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Abstract

Motivated by reinsurance optimization, we study in this paper some particular op-

timal risk transfer problems, between two economic agents who do not share the same

risk vision and anticipation. More precisely, we conduct an analysis of Choquet inte-

grals, as non necessarily law invariant monetary risk measures. We first establish a new

representation result of convex comonotone risk measures, then we give a representation

result of Choquet integrals by introducing the notion of local distortion. This allows

us to compute in an explicit manner the inf-convolution of two Choquet integrals, with

examples illustrating the impact of the absence of the law invariance property.
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1 Introduction

1.1 Choquet integrals

One possible generalization of the Lebesgue integral with respect to a (probability) measure

is the Choquet integral with respect to a capacity (definition 2.5). Thus, it provides in

particular a generalization of the mathematical expectation. It was first introduced by

Choquet in 1953 ([12]).

Choquet asked the following natural question: what are the properties of a measure µ that

preserve the interior regular approximation property: for each borelian B,

µ(B) = sup{µ(K), K compact, K ⊂ B}.

He showed in [12] that additivity properties do not play any role, and that by contrast

monotonicity and continuity properties are crucial. That is how the additivity property

µ(A ∩ B) + µ(A ∪ B) = µ(A) + µ(B) is dropped and replaced by property 3 in definition

2.4. Then Choquet introduced a notion of integral with respect to set functions not having

additivity properties (see [15] for a monography).

Capacities and Choquet integrals were first developped and used in the potential theory.

Then Choquet integrals have been applied intensively as criteria in economic decisions un-

der uncertainty after the demonstrations by Greco [21] and Schmiedler [30] of Choquet

integral representations of increasing and comonotonic functionals, under additional con-

tinuity assumptions. Since then, an important litterature has developped on the study of
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economic beliefs and preference relations ([20]), their representations using non-additive

capacities ([16], [17], [10]) and the equilibria that it generate ([9], [11], [7]).

We adopt in this paper the point of view of convex risk measures and focus on risk measures

that we can represent as Choquet integrals, which are not necessarily law invariant. In [25],

Jouini & al. showed that the optimal risk sharing between two agents having law invariant

and comonotonic monetary risk measures is given by a sum of stop loss contracts. We

extend their result in several directions, since we consider law dependent, and cash sub-

additive risk measures, and show that the bounds of the stop loss contracts correspond to

quantile values of the total risk. Moreover, we treat the case of Lp random variables, which

is more suitable to real cases and theoretical examples than bounded random variables.

1.2 Reinsurance and risk transfer

Reinsurance is a mechanism allowing an insurer to transfer a part of its subscribed risk to

a reinsurer.

There are several types of reinsurance contracts. The insurer can transfer its risk in a

proportional or linear way, which means that he gives away a fixed percentage of its losses

and of its premiums to the reinsurer: for a loss represented by a positive random variable

X, he leaves F = aX with 0 < a < 1 to the reinsurer and supports X − F = (1− a)X.

The insurer can also buy a non proportional contract, which allows him to put a ceilling

on its losses since he will be exposed to X ∧ k, the reinsurer taking the remaining part

(X − k)+, with k ∈ R+.

A very natural question for the insurer is how to optimally transfer its risk.

Barrieu and El Karoui [4] studied the optimal contract design problem using inf-convolution

techniques, in particular they find again in a very simple framework a result of Borch [6],

stating that the optimal risk transfer is obtained through a linear quota-share contract.

The insurer has to stay exposed to a proportional part of its subscribed risk, with a coef-

ficient equal to its relative risk aversion coefficient over the total risk aversion of the two

market players. This result of optimal linear contracts holds under the assumption that

both agents share the same risk measure, with different risk aversion coefficients. If the

agents criteria are different, we prove in this paper, as in [25], that optimal contracts are

non linear and given by a sum of Excess-of-Loss contracts (see (4.4) for a precise definition).

Attrition Versus Extreme Risk

In practice, a great majority of reinsurance exchanges are done in a non proportional

way. To understand this fact in view of the previous proportional optimality result, we can

distinguish the risk that the insurer is facing, considering the following two components: an

”attrition risk” which is essentially a high frequency and low severity risk, and the ”extreme

risk” that is encountered for example in natural or industrial catastrophes and which is on

the contrary a low frequency and high severity risk.

The attrition risk is often considered as the heart of the insurer activity, this is the risk that

he knows best and he is in a position to develop a methodology and tools to manage it. In

particular, the premium that the insurer receives for the attrition risk is a major tool to

manage it, as well as proportional-type reinsurance contracts if the insurer wants to reduce

it.
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The extreme risk is the one that the insurer really wants to reduce, this risk is considered

as the heart of the reinsurer activity. The insurer and reinsurer do not have the same level

of information and knowledge on the extreme risk, and this is what justifies the exchange,

which is done through non proportional contracts in the majority of cases. We refer the

reader to [28] and [1] (Chapter 2) for more details and practical considerations on the at-

tritional and extreme risks.

The criterion choice

A major issue for an insurance company in the design of its reinsurance policy is the

choice of its risk retention, that is to say the parameter k appearing in the payoff function

X ∧ k. In the litterature two main criteria are used: maximizing the cumulative expected

discounted dividends (see [33] for a survey) or minimizing the ruin probability.

De Finetti ([13]) and then many authors have studied the first criterion (among them [31],

[23], [34], [22] and the references therein). The goal in these papers is to find, from the

point of view of an insurance company, an optimal strategy concernin both the reinsurance

buying process and the dividends distribution process. One of their main findings - using

stochastic control techniques - is the existence of a feedback optimal strategy for reinsurance

on the one hand, and a ”barrier” type optimal strategy for dividends on the other hand, in

which the insurance company does not pay any dividends when its wealth process exceeds

a certain known level. However in practice, dividends decision are often separated from

reinsurance decisions, the main issue of dividends being that it sends a strong signal to

the insurance industry and to financial markets concerning the company’s financial health,

making the barrier strategy hardly applicable.

This paper focuses on the non proportional reinsurance optimization, using convex risk

measures as a criterion. Indeed, convex risk measures constitute a flexible tool for op-

timization, and it is suitable to the inf-convolution operator since the inf-convolution of

monetary convex risk measures is again a monetary convex risk measure (see [4]). In par-

ticular, we are able to compute the inf-convolution of Choquet integrals (that constitute a

particular case of risk measures) explicitely, using local distorsions, that we introduce (see

Lemma 3.1).

2 Preliminaries on Risk Measures

In this section we will give some definitions, properties and representation of convex risk

measures, and then state the reinsurance optimization problem using the introduced convex

risk measures as criterion.

2.1 Introduction

2.1.1 Axioms

Motivated by some imperfections of traditional risk measures such as value-at-risk (which is

recommended by the solvency II european regulatory requirement for insurance companies),

Artzner & al. [2] and then Follmer and Schied [18] and Frittelli and Rosazza-Gianin [19]

introduced the notions of coherent and convex risk measures. We will now recall their

definitions, and some key properties. We state the given results for a generic space X of
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random variables, typically we will take X = L∞(P) or X = Lp(P) with p ≥ 1, where

(Ω,F ,P) is a fixed probability space. We will skip the subscript P in the definition of X
when there is no possible confusion.

Definition 2.1. An application ρ : X → R is called:

• [MO] Monotonic if X ≤ Y a.s. implies ρ(X) ≤ ρ(Y ).

• [CI] Cash-invariant if ∀c ∈ R, ρ(X + c) = ρ(X) + c.

• [CO] Convex if ∀ 0 ≤ λ ≤ 1, ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ).

• [PH] Positively homogeneous if ∀ λ ≥ 0, ρ(λX) = λρ(X).

An application verifying the axioms [MO], [CI] is called a monetary risk measure. If it

furthermore satisfies [CO] then it is called a convex risk measure, and if it also satisfies the

axiom [PH] then we say it is a coherent risk measure.

The cash-invariance property, also called translation invariance, gives to the value ρ(X) a

monetary unit: ρ(X) may be intuitively interpretated as the minimal capital amount to

add to X, and to invest in a risk free manner, to make the position X acceptable or risk

free. Indeed ρ(X − ρ(X)) = ρ(X)− ρ(X) = 0.

The convexity axiom will describe the preference for diversity: it means that diversification

should not increase risk.

Note that here positive random variables represent losses, then we consider increasing risk

measures, and cash-invariant with a ”+” sign.

2.1.2 Dual representation

An important kind of results are the Fenchel-Legendre type dual representation theorems

for risk measures. It has been given in Artzner & al. [2] for coherent risk measures and

Frittelli and Rosazza-Gianin [19] for convex risk measures defined on L∞, and by Biagini

and Frittelli [5] in the case of convex risk measures defined on Lp.

Since the dual space of L∞ can be identified with the space M ba of finitely additive set func-

tions with finite total variation, the application of general duality theorems only gives the

dual representation with respect to the subspace of finitely additive set functions normal-

ized to 1. For the representation to hold with probability measures, we need the following

additional property:

Definition 2.2. ρ satisfies the Fatou property if it is lower semi-continuous with respect

to the bounded pointwise convergence, i.e if for any bounded sequence Xn of L∞ converging

pointwise to X, we have

ρ(X) ≤ lim inf ρ(Xn).

Remark 2.1. The Fatou property is equivalent with continuity from below (see [18]).

We can now state the representation result:
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Theorem 2.1 ([19]). A convex risk measure ρ on L∞, satisfying the Fatou property, admits

the following dual representation:

ρ(X) = sup
Q∈M1

{EQ[X]− α(Q)}, (2.1)

where M1 denotes the set of all probability measures on F and α : M1 → R ∪ {+∞} is a

penalty function given by:

α(Q) = sup
X∈L∞(P)

{EQ[X]− ρ(X)}.

If we interpret any probability measure Q on (Ω,F) as a possible model, or possible weight-

ing of events, this representation tells us that every convex risk measure that is upper

semi-continuous can be seen as a worst case expectation over a family of models minus a

penalty, the penalty representing the likelihood of the given models.

In the case of risk measures ρ defined on Lp, we need the additional property of finiteness

of ρ on Lp. Indeed, Biagini and Frittelli [5] proved that any convex and finite risk measure

on Lp is continuous with respect to the Lp norm. Then a dual representation holds as in

(2.1) in the classic Lp − Lq duality.

2.1.3 Examples

The Value-at-Risk

The Value-at-Risk is the main risk measure used in practice and it is the measure rec-

ommended by the Solvency II european regulator for insurance companies. It consists in

computing an α-quantile of the risk X:

V aRα(X) := qX(α) = inf{x ∈ R such that FX(x) ≤ α},

where α ∈ [0, 1] and FX denotes the tail cumulative distribution function of X. α is

considered as an ”acceptable” bankruptcy probability, and then V aRα(X) represents the

losses that are attained only with that probability.

The measure ρ = V aRα is not convex, and then do not satisfy a dual representation, but

the following Average Value-at-Risk does.

The Average Value-at-Risk

To overcome the non-convexity of the monetary risk measure V aRα, we consider the fol-

lowing Average Value-at-Risk at level α ∈ (0, 1] of a position X ∈ X , given by:

AV aRα(X) =
1

α

∫ α

0
qX(u)du.

The name Average Value-at-Risk is justified by the following equality, which holds if X has

a continuous distribution, it says that the quantity AV aRα(X) is an average of the losses

greater or equal to V aRα(X):

AV aRα(X) = E [X|X ≥ V aRα(X)] .

AV aRα is a coherent risk measure and its dual representation is given as follows:

AV aRα(X) = sup
Q∈M1

{EQ(X)− α(Q)}, X ∈ X ,
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where the penalty function α only takes the values +∞ or 0, it is given by the indicator

function in the sense of convex analysis of the following set:

Q := {Q ∈M1 |
dQ

dP
≤ 1

α
}.

Note that we have:

AV aRα(X) = qX(α) +
1

α
E
[
(X − qX(α))+

]
.

2.1.4 Inf-convolution

Given two convex risk measures ρ1 and ρ2 with penalty functions α1 and α2, we define their

inf-convolution in the following way:

ρ1�ρ2(X) := inf
F∈X
{ρ1(X − F ) + ρ2(F ))}. (2.2)

Barrieu and El Karoui [3] proved under the assumption ρ1�ρ2(0) > −∞ that ρ1�ρ2 is a

finite convex risk measure. If ρ1 is continuous from below, then ρ1�ρ2 is continuous from

below and we have the following dual representation :

ρ1�ρ2(X) := sup
Q∈M1

{EQ[X]− (α1 + α2)(Q)}. (2.3)

The inf-convolution operator appears naturally in optimal risk transfer problems as we will

see through the example of reinsurance optimization.

2.2 VaR Representation of Convex Risk Measures

Assumption 2.1. We suppose in the rest of the chapter that the probability space (Ω,F ,P)

that we work with is atomless.

This assumption induces that our probability space supports a random variable with a con-

tinuous distribution (see for instance Proposition A.27 in [18]). Its usefullness is mentioned

in Example 2.1, it is also important in the proof of Proposition 4.3.

The representation theorems stated above can be reformulated making use of Choquet

integrals and distortion functions, that we now introduce.

Definition 2.3. Every nondecreasing function ψ : [0, 1]→ [0, 1] with ψ(0) = 0 and ψ(1) = 1

will be called a distortion function.

For a given distortion function ψ, we consider a [0, 1]-valued random variable Λψ whose law

is given by:

P(Λψ ≤ x) =


0 if x ≤ 0

ψ(x), if 0 ≤ x ≤ 1

1 if x ≥ 1

(2.4)

We will use random variables in the form of Λψ to give an interpretation of the Choquet

integral and of convex risk measures.

Definition 2.4. A set function c : F → [0, 1] is called

1. Normalized if c(∅) = 0 and c(Ω) = 1.
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2. Monotone if c(A) ≤ c(B) whenever A ⊂ B, A, B ∈ F .

3. Submodular if c(A ∪B) + c(A ∩B) ≤ c(A) + c(B), ∀ A, B ∈ F .

4. Outer regular if for every decreasing sequence (An) of elements of F , we have

c

(⋂
n

An

)
= lim c(An). (2.5)

Following [8], we call capacities normalized and monotone set functions.

Definition 2.5. The Choquet integral of a random variable X, with respect to a capacity c

is defined by: ∫
Xd c :=

∫ 0

−∞
(c(X > x)− 1) dx+

∫ ∞
0

c(X > x)dx.

Example 2.1. Using a distortion function ψ, we can define a capacity cψ given by cψ(A) =

ψ(P(A)), ∀A ∈ F . For ψ(x) = x, the Choquet integral
∫
Xd cψ is just the expectation of X

under the probability measure P. The function ψ is used to distort the expectation operator

EP into the non-linear functional ρψ. It is known (see for example [18]) that when the

probability space is atomless, ψ is concave if and only if ρψ is a sub-linear risk measure.

If we define ψ(u) := φ
(
φ−1(u) + α

)
, with α > 0, where φ denotes the standard gaussian

cumulative distribution function, we obtain the Wang transform risk measure, which is

popular in insurance pricing (see Wang [36] for details on this particular Choquet integral).

Definition 2.6. We will say that a risk measure ρ is law invariant, if ρ(X) = ρ(Y )

whenever X and Y have the same law under P.

The Choquet integrals with respect to capacities constructed from distortion functions as

in the previous example can be used as building blocks for any convex and law invariant

risk measure which is continuous from below. This is the result of Corollary 4.72 in [18].

This means that we can use Choquet integrals instead of the usual linear expectation in

the dual representation (2.1) of any convex, law invariant and continuous from below risk

measure ρ as follows

ρ(X) = sup
ψ∈C

{∫
X dcψ − γ(ψ)

}
, (2.6)

where C denotes the set of concave distortion functions and

γ(ψ) := sup
X∈L∞(P)

{∫
X dcψ − ρ(X)

}
.

In [27] and [18], a dual representation of law invariant convex risk measures is given in

terms of AV aR. We have the same representation in terms of V aR risk measures, at

random levels of the form Λψ:
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Proposition 2.1. A convex risk measure ρ is law invariant and continous from above if

and only if

ρ(X) = sup
ψ∈C

(
EP
[
V aRΛψ(X)

]
− γ(ψ)

)
with

γ(ψ) = sup
X∈L∞(P)

(
EP
[
V aRΛψ(X)

]
− ρ(X)

)
.

Proof.

We just notice that since {qX(Λψ) > x} = {Λψ ≤ P(X > x)},

P(qX(Λψ) > x) = P(Λψ ≤ P(X > x)) = ψ(P(X > x)) = cψ(X > x).

Using this, we can rewrite the Choquet integral as :∫
Xd cψ =

∫ 0

−∞
(P(qX(Λψ) > x)− 1) dx+

∫ ∞
0

P(qX(Λψ) > x)dx = EP
[
V aRΛψ(X)

]
Now using the representation (2.6), we get the desired result. �
This proof enlights in particular that the Choquet integral of a r.v. X is a non linear

operator, that can be rewritten as a classic linear expectation of a quantile of X, evaluated

at a random level.

Remark 2.2. (Link with AVaR representations) The dual representation of law invariant

convex risk measures, with AVaR as building blocks, is as follows:

ρ is convex and law invariant if and only if

ρ(X) = sup
µ∈M1((0,1])

(∫ 1

0
AV aRα(X)µ(dα)− γ(µ)

)
where

γ(µ) = sup
X∈L∞(P)

(∫ 1

0
AV aRα(X)µ(dα)− ρ(X)

)
and M1((0, 1]) denotes the set of probability measures on (0, 1].

These two representations with VaR and AVaR risk measures, evaluated at random levels,

lead to no contradiction since∫ 1

0
AV aRα(X)µ(dα) =

∫
Xd cψ = EP

[
V aRΛψ(X)

]
where ψ is the distortion function defined by dψ

dt =
∫ 1
t

1
sµ(ds), with µ a given probability

measure on (0, 1].

2.3 Optimal risk transfer and inf-convolution

Following the framework of [25] and [3], we consider the problem of optimal risk sharing

between an insurer and a reinsurer in a principal-agent framework.

The exposure of the insurer (the agent) is modeled by a positive random variable X. Both

the insurer and the reinsurer assess their risk using an increasing law invariant convex

monetary risk measure (resp. ρ1 and ρ2). For a given loss level X, the insurer will take in

charge X−F and transfer to the reinsurer a quantity F , and for this he will pay a premium

π(F ).
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The insurer (the agent) minimizes his risk under the constraint that a transaction takes

place, he solves :

inf
F,π
{ρ1(X − F + π)} under the constraint ρ2(F − π) ≤ ρ2(0) = 0 (2.7)

Binding this last constraint and using the cash-additivity property for ρ2 gives the optimal

price π = ρ2(F ) − ρR(0) = ρR(F ). This is an indifference pricing rule for the reinsurer,

that is to say the price at which he is indifferent (from a risk perspective) between entering

and not entering into the transaction.

Replacing π = ρ2(F ) in (2.7) and using the cash-additivity property of ρ1, the insurer

program becomes equivalent to the following one:

inf
F
{ρA(X − F ) + ρR(F )} =: ρA�ρR(X)

We are left with the inf-convolution of ρ1 and ρ2, problem for which we give some explicit

solutions in Theorem 4.1 and in Section 5.

3 Comonotonic Risk Measures as Choquet Integrals

We start this section with some definitions and properties related to the important notion

of comonotonicity.

Let us begin with the definition of comonotonicity for random variables:

Definition 3.1. Two random variables X and Y on (Ω,F) are called comonotone if

∀ (ω, ω′) ∈ Ω2,
(
X(ω)−X(ω′)

) (
Y (ω)− Y (ω′)

)
≥ 0

Otherwise said, X and Y are comonotone if we cannot use one variable as a hedge against

the other. Denneberg [15] proved that two variables X and Y are comonotone if there exist

a third random variable Z such that X and Y can be written as nondecreasing functions

of Z.

The variables ξ1 and ξ2 corresponding to what is payable by the insurer and the reinsurer

in most of common reinsurance contracts correspond to comonotone random variables. For

instance, if the total loss is represented by a positive random variable X, ξ1 = αX and

ξ2 = (1− α)X are comonotone. This is also true for ξ1 = X ∧ k and ξ2 = (X − k)+.

The risk evaluation corresponding to an agregate position X + Y of comonotone variables

X and Y is then just the sum of the individual risks:

Definition 3.2. A risk measure ρ is called comonotonic if

ρ(X + Y ) = ρ(X) + ρ(Y ), whenever X, Y are comonotone random variables.

3.1 Representation results on Lp

In [18], it is proved that a monetary risk measure ρ on L∞(P) is comonotonic if and only

if there exists a capacity c such that

ρ(X) =

∫
X dc, (3.1)

and in this case, c is given by c(A) = ρ(1A).
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We can extend the representation (3.1) to risk measures defined on Lp spaces, but we will

need the additional requirement that ρ is convex. Indeed, we will need the continuity of

the Choquet integral on Lp to prove the representation on Lp, and it will be given by the

following extended Namioka-Klee theorem proved in [5] for convex functionals:

Theorem 3.1 (Biagini - Frittelli [5]). Any finite, convex and monotone increasing risk

measure ρ : Lp → R is continuous on Lp.

Using this continuity result, we can state a representation on Lp, which is a direct conse-

quence of Theorem 4.82 in [18]. Note that Kervarec [26], in the 3rd chapter of her PhD

dissertation, also proves a continuity result for coherent risk measures defined on a space

analogous to Lp in a situation with model uncertainty, with a non dominated family of

probability measures.

We can now state the representation on Lp.

Theorem 3.2. Let ρ be a convex and comonotonic monetary risk measure on Lp, and let

C(X) :=
∫
X dc, where c is a capacity given by c(A) = ρ(1A). If ρ and C are finite on Lp,

then

ρ(X) = C(X) for any r.v X in Lp. (3.2)

Proof.

Of course Theorem 3.1 applies and ρ is Lp-continuous.

First note that since ρ is comonotonic and since the pair (X,X) is comonotone, then

ρ(2X) = 2ρ(X), by induction ρ(nX) = nρ(X) for n ∈ N∗, and this easily implies that

ρ(qX) = qρ(X) for any q ∈ Q+. We can use the Lp-continuity of ρ to deduce that

ρ(λX) = λρ(X) for any λ ∈ R+. We have obtained that ρ is positively homogeneous, in

particular ρ(0) = 0, and if we define c(A) := ρ(1A) for any A in F , then c is a capacity

(monotone and normalized), which is also submodular by convexity of ρ.

We can define the Choquet integral C(X) :=
∫
X dc. C is a convex (since c is submodular)

and comonotonic monetary risk measure, so using the finiteness of C on Lp and Theorem

3.1, we obtain the continuity of C on Lp.

Now, by Theorem 4.82 in [18], we know that C and ρ coincide on L∞. By the continuity

of ρ and C on Lp and density of L∞ in Lp, we have the desired result.

�

3.2 A quantile weighting result for general Choquet integrals

We denote by ρψ the Choquet integral with respect to the capacity cψ constructed from a

distortion function ψ. Recall that X = L∞ or X = Lp.

Assumption 3.1. For any interval [a, b] such that x→ P(X > x) is constant on [a, b], the

function x→ c(X > x) is also constant on [a, b]. We will say that cX inherits the constant

intervals of FX .

Remark 3.1. If Q is a probability measure, then x → Q(X > x) inherits the constant

intervals of F̄X if and only if the law of X under Q is absolutely continuous with respect to

the law of X under P.
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Lemma 3.1. Let c be a capacity on F . Let X be a random variable in X such that cX
inherits the constant intervals of FX , then there exists a distortion function ψX such that

the Choquet integral with respect to c coincides with ρψX at X :∫
Xdc =

∫
XdcψX .

Furthermore, if the capacity c is outer regular then ψX is right-continuous.

Proof. Recall that qX(u) = inf{x ∈ R |FX(x) ≤ u}. In particular qX(FX(x)) ≤ x.

Step 1: We first prove that for any real number x,

c{X > x} = c{X > qX
(
FX(x)

)
}.

For any x such that FX(x) is a point of continuity of qX , we have qX
(
FX(x)

)
= x, so the

claim is obvious in that case. Then let x be such that FX(x) is a discontinuity point for

the function qX .

We have qX(FX(x)) < x, and F̄X is constant on the interval [qX(FX(x)), x], then by

Assumption 3.1, cX is also constant on this interval which is the desired claim.

Step 2: For a given random variable X and a capacity c, we define

ψX(u) := c(X > qX(u)). (3.3)

ψX is a distortion function since c is monotone and normalized, and using step 1 above, we

have

ψX(P(X > x)) = c (X > qX(P(X > x))) = c(X > x).

And hence,∫ 0

−∞
(c(X > x)− 1) dx+

∫ ∞
0

c(X > x)dx =

∫ 0

−∞
(cψX (X > x)− 1) dx+

∫ ∞
0

cψX (X > x)dx,

which is the desired result.

The proof that the outer regularity of c implies the right continuity of ψX is as follows:

Since qX is right-continuous and non increasing, for every non increasing sequence (un)

converging to u, qX(un) goes to qX(u) and {X > qX(un+1)} ⊂ {X > qX(un)}. Then the

application of the property (2.5) with An = {X > qX(un)} gives the right continuity of

ψX .

�

In [27], Kusuoka provided a representation of law invariant risk measures as an integral of

weighted quantiles. More precisely, he proved that ρ is a monetary risk measure which is

law invariant and comonotonic if and only if there exists a distortion function ψ such that

for every X in L∞(P),

ρ(X) =

∫ 1

0
qX(u)ψ′(u)du. (3.4)

We can still write a quantile representation for a monetary risk measure which is comono-

tonic but not necessarily law invariant:
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Proposition 3.1. Let ρ be a monetary risk measure satisfying the Fatou property of Def-

inition 2.2, which is comonotonic, and let X be in L∞. If x → ρ(1{X>x}) inherits the

constant intervals of F̄X , then there exists a distortion function ψX such that

ρ(X) =

∫ 1

0
qX(u)ψ′X(u)du. (3.5)

Proof.

Since ρ is comonotonic, there exists a capacity c such that ρ(X) =
∫
Xdc. The Fatou

property of ρ is equivalent with its continuity from above ( Lemma 4.20 in [18]), and this

implies that c(A) = ρ(1A) is outer regular. At the point X, ρ coincides by Lemma 3.1 with

a right-continuous ψX -distortion risk measure, and we re-write it as follows:∫ 0

−∞
(cψX (X > x)− 1) dx+

∫ ∞
0

cψX (X > x)dx = EP [qX(ΛψX )]

and the last quantity, by definition of ΛψX , is equal to
∫ 1

0 qX(u)ψ′X(u)du, which ends the

proof.

�

Remark 3.2. The same proof shows that the result is true for risk measures defined on

Lp, provided that C(X) =
∫
X dc is finite, where c(A) := ρ(1A).

3.3 An extension to subadditive comonotonic functionals

The two following results provide representation of subadditive comonotonic risk measures

on L∞ and Lp as Choquet integrals.

Proposition 3.2. ρ is an increasing, comonotonic and cash sub-additive functional on

L∞(P), if and only if there exist a set function c such that for each X in L∞(P), ρ(X) =∫
ΩXdc, where for A ∈ F , c is defined by c(A) = ν.c̃(A) and c̃ is a capacity on F . In that

case ν = ρ(1) = c(Ω).

Proof.

First suppose that ρ is an increasing, comonotonic and cash sub-additive risk measure.

Using the monotony and cash sub-additivity of ρ, we have that ρ is continuous with respect

to the supremum norm since

X ≤ Y + ‖X − Y ‖∞ ⇒ ρ(X) ≤ ρ(Y + ‖X − Y ‖∞) ≤ ρ(Y ) + ‖X − Y ‖∞,

Then |ρ(X) − ρ(Y )| ≤ ‖X − Y ‖∞. Lipschitz continuity and comonotonicity imply that ρ

is positively homogeneous (see lemma 4.77 in [18]). Then ρ(0) = 0, and by comonotonicity

and positive homogeneity,

ρ(X +m) = ρ(X) + ρ(m) = ρ(X) +mρ(1)

and ρ(1) ≤ 1 by cash sub-additivity. So ρ is linear cash-subadditive. Set ν := ρ(1) and

define ρ̃(X) := ρ( 1
νX), then ρ̃ is increasing, comonotonic, and cash additive, using (3.1),

we know that there exist a capacity c̃ such that ρ̃(X) =
∫
Xdc̃. Setting c(A) = ν.c̃(A), we

obtain ρ(X) =
∫
Xdc.
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Now suppose that ρ is the Choquet integral on L∞(P) with respect to a monotone set

function c such that c(Ω) ≤ 1, then it is proved in [15] that ρ is increasing and comonotonic.

Furthermore, ρ(X +m) =
∫
Xdc+mc(Ω) ≤ ρ(X) +m.

�

Using the same arguments as in the proofs of Theorem 3.2 and Proposition 3.2, we can

show the following:

Corollary 3.1. Let ρ be an increasing, convex, comonotonic and cash sub-additive func-

tional on Lp. Let C(X) :=
∫
X dc where c is the capacity given by c(A) := ρ(1A). Assume

that ρ and C are finite on Lp, then

ρ(X) =

∫
X dc, ∀X ∈ Lp.

In view of the above results of sections 3.1 and 3.3, the inf-convolution of comonotonic

risk measures reduces to the inf-convolution of Choquet integrals, the study of which will

require some preliminary results that we enunciate and prove below.

4 Inf-Convolution of Choquet Integrals

As shown in the following proposition, the Kusuoka-type quantile representation (3.5) is

stable under inf-convolution. This extends a result in [24] to non necessarily law invariant

measures.

Proposition 4.1. Let ρ1 and ρ2 be convex comonotonic risk measures satisfying the Fatou

property and let X ∈ X . Assume that ρ1�ρ2(0) > −∞ and the functions x → ρi(1{X>x})

inherit the constant intervals of F̄X .

If X = Lp, we also assume that ρi and its associated comonotonic risk measure is finite on

Lp, i = 1, 2.

Then there exist two distortion functions gX1 and gX2 such that

ρ1�ρ2(X) =

∫
qX(u)(gX1 ∧ gX2 )′(u) du (4.1)

where (gX1 ∧ gX2 )(x) := min
(
gX1 (x), gX2 (x)

)
.

Proof. Since ρ1 and ρ2 are convex and comonotonic, using either (3.1) or (3.2) we have

the existence of two submodular capacities c1 and c2 such that ρ1, ρ2 are the associated

Choquet integrals. Let c1,2(A) := min(c1(A), c2(A)), ∀A ∈ F . The dual representation of

ρ1 and ρ2 is given by:

ρi(X) = sup
Q∈M1,f

{EQ(X)− αi(Q)} (4.2)

with αi(Q) = 0 if Q ∈ Ci and +∞ if not.

Ci is the core of ci defined by Ci = {Q ∈ M1,f |Q(A) ≤ ci(A), ∀A ∈ F} and M1,f denotes

the set of finitely additive set functions. Now theorem 3.6 in [3] says that ρ1�ρ2 is a convex

risk measure with a penalty function given by α̃(Q) = α1(Q) + α2(Q), which equals 0 if

Q ∈ C̃ = C1 ∩ C2 = {Q ∈ M1,f |Q(A) ≤ min(c1(A), c2(A)), ∀A ∈ F} and +∞ if not. α̃(Q)

is the core of c1,2. c1,2 is obviously a capacity, and using theorem 4.88 in [18], c1,2 is a
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submodular capacity (here the Assumption 2.1 of atomless probability space is important)

and we have

ρ1�ρ2(X) =

∫
Xdc1,2. (4.3)

Now since c1,2(X > x) inherits the constant intervals of FX(x) (since c1 and c2 do), we

can use Lemma 3.1 to provide the existence of a distortion function g̃ such that
∫
Xdc1,2

coincides with the Choquet integral with respect to the capacity g̃(P(.)) at X. We have

g̃(u) = c1,2(X > qX(u)) = c1(X > qX(u)) ∧ c2(X > qX(u)) = min
(
gX1 (u), gX2 (u)

)
,

with gXi (u) = ci(X > qX(u)), i = 1, 2. This implies, as in the demonstration of Proposition

3.1, that ρ1�ρ2(X) =
∫
qX(u)(gX1 ∧gX2 )′(u) du (this is where the Fatou property is needed).

�

Remark 4.1. The formula (4.3) in the previous proof tells us that the inf-convolution

ρ1�ρ2(X) is again a Choquet integral with respect to the capacity

c1,2(A) = min(c1(A), c2(A)).

In the particular case where c1 and c2 are constructed with distortion functions ψ1 and

ψ2 as in Example 2.1, then c1,2 is also a distorted probability with respect to the function

ψ1,2(u) := min(ψ1(u), ψ2(u)).

If at a given point u∗ in [0, 1], we have ψ1(u∗) < ψ2(u∗), then we can say that at the

given quantile level u∗, agent 1 is less risk averse than agent 2, since he uses a less severe

distortion of the a-priori probability P at this point u∗. Now the form of ψ1,2 suggests that

the inf-convolution splits the total risk X in many parts, which are asigned to the agent

being the less risk averse on the corresponding quantile intervals (see Theorem 4.1 and

Section 5 for more details).

Using this result, we are able to solve explicitely the inf-convolution of convex Choquet

integrals.

Recall that the core Ci of the capacity ci is defined by

Ci = {Q ∈M1,f |Q(A) ≤ ci(A), ∀A ∈ F}

where M1,f denotes the set of finitely additive set functions on Ω.

In order to correctly formulate our next theorem, we need the following definitions.

Definition 4.1. We will say that a subset B of [0, 1] is densely ordered if for any x, y in

B with x < y, there exists z in B such that x < z < y.

For instance the set Q ∩ [0, 1] is numerable and densely ordered.

Definition 4.2. Let f be a real valued function defined on [0, 1]. We define the changing

sign set of f by those u in (0, 1) such that for every sequence (un) increasing towards u

and every sequence (vn) decreasing towards u, there is an integer N , such that ∀n ≥ N ,

sgn[f(un)] = −sgn[f(vn)], where as usual, sgn(x) = −1 if x < 0 and sgn(x) = 1 if x > 0.

The two previous definitions are used to formulate the following assumption on two distor-

tion functions.
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Assumption 4.1. Let ψ1 and ψ2 be two distortion functions and denote f := ψ1 − ψ2.

The set of changing sign points of f contains no densely ordered subset.

The economic interpretation of the previous assumption is as follows: it means that ψ1−ψ2

does not change sign too often. Recall from the previous remark that these functions

represent uncertainty weighting, if ψ1(u) ≥ ψ2(u) for a certain point u, an economic agent

using ψ1 as a distortion function asigns more uncertainty to the point u than an agent 2

using ψ2. Now when the sign of ψ1 − ψ2 changes, it means that the order of uncertainty

weighting between agent 1 and agent 2 changes. If it changes very often in the sense

that Assumption 4.1 is not satisfied, this means that the agents relative agreement on the

probability weighting changes very often.

A sufficient condition for Assumption 4.1 to hold is that the distortions ψ1 and ψ2 are

continuous and have a finite number of crossing points. This will be the case in all the

examples we consider.

Theorem 4.1. Let ρ1 and ρ2 be two comonotonic risk measures satisfying the assumptions

of Proposition 4.3. Suppose also that the associated local distortions gX1 and gX2 are con-

tinuous and satisfy Assumption 4.1.

Then there exists a possibly infinite increasing sequence {kn, n ≤ N} of real numbers cor-

responding to quantile values of X, such that

ρ1�ρ2(X) = ρ1 (X − Y ∗) + ρ2(Y ∗)

where Y ∗ is given by:

Y ∗ =
N∑
p=0

(X − k2p)
+ − (X − k2p+1)+. (4.4)

Remark 4.2. If the sequence {kn, n ≥ 0} only takes two non zero values k1 and k2, then

the first agent (the insurer in that case) takes in charge X ∧ k1 + (X − k2)+ and agent two

(the reinsurer) is exposed to (X − k1)+ − (X − k2)+. This is exactly the definition of the

Excess-of-Loss contract, denoted ”A-XS-B”, that we find in a large majority of catastrophe

reinsurance market exchanges (here B = k1 and A = k2 − k1).

Remark 4.3. This result means that the inf-convolution of law invariant and comonotonic

risk measures is given by a generalization of the Excess-of-Loss contract, with more treshold

values. The domain R+ of attainable losses is divided in ”ranges”, and each range is

alternatively at the charge of one of the two agents.

The case where N is infinite is of course impossible in practice, but it gives an additional

conceptual insight to the optimal structure of the risk transfer.

Proof.

We start by writing the representation (4.1) for the inf-convolution and divide it in two

parts. For X ∈ X , let A := {x ∈ [0, 1] : gX1 (x) ≤ gX2 (x)} (we will write g1 and g2 instead of

gX1 and gX2 for convenience),

ρ1�ρ2(X) =

∫ 1

0
qX(u)(g1 ∧ g2)′(u) du

=

∫ 1

0
qX(u)g′1(u)1A(u) du+

∫ 1

0
qX(u)g′2(u)1Ac(u) du.
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Since g1 and g2 satisfy Assumption 4.1 and are continuous, the following non increasing

sequence {un, n ≥ 1} is well defined: it corresponds to the points of equality of the functions

g1 and g2 defined as follows :

u0 = 1; un+1 = sup{x < un such that g1(x) = g2(x) and g1(x−) 6= g2(x−)}.

For each n we define kn := qX(un).

We can write the set A as a numerable union of disjoint intervals A =
⋃
n≥0[un+1, un], where

u0 = 1, limn→+∞ un = 0 and possibly there are integers k ∈ N such that g1(x) = g2(x)

for any x ∈ [uk+1, uk]. The non increasing sequence {un, n ≥ 1} corresponds to points of

equality of the functions g1 and g2. We can rewrite the inf-convolution

ρ1�ρ2(X) =
∑
p≥1

∫ 1

0
qX(u)1(u2p+1≤u≤u2p)g

′
1(u) du

+
∑
p≥1

∫ 1

0
qX(u)1(u2p+2≤u≤u2p+1)g

′
1(u) du. (4.5)

Then we remark that

qX(u)1(ui+1≤u≤ui) = (qX(u)− qX(ui))
+ − (qX(u)− qX(ui+1))+

− qX(ui+1)1{u≤ui+1} + qX(ui)1{u≤ui},

We define the increasing sequence (ki) by ki := qX(ui), and the random variables Z :=

(X − ki)+ − (X − ki+1)+ and Zi = 1{X>ki}, then we have

qX(u)1(ui+1≤u≤ui) = qZ(u)− ki+1qZi+1
(u) + kiqZi(u).

We can plug this equality into (4.5) to obtain

ρ1�ρ2(X) = ρ1

∑
p≥1

(X − k2p)
+ − (X − k2p+1)+


+ ρ2

∑
p≥1

(X − k2p+1)+ − (X − k2p+2)+


−
∑
p≥1

(
k2p+1ρ1(X > k2p+1)− k2pρ1(X > k2p)

)
−
∑
p≥1

(
k2p+2ρ2(X > k2p+2)− k2p+1ρ2(X > k2p+1)

)
Where we denoted ρ(X > k) := ρ(1{X>k}).

Finally, by noticing that for any i, ρ1(1(X>ki)) = g1(ui) = g2(ui) = ρ2(1(X>ki)), we obtain

the desired claim. �

The last proof shows in particular that the points ki defining the risk transfer are such that

ρ1(X > ki) = ρ2(X > ki). This is the counterpart on R of the equality at the points ui
belonging to [0, 1] of the local distortion functions gX1 and gX2 .

In Figure 1 below, we represented two possible functions gX1 and gX2 crossing twice on (0, 1),

and thus generating a layer as the optimal structure for the risk sharing. Assume that an

insurer uses the local distortion at X corresponding to the red curve, and that a reinsurer

uses the one corresponding to the green curve.
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In the interval (w, 1), the reinsurer uses a more severe probability distortion, and thus

all the risk is assumed by the insurer in that region, since (w, 1) corresponds to losses X

belonging to (0, k1), with k1 = qX(w). The same thing happens for the interval (0, v)

corresponding to losses belonging to (k2,+∞), with of course k2 = qX(v). Finally, the

reinsurer assumes all the losses belonging to (k1, k2), since he has a less severe distortion

on the interval (v, w).

With the notations of the last proof, k1 and k2 are the only two finite points such that we

have the ”agreement” ρ1(X > ki) = ρ2(X > ki).

Figure 1: Example of configuration leading to a layer as optimal risk transfer

5 Examples

5.1 AVaR Examples

1. Let α and β be in (0, 1) and consider ρ1 = AV aRα and ρ2 = AV aRβ. Then we have

(AV aRα�AV aRβ)(X) = AV aRα∧β(X), ∀X ∈ L∞.

Indeed, AV aRα is the Choquet integral with respect to the distorted probability

c(A) = ψα(P(A)) where

ψα(u) =
u

α
∧ 1.

It is easy to see that if β < α, then ψα(u) ≤ ψβ(u) for any u in [0, 1]. This means that

the distortion ψβ is always more severe than the distortion ψα, and from Theorem

4.1 we know that the agent using the less severe distortion assumes all the risk.

2. A classic measure used in reinsurance as a risk measure or as a pricing functional is the

Proportional Hazard transform, or PH-transform [35]. It is defined by the following

Choquet integral

ρPH(X) =

∫
X dc, with c(X > x) = P(X > x)r, 0 < r < 1.
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Using Theorem 4.1, and the fact that the functions ψα(u) = u
α ∧ 1 and ψPH(u) = ur

only coincide at the point u∗ = α
1

1−r , we obtain that

ρPH�AV aRα(X) = ρPH(X ∧ k∗) +AV aRα((X − k∗)+),

with k∗ = qX(α
1

1−r ).

Figure 2: PH-transform and AV aRα distortions

We can take for example α = r = 1
10 , in that case it leads to the distortion functions

represented in Figure 2 and u∗ = α
1

1−r = 0.0774. If X has a beta distribution with

density fX(x) = xv−1(1−x)w−1

β(v,w) , v = 4 and w = 8, then k∗ = 0.53.

Assume that an insurance company is facing a peril corresponding to a random de-

struction rate which has a β(4, 8) distribution on [0, 1].If the total insurable value is

given by M > 0, then an insurer using the PH-transform Choquet integral will cede

every losses above the value 0.53M to a reinsurer using the AV aRα as risk measure.

5.2 Epsilon-contaminated capacities

Let ν be the capacity given as the Epsilon-contamination of a given probability measure

Q, which means that ν is the submodular capacity defined by

ν(A) := (1− ε)Q(A) + ε, 0 < ε < 1 for A 6= {∅} and ν({∅}) = 0

Let X be a bounded random variable, denote X∗ := sup X(ω) and assume that X∗ > 0.

Applying the definition of the Choquet integral of X with respect to ν, we get∫
X dν =

∫ 0

−∞
(ν(X > x)− 1) dx+

∫ X∗

0
ν(X > x)dx+

∫ +∞

X∗
ν(X > x)dx

=

∫ 0

−∞
(1− ε) (Q(X > x)− 1) dx+

∫ X∗

0
[(1− ε)Q(X > x) + ε] dx

= (1− ε)EQ[X] + εX∗.

In this case the Choquet integral is affected by the supremum of X.

By analogy with Dow and Werlang [], we define the uncertainty aversion of a capacity ν at

A ∈ F by

e(ν,A) := ν(A) + ν(Ac)− 1.
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It is easy to check that an Epsilon contamination ν of Q is a constant uncertainty aversion

capacity, i.e e(ν,A) = ε, for any A 6= {∅}, A 6= Ω.

If two agents are using respectively an ε1 and ε2-contaminated capacities ν1 and ν2, we will

say that agent one is more uncertainty averse than agent two if ε1 > ε2.

Remark 5.1. We give here slightly different definitions than Carlier, Dana and Shahidi

[] or Dow and Werlang []. This is due to the facts that we consider submodular instead

of supermodular capacities and that a positive random variable X represents losses for us,

instead of gains, so a risk averse agent seeks for instance to increase rather than decrease

the expectation of X with respect to the a priori probabilty measure.

Remark 5.2. A capacity ν, given as an Epsilon-contamination of a probability measure

Q is not a distortion of the probability Q in the sense of Example 2.1. In particular, if we

define a capacity ν̃ by

ν̃(A) := ψ(Q(A)), with ψ given by ψ(0) = 0 and ψ(u) = (1− ε)u+ ε, 0 < u ≤ 1,

then ν 6= ν̃. Indeed, for a Q-negligible set B 6= {∅}, we have

ν̃(B) = 0 and ν(B) = ε > 0.

We will nonetheless write the Choquet integral with respect to ν using local distortion func-

tions.

Since
∫
X dν is affected by sup X(ω), we only consider bounded random variables X, but

the simple uniform distribution on [0, 1] already provides an interesting example.

Recall that our a priori given probability space is (Ω,F ,P). We will write ν(X > x) as

ψνX(P(X > x)) for some local distortion function ψνX .

We assume that agent one uses a Choquet integral with respect to the capacity ν1, given

as an ε1-contamination of a probabilty measure Q, such that Q << P. Agent two uses a

Choquet integral with respect to ν2, the ε2-contamination of P. Let us take ε1 < ε2. In

other word we have

ν1(A) = (1− ε1)Q(A) + ε1, with Q << P for A 6= {∅} and ν1({∅}) = 0,

ν2(A) = (1− ε2)P(A) + ε2 for A 6= {∅} and ν2({∅}) = 0.

Notice that ν1 and ν2 are two different examples of submodular capacities which are not

given by a distortion of the probability measure P.

The following lemma gives an example of two different optimal risk transfers, with two

random variables having the same law.

Lemma 5.1. Let Z and Z ′ be two independent and uniformly distributed random variables

on (Ω,F ,P) with values in [0, 1]. Let θ > 0 be a given parameter and define Q as the

θ-Esscher transform of P, i.e dQ
dP = eθZ

EP[eθZ ]
. We have∫

Z dν1 =

∫ 1

0
ψν1Z [P(X > x)]dx where ψν1Z (u) = ε1 + (1− ε1)

(
eθ − e(1−u)θ

eθ − 1

)
,∫

Z dν2 =

∫ 1

0
ψν2Z [P(X > x)]dx where ψν2Z (u) = ε2 + (1− ε2)u,∫

Z ′ dν1 =

∫ 1

0
ψν1Z′ [P(X > x)]dx where ψν1Z′(u) = ε1 + (1− ε1)u,∫

Z ′ dν2 =

∫ 1

0
ψν2Z′ [P(X > x)]dx where ψν2Z′(u) = ψν2Z (u) = ε2 + (1− ε2)u.
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As a consequence, we have the following optimal risk transfer structures:

ρ1�ρ2(Z) = ρ1

(
(X − k∗)+

)
+ ρ2(X ∧ k∗)

with k∗ = qPX(u∗), where u∗ ∈ (0, 1) is the solution of the equation ψν1Z (u) = ψν2Z (u).

Furthermore, we have

ρ1�ρ2(Z ′) = ρ1(X),

where we denoted by ρ1 and ρ2 the Choquet integrals with respect to ν1 and ν2.

Proof. The functions ν1(Z > x) and ν2(Z > x) for x ∈ (0, 1) inherit the constant intervals

of P(Z > x) since P(Z > x) is never constant on (0, 1), so there is nothing to check, and

this is also true for Z ′ instead of Z.

Then Lemma 3.1 gives that∫
Z dνi =

∫ 1

0
ψνiZ [P(X > x)]dx, with ψνiZ (u) = νi

(
Z > qPZ(u)

)
, i = 1, 2.

We calculate for instance, for 0 < u ≤ 1

ν1

(
Z > qPZ(u)

)
= (1− ε1)Q

(
Z > qPZ(u)

)
+ ε1 and ψν1Z (0) = 0.

Moreover

Q
(
Z > qPZ(u)

)
= EP

[
eθZ

EP[eθZ ]
1{Z>qPZ(u)}

]
=
eθ − e(1−u)θ

eθ − 1
,

since qPZ(u) = 1 − u. This proves the first claim of the Lemma. The functions ψν2Z , ψν1Z′ ,

ψν2Z′ are computed similarly, and using the fact that Z is independent of Z ′. The different

optimal risk transfer structures are direct applications of Theorem 4.1.

�

Figure 3: The functions ψν1Z (green curve)

and ψν2Z (red curve)

Figure 4: The functions ψν1Z′ (green curve)

and ψν2Z′ (red curve)

In Figures 3 and 4 above, we represented the local distortions ψνiZ and ψνiZ′ , i = 1, 2, with

(ε1, ε2, θ) = (0.3, 0.5, 6).

We clearly see in Figure 4 that for the r.v. Z ′, there is no risk transfer, agent one will

assume all the risk, since he is less risk averse than agent two. Whereas Figure 3 shows

that there is a unique agreement point k∗ such that ρ1(X > k∗) = ρ2(X > k∗), and k∗ is

approximatevily given by qPZ(0.067) = 0.932.
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5.3 Volatility uncertainty

Computing the Choquet integral of a r.v X with respect to a submodular capacity is a way

to inflate the P-expectation of X, and hence to take into account the model uncertainty we

have relatively to the probability measure P.

In the recent literature on model uncertainty, we can find important contributions to the

particular case of volatility uncertainty ([29], [14] or [32]). These papers all use probabilities

of a certain form that we now describe.

Let Ω = C(R+,Rd) be the canonical space of Rd-valued continuous paths defined on R+,

equipped with its Borel σ-field, B the canonical process on Ω and P0 the Wiener measure.

Let α : R+ → S>0
d be a deterministic function such that

∫ 1
0 |αt| dt < +∞, where S>0

d

denotes the space of all d× d real valued positive definite matrices.

We define the probability measure Pα on Ω by

Pα = P0 ◦ (Xα)−1, where Xα
t :=

∫ t

0
α1/2(s) dBs, t ∈ [0, 1], P0 − a.s.

which means that Pα is the law under P0 of the process Xα. Then a key observation is

that the Pα-distribution of B is equal to the P0-distribution of Xα. In particular, B has a

Pα-quadratic variation which is absolutely continuous with respect to the Lebesgue measure

dt with density α. Then for different functions α, the measures Pα offer a way to model

the quadratic variation uncertainty, or volatility uncertainty, for the canonical process B.

Assume that two agents use the same distortion function ψ, but disagree on the volatility

process. More precisely, let c1 and c2 be two submodular capacities on F given by

ci(A) := ψ[Pαi(A)], i = 1, 2, A ∈ F ,

where ψ is a given distortion function, and α1, α2 are two different volatility processes. Let

us consider the corresponding Choquet integrals evaluated at B1:

ρi(B1) =

∫ 0

−∞
[ψ(Pαi(B1 > x))− 1]dx+

∫ +∞

0
ψ(Pαi(B1 > x))dx, i = 1, 2.

Since the probabilities are different we cannot use this form to find an optimal risk transfer

between agent 1 and agent two. Notice that the measures P0,Pα1 and Pα2 are mutually

singular. But we can use local distortion functions, and do as if P0 is a reference measure.

Lemma 5.2. We have

ρ1�ρ2(B1) = ρ1(−B−1 ) + ρ2(B+
1 ).

where, as usual, X− = max(−X, 0) and X+ = max(X, 0).

Proof.

We can use Lemma 3.1, and write everything in terms of P0(B1 > x) as follows.

Since B1 under P0 is a standard gaussian r.v, the function x→ P0(B1 > x) has no constant

intervals. By Lemma 3.1, there exist local distortion functions ψiB1
such that

ψ(Pαi(B1 > x)) = ψiB1
(P0(B1 > x)), x ∈ R i = 1, 2.

We have for example for agent one (i = 1)

ψ1
B1

(u) = c1(B1 > q(u)) = ψ[Pα1(B1 > x)],
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where we denoted q(u) := qP0
B1

(u) for simplicity. Moreover, using the fact that B is a

P0-Brownian motion, and the Dubins-Schwarz theorem, we get

Pα1(B1 > x) = P0 (Xα1
1 > x) = P0

(∫ 1

0
α

1/2
1 (s) dBs > x

)
= F

 q(u)∥∥∥α1/2
1

∥∥∥
L2

 ,

where F is the tail distribution function of the standard gaussian law. So we found that

ψ1
B1

(u) = ψ

F
 q(u)∥∥∥α1/2

1

∥∥∥
L2

 , and of course ψ2
B1

(u) = ψ

F
 q(u)∥∥∥α1/2

2

∥∥∥
L2

 .
The functions ψ1

B1
and ψ2

B1
are equal on (0, 1) only at u∗ = 1/2. Then using Theorem 4.3,

we get

ρ1�ρ2(B1) = ρ1(B1 ∧ k∗) + ρ2((X − k∗)+),

with k∗ = q(u∗) = 0. This ends the proof.

�

In Figure 5 below, we represented these two local distortions, in the particular case where

ψ(u) =
√
u, and the functions α1 and α2 are constants respectively equal to 4 and 9.

Notice that the Choquet integrals ρ1 and ρ2 are convex, but the local distortions ψ1
B1

and ψ2
B1

are not concave. This cannot happen for classic distorted probabilities since the

Choquet integral with respect to a distorted probability is convex if and only if the distortion

is concave, provided the probability space is atomless.

Figure 5: The functions ψ1
B1

(red curve) and ψ2
B1

(green curve)
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