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Abstract

This paper focuses on a non-proportional reinsurance pricing problem, for a layer

contract with reinstatements. After defining the indifference price with respect to both

a concave utility function and a convex risk measure, we prove that is is contained

in some interval whose bounds are easily calculable. We provide numerical examples

computed from real insurance data.
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1 Introduction

Risk pricing is a major issue for insurance companies for at least two practical reasons: on

the one hand, in the direct selling of insurance contracts to individual agents, companies

have to compute and propose a premium to their clients. On the other hand, when insurance

companies transfer a part of their subscribded risk through reinsurance, they also have to

agree on a premium amount.

Premium calculation principles constitute a standard topic in actuarial science. It relies on

objective (Von Neumann and Morgenstern [20]) or subjective (Savage [18]) expected utility

theory. We refer to Borch [4], Gerber [10], [11], Goovaerts, De Vylder and Haezendonck

[12] or Laeven and Goovaerts [9] and the references therein for details and surveys on the

different premium calculation principles.

More precisely, for a given probability space, a premium principle is a mapping π : X →
R ∪ {−∞; +∞}, assigning to each random variable in X a price π(X). For instance,

among the many classic criteria, we have the variance principle: π(X) := E(X) +βV ar(X)

(β > 0), or the Esscher premium: π(X) :=
E[XeαX ]
E[eαX ]

, (α > 0). A natural question consists

in asking what are the properties (or axioms) that characterize a given pricing principle.

The interest of the axiomatization is to give a small number of natural properties that a

premium principle should satisfy. We refer again to [9] for a study of these properties.

More recently, a similar axiomatic study of risk measures has been undertaken, following

the seminal paper of Artzner & al [2]. The idea here is to compute the minimal capital

to join to a position modelled by a random variable X, in order to make it risk free. We

summarize some of the axioms and important properties of risk measures in Section 2.

Let ρ be a convex monetary risk measure used by an insurance company to compute its

regulatory capital ρ(X). If we define a mapping U by U(X) := −ρ(X), we obtain a

monotone increasing and concave utility function. However if an economic agent uses a

risk measure ρ to evaluate his risks, she usually do not use U = −ρ to evaluate the utility

associated to its profits.

In this paper, we work in the context of indifference pricing principles and, we focus on

the case of reinsurance layers pricing. The indifference price of a reinsurance layer, relative

to a utility function U , is the price at which the insurance company is indifferent between

buying or not the given layer, with respect to the utility U . Nonetheless, buying the layer

also impacts the minimal regulatory capital of the company. Let us assume that the firm

supports a cost of capital c, with 0 < c < 1. We denote R the net result of the insurance

company without a given layer, and RXL the net result with the layer. Then we define the

indifference premium, relative to the pair (U, ρ), as the solution of the equation

U [R− c ρ(R)] = U
[
RXL − c ρ(RXL)

]
.

This price takes into account both the change in utility because of the layer addition and

the change in reserves because of the cost of capital.

When the reinsurance contract contains reinstatements (see Section 3.1 for a precise defi-

nition), the indifference price is in general not easy to compute explicitly. In Section 3, we

give some bounds for the indifference price, that are easily computable using simulations

of the underlying risks.
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1.1 The collective risk theory

There are two different possible ways to apprehend the total loss of an insurance company

in a given period of time (typically one year). First, one can consider the individual claim

amounts Si, that is to say the loss corresponding to the policy of the i-th insuree, and then,

take the sum I =
∑n

i=1 Si, where n is the number of policies. This kind of individual model

of risk dates back to Cramér [5].

This individual model is numerically difficult to implement. Let us however mention the

De Pril algorithm, which allows theoretically to obtain the law of I, but it is not widely

used in practice (see [17], page 129).

A second possible way to proceed is to consider a random number of claims N in the given

period and individual losses Xi, regardless to which policy it is attached. Then the sum

X =
∑N

i=1Xi also denotes the total loss of the insurance company. It is the traditional

collective model way to see the total loss (see [6] for a detailed account).

The collective risk model can be analysed dynamically in time, by writting

Xt =

Nt∑
i=1

Xi,

where N is a Poisson process counting the number of claims in the interval [0, t]. The

variables (Xi) are traditionally assumed independent and identically distributed. In that

case, X is a pure jump Levy process, for which we have powerful analytic tools.

The collective risk model is widely used among practitioners mainly because of its tractabil-

ity. Panjer’s recursion [16] is a popular technique to approximate the distribution function

of the total loss in the collective model.

In Section 3, we will see how this risk modelization is affected by the presence of non-

proportional reinsurance contracts.

1.2 The existing litterature on reinstatements

Reinsurance is a mecanism allowing an insurer to transfer a part of its subscribed risk to a

reinsurer.

There are several types of reinsurance contracts. The insurer can transfer its risk in a

proportional or linear way, which means that he gives away a fixed percentage of its losses

and of its premiums to the reinsurer: for a loss represented by a positive random variable

X, he leaves F = aX with 0 < a < 1 to the reinsurer and supports X − F = (1− a)X.

The insurer can also buy a non proportional layer contract, covering the losses that fall in

the range [l, l+m] (l,m > 0). In that case the reinsurer is exposed to (X−l)+−(X−[l+m])+,

which puts a ceilling on his losses, since the maximal reinsurer loss equals m (we used the

standard notation x+ = max(x, 0), for x ∈ R).

Despite the huge literature on reinsurance problems, there are little references concerning

the pricing of reinsurance contracts containing reinstatements. Sundt [19] obtained a for-

mula for the pure premium of contracts with reinstatements ; this formula coincide with

ours in this particular case. Sundt [19] and Wahlin [21] also give formulas corresponding to

other premium principles, such that the standard deviation principle or the PH-transform.

Mata [15] studies the properties of different pricing principles. Now that we better un-

derstand the properties and axioms of convex monetary risk measures, we can compare it
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with the properties stated by Mata, who defines indifference prices with respect to various

comonotonic risk measures, but using the approximation ρ(−X) ≈ −ρ(X). If ρ is convex

and normalized, we can only say that ρ(−X) ≥ −ρ(X). That is why the values computed in

[15] correspond, in the particular case where there is no cost of capital, to our upper bound

(p2 appearing in equation (3.6)). Hürlimann [13] provides a distribution free approximation

to pure premiums of layers with reinstatements.

Let us also mention the paper of Albrecher and Haas [1], which gives a detailed analysis of

ruin theory when there are possible reinstatements.

2 Preliminaries on Monetary Risk Measures and Utility Func-

tions

2.1 Axioms

Motivated by some imperfections of traditional risk measures such as value-at-risk (which is

recommended by the solvency II european regulatory requirement for insurance companies),

Artzner & al. [2] and then Follmer and Schied [7] and Frittelli and Rosazza-Gianin [8]

introduced the notions of coherent and convex risk measures. We will now recall their

definitions, and some key properties. We state the given results for a generic space X of

random variables, typically we will take X = L∞(P) or X = Lp(P) with p ≥ 1, where

(Ω,F ,P) is a fixed probability space.

Definition 2.1. An application ρ : X → R is called:

• [MO] Monotonic if X ≤ Y a.s. implies ρ(X) ≥ ρ(Y ).

• [CI] Cash-invariant if ∀c ∈ R, ρ(X + c) = ρ(X)− c.

• [CO] Convex if ∀ 0 ≤ λ ≤ 1, ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ).

• [PH] Positively homogeneous if ∀ λ ≥ 0, ρ(λX) = λρ(X).

An application verifying the axioms [MO], [CI] is called a monetary risk measure. If it

furthermore satisfies [CO] then it is called a convex risk measure, and if it also satisfies the

axiom [PH] then we say it is a coherent risk measure.

The cash-invariance property, also called translation invariance, gives to the value ρ(X) a

monetary unit: ρ(X) may be intuitively interpretated as the minimal capital amount to

add to X, and to invest in a risk free manner, to make the position X acceptable or risk

free. Indeed ρ(X + ρ(X)) = ρ(X)− ρ(X) = 0.

The convexity axiom will describe the preference for diversity: it means that diversification

should not increase risk.

Note that here positive random variables represent gains, then we consider decreasing risk

measures, and cash-invariant with a minus sign.
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2.2 Dual representation

An important kind of results are the Fenchel-Legendre type dual representation theorems

for risk measures. It has been given in Artzner & al. [2] for coherent risk measures and

Frittelli and Rosazza-Gianin [8] for convex risk measures defined on L∞, and after that by

Biagini and Frittelli [3] in the case of convex risk measures defined on Lp.

We can now state the representation result:

Theorem 2.1 ([8]). A convex risk measure ρ on L∞, which is continuous from below,

admits the following dual representation:

ρ(X) = sup
Q∈M1

{EQ[−X]− α(Q)} (2.1)

where M1 denotes the set of all probability measures on F and α : M1 → R ∪ {+∞} is a

penalty function given by:

α(Q) = sup
X∈L∞(P)

{EQ[−X]− ρ(X)}

If we interpret any probability measure Q on (Ω,F) as a possible model, or possible weight-

ing of events, this representation tells us that every convex risk measure that is upper

semi-continuous can be seen as a worst case average loss over a family of models minus a

penalty, the penalty representing the likelihood of the given models.

2.3 Examples

The Value-at-Risk

The Value-at-Risk is the main risk measure used in practice and it is the measure rec-

ommended by the Solvency II european regulator for insurance companies. It consists in

computing an α-quantile of the risk X:

V aRα(X) := inf{x ∈ R such that P(X + x ≤ 0) ≤ α},

where α ∈ [0, 1]. α is considered as an ”acceptable” bankruptcy probability, and then

V aRα(X) represents the losses that are attained only with that probability.

The measure ρ = V aRα is not convex, and then do not satisfy a dual representation, but

the following Average Value-at-Risk will.

The Average Value-at-Risk

To overcome the non-convexity of the monetary risk measure V aRα, we consider the fol-

lowing Average Value-at-Risk at level α ∈ (0, 1] of a position X ∈ X , given by:

AV aRα(X) =
1

α

∫ α

0
V aRu(X)du

The name Average Value-at-Risk is justified by the following equality, which holds if X has

a continuous distribution, it says that the quantity AV aRα(X) is an average of the losses

greater or equal to V aRα(X):

AV aRα(X) = E [−X| −X ≥ V aRα(X)] .
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AV aRα is a coherent risk measure and its dual representation is given as follows:

AV aRα(X) = sup
Q∈M1

{EQ[−X]− α(Q)}, X ∈ X

where the penalty function α only takes the values +∞ or 0, it is given by the indicator

function in the sense of convex analysis of the following set:

Q := {Q ∈M1 |
dQ

dP
≤ 1

α
}

The Entropic risk measure

As mentionned before, the penalty function α appearing in the representation (2.1) account

for the likelihood of a given model Q. Suppose that we measure the likelihood of Q using

the information theoretic entropic function H(Q|P) defined by

H(Q|P) := EP
[
dQ

dP
log(

dQ

dP
)

]
.

The corresponding risk measure

ρe(X) = sup
Q∈M1(P)

{EQ[−X]−H(Q|P)}

is called the entropic risk measure.

The variational principle for the entropic function H gives

ρe(X) = logEP[e−X ].

The Semi-deviation risk measure

For 0 ≤ δ ≤ 1 and 1 ≤ p ≤ ∞, we define the semi-deviation risk measure as follows :

ρ(X) := E[−X] + δE [(X − E(X))p]1/p .

ρ is a positively homogeneous law-invariant monetary risk measure. If we define U(X) :=

−ρ(X), we obtain the semi-deviation utility function, whose properties are studied in [14]

for example.

3 Pricing of Layers with Reinstatements

The indifference price p of a reinsurance layer is solution of an equation indicating that

the utility of an insurance company, when it buys the contract and pays the price p, is

equal to its utility when it does not enter the transaction. When the contract contains

reinstatements, the total premium paid is random (see equation (3.3)). This can complicate

the calculation of the indifference price. In the next sections we will bound this price by

two easily computable values.

3.1 The contract payoff

Let u0 be the initial surplus of an insurance company, and let β be the gross premium

income per time unit, so that the surplus process R without reinsurance is given at time t

by

R(t) = u0 + βt−
Nt∑
i=1

Xi
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where {Nt, t ≥ 0} is a non decreasing integer valued pure jump process modelling the

number of claims up to time t, and {Xi, i ∈ N∗} is a sequence of independent and identically

distributed (i.i.d.) random variables modelling the individual claim sizes of the insurance

portfolio.

In an XL reinsurance contract with retention l and limit m, the reinsurer covers the part

of each claim that exceeds l, up to the upper bound l+m. The reinsurer’s part Zi and the

insurer’s part Ci related to a claim Xi are then given by

Zi = (Xi − l)+ − (Xi − l −m)+ =


0 if Xi ≤ l
Xi − l, if l ≤ Xi ≤ l +m

m if Xi ≥ l +m

(3.1)

and

Ci = (Xi ∧ l) + (Xi − l −m)+ =


Xi if Xi ≤ l
l, if l ≤ Xi ≤ l +m

Xi −m if Xi ≥ l +m

(3.2)

Let

Z(t) :=

Nt∑
i=1

Zi

be the aggregate liability of the reinsurer. It is usually limited to a maximal amount M .

When M is a multiple of the individual maximum cover m, i.e when M = (k+ 1)m, we say

that the reinsurance contract contains k reinstatements. In that case the aggregate liability

of the reinsurer is given by Rk(t) := Z(t) ∧ ((k + 1)m).

The cover of the j-th reinstatement is given by

rj := min [max(Z(t)− jm, 0),m]

For the j-th reinstatement, the cedent pays a premium Pj given by

Pj := cjp0
1

m
min [max(Z(t)− (j − 1)m, 0),m]

Let us consider a concrete example, allowing to better understand these contracts payoffs.

Assume that the insurance company enters an XL contract with one year maturity, including

two reinstatements and covering the losses between 100 and 200 (l = 100 and m = 100).

The initial premium required by the reinsurer is given by p0 = 10. The costs of the first

and second reinstatements correspond respectively to 80% and 50% of the initial premium

(c1 = 0.8 and c2 = 0.5).

Assume the first four losses correspond to the following amounts:

1. X1 = 150, we have then C1 = 100 and Z1 = 50. The insurance company has to

reinstate half of the layer, to do so it pays 50 ∗ 1
100 ∗ 80% ∗ 10 = 4.

2. X2 = 190, we have then C1 = 100 and Z1 = 90. The ceding company has to reinstate

90% of the layer. For this, it uses what is left of the first reinstatement (50) and a

part of the second one (40). So it pays :

50 ∗ 1
100 ∗ 80% ∗ 10 + 40 ∗ 1

100 ∗ 50% ∗ 10 = 6
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3. X3 = 200, in that case all the layer has to be reinstated, but only 60% of the second

reinstatement is available, the layer is then reinstated only up to this limit and the

company pays: 60 ∗ 1
100 ∗ 50% ∗ 10 = 3.

4. X4 = 200, the insurance company was only covered for the losses between 100 and

160, we have then here Z4 = 60 and C4 = 140. All the reinstatements have been

used, the contract stops and the ceding company is not reinsured for the rest of the

year.

The total premium paid in this example amounts to P = 10 + 4 + 6 + 3 = 23. This value

could have been lower if all the reinstatements had not been used before the end of the

contract.

We can write the random total premium paid by the cedent during the considered period

in the following way:

P (t) := p0

1 +
1

m

k∑
j=1

cj min [max(Z(t)− (j − 1)m, 0),m]

 (3.3)

and the wealth process of the cedent is given by

R(t) = u0 + βt−
Nt∑
i=1

Ci − P (t)

= u0 + βt−
Nt∑
i=1

Xi +

Nt∑
i=1

Zi − P (t).

In what follows, we will denote for simplicity

Ñ(t) :=
1

m

k∑
j=1

cj min [max(Z(t)− (j − 1)m, 0),m]

Finally, let us now consider the more realistic situation where the cedent has already bought

reinsurance contracts which are still running, and is considering to add a given layer [l, l+m]

with k reinstatements to its reinsurance program. Then we will denote by R(t) the reference

net result of the cedent (without the additional layer) and we denote FXL the different

quantities concerning the additional XL layer.

We have for instance

RXL(t) = u0 + βt−
Nt∑
i=1

Xi +

Nt∑
i=1

Zi − P +

Nt∑
i=1

ZXLi − PXL

= R(t) +

Nt∑
i=1

ZXLi − PXL, (3.4)

where P
XL

is the total premium paid by the cedent’s company for the additional XL layer.
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3.2 The pricing bounds

We assume that the cedent uses a concave monetary utility function U , and a convex

monetary risk measure ρ to compute its needed regulatory capital.

Definition 3.1. We say that P̃0 is the indifference price of a given XL layer relatively to

the pair (U, ρ), if P̃0 solves the equation

U (R(t)− c ρ(R(t))) = U
(
RXL(t)− c ρ(RXL(t))

)
(3.5)

where c is a given cost of capital.

When the insurance company does not buy the XL layer, its net result is given by R(t),

and its regulatory needed capital is expressed by ρ(R(t)). If the XL layer is added to the

current reinsurance program, then the net result becomes RXL(t) and there is possibly a

regulatory capital saving thanks to the layer that we can write as ρ(R(t))− ρ(RXL(t)).

Remark 3.1. If we define U(R) := U(R− c ρ(R)), then we have

U(R+m) = U(R) + (1 + c)m ≥ U(X) +m,

and U is a cash super-additive utility function. This is analogous to the presence of a

capitalization factor, which is here given by c.

We have the following estimate for the indifference price of an XL layer with reinstatements

Proposition 3.1. If P̃0 is the indifference price of a given XL layer relatively to the pair

(U, ρ), then

p1 ≤ P̃0 ≤ p2,

where

p1 :=
A

−U(−1− Ñ)
, espacep2 :=

A

U(1 + Ñ)
, (3.6)

and

A := U

(
R(t) +

Nt∑
i=1

Zi

)
− U(R(t)).

Proof.

We use the decomposition (3.4) of RXL and the cash invariance property to deduce that

equation (3.5) is equivalent to

U

(
R(t) +

Nt∑
i=1

Zi − P̃0(1 + Ñ(t))

)
− c ρ

(
R(t) +

Nt∑
i=1

Zi − P̃0(1 + Ñ(t))

)
= U (R(t))− cρ(R(t)). (3.7)

We can use the fact that U is super-additive whereas ρ is subadditive, and that both are

positively homegeneous to write

U

(
R(t) +

Nt∑
i=1

Zi − P̃0(1 + Ñ(t))

)
≥ U

(
R(t) +

Nt∑
i=1

Zi

)
+ P̃0 U

(
−(1 + Ñ(t))

)
,

ρ

(
R(t) +

Nt∑
i=1

Zi − P̃0(1 + Ñ(t))

)
≤ ρ

(
R(t) +

Nt∑
i=1

Zi

)
+ P̃0 ρ

(
−(1 + Ñ(t))

)
.
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By plugging this into (3.7) we obtain

P̃0

[
U
(
−(1 + Ñ(t))

)
− c ρ

(
−(1 + Ñ(t))

)]
≤ U(R(t))− U

(
R(t) +

Nt∑
i=1

Zi

)
− c

[
ρ(R(t))− ρ

(
R(t) +

Nt∑
i=1

Zi

)]
(3.8)

We notice that −(1 + Ñ(t)) < 0 a.s. and since U is monotone increasing and ρ is monotone

decreasing, we have

U
(
−(1 + Ñ(t))

)
− c ρ

(
−(1 + Ñ(t))

)
< 0.

Then we deduce from inequality (3.8) that p1 ≤ P̃0.

To prove the other inequality, we start again from equation (3.7), and notice this time that

since U is super-additive whereas ρ is subadditive, we have U(X −Y ) ≤ U(X)−U(Y ) and

ρ(X − Y ) ≥ ρ(X)− ρ(Y ), for any bounded random variables X and Y . This gives

U

(
R(t) +

Nt∑
i=1

Zi − P̃0(1 + Ñ(t))

)
≤ U

(
R(t) +

Nt∑
i=1

Zi

)
− P̃0 U

(
1 + Ñ(t)

)
,

ρ

(
R(t) +

Nt∑
i=1

Zi − P̃0(1 + Ñ(t))

)
≥ ρ

(
R(t) +

Nt∑
i=1

Zi

)
− P̃0 ρ

(
1 + Ñ(t)

)
.

By plugging this again into (3.7), and noticing that

U
(

1 + Ñ(t)
)
− c ρ

(
1 + Ñ(t)

)
> 0,

we obtain P̃0 ≤ p2.

�

Remark 3.2. The monotonicity properties of U and ρ implies that 0 ≤ p1. Furthermore,

the concavity and convexity properties of U and ρ implies that we have indeed p1 ≤ p2.

In figure 1 below, we represented the upper and lower bounds p1 and p2 obtained for the

layers with retention equal to 108(n+ 1) euros and limit equal to 108 euros, for n varying

from 0 to 32. In other words, we computed the bound prices for 33 layer contracts, with

the same limit value, for a retention ranging from one hundred million euros to 3.3 billion

euros. All the contracts contain k = 4 possible reconstitutions, and each reconstitution

when it happens, is paid at c = 100% of the initial price. The prices are expressed as a

percentage of m = 108, which correspond to rates on line in the reinsurance terminology.

These reisurance contracts cover an insurance portfolio of risk of natural catastrophes type.

The calculations have been made using 25000 years of simulations of losses from a real life

insurance portfolio.

We took as a matter of example a utility function given by the semi-deviation utility with

parameter δ = 1
2 and as risk measures, the AV aRα with α = 1/200.

We can see that the gap between p1 and p2 is important for the first contracts. This

is due to the fact that the first contracts correspond to low retentions, for which all the
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Figure 1: Semi-deviation utility function and AV aRα risk measure

reconstitutions are systematically used. More precisely, if k = 4, the value Ñ appearing in

the definitions of p1 and p2 will be we very often equal to 4 for the contracts with a low

retention, and the different quantities −U(−1−4) and U(1+4) will contribute considerably

to the gap between p1 and p2.

However for the contracts with a high retention, begining from 1.2 billion, the bounds are

rather satisfying.
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