply the ones for U by replacing ρ by −ρ.

For the first inequality, note that by convexity of ρ, we get

ρ(X + Y ) = ρ

(
λ
X

λ
+ (1− λ)

Y

1− λ

)
≤ λρ(

X

λ
) + (1− λ)ρ(

Y

1− λ
)

= ρλ(X) + ρ1−λ(Y ).

For the second inequality, we use the convexity of ρ again to write

ρ(λX) = ρ

(
λ(X − Y ) + (1− λ)

λ

1− λ
Y

)
≤ λρ(X − Y ) + (1− λ)ρ(

λ

1− λ
Y ),

which entails that

ρ(X − Y ) ≥ 1

λ
ρ(λX)− 1− λ

λ
ρ(

λ

1− λ
Y )

= ρ 1
λ

(X)− ρ 1−λ
λ

(Y ).

�
We are now in a position to state the indifference price bounds, using the best coherent lower

approximation U0 of U , which plays a crucial role here.

Theorem 3.1. Assume that U and ρ satisfy the properties of Assumption 3.1. If p0 is the

indifference price of a given XL layer with k reinstatements relatively to the pair (U, ρ), then

p1 ≤ p0 ≤ p2,

where

p1 :=
A

1 + c− U0

(
−Ñ(t)

) , p2 :=
A

1 + c+ U0

(
Ñ(t)

) , (3.6)

and

A := U

(
R(t) +

Nt∑
i=1

Zi

)
− U(R(t)).

Remark 3.1. 1. From the definition of p0 and the value of A given above, it is clear that the

indifference price p0 and the associated bounds depend on what the contract buyer already

has in portfolio. If there are running reinsurance contracts, then it would be straightforward

to include them in R(t). So the price depends here on how the considered additional layer

diversifies the overall portfolio, which is a natural economic property.

10



2. Note that Ñ = 0, which corresponds to the case of an infinite number of free reinstatements

leads to p0 = p1 = p2 and these values coincide with the expression given in (3.2).

3. In the case where c = 0 and U is given by the expectation, p0 = p1 = p2 is equal to the

pure premium, and the obtained formula matches the one given in [24].

4. From the expression (2.7), we see that Ñ(t) is a sum of comonotone random variables, as

non decreasing functions of Z(t). If both U and ρ are comonotonic additive, which is the

case if they are defined as integrals with respect to distorted probabilities as in (2.1), then

U0 = U is also comonotonic additive and the expression U
(
Ñ(t)

)
appearing in the upper

bound p2 can be simplified. Note however that −U
(
−Ñ(t)

)
does not simplify the same

way, and this is the only thing differentiating the lower bound from the upper bound.

Proof. of Theorem 3.1

Equation (3.1) is equivalent to

U

(
R(t) +

Nt∑
i=1

Zi − p0(1 + Ñ(t))

)
− c ρ

(
R(t) +

Nt∑
i=1

Zi − p0(1 + Ñ(t))

)
= U (R(t))− cρ(R(t)). (3.7)

Let λ ∈ (0, 1). Using Lemma 3.1 , the monotony properties of γ 7→ Uγ and γ 7→ ργ and the fact

that both U0 and ρ0 are coherent, we get

U

(
R(t) +

Nt∑
i=1

Zi − p0(1 + Ñ(t))

)
≤ U 1

λ

(
R(t) +

Nt∑
i=1

Zi

)
− U 1−λ

λ

(
p0

[
1 + Ñ(t)

])
≤ U 1

λ

(
R(t) +

Nt∑
i=1

Zi

)
− p0 U0

(
1 + Ñ(t)

)
and

ρ

(
R(t) +

Nt∑
i=1

Zi − p0(1 + Ñ(t))

)
≥ ρ 1

λ

(
R(t) +

Nt∑
i=1

Zi

)
− p0 ρ0

(
1 + Ñ(t)

)
.

These inequalities, combined with (3.7) entail that

p0 U0

(
1 + Ñ(t)

)
≤ U 1

λ

(
R(t) +

Nt∑
i=1

Zi

)
− U(R(t)).

Now, since 1 + Ñ(t) > 0 a.s. and since U0 and ρ0 are monotone and normalized (since U and ρ

are), we get U0

(
1 + Ñ(t)

)
> 0, from which we deduce the inequality

p0 ≤
U 1

λ

(
R(t) +

∑Nt
i=1 Zi

)
− U(R(t))

1 + c+ U0(Ñ(t))
.

This last inequality being verified for every λ ∈ (0, 1), we get

p0 ≤ inf
λ∈(0,1)

U 1
λ

(
R(t) +

∑Nt
i=1 Zi

)
− U(R(t))

1 + c+ U0(Ñ(t))

 =
U1

(
R(t) +

∑Nt
i=1 Zi

)
− U(R(t))

1 + c+ U0(Ñ(t))
= p2.

since γ 7→ Uγ is non decreasing, which completes the proof of the upper bound.
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For the lower bound, using Lemma 3.1 again, we get

U

(
R(t) +

Nt∑
i=1

Zi − p0(1 + Ñ(t))

)
≥ Uλ

(
R(t) +

Nt∑
i=1

Zi

)
+ p0 U0

(
−1− Ñ(t)

)
and

ρ

(
R(t) +

Nt∑
i=1

Zi − p0(1 + Ñ(t))

)
≤ ρλ

(
R(t) +

Nt∑
i=1

Zi

)
+ p0 ρ0

(
−1− Ñ(t)

)
.

By plugging these inequalities in (3.7), we have

p0 ≥
Uλ

(
R(t) +

∑Nt
i=1 Zi

)
− U(R(t))

1 + c− U0(−Ñ(t))
,

where we have used that 1+c−U0(−Ñ(t)) = U0

(
−1− Ñ(t)

)
< 0, since U0 and ρ0 are monotone

and normalized. The last inequality being satisfied for every λ ∈ (0, 1), we have

p0 ≥ sup
λ∈(0,1)

Uλ
(
R(t) +

∑Nt
i=1 Zi

)
− U(R(t))

1 + c− U0(−Ñ(t))

 = p1,

since λ 7→ Uλ is non decreasing.

�

Remark 3.2. The monotony properties of U and ρ implies that 0 ≤ p1. Furthermore, the

concavity and convexity properties of U and ρ implies that we have indeed p1 ≤ p2.

Let us provide an example, illustrating in particular the value U0. Assume that X = L∞(P).

The main example of concave but not coherent monetary functional is probably the entropic

monetary utility, defined by

U(X) := − logE [exp(−X)] , X ∈ X .

The γ-dilatation of U has the following well known dual representation

Uγ(X) := −γ logE
[
exp(−1

γ
X)

]
= inf

Q∈M1(P)

{
EQ(X)− γH(Q,P)

}
,

where H(Q,P) denotes the relative entropy of Q with respect to the reference probability measure

P and whereM1(P) is the set of probability measures on (Ω,F) which are absolutely continuous

with respect to P. When γ goes to 0, the γ-dilatation Uγ converges to the most conservative

coherent monetary utility U0 given by

U0(X) = inf
Q∈M1(P)

{
EQ(X), H(Q,P) < +∞

}
= P− ess inf(X).

Assume for simplicity that ρ is coherent, so that ργ = ρ. In that case, Theorem 3.1 says that

U
(
R(t) +

∑Nt
i=1 Zi

)
− U(R(t))

1 + c+ k + cρ(Ñ(t))
≤ p0 ≤

U
(
R(t) +

∑Nt
i=1 Zi

)
− U(R(t))

1 + c− cρ(Ñ(t))
. (3.8)

since

U0(Ñ(t)) = ess inf(Ñ(t))− cρ(Ñ(t))

= −cρ(Ñ(t)) and

−U0

(
−Ñ(t)

)
= −ess inf(−Ñ(t)) + cρ(Ñ(t))

= k + cρ(Ñ(t)).
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When both U and ρ are additionally positively homogeneous, then these measures are of course

invariant under γ-dilatation and in particular, U0 = U .

Corollary 3.1. Let U be a coherent monetary utility and ρ be a coherent risk measure. Then

U
(
R(t) +

∑Nt
i=1 Zi

)
− U(R(t))

1 + c− U
(
−Ñ(t)

) ≤ p0 ≤
U
(
R(t) +

∑Nt
i=1 Zi

)
− U(R(t))

1 + c+ U
(
Ñ(t)

) .

In the next section, we numerically compute these bounds in the case of a real insurance portfolio,

and analyze them using simulated losses.

3.3 Asymptotic Analysis

The bounds obtained in the previous theorem are useful when for high layers, i.e. layers with

high retention, which is clearly visible from the numerical results presented in the next section.

To make this more precise, we provide here some asymptotic results in the regime where the

retention ` goes to infinity. Interestingly, in the case where X = L∞(P), the needed continuity

properties to be able to take a limit are derived from the cash-additivity properties of U and

ρ. So we will assume in this subsection that X = L∞(P), to be able to use the fact that cash-

additive functionals are continuous with respect to the uniform norm. If X = Lp(P), with p ≥ 1

it is the concavity and convexity of U and ρ that entail continuity, and the same analysis can be

carried out using the results from [6].

Proposition 3.2. Assume that U and ρ satisfy the properties of Assumption 3.1 and let p0(`),

p1(`) and p2(`) the indifference price and the bounds given in Theorem 3.1, expressed as functions

of `, for a fixed m > 0. We have

|p2(`)− p1(`)| → 0 when ` goes to infinity.

Proof. Recall that

A(`) := A = U

(
R(t) +

Nt∑
i=1

Zi

)
− U(R(t)), with Zi = (Xi − `)+ − (Xi − `−m)+.

U is continuous with respect to the uniform norm of L∞(P). To see this, notice first that

X ≤ Y + ‖X − Y ‖∞ for any X and Y in L∞(P). The monotonicity and cash additivity of U

and ρ give,

U(X) ≤ U(Y ) + (1 + c) ‖X − Y ‖∞ .

Reversing the role played by X and Y , we obtain the desired continuity. It is clear that
∑Nt

i=1 Zi
converges almost surely to 0, which implies that it converges also in L∞(P) norm. This implies

that A(`) converges to 0 when ` goes to infinity.

By noticing that Ñ(t) also converges almost surely and hence in L∞(P) to 0 when ` goes to +∞,

we get that −U0(−1 − Ñ(t)) → −U0(−1) = 1 + c and U0(1 + Ñ(t)) → U0(1) = 1 + c. This

entails that |p2(`)− p1(`)| = p2(`)− p1(`)→ 0. �

Remark 3.3. The previous proposition also says that p0(`), the unique solution to (3.1) con-

verges to 0, which is obvious from an economic standpoint: the indifference price of a layer with

reinstatements and arbitrarily large retention should be arbitrarily close to 0.
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4 Numerical Analysis and Examples

4.1 Results for a Real Insurance Portfolio

In this subsection, we describe the values obtained for the bounds p1 and p2, that were computed

using an internal natural catastrophe model developed by the french insurer AXA. This model

took as input the risk characteristics of a European portfolio, and provided simulated losses as

output. For confidentiality reasons, we will not be more specific about this portfolio. However,

for comparison and reproducibility purposes, we also do the same exercice with simulated losses

in the next subsection, and provide the developed R code as supplementary material to this

article.

In figure 1 below, we represented the upper and lower bounds p1 and p2 obtained for layers with

retention equal to m + ` = 108(n + 1) euros and limit equal to m = 108 euros, for n varying

from 0 to 32. In other words, we computed the bound prices for 33 layer contracts, with the

same limit value, for a retention ranging from one hundred million euros to 3.3 billion euros. All

the contracts contain k = 4 possible reconstitutions, and each reconstitution when it happens, is

paid at c = 100% of the initial price. The prices are expressed as a percentage of m = 108, which

correspond to rates on line (RoL) in the reinsurance terminology. Note that for confidentiality

reasons, we have applied a a constant shift to the obtained prices, which does not change the

shape of the curves.

These reinsurance contracts cover an insurance portfolio of risk of natural catastrophes type.

The calculations have been made using 25000 years of simulations of losses from the considered

portfolio.

From expression (2.1), we get that the Average Value-at-Risk can be written

ρ(X) = 1
α

∫ α
0 q−X(u) du and recall the expression (2.2) of the semi-deviation monetary util-

ity function: the monetary utility used here is the semi-deviation utility with parameters p = 2

and δ = 1
2 . The coherent risk measure is the AV aRα with α = 1/200.

Figure 1: Rate on Line (RoL) bounds for a catastrophe insurance portfolio

We can see that the gap between p1 and p2 is important for the first contracts. This is due to the

fact that the first contracts correspond to intermediate retentions, for which the variance of the

random variable Ñ is large. In that case, the different quantities −U(−Ñ) and U(Ñ) contribute
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considerably to the gap between p1 and p2.

However, for contracts with a high retention, beginning from 1.3 billion Euros (n = 12), the

bounds are acceptable in practice. For intermediate retentions, where the bounds usefulness is

limited, it is still possible to compute p0 efficiently. This what we do next relying on simulated

losses.

4.2 Simulated Losses and Hawkes Processes

Hawkes processes [14] form a class of counting processes where current values are influenced by

past events, in particular by the past number of jumps: this is the so-called self-exciting property.

More precisely, the inhomogeneous intensity of a Hawkes process (Nt)t≥0 is expressed as

λt = λ0 +
∑
Tn<t

φ(t− Tn),

where (Tn)n≥1 are the jump times of N , λ0 > 0 and φ is a nonnegative function converging to 0

when t goes to infinity. So if a jump occurs at time Tn, the intensity increases by φ(t−Tn): this

models the self-exciting property. On the other hand, since φ returns to 0 after a large time, the

self-excitation tends to disappear.

In [14], Hawkes considers the particular case of exponential decay: φ(t) = αh exp(−βht), with

αh > 0 and βh > 0. In that case, each jump arrival instantaneously increases the intensity by

αh, then this influence decreases over time at rate βh. Note that when αh = 0, λt is constant

equal to λ0 and N is merely a Poisson process with intensity λ0.

In Figure 2, we depicted the obtained indifference price and associated upper and lower bounds

of various reinsurance layers, with fixed capacity m = 2 and retention ranging from ` = 10 to

` = 20. To generate this figure, we simulated 105 trajectories of losses, where claim arrivals

are driven by a Poisson process with intensity λ0 = 1 and claim sizes are given by independent

Pareto random variables with threshold parameter equal to 6 and shape parameter equal to 4.

The monetary utility is given by the semi-deviation utility with p = 2 and δ = 0.5 and the risk

measure is the Average Value-at-Risk with parameter α = 0.2. The cost of capital over the risk

free rate amounts to 3%. The underlying reinsurance contract contains k = 2 reinstatements,

with prices c1 = c2 = 1. The bounds are again not very good for small retentions, where the

price is unrealistically high anyway, since for those levels of retention the cover is systematically

used. The bounds are acceptable for intermediate and high retentions.
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Figure 2: Rate on Line (RoL) bounds - Simulated data - Poisson case
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Figure 3: Rate on Line (RoL) bounds - Simulated data - Hawkes process case

To have an idea of the effect of dependence among claim arrivals, we did the same exercice with

a Hawkes process, with parameters αh = 0.5, βh = 0.7 and the base intensity remains equal

to λ0 = 1. All the other parameters are kept unchanged. Figure 3 shows the results on the

same class of reinsurance contracts with fixed capacity and varying retention. Not surprisingly,

the effect of introducing a self-excitation feature on claim arrivals leads to a substantial price

increase.

To further illustrate the price increase, we fixed a particular layer: ` = 18 and m = 2. We

represented in Figure 4 the indifference price and bounds for this layer, where the self-excitation

parameter ranges between αh = 0.05 and αh = βh−0.05 = 0.65. This confirms the non negligible

effect on the price, that more than doubles in our particular case.
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Figure 4: RoL of the 2XS18 contract, as a function of the self-excitation parameter
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Figure 5: RoL of the 2XS18 contract, as a function of the cost of capital

As already mentioned, the cost of capital value taken to generate this graphs, which represents the

cost over the risk free rate, is c = 3%. This is suggested by both the empirical analysis conducted

by A. Damodaran [7], available online and the annual cost of capital study [20] developed by

a consulting firm, and also available online. In Figure 5, we also considered the single contract

with ` = 18 and m = 2, with varying cost of capital parameter, from c = 1% to c = 10%. We

observe that the effect on the indifference price is not significant.

To end this section, let us illustrate the impact on the bounds and on the price of a change in the

utility function. This analysis readily explains a change in the risk measure, that we keep fixed

for simplicity, and insist rather on the utility, that has a greater impact here, due to the term

c in front of the risk measure. Figure 6 shows the price and bound values for different coherent

17



monetary utilities, given by :

Ur(X) = −
∫ 1

0
q−X(u)dψr(u),

where ψr(u) := ur with r ∈ (0, 1]. Ur is the so-called Proportional Hazard (PH) transform with

parameter r. For r = 1, Ur is merely the expectation, and as r approaches 0, ψr very quickly

takes values close to one, and Ur approaches the worst case monetary utility. So r close to

0 corresponds to a very risk averse agent, ready to accept high prices for a reinsurance cover,

and when r approaches 1, Ur corresponds to a risk neutral agent. The risk measure chosen to

generate Figure 6 is the expectation ρ(X) = −EP[X]. When r = 1, both Ur and ρ are linear

functionals, and one can check then that the bounds from Theorem 3.1 coincide, which is clear

in Figure 6. On the other hand, when r is close to 0, the distance between the bounds is large

and prices are larger.
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Figure 6: RoL of the 2XS18 contract, as a function of PH-transform parameter

The R code to generate the simulations and all the figures is made available as a supplementary

material to this article, for comparison and reproducibility.

Conclusion

The approach we adopted in this paper allowed us to study indifference prices of reinsurance

layers with reinstatements, both theoretically and from an applied and numerical perspective, via

a simulation study, including the non standard case of dependence between claim arrivals. We

exploited the convexity and cash additivity properties of coherent monetary criteria to analyze

lower and upper bounds on the considered indifference price.

We only considered here a static point of view. It would be natural to extend this simple

model to a time dynamic framework where investment in financial markets is allowed for both

the insurer and the reinsurer, given that the reinsurer can choose the parameters of a contract

with reinstatements: this would lead to a mixed optimal contracting and indifference pricing

stochastic control problem, that we leave for further research.
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