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Pathwise integration and change of variable formulas for continuous paths with arbitrary regularity

We construct a pathwise integration theory, associated with a change of variable formula, for smooth functionals of continuous paths with arbitrary regularity defined in terms of the notion of p-th variation along a sequence of time partitions. For paths with finite p-th variation along a sequence of time partitions, we derive a change of variable formula for p times continuously differentiable functions and show pointwise convergence of appropriately defined compensated Riemann sums.

Results for functions are extended to regular path-dependent functionals using the concept of vertical derivative of a functional. We show that the pathwise integral satisfies an 'isometry' formula in terms of p-th order variation and obtain a 'signal plus noise' decomposition for regular functionals of paths with strictly increasing p-th variation. For less regular (C p-1 ) functions we obtain a Tanaka-type change of variable formula using an appropriately defined notion of local time.

These results extend to multidimensional paths and yield a natural higher-order extension of the concept of 'reduced rough path'. We show that, while our integral coincides with a rough-path integral for a certain rough path, its construction is canonical and does not involve the specification of any rough-path superstructure.

Introduction

In his seminal paper Calcul d'Itô sans probabilités [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF], Hans Föllmer provided a pathwise proof of the Itô formula, using the concept of quadratic variation along a sequence of partitions, defined as follows. A path S ∈ C([0, T ], R) is said to have finite quadratic variation along the sequence of partitions π n = (0 = t n 0 < t n 1 < • • • < t n N (πn) = T ) if for any t ∈ [0, T ], the sequence of measures

µ n := [t n j ,t n j+1 ]∈πn δ(• -t j )|S(t n j+1 ) -S(t n j )| 2
converges weakly to a measure µ without atoms. The continuous increasing function [S] : [0, T ] → R + defined by [S](t) = µ([0, t]) is then called the quadratic variation of S along π. Extending this definition to vector-valued paths Föllmer [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF] showed that, for integrands of the form ∇f (S(t)) with f ∈ C 2 (R d ), one may define a pathwise integral ∇f (S(t))dS as a pointwise limit of Riemann sums along the sequence of partitions (π n ) and he obtained an Itô (change of variable) formula for f (S(t)) in terms of this pathwise integral: for f ∈ C 2 (R d ), t ∈ [0, T ],

f (S(t)) = ∇f (S(t)), (S(t n j+1 ∧ t) -S(t n j ∧ t)) .

This result has many interesting ramifications and applications in the pathwise approach to stochastic analysis, and has been extended in different ways, to less regular functions using the notion of pathwise local time [START_REF] Bertoin | Temps locaux et intégration stochastique pour les processus de Dirichlet[END_REF][START_REF] Davis | Pathwise stochastic calculus with local times[END_REF][START_REF] Perkowski | Local times for typical price paths and pathwise Tanaka formulas[END_REF], as well as to path-dependent functionals and integrands [START_REF] Ananova | Pathwise integration with respect to paths of finite quadratic variation[END_REF][START_REF] Cont | Functional Ito Calculus and functional Kolmogorov equations, in Stochastic Integration by Parts and Functional Ito Calculus[END_REF][START_REF] Cont | Change of variable formulas for non-anticipative functionals on path space[END_REF][START_REF]Pathwise stochastic integrals for model free finance[END_REF].

The central role played by the concept of quadratic variation has led to the assumption that they do not extend to less regular paths with infinite quadratic variation. Integration theory and change of variables formulas for processes with infinite quadratic variation, such as fractional Brownian motion and other fractional processes, have relied on probabilistic, rather than pathwise constructions [START_REF] Carmona | Stochastic integration with respect to fractional brownian motion[END_REF][START_REF] Coutin | An Introduction to (Stochastic) Calculus with Respect to Fractional Brownian Motion[END_REF][START_REF] Gradinaru | Generalized covariations, local time and Stratonovich Ito's formula for fractional Brownian motion with Hurst index H ≥ 1 4[END_REF]. Furthermore, the change of variable formulae obtained using these methods are valid for a restricted range of Hurst exponents (see [START_REF] Nualart | Stochastic calculus with respect to fractional brownian motion[END_REF] for an overview).

In this work, we show that Föllmer's pathwise Itô calculus may be extended to paths with arbitrary regularity, in a strictly pathwise setting, using the concept of p-th variation along a sequence of time partitions. For paths with finite p-th variation along a sequence of time partitions, we derive a change of variable formula for p times continuously differentiable functions and show pointwise convergence of appropriately defined compensated Riemann sums. This result may be seen as the natural extension of the results of Föllmer [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF] to paths of lower regularity. Our results apply in particular to paths of fractional Brownian motions with arbitrary Hurst exponent, and yield pathwise proofs for results previously derived using probabilistic methods, without any restrictions on the Hurst exponent.

Using the concept of the vertical derivative of a functional [START_REF] Cont | Change of variable formulas for non-anticipative functionals on path space[END_REF], we extend these results to regular path-dependent functionals of such paths. We obtain an 'isometry' formula in terms of p-th order variations for the pathwise integral and a 'signal plus noise' decomposition for regular functionals of paths with strictly increasing p-th variation, extending the results of [START_REF] Ananova | Pathwise integration with respect to paths of finite quadratic variation[END_REF] obtained for the case p = 2 to arbitrary even integers p ≥ 2.

The extension to less regular (i.e. not p times differentiable) functions is more delicate and requires defining an appropriate higher-order analogue of semimartingale local time, which we introduce through an appropriate spatial localization of the p-th order variation. Using this higher-order concept of local time, we obtain a Tanaka-type change of variable formula for less regular (i.e. p -1 times differentiable) functions. We conjecture that these results apply in particular to paths of fractional Brownian motion and other fractional processes.

Finally, we consider extensions of these results to multidimensional paths and link them with rough path theory; the corresponding concepts yield a natural higher order extension to the concept of 'reduced rough path' introduced by Friz and Hairer [START_REF] Friz | A course on rough paths[END_REF]Chapter 5].

Outline Section 1 introduces the notion of p-th variation along a sequence of partitions and derives a change of variable formula for p times continuously differentiable functions of paths with finite p-th variation (Theorem 1.5). An extension of these results to path-dependent functionals is discussed in Section 1.3: Theorem 1.10 gives a functional change of variable formula for regular functionals of paths with finite p-th variation.

Section 2 studies the corresponding pathwise integral in more detail. We first show (Theorem 2.1) that the integral exhibits an 'isometry' property in terms of the p-th order variation and use this property to obtain a unique 'signal plus noise' decomposition where the components are discriminated in terms of their p-th order variation (Theorem 2.3).

The extension of these concepts to multidimensional paths and the relation to the concept of 'reduced rough paths' are discussed in Section 4.
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1 Pathwise calculus for paths with finite p-th variation 1.1 p-th variation along a sequence of partitions We introduce, in the spirit of Föllmer [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF], the concept of p-th variation along a sequence of partitions

π n = {t n 0 , . . . , t n N (πn) } with t n 0 = 0 < ... < t n k < ... < t n N (πn) = T . Define the oscillation of S ∈ C([0, T ], R) along π n as osc(S, π n ) := max [t j ,t j+1 ]∈πn max r,s∈[t j ,t j+1 ] |S(s) -S(r)|.
Here and in the following we write [t j , t j+1 ] ∈ π n to indicate that t j and t j+1 are both in π n and are immediate successors (i.e. t j < t j+1 and π n ∩ (t j , t j+1 ) = ∅). Definition 1.1 (p-th variation along a sequence of partitions). Let p > 0. A continuous path S ∈ C([0, T ], R) is said to have a p-th variation along a sequence of partitions π = (π n ) n≥1 if osc(S, π n ) → 0 and the sequence of measures

µ n := [t j ,t j+1 ]∈πn δ(• -t j )|S(t j+1 ) -S(t j )| p
converges weakly to a measure µ without atoms. In that case we write S ∈ V p (π) and [S] p (t) := µ([0, t]) for t ∈ [0, T ], and we call [S] p the p-th variation of S.

Remark 1.2.

1. Functions in V p (π) do not necessarily have finite p-variation in the usual sense. Recall that the p-variation of a function f ∈ C([0, T ], R) is defined as [START_REF] Dudley | Concrete functional calculus[END_REF] f p-var := sup

π∈Π([0,T ]) [t j ,t j+1 ]∈π |f (t j+1 ) -f (t j )| p 1/p ,
where the supremum is taken over the set Π([0, T ]) of all partitions π of [0, T ]. A typical example is the Brownian motion B, which has quadratic variation [B] 2 (t) = t along any refining sequence of partitions almost surely while at the same time having infinite 2-variation almost surely [START_REF] Dudley | Concrete functional calculus[END_REF][START_REF] Taylor | Exact asymptotic estimates of brownian path variation[END_REF]:

P ( B 2-var = ∞) = 1.
2. If S ∈ V p (π) and q > p, then S ∈ V q (π n ) with [S] q ≡ 0.

The following lemma gives a simple characterization of this property: 

Lemma 1.3. Let S ∈ C([0, T ], R). S ∈ V p (π) if
|S(t j+1 ) -S(t j )| p n→∞ -→ [S] p (t). ( 1 
)
If this property holds, then the convergence in (1) is uniform.

Indeed, the weak convergence of measures on [0, T ] is equivalent to the pointwise convergence of their cumulative distribution functions at all continuity points of the limiting cumulative distribution function, and if the limiting cumulative distribution function is continuous, the convergence is uniform.

Example 1.4. If B is a fractional Brownian motion with Hurst index H ∈ (0, 1) and [START_REF] Pratelli | A remark on the 1/H-variation of the fractional Brownian motion[END_REF][START_REF] Rogers | Arbitrage with fractional Brownian motion[END_REF].

π n = {kT /n : k ∈ N 0 } ∩ [0, T ], then B ∈ V 1/H (π) and [B] 1/H (t) = tE[|B 1 | 1/H ], see

Pathwise integral and change of variable formula

A key observation of Föllmer [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF] was that, for p = 2, Definition 1.1 is sufficient to obtain a pathwise Itô formula for (C 2 ) functions of S ∈ V 2 (π n ). We will show that in fact Föllmer's argument may be applied for any even integer p: Theorem 1.5 (Change of variable formula for paths with finite p-th variation). Let p ∈ N be even, let (π n ) be a given sequence of partitions, and let S ∈ V p (π). Then for every f ∈ C p (R, R) the pathwise change of variable formula

f (S(t)) -f (S(0)) = t 0 f (S(s))dS(s) + 1 p! t 0 f (p) (S(s))d[S] p (s),
holds, where the integral

t 0 f (S(s))dS(s) := lim n→∞ [t j ,t j+1 ]∈πn p-1 k=1 f (k) (S(t j )) k! (S(t j+1 ∧ t) -S(t j ∧ t)) k
is defined as a (pointwise) limit of compensated Riemann sums.

Proof. Applying a Taylor expansion at order p to the increments of f (S) along the partition, we obtain

f (S(t)) -f (S(0)) = [t j ,t j+1 ]∈πn (f (S(t j+1 ∧ t)) -f (S(t j ∧ t))) (2) 
= [t j ,t j+1 ]∈πn p k=1 f (k) (S(t j )) k! (S(t j+1 ∧ t) -S(t j ∧ t)) k + [t j ,t j+1 ]∈πn 1 0 dλ (1 -λ) p-1 (p -1)! (S(t j+1 ∧ t) -S(t j ∧ t)) p × f (p) (S(t j ) + λ(S(t j+1 ∧ t) -S(t j ∧ t))) -f (p) (S(t j )) .
Since the image of (S(t)) t∈[0,T ] is compact, we may assume without loss of generality that f is compactly supported; then the remainder on the right hand side is bounded by

[t j ,t j+1 ]∈πn 1 0 dλ (1 -λ) p-1 (p -1)! (S(t j+1 ∧ t) -S(t j ∧ t)) p × f (p) (S(t j ) + λ(S(t j+1 ∧ t) -S(t j ∧ t))) -f (p) (S(t j )) ≤ C(f, S, π n , p)µ n ([0, t])
with a constant C(f, S, π n , p) > 0 that converges to zero for n → ∞, and therefore the remainder vanishes for n → ∞. Since S ∈ V p (π) we know that lim

n→∞ [t j ,t j+1 ]∈πn f (p) (S(t j )) p! (S(t j+1 ∧ t) -S(t j ∧ t)) p = 1 p! t 0 f (p) (S(s))d[S] p (s),
and therefore we obtain from (2)

lim n→∞ [t j ,t j+1 ]∈πn p-1 k=1 f (k) (S(t j )) k! (S(t j+1 ∧ t) -S(t j ∧ t)) k = f (S(t)) -f (S(0)) - 1 p! t 0 f (p) (S(s))d[S] p (s),
and we simply define t 0 f (S(s))dS(s) as the limit on the left hand side.

Remark 1.6 (Relation with Young integration and rough-path integration). The expression

[t j ,t j+1 ]∈πn p-1 k=1 f (k) (S(t j )) k! (S(t j ∧ t) -S(t j ∧ t)) k
is a 'compensated Riemann sum'. Note however that, given the assumptions on S, the pathwise integral appearing in the formula cannot be defined as a Young integral, even after substracting the compensating terms. This relates to the observation in Remark 1.2 that p-variation can be infinite for S ∈ V p (π).

When p = 2 it reduces to an ordinary (left) Riemann sum. For p > 2 such compensated Riemann sums appear in the construction of 'rough path integrals' [START_REF] Friz | A course on rough paths[END_REF][START_REF] Gubinelli | Controlling rough paths[END_REF]. Let X ∈ C α ([0, T ], R) be α-Hölder continuous for some α ∈ (0, 1), and write q = α -1 . We can enhance X uniquely into a (weakly) geometric rough path (X 1 s,t , X 2 s,t , . . . , X q s,t ) 0≤s≤t≤T , where

X k s,t := (X(t) -X(s)) k /k!. Moreover, for g ∈ C q+1 (R, R) the function g (X) is controlled by X with Gubinelli derivatives g (X(t)) -g (X(s)) = q-1 k=1 g (k+1) (X(s)) k! (X(t) -X(s)) k + O(|t -s| qα ) = q-1 k=1 g (k+1) (X(s))X k s,t + O(|t -s| qα ),
and therefore the controlled rough path integral t 0 g (X(s))dX(s) is given by lim

|π|→0 [t j ,t j+1 ]∈π q k=1 g (k) (X(s))X k s,t = lim |π|→0 [t j ,t j+1 ]∈π q k=1 g (k) (X(s)) (X(t) -X(s)) k k! ,
where |π| denotes the mesh size of the partition π, and which is exactly the type of compensated Riemann sum that we used to define our integral. The link between our approach and rough path integration is explained in more detail in Section 4.2 below.

Remark 1.7. In principle we could apply similar arguments for odd integers p if instead of S ∈ V p (π) we assumed that [t j ,t j+1 ]∈πn δ(• -t j )(S(t j+1 ) -S(t j )) p converges to a signed measure. However, for odd p we typically expect the limit to be zero, see the Appendix for a prototypical example. So to slightly simplify the presentation, we restrict our attention to even p.

Remark 1.8. A notion similar to our definition of p-th variation was introduced by Errami and Russo [START_REF] Errami | n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes[END_REF], in the (probabilistic and not pathwise) context of stochastic calculus via regularization [START_REF] Russo | Elements of stochastic calculus via regularization[END_REF]. For p = 3, Errami and Russo prove an Itô type formula that is similar to the one in Theorem 1.5. However, since they use a definition of the integral t 0 f (S(s))dS(s) that does not take the higher order compensation terms into account, their approach is limited to p = 3. Gradinaru, Russo, and Vallois [START_REF] Gradinaru | Generalized covariations, local time and Stratonovich Ito's formula for fractional Brownian motion with Hurst index H ≥ 1 4[END_REF] extended this approach to p = 4 for functions of a fractional Brownian motion with Hurst index H ≥ 1/4, a result which relies heavily on the Gaussian properties of fractional Brownian motion.

The key ingredient of our approach is to define the integral using compensated Riemann sums which, compared with previous work, drastically simplifies the derivation of the change of variable formula for arbitrary (even) p in a strictly pathwise setting without any use of probabilistic notions of convergence.

Extension to path-dependent functionals

An important generalization of Föllmer's pathwise Itô formula is to the case of path-dependent functionals [START_REF] Cont | Change of variable formulas for non-anticipative functionals on path space[END_REF] of paths S ∈ V 2 (π) using Dupire's notion of functional derivative [START_REF] Dupire | Functional Itô calculus[END_REF]; see [START_REF] Cont | Functional Ito Calculus and functional Kolmogorov equations, in Stochastic Integration by Parts and Functional Ito Calculus[END_REF] for an overview. We extend here the functional change of variable formula of Cont and Fournié [START_REF] Cont | Change of variable formulas for non-anticipative functionals on path space[END_REF] to functionals of paths S ∈ V p (π), where p is any even integer.

Let D([0, T ], R) be the space of càdlàg paths from [0, T ] to R and write

ω t (s) = ω(s ∧ t),
for the path ω stopped at time t. Let

Λ T := {(t, ω t ) : (t, ω) ∈ [0, T ] × D([0, T ], R)}
be the space of stopped paths. This is a complete metric space equipped with

d ∞ ((t, ω), (t , ω )) := sup s∈[0,T ] |ω(s ∧ t) -ω (s ∧ t )| + |t -t | = ω t -ω t ∞ + |t -t |.
We will also need to stop paths "right before" a given time, and set for t > 0

ω t-(s) := ω(s), s < t, lim r↑t ω(r), s ≥ t,
while ω 0-:= ω 0 . We first recall some concepts from the non-anticipative functional calculus [START_REF] Cont | Change of variable formulas for non-anticipative functionals on path space[END_REF][START_REF] Cont | Functional Ito Calculus and functional Kolmogorov equations, in Stochastic Integration by Parts and Functional Ito Calculus[END_REF]. Definition 1.9. A non-anticipative functional is a map F : Λ T → R. Let F be a nonanticipative functional.

i. We write

F ∈ C 0,0 l (Λ T ) if for all t ∈ [0, T ] the map F (t, •) : D([0, T ],
R) → R is continuous and if for all (t, ω) ∈ Λ T and all ε > 0 there exists δ > 0 such that for all

(t , ω ) ∈ Λ T with t < t and d ∞ ((t, ω), (t , ω )) < δ we have |F (t, ω) -F (t , ω )| < ε. ii. We write F ∈ B(Λ T ) if for every t 0 ∈ [0, T ) and every K > 0 there exists C K,t 0 > 0 such that for all t ∈ [0, t 0 ] and all ω ∈ D([0, T ], R) with sup s∈[0,t] |ω(s)| ≤ K we have |F (t, ω)| ≤ C K,t 0 . iii. F is horizontally differentiable at (t, ω) ∈ Λ T if its horizontal derivative DF (t, ω) := lim h↓0 F (t + h, ω t ) -F (t, ω t ) h exists. If it exists for all (t, ω) ∈ Λ T , then DF is a non-anticipative functional. iv. F is vertically differentiable at (t, ω) ∈ Λ T if its vertical derivative ∇ ω F (t, ω) := lim h↓0 F (t, ω t + h1 [t,T ] ) -F (t, ω t ) h exists. If it exists for all (t, ω) ∈ Λ T , then ∇ ω F is a non-anticipative functional.
In particular, we define recursively ∇ k+1 ω F := ∇ ω ∇ k ω F whenever this is well defined.

v. For p ∈ N 0 we say that F ∈ C 1,p b (Λ T ) if F is horizontally differentiable and p times vertically differentiable in every (t, ω) ∈ Λ T , and if

F, DF, ∇ k ω F ∈ C 0,0 l (Λ T ) ∩ B(Λ T ) for k = 1, . . . , p.
Define the piecewise-constant approximation S n to S along the partition π n :

S n (t) = [t j ,t j+1 ]∈πn S(t j+1 )1 [t j ,t j+1 ) (t) + S(T )1 {T } (t). (3) 
Then lim n→∞ S n -S ∞ = 0 whenever osc(S, π n ) → 0.

Theorem 1.10 (Functional change of variable formula for paths with finite p-th variation).

Let p be an even integer, let F ∈ C 1,p b (Λ T ), and let S ∈ V p (π) for a sequence of partitions (π n ) with vanishing mesh size |π n | → 0. Then the functional change of variable formula

F (t, S t ) = F (0, S 0 ) + t 0 DF (s, S s )ds + t 0 < ∇F (s, S s ), dS(s) > + 1 p! t 0 ∇ p ω F (s, S s )d[S] p (s)
holds, where

t 0 < ∇F (s, S s ), dS(s) >:= lim n→∞ [t j ,t j+1 ]∈πn p-1 k=1 1 k! ∇ k ω F (t j , S n t j -)(S(t j+1 ∧ t) -S(t j ∧ t)) k ,
with the piecewise constant approximation S n as defined in (3).

Proof. Since the right hand side is a telescoping sum, we have

F (t, S n t ) -F (0, S n 0 ) = [t j ,t j+1 ]∈πn (F (t j+1 ∧ t, S n (t j+1 ∧t)-) -F (t j ∧ t, S n (t j ∧t)-)) + F (t, S n t ) -F (t, S n t-) = [t j ,t j+1 ]∈πn (F (t j+1 ∧ t, S n (t j+1 ∧t)-) -F (t j ∧ t, S n (t j ∧t)-)) + o(1).
Consider j with t j+1 t and split up the difference as follows:

F (t j+1 , S n t j+1 -) -F (t j , S n t j -) = (F (t j+1 , S n t j+1 -) -F (t j , S n t j )) + (F (t j , S n t j ) -F (t j , S n t j -)). Now S n t j+1 -(s) = S n t j (s) for all s ∈ [0, t j+1 ],
and therefore the first term on the right hand side is simply

F (t j+1 , S n t j+1 -) -F (t j , S n t j ) = t j+1 t j DF (r, S n t j )dr,
from where we easily get (using that the mesh size of (π n ) converges to zero)

lim n→∞ [t j ,t j+1 ]∈πn (F (t j+1 ∧ t, S n (t j+1 ∧t)-) -F (t j ∧ t, S n (t j ∧t) )) = t 0 DF (r, S r )dr.
It remains to consider the term

F (t j , S n t j ) -F (t j , S n t j -) = F (t j , S n,St j ,t j+1 t j - ) -F (t j , S n t j -),
where S t j ,t j+1 := S(t j+1 ) -S(t j ) and S n,x t j -(s) := S n t j (s) + 1 [t j ,T ] (s)x. By Taylor's formula and the definition of the vertical derivative, we have

F (t j , S n,St j ,t j+1 t j - ) -F (t j , S n t j -) = p k=1 ∇ k ω F (t j , S n t j -) k! (S(t j+1 ∧ t) -S(t j ∧ t)) k + 1 (p -1)! 1 0 dλ(1 -λ) p-1 (S(t j+1 ∧ t) -S(t j ∧ t)) p × ∇ p ω F (t j , S n,λSt j ,t j+1 t j - ) -∇ p ω F (t j , S n t j -) .
Now we sum over [t j , t j+1 ] ∈ π n and see as in Theorem 1.5 that the correction term vanishes for n → ∞. Moreover, since S ∈ V p (π) we have lim

n→∞ [t j ,t j+1 ]∈πn ∇ p ω F (t j , S n t j -) p! (S(t j+1 ∧ t) -S(t j ∧ t)) p = 1 p! t 0 ∇ p ω F (s, S s )d[S] p (s), see [7, Lemma 5.3.7]. Since F ∈ C 0,0 l (Λ T ), we have lim n→∞ (F (t, S n t ) -F (0, S n 0 )) = F (t, S t ) -F (0, S 0 ),
which completes the proof.

Isometry relation and rough-smooth decomposition

Given a path (or process) S ∈ V p (π) with finite p-th variation along the sequence of partitions (π n ), the results above may be used to derive a decomposition of regular functionals of S into a rough component with non-zero p-th variation along (π n ) and a smooth component with zero p-th variation along (π n ). For p = 2 such a decomposition was obtained in [START_REF] Ananova | Pathwise integration with respect to paths of finite quadratic variation[END_REF] and is a pathwise analog of the decomposition of a Dirichlet process into a local martingale and a "zero energy" part [START_REF] Föllmer | Dirichlet processes[END_REF]. For α ∈ (0, 1) we write C α ([0, T ], R) for the α-Hölder continuous paths from [0, T ] to R, and • α denotes the α-Hölder semi-norm.

An 'isometry' property of the pathwise integral

Theorem 2.1 ('Isometry' formula). Let p ∈ N be an even integer, let α > (( 1+ 4 p ) 1/2 -1)/2, let (π n ) be a sequence of partitions with mesh size going to zero, and let

S ∈ V p (π)∩C α ([0, T ], R). Let F ∈ C 1,2 b (Λ T ) such that ∇ ω F ∈ C 1,1 b (Λ T ). Assume furthermore that F is Lipschitz- continuous with respect to d ∞ . Then F (•, S) ∈ V p (π) and [F (•, S)] p (t) = t 0 |∇ ω F (s, S s )| p d[S] p (s).
Proof. The proof is similar to the case p = 2 considered in [START_REF] Ananova | Pathwise integration with respect to paths of finite quadratic variation[END_REF]. Indeed, our assumptions allow us to apply [1, Lemma 2.2], which shows that there exists C > 0, only depending on T , F , and S α , such that for all 0

≤ s ≤ t ≤ T R F (s, t) := |F (t, S t ) -F (s, S s ) -∇ ω F (s, S s )(S(t) -S(t))| ≤ C|t -s| α+α 2 . ( 4 
)
Writing also γ F (s, t) := ∇ ω F (s, S s )(S(t) -S(s)), we obtain 

t j+1 ≤t R F (t j , t j+1 ) k γ F (t j , t j+1 ) p-k . (5) Since S ∈ V p (π) we have lim n→∞ [t j ,t j+1 ]∈πn: t j+1 ≤t |γ F (t j , t j+1 )| p = t 0 |∇ ω F (s, S(s))| p d[S] p (s). ( 6 
)
Our result follows once we show that the double sum on the right hand side of (5) vanishes.

For that purpose let k ∈ {1, . . . , p} and write q k := p/(p -k) ∈ [1, ∞] and let q k = p/k be its conjugate exponent. Hölder's inequality yields [t j ,t j+1 ]∈πn: 

t j+1 ≤t R F (t j , t j+1 ) k γ F (t j , t j+1 ) p-k ≤ [t j ,t j+1 ]∈πn: t j+1 ≤t |R F (t j , t j+1 )| kq k 1/q k [t j ,t j+1 ]∈πn: t j+1 ≤t |γ F (t j , t j+1 )| (p-k)q k 1/q k = [t j ,
t j+1 ≤t |t j+1 -t j | p(α+α 2 ) k/p ≤ (t × max{|t j+1 -t j | p(α+α 2 )-1 : [t j , t j+1 ] ∈ π n , t j+1 ≤ t}) k/p ,
which converges to zero for n → ∞ because p(α + α 2 ) > 1 (which is equivalent to our assumption α > ( 1 + 4 p -1)/2) and because k > 0. Moreover, by ( 6) the sum over |γ F (t j , t j+1 )| p is bounded and this concludes the proof. Remark 2.2. 1. Keeping the example of the (fractional) Brownian motion in mind, we would typically expect paths in V p (π) to be (1/p -κ)-Hölder continuous for any κ > 0. Since for f (x) = (1 + x) 1/2 we have

f (x) = - 1 4 (1 + x) -3/2 < 0,
we have f (x) < f (0) + f (0)x for all x > 0, and therefore

(1 + 4 p ) 1/2 -1 2 < 1 2 4 p 2 = 1 p ,
which means that in Theorem 2.3 we can take α < 1/p and our constraint on the Hölder regularity is not unreasonable.

2. In fact the complicated constraint on α comes from inequality (4), which only gives us a control of order |t -s| α+α 2 for R F (s, t), while |t -s| 2α might seem more natural (after all R F (s, t) is something like the remainder in a first order Taylor expansion). The difficulty is that horizontal differentiability is a very weak notion, which a priori gives us no control on R F (s, t). To obtain any bounds at all we first need to approximate our path by piecewise linear or piecewise constant paths, and through this approximation procedure we lose a little bit of regularity, see [1, Lemma 2.2] for details. We could improve the control of R F (s, t) by taking a higher order Taylor expansion (which would require more regularity from F ), but we do not need this here.

Pathwise rough-smooth decomposition

Using the above result we may derive, as in [START_REF] Ananova | Pathwise integration with respect to paths of finite quadratic variation[END_REF], a pathwise 'signal plus noise' decomposition for regular functionals of paths with strictly increasing p-th variation. Let

C 1,p b (S) = {F (•, S), F ∈ C 1,p b (Λ T )} ⊂ V p (π).
The following result extends the pathwise rough-smooth decomposition of paths in C 1,p b (S), obtained in [START_REF] Ananova | Pathwise integration with respect to paths of finite quadratic variation[END_REF] for p = 2, to higher values of p. Proof. Consider two such decompositions X - Since (F -F )(s, S s ) is continuous in s and [S] p is strictly increasing we have ∇ ω (F -F )(•, S) ≡ 0. This means that M -M ≡ 0, and then also A -Ã ≡ 0.

X 0 = A + M = Ã + M . Since [A] p = [ Ã] p = 0 and |(A -Ã)(t) -(A -Ã)(s)| p |A(t) -A(s)| p + | Ã(t) -Ã(s)| p , we get A -Ã ∈ V p (π) and [A -Ã] p ≡ 0. But then also [M -M ] p = [A -Ã] p ≡ 0. Now M (t) = t 0 ∇ ω F (s, S s )dS(s), M (t) 

Local times and higher order Wuermli formula

An extension of Föllmer's pathwise Itô formula to less regular functions was given by Wuermli [START_REF] Wuermli | Lokalzeiten für Martingale[END_REF] in her (unpublished) thesis. Wuermli considered paths with finite quadratic variation which further admit a local time along a sequence of partitions, and derive a pathwise change of variable formula for more general functions that need not be C 2 . Depending on the notion of convergence used to define the local time, one then obtains Tanaka-type change of variable formulas for various classes of functions; convergence in stronger topologies leads to a formula valid for a larger class of functions. Wuermli [START_REF] Wuermli | Lokalzeiten für Martingale[END_REF] assumed weak convergence in L 2 in the space variable (see also [START_REF] Bertoin | Temps locaux et intégration stochastique pour les processus de Dirichlet[END_REF]) and some recent works have extended the approach to other topologies, for example uniform convergence or weak convergence in L q [24, 10]. To a certain extent Wuermli's approach can be generalized to our higher order setting, but as we will discuss below in the higher order case we do not expect to have convergence of the pathwise local times in strong topologies.

To derive the generalization of Wuermli's formula, we consider f ∈ C p-2 with absolutely continuous f (p-2) and apply the Taylor expansion of order p -2 with integral remainder to obtain

f (b) -f (a) = p-2 k=1 f (k) (a) k! (b -a) k + b a f (p-1) (x) (p -2)! (b -x) p-2 dx.
Assume now that f (p-1) is of bounded variation. Since every bounded variation function f (p-1) is regulated (làdlàg) and therefore has only countably many jumps, its càdlàg version is also a weak derivative of f (p-2) , and from now on we only work with this version. Since (b-•) p-2 is continuous, the integration by parts rule for the Lebesgue-Stieltjes integral applies in the case b ≥ a and we obtain b a

f (p-1) (x) (p -2)! (b -x) p-2 dx = f (p-1) (b) -(b -b) p-1 (p -1)! -f (p-1) (a) -(b -a) p-1 (p -1)! - (a,b] -(b -x) p-1 (p -1)! df (p-1) (x) = f (p-1) (a) (b -a) p-1 (p -1)! + (a,b] (b -x) p-1 (p -1)! df (p-1) (x).
Similarly we get for b < a b a

f (p-1) (x) (p -2)! (b -x) p-2 dx = - a b f (p-1) (x) (p -2)! (b -x) p-2 dx = f (p-1) (a) (b -a) p-1 (p -1)! - (b,a] (b -x) p-1 (p -1)! df (p-1) (x),
and therefore

f (b) -f (a) = p-1 k=1 f (k) (a) k! (b -a) k + sign(b -a) a,b (b -x) p-1 (p -1)! df (p-1) (x) = p-1 k=1 f (k) (a) k! (b -a) k + sign(b -a) p a,b |b -x| p-1 (p -1)! df (p-1) (x) = p-1 k=1 f (k) (a) k! (b -a) k + R 1 a,b (x) sign(b -a) p |b -x| p-1 (p -1)! df (p-1) (x),
with the notation

a, b = (a, b], b ≥ a, (b, a], a ≤ b.
For any partition σ of [0, T ], we define

L σ,p-1 t (x) := t j ∈σ sign(S t j+1 ∧t -S(t j ∧ t)) p 1 S(t j ∧t),St j+1 ∧t (x)|S(t j+1 ∧ t) -x| p-1 .
To extend Theorem 1.5 to S ∈ V p (π), we first note that the following identity holds for any partition π n :

f (S t ) -f (S 0 ) = [t j ,t j+1 ]∈πn p-1 k=1 f (k) (S t j ) k! (S(t j+1 ∧ t) -S(t j ∧ t)) k + 1 (p -1)! R L πn,p-1 t (x)df (p-1) (x). (7) 
To obtain a change of variable formula for less regular functions, we need the last term to converge as the partition is refined. This motivates the following definition:

Definition 3.1 (Local time of order p). Let p ∈ N be an even integer and let q ∈ [1, ∞].

A continuous path S ∈ C([0, T ], R) has an L q -local time of order p -1 along a sequence of partitions π = (π n ) n≥1 if osc(S, π n ) → 0 and

L πn,p-1 t (•) = t j ∈π 1 S(t j ∧t),St j+1 ∧t (•)|S(t j+1 ∧ t) -•| p-1
converges weakly in L q (R) to a weakly continuous map L : [0, T ] → L q (R) which we call the order p local time of S. We denote L q p (π) the set of continuous paths S with this property.

Intuitively, the limit L t (x) then measures the rate at which the path S accumulates p-th order variation near x. This definition is further justified by the following result, which is a 'pathwise Tanaka formula' [START_REF] Wuermli | Lokalzeiten für Martingale[END_REF] for paths of arbitrary regularity: Theorem 3.2 (Pathwise 'Tanaka' formula for paths with finite p-th order variation). Let p ∈ 2N be an even integer, q ∈ [1, ∞] with conjugate exponent q = q/(q -1). Let f ∈ C p-1 (R, R) and assume that f (p-1) is weakly differentiable with derivative in L q (R). Then for any S ∈ L q p (π) the pointwise limit of compensated Riemann sums

t 0 f (S(s))dS(s) := lim n→∞ [t j ,t j+1 ]∈πn p-1 k=1 f (k) (S(t j )) k! (S(t j+1 ∧ t) -S(t j ∧ t)) k
exists and the following change of variable formula holds:

f (S(t)) -f (S(0)) = t 0 f (S(s))dS(s) + 1 (p -1)! R f (p) (x)L t (x)dx.
Proof. The formula ( 7) is exact and does not involve any error terms. Noting that L q (R) ⊂ (L q ) * (R) also for q = ∞, our assumptions imply that the second term on the right hand side of ( 7) converges, so the result follows.

To justify the name "local time" for L, we illustrate how L is related to classical definitions of local times by restricting our attention to a particular sequence of partitions [START_REF] Chacon | Generalised arc length for Brownian motion and Lévy processes[END_REF][START_REF] Karandikar | On the quadratic variation process of a continuous martingale[END_REF]:

Definition 3.3. Let S ∈ C([0, T ], R).
The dyadic Lebesgue partition generated by S is defined via τ n 0 := 0 and 

τ n j+1 := inf{t ≥ τ n j : S t ∈ 2 -n Z \ {S τ n j }}, and then π n = ({τ n j : j ∈ N 0 } ∩ [0, T ]) ∪ {T }.
L πn t (x) = (|(k + 1)2 -n -x| p-1 + |x -k2 -n | p-1 )U t (I n k ) + O(2 -n(p-1)
). Proof. We have 1 S τ n j ,S τ n j+1 (x) = 0 if either S τ n j = k2 -n and S τ n j+1 = (k + 1)2 -n (i.e. S performs an upcrossing of I n k ), or S τ n j = (k + 1)2 -n and S τ n j+1 = k2 -n (i.e. S performs a downcrossing of I n k ). In the first case we have to add |(k + 1)2 -n -x| p-1 to L πn t (x), and in the second case we add (-1)

p |x -k2 -n | p-1 = |x -k2 -n | p-1
. Therefore, we obtain

L πn t (x) = |(k + 1)2 -n -x| p-1 U t (I n k ) + |x -k2 -n | p-1 D t (I n k ) + O(2 -n(p-1)
), and since up-and downcrossings of I n k differ by at most one, our claim follows.

Note that the expression for L πn t strongly fluctuates on I n k . For x k2 -n and x (k + 1)2 -n the factor in front of 1) , while for x = (2k + 1)2 -n-1 we get the factor 2 -n(p-1) 2 p-2 . Therefore, we do not expect L πn t (x) to converge uniformly or even pointwise in x as n → ∞ (unless if p = 2). Lemma 3.5. In the setting of Lemma 3.4 set

U t (I n k ) is 2 -n(p-
Lπn t (x) := k∈Z 2 -n(p-1) U t (I n k )1 I n k (x).
Let q ∈ (1, ∞). If Lπn t converges weakly in L q (R) to a limit Lt , then L πn t converges weakly in L q (R) to (2/p) Lt .

Proof. Let us introduce an averaging operator,

(A n f )(x) := k∈Z 2 n I n k f (y)dy 1 I n k (x).
Since

I n k (|(k + 1)2 -n -x| p-1 + |x -k2 -n | p-1 )dx = 2 2 -n 0 x p-1 dx = 2 p 2 -np , we have Lπn t = p 2 A n L πn t + O(2 -n(p-1)
), with a compactly supported remainder O(2 -n(p-1) ). We claim that if (f n ) is a sequence of functions for which A n f n converges weakly in L q (R) and for which |f n | ≤ C|A n f n |, then also (f n ) converges weakly in L q (R) to the same limit, which will imply our claim. To show this, let f be the limit of A n and let g ∈ L q (R). We have A n ϕ, ψ = A n ϕ, A n ψ = ϕ, A n ψ for all ϕ, ψ, and therefore

| f n -f, g | ≤ | f n -A n f n , g | + | A n f n -f, g | = | f n , g -A n g | + | A n f n -f, g | ≤ f n L q g -A n g L q + | A n f n -f, g |.
The second term on the right hand side converges to zero by assumption. For the first term we note that by assumption f n L q ≤ A n f n L q , which is uniformly bounded in n because (A n f n ) converges weakly in L q . The proof is therefore complete once we show that lim n→∞ g -A n g L q = 0 for all g ∈ L q . But this easily follows from the fact that the continuous and compactly supported functions are dense in L q .

In fact, we conjecture that, for fractional Brownian motion, this notion of local time defined along the dyadic Lebesge partition coincides, up to a constant, with the usual concept of local time defined as the density of the occupation measure:

Conjecture. Let B be the fractional Brownian motion with Hurst parameter H ∈ (0, 1), and let (π n ) be the dyadic Lebesgue partition generated by B. Let I n k and U t be as in Lemma 3.4 (where now we count the upcrossings of B instead of S). We conjecture that

Lπn t (x) := k∈Z 2 -n(1/H-1) U t (I n k )1 I n k (x) almost-surely converges uniformly in (t, x) ∈ [0, T ]×R to t (x)E[|B 1 | 1/H ]/2
, where is the local time of B, i.e. the Radon-Nikodym derivative of the occupation measure A → t 0 1 A (B(s))ds with respect to the Lebesgue measure, see e.g. [START_REF] Biagini | Stochastic calculus for fractional Brownian motion and applications[END_REF]. In particular, for any even integer p ∈ 2N, B ∈ L p-1 q (π n ) for any q ∈ (1, ∞). This result is well known for H = 1/2, see e.g. [START_REF] Chacon | Generalised arc length for Brownian motion and Lévy processes[END_REF][START_REF] Perkowski | Local times for typical price paths and pathwise Tanaka formulas[END_REF]. In the general case H ∈ (0, 1), it is natural to expect that

µ n ([0, t]) := ∞ j=0 2 -n/H 1 τ n j+1 ≤t n→∞ ---→ [B] 1/H t = E[|B 1 | 1/H ]t,
which would be an extension of the convergence result of [START_REF] Rogers | Arbitrage with fractional Brownian motion[END_REF] from deterministic partitions to the Lebesgue partition generated by B. Moreover, we know that the local time of the fractional Brownian motion satisfies

t (x) = lim n→∞ k∈Z 2 n t 0 1 I n k (B s )ds1 I n k (x).
If we formally replace the Lebesgue measure in the integral by

E[|B 1 | 1/H ] -1 µ n , then we get t (x) = E[|B 1 | 1/H ] -1 lim n→∞ k∈Z 2 n t 0 1 I n k (B s )µ n (ds)1 I n k (x) = E[|B 1 | 1/H ] -1 lim n→∞ k∈Z 2 n-n/H j:τ n j+1 ≤t 1 I n k (B τ n j )1 I n k (x) = E[|B 1 | 1/H ] -1 lim n→∞ k∈Z 2 n-n/H (D t (I n k ) + U t (I n k+1 ))1 I n k (x),
and if we further assume that 2 n-n/H |U t (I n k+1 ) -U t (I n k )| → 0 then our conjecture formally follows.

If the conjecture holds, then for any p ∈ 2N and B a typical sample path of the fractional Brownian motion with Hurst index 1/p and f ∈ C p-1 with weak p-th derivative f (p) ∈ L q for any q ∈ (1, ∞):

f (B(t)) -f (B(0)) = t 0 f (B(s))dB(s) + E[|B 1 | p ] p! R f (p) (x) t (x)dx, (8) 
where is the local time of B and

t 0 f (B(s))dB(s) := lim n→∞ [t j ,t j+1 ]∈πn p-1 k=1 f (k) (B(t j )) k! (B(t j+1 ∧ t) -B(t j ∧ t)) k .
By Theorem 1.5 the formula holds for f ∈ C p , because then

E[|B 1 | p ] p! R f (p) (x) t (x)dx = E[|B 1 | p ] p! t 0 f (p) (S(s))ds = 1 p! t 0 f (p) (S(s))d[S] p s ,
which adds further credibility to our conjecture.

Extension to multidimensional paths

As in the case p = 2, the set V p (π) is not stable under linear combinations: for S 1 , S 2 ∈ V p (π), expanding ((S 1 (t j+1 ) -S 1 (t j ) + S 2 (t j+1 ) -S 2 (t j )) p yields many cross terms whose sum cannot be controlled in general as the partition is refined. The extension of Definition 1.1 to vectorvalued functions S = (S 1 , ..., S d ) therefore requires some care. The original approach of Föllmer [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF] was to require that S i , S i + S j ∈ V p (π). We propose here a slightly different formulation, which is equivalent to Föllmer's construction for p = 2 but easier to relate to other approaches, such as rough path integration.

Tensor formulation

Define T p (R d ) = R d ⊗ ... ⊗ R d as the space of p-tensors on R d . A symmetric p-tensor is a tensor T ∈ T p (R d
) that is invariant under any permutation σ of its arguments:

∀(v 1 , v 2 , . . . , v p ) ∈ (R d ) p , T (v 1 , v 2 , . . . , v p ) = T (v σ1 , v σ2 , . . . , v σp ).
The coordinates (T i 1 i 2 •••ip ) of a symmetric tensor of order p satisfy

T i 1 i 2 •••ip = T i σ1 i σ2 •••iσp .
The space Sym p (R d ) of symmetric tensors of order p on R d is naturally isomorphic to the dual of the space H p [X 1 , ..., X d ] of homogeneous polynomials of degree p on R d . We set Sym 0 (R d ) := R.

An important example of a symmetric p-tensor on R d is given by the p-th order derivative of a smooth function:

∀f ∈ C p (R d , R), ∀x ∈ R d : ∇ p f (x) ∈ Sym p (R d ).
The symmetry property is obtained by repeated application of Schwarz's lemma. We define S p (R d ) as the direct sum of Sym k (R d ) for k = 0, 1, 2, ..., p:

S p (R d ) = p k=0 Sym k (R d ).
The space S p (R d ) is naturally isomorphic to the dual of the space R p [X 1 , ..., X d ] of polynomials of degree ≤ p in d variables, which defines a bilinear product

•, • : S p (R d ) × R p [X 1 , ..., X d ] → R.
Slightly abusing notation, we also write Consider the sequence of tensor-valued measures

µ n := [t j ,t j+1 ]∈πn δ(• -t j )(S(t j+1 ) -S(t j )) ⊗p .
We say that S has a p-th variation along π = (π n ) n≥1 if osc(S, π n ) → 0 and there exists a Sym p (R d )-valued measure µ S without atoms such that for all

f ∈ C([0, T ], H p [X 1 , ..., X d ]) lim n→∞ T 0 f, dµ n = lim n→∞ [t j ,t j+1 ]∈πn f (t j ), (S(t j+1 ) -S(t j )) ⊗p = T 0 f, dµ S .
In that case we write S ∈ V p (π) and we call [S] p : [0, T ] → Sym p (R d ) defined by By analogy with the positivity property of symmetric matrices, we say that a symmetric p-tensor T ∈ Sym p (R d ) is positive if

T, v ⊗ ... ⊗ v ≥ 0, ∀v ∈ R d .
We denote the set of positive symmetric p-tensors by Sym

+ p (R d ). For T, T ∈ Sym p (R d ) we write T ≥ T if T -T ∈ Sym + p (R d ).
This defines a partial order on Sym p (R d ).

Property 4.2. Let S ∈ V p (π) ∩ C([0, T ], R d ). Then (i) [S]
p has finite variation and is increasing in the sense of the partial order on Sym p (R d ):

[S] p (t + h) -[S] p (t) ∈ Sym + p (R d ), ∀ 0 ≤ t ≤ t + h ≤ T. (ii) ∀t ∈ [0, T ], πn (S(t j+1 ∧ t) -S(t j ∧ t)) ⊗p n→∞ → [S] p (t).
Proof. Let v ∈ R d . Before passing to the limit, the function 

v ⊗p , [S] p (t + h) -[S] p (t) = T 0 1 (t,t+h] v ⊗p , dµ S ≥ 0.
Thus, v ⊗p , [S] p is increasing for all v ∈ R d , and from here it is easy to see that [S] p has finite variation (apply e.g. polarization to go from

v ⊗p to v 1 ⊗ • • • ⊗ v p ).
Theorem 4.3 (Change of variable formula for paths with finite p-th variation). Let p ∈ N be even, let (π n ) be a sequence of partitions of [0, T ] and let S ∈ V p (π) ∩ C([0, T ], R d ). Then for all f ∈ C p (R d , R) the limit of compensated Riemann sums

t 0 ∇f (S(s)), dS(s) := lim n→∞ [t j ,t j+1 ]∈πn p-1 k=1 1 k! ∇ k f (S(t j )), (S(t j+1 ∧ t) -S(t j ∧ t)) ⊗k
exists for every t ∈ [0, T ] and satisfies the pathwise change of variable formula:

f (S(t)) -f (S(0)) = t 0 ∇f (S(s)), dS(s) + 1 p! t 0 ∇ p f (S(s)), d[S] p (s) .
Proof. The proof follows similar ideas to the case p = 2. By applying a Taylor expansion at order p to the increments of f (S) along the partition, we obtain

f (S(t)) -f (S(0)) = [t j ,t j+1 ]∈πn (f (S(t j+1 ∧ t)) -f (S(t j ∧ t))) (9) 
= [t j ,t j+1 ]∈πn p k=1 1 k! ∇ k f (S(t j )), (S(t j+1 ∧ t) -S(t j ∧ t)) ⊗k + [t j ,t j+1 ]∈πn 1 0 dλ (1 -λ) p-1 (p -1)! × ∇ p f (S(t j ) + λ(S(t j+1 ∧ t) -S(t j ∧ t))) -∇ p f (S(t j )) , (S(t j+1 ∧ t) -S(t j ∧ t)) ⊗p .
As in the proof of Theorem 1.5 we assume that f is compactly supported and use this to show that the remainder on the right hand side vanishes as n → ∞. Since S ∈ V p (π) we know that lim

n→∞ [t j ,t j+1 ]∈πn 1 p! ∇ k f (S(t j )), (S(t j+1 ∧ t) -S(t j ∧ t)) ⊗p = 1 p! t 0 ∇ p f (S(s)), d[S] p (s) ,
and therefore we obtain from ( 9)

lim n→∞ [t j ,t j+1 ]∈πn p-1 k=1 1 k! ∇ k f (S(t j )), (S(t j+1 ∧ t) -S(t j ∧ t)) ⊗k = f (S(t)) -f (S(0)) - 1 p! t 0 f (p) (S(s))d[S] p (s),
and we simply define t 0 ∇f (S(s)), dS(s) as the limit on the left hand side.

Relation with rough path integration

To explain the link between Föllmer's pathwise Itô integral and rough path integration [START_REF] Lyons | Differential equations driven by rough signals[END_REF],

Friz and Hairer [17, Chapter 5.3] introduced the notion of (second order) reduced rough paths:

Definition 4.4. Let α ∈ (1/3, 1/2). We set ∆ T := {(s, t) : 0 ≤ s ≤ t ≤ T }. A reduced rough path of regularity α is a pair (X, X) : ∆ T → R d ⊕ Sym 2 (R d ), such that (i) there exists C > 0 with |X s,t | + |X s,t | ≤ C|t -s| α , (s, t) ∈ ∆ T ;
(ii) the reduced Chen relation holds X s,t -X s,u -X u,t = Sym(X s,u ⊗ X u,t ), (s, u), (u, t) ∈ ∆ T ,

where Sym(•) denotes the symmetric part.

Friz and Hairer [START_REF] Friz | A course on rough paths[END_REF] also show that, for any S ∈ V 2 (π) there is a canonical candidate for a reduced rough path. Indeed, the pair

X s,t := S(t) -S(s), X s,t := 1 2 X s,t ⊗ X s,t - 1 2 ([S] 2 (t) -[S] 2 (s))
satisfies the reduced Chen relation. But in general we do not know anything about the Hölder regularity of S ∈ V 2 (π), because for any continuous path S there exists a sequence of partitions (π n ) with S ∈ V 2 (π) and [S] 2 ≡ 0, see [START_REF] Freedman | Brownian motion and diffusion[END_REF]. If however we take the dyadic Lebesgue partition (π n ) generated by S as in Definition 3.3 and if S ∈ V 2 (π), then it follows from [4, Lemme 1]1 that S has finite q-variation for any q > 2. So in that case every S ∈ V 2 (π) corresponds to a reduced rough path with p-variation regularity. Rather than adapting Definition 4.4 from Hölder to p-variation regularity, we directly introduce a concept of higher-order reduced rough paths. For that purpose we first define the concept of control function:

Definition 4.5. A control function is a continuous map c : ∆ T → R + such that c(t, t) = 0 for all t ∈ [0, T ] and such that c(s, u) + c(u, t) ≤ c(s, t) for all 0 ≤ s ≤ u ≤ t ≤ T .

A function f : [0, T ] → R d has finite p-variation if and only if there exists a control function c with |f (t) -f (s)| p ≤ c(s, t), and in that case f p-var ≤ c(0, T ) 1/p . To show the reduced Chen relation let us write S ,k for 0 ≤ , k for the shuffles of words of length , k, i.e. for those permutations σ ∈ S +k which satisfy σi < σj for all 1 ≤ i < j ≤ respectively + 1 ≤ i < j ≤ k. Note that there are +k shuffles in S ,k . We have for k < p

X k s,t = 1 k! (S(t) -S(s)) ⊗k = 1 k! (S(t) -S(u) + S(u) -S(s)) ⊗k = 1 k! k =0 σ∈S ,k- σ (S(u) -S(s)) ⊗ ⊗ (S(t) -S(u)) ⊗(k-) ,
where we set v ⊗0 := 1 for all v ∈ R d . On the other hand, if P k denotes the projection onto The following space of (higher order) controlled paths in the sense of Gubinelli [START_REF] Gubinelli | Controlling rough paths[END_REF] is defined for example in [START_REF] Friz | A course on rough paths[END_REF]Chapter 4.5]. We adapt the definition to paths that are controlled in the p-variation sense by a reduced rough path. If In that case we write Y ∈ D p /p X ([0, T ]).

T k (R d ), then for k < p P k (Sym(X s,u X u,t )) = k =0 Sym(X s,u ⊗ X k- u,t ) = k =0 1 !(k -)! Sym (S(u) -S(s)) ⊗ ⊗ (S(t) -S(u)) ⊗(k-) = k =0 1 !(k -)! k -1 σ∈S ,k-
Example 4.9. Let p ≥ 1, let S, X and q be as in Lemma 4.7, and let f ∈ C q (R d , R). Then Y 0 := 1, Y k (s) := ∇ k f (S(s)), k = 1, . . . , q defines a controlled path in D q /q X ([0, T ]). Indeed, as we discussed above ∇ k f (S(s)) ∈ Sym k (R d ) for all k = 1, . . . , q , and by Taylor's formula we have for ∈ {1, . . . , q } Y (t) = ∇ f (S(t)) = q k= 1 (k -)! ∇ k f (S(s)), (S(t) -S(s)) ⊗(k-) + O(c(s, t) ( q -+1)/q ) = q k= Y k (s), X k- s,t

+ O(c(s, t) ( q -+1)/q ). Proof. This follows from classical arguments (Theorem 4.3 in [START_REF] Lyons | Differential equations driven by rough paths[END_REF], see also [START_REF] Gubinelli | Controlling rough paths[END_REF]) once we show that for 0 ≤ s ≤ u ≤ t ≤ T ∇ k f (S(t j )), 1 k! (S(t j+1 ) -S(t j )) ⊗k = f (S(t)) -f (S(0)).

The last identity can be shown by writing f (S(t)) -f (S(0)) as a telescoping sum and by performing a Taylor expansion up to order p and controlling the remainder term as in the proof of Theorem 4.3.

Theorem 2 . 3 .

 23 Let p ∈ N be an even integer, let α > ((1 + 4 p ) 1/2 -1)/2, let (π n ) be a sequence of partitions with vanishing mesh size |π n | → 0 and let S ∈ V p (π) ∩ C α ([0, T ], R) be a path with strictly increasing p-th variation [S] p along (π n ). Then any X ∈ C 1,p b (S) admits a unique decomposition X = X(0) + A + M where M (t) = t 0 φ(s)dS(s) is a pathwise integral defined as in Theorem 1.10, and where [A] p = 0.

= t 0 ∇

 0 ω F (s, S s )dS(s) for some F, F ∈ C 1,p b (Λ T ), and by Theorem 2.1 we have 0 = [M -M ] p (T ) = T 0 |∇ ω (F -F )(s, S s )| p d[S] p (s).

Lemma 3 . 4 .

 34 Let p ∈ N be even, let S ∈ C([0, T ], R) and let (π n ) be the dyadic Lebesgue partition generated by S. Given an interval [a, b] we write U t ([a, b]) for the number of upcrossings of [a, b] that S performs until time t. Let x ∈ R and let I n k = (k2 -n , (k + 1)2 -n ] be the unique dyadic interval of generation n with x ∈ I n k . Then

Definition 4 . 1

 41 (p-th variation of a multidimensional function). Let p ∈ N be even, let S ∈ C([0, T ], R d ) be a continuous path and let π = (π n ) n≥1 be a sequence of partitions of [0, T ].

[

  S] p (t) := µ([0, t]) the p-th variation of S.

  σ((S(u) -S(s)) ⊗ ⊗ (S(t) -S(u)) ⊗(k-) = X k s,t ,which proves the reduced Chen relation for k < p . For k = p we get the same relation by noting that [S] p is already symmetric and therefore Sym([S] p (t) -[S] p (s)) = [S] p (t) -[S] p (s).

Definition 4 . 8 .

 48 < k and T ∈ T , T ∈ T k , then we interpretT, T ∈ T k-, T, T (v 1 , . . . , v k-) := T ⊗ (v 1 ⊗ • • • ⊗ v k-), T ,and similarly for T , T . Let p ≥ 1 and let X be a reduced rough path of finite p-variation. A pathY = (Y 0 , Y 1 , . . . , Y p ) ∈ C([0, T ], S p (R d ))is controlled by X if there exists a control function c such that ≤ c(s, t), (s, t) ∈ ∆ T .

Proposition 4 . 10 . 0 Y

 4100 Let p ≥ 1, let X be a reduced rough path of finite p-variation and let Y ∈ D p /p X ([0, T ]). Then the rough path integralI X (Y )(t) = t (s), dX(s) = lim π∈Π([0,t]) |π|→0 [t j ,t j+1 ]∈π p k=1 Y k (t j ), X k t j ,t j+1 , t ∈ [0, T ],defines a function in C([0, T ], R), and it is the unique function with I X (Y )(0) = 0 for which there exists a control function c with t) ∈ ∆ T .

YYYYYYCorollary 4 . 11 .! t 0 ∇ 0 ∇

 41100 k (s), X k s,t -p k=1 Y k (s), X k s,u -p k=1 Y k (u), X k u,t = O(c(s, t) p +1 p ),where c is a control function such that the estimates in Definition 4.6 and in Definition 4(s),X -k s,u ⊗ X k u,t + O c(s, u) k (s), X k- s,u ⊗ X u,t + O c(s, t) k (s), P k (Sym(X s,u ⊗ X u,t )) -X k s,u + O c(s, t) p +1 p ,where in the last step we used that Y k (s) is symmetric. Therefore, the reduced Chen relationgives k (s), X k s,t -X k s,u -P k (Sym(X s,u ⊗ X u,t )) + X k s,u + O c(s, t) k (s), X k s,t -X k s,t + O c(s, t)Let p ∈ N be an even integer and let q, S, X, f be as in Example 4.9. Thent 0 ∇f (S(s)), dX(s) = t 0 ∇f (S(s)), dS(s) , t ∈ [0, T ],where the left hand side denotes the rough path integral of Proposition 4.10 and the right hand side is the integral of Theorem 4.3.Proof. It suffices to show thatt 0 ∇f (S(s)), dX(s) = f (S(t)) -f (S(0)) -1 pp f (S(s)),d[S] p (s) , and since lim π∈Π([0,t]) |π|→0 [t j ,t j+1 ]∈π ∇ p f (S(t j )), [S] p (t j+1 ) -[S] p (t j ) = t p f (S(s)), d[S] p (s) , this is equivalent to lim π∈Π([0,t]) |π|→0 [t j ,t j+1 ]∈π p k=1

  t j+1 ]∈πn: t j+1 ≤t |R F (t j , t j+1 )| p k/p [t j ,t j+1 ]∈πn: t j+1 ≤t |γ F (t j , t j+1 )| p (p-k)/p .

	By (4) the first sum on the right hand side is bounded by

[t j ,t j+1 ]∈πn: t j+1 ≤t |R F (t j , t j+1 )| p k/p [t j ,t j+1 ]∈πn:

  •, • for the canonical inner product on T p (R d ). Consider now a continuous R d -valued path S ∈ C([0, T ], R d ) and a sequence of partitions π n = {t n T ] with values in Sym p (R d ). This space of measures is in duality with the space C([0, T ], H p [X 1 , ..., X d ]) of continuous functions taking values in homogeneous polynomials of degree p, i.e. homogeneous polynomials of degree p with continuous time-dependent coefficients.

	0 , . . . , t n N (πn) } with t n 0 = 0 < ... < t n k < ... < t n N (πn) = T . Then
	µ n :=	δ(• -t j ) (S(t j+1 ) -S(t j )) ⊗ • • • ⊗ (S(t j+1 ) -S(t j ))
	[t j ,t j+1 ]∈πn	p times
	defines a tensor-valued measure on [0,

Note that for λ > 0 the path S has finite q-variation if and only if λ -1 S has finite q-variation, and therefore we can assume that λ = 1 in [4,Lemme 1].

(ii) the reduced Chen relation holds

where the symmetric part of T ∈ T k (R d ) is defined as

with the group of permutations S k of {1, . . . , k}.

Lemma 4.7. Let S ∈ C([0, T ], R d ) and let (π n ) be the dyadic Lebesgue partition generated by S. Let p ≥ 1 and assume that S ∈ V p (π). Then for any q > p with q = p we obtain a reduced rough path of finite q-variation by setting X 0 s,t := 1,

Proof. Let q > p. As discussed above we know that S has finite q-variation, so let us start by setting c(s, t)

with a constant C d,p > 0 that only depends on the dimension d and on p. By Property 4.2 the path [S] p has finite variation and therefore it also has finite q/ p -variation, so c(s, t) := [S] p q/ p q/ p -var,[s,t]

defines another control function. Therefore, c(s, t) := C d,p (c(s, t)+ c(s, t)) is a control function for which the analytic property (i) in Definition 4.6 holds.

Appendix: p-th variation for odd integer values of p Lemma .12. Let p > 1 be an odd integer and let π n be the dyadic Lebesgue partition generated by S ∈ C([0, T ], R). Assume that ν n := [t j ,t j+1 ]∈πn δ(•-t j )|S(t j+1 )-S(t j )| p converges weakly to a signed measure ν without atoms. Then we have for all f ∈ C(R, R)

Proof. We can assume without loss of generality that f has compact support, since the image of S on [0, T ] is compact. Let k ∈ Z and note that whenever S completes an upcrossing of 

where we wrote N t (I n k ) = U t (I n k )+D t (I n k ) for the total number of interval crossings and where ω f is the modulus of continuity of f , i.e. lim n→∞ ω f (2 -n ) = 0. By assumption,