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1. Introduction

Nowadays, complex networks exist everywhere. In the recent decade, they have beenwidely
investigated partly due to their wide applications in many fields of science such as neural
networks, ecosystems, the Internet, the WWW, electrical power grids, communication
systems, etc., and partly due to their broad scientific progress in physics, mathematics,
engineering, biology, etc.

In a new kind of bottom up demarche in mathematics, opposed to the top down
approach of using mathematics for modelling, we introduced recently complex networks
of chaotic maps in order to improve the growing research field of cryptography based
chaos.

In this article, after recalling basics of chaotic maps and their use when coupled, we
explore thoroughly some new topologies of complex networks of chaotic maps, showing
up their excellent properties for cryptographic purpose. Cryptography based chaos needs
reproducible pseudo random numbers. They are obtained coupling chaotic maps of
different nature in special ways. Reproducibility is required in order to synchronize
encryption and decryption processes.

Cryptography based chaos needs also secret keys to avoid any recovering of plain text
messages bymalicious intruders. Both reproducibility and secrecy in randomness are easily
obtained by new topologies of complex networks we present in this article.

In Section 2 we recall some recent topologies of systems of piecewise linear chaotic
maps and useful tools to assess the randomness of the iterated numbers they generate. In
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Section 3 we examinemainly topologies of 2-D coupledmap, highlighting good candidates
of Chaos Pseudo RandomNumber Generators (CPRNG). In Section 4 we present a family
of p-Dimensional networks whose we study numerically a particular realization, up to one
hundred trillion iterations using multicore computers.

2. Piecewise linear chaotic map of order p

Efficient CPRNG have been recently introduced in [7]. The idea of applying discrete
chaotic dynamical systems, intrinsically, exploits the property of extreme sensitivity of
trajectories to small changes of initial conditions. Theyuse the ultraweakmultidimensional
coupling of p 1-dimensional dynamical systems which preserve the chaotic properties
of the continuous models in numerical experiments. The process of chaotic sampling
and mixing of chaotic sequences, which is pivotal for these families, works perfectly in
numerical simulation when floating point (or double precision) numbers are handled by a
computer.

It is noteworthy that these families of very weakly coupled maps are more powerful
than the usual formulas used to generate chaotic sequences mainly because only additions
and multiplications are used in the computation process; no division being required.
Moreover, the computations are done using floating point or double precision numbers,
allowing the use of the powerful Floating PointUnit (FPU) of themodernmicroprocessors.
In addition, a large part of the computations can be parallelized taking advantage of the
multicore microprocessors which are of common use in laptop computers.

In this article, we are looking for chaotic systems which satisfy the required parameters
properties (Table 1) for CPRNG design.

The alternate systemwith auto-coupling and ring-coupling (1) has been initially selected
because it has sufficient randomness and high chaoticity [8]. It has been only studied in the
chaotic range of parameters in the aim of applications to chaotic cryptography. Classical
analysis in term of stability of fixed points, periodic points and bifurcations remains an
open problem. The system successfully passed statistical and numerical tests such as: auto-
correlation; cross-correlation; uniform distribution [5,7].

Mp :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(1)
n+1 = 1 − 2|x(1)

n | + k1((1 − e1)x
(2)
n + e1x

(1)
n )

x(2)
n+1 = 1 − 2|x(2)

n | + k2((1 − e2)x
(3)
n + e2x

(2)
n )

...

x(p)
n+1 = 1 − 2|x(p)

n | + kp((1 − ep)x
(1)
n + epx

(p)
n )

(1)

where the parameters kj = ( − 1)j+1, and ei ∈]0, 1[ are the encryption keys, x ∈ Rp,
Tp = [−1, 1]p by the mapMp = Tp → Tp. In addition, at each iteration a point must be
checked and fed back to the torus [−1, 1]p (Figure 1) applying the following conditions:

if x(j)
n+1 < −1 then add 2

if x(j)
n+1 > 1 then subtract 2 (2)

The equations make system dynamics to run on the torus [−1, 1]p and impact on the
system complexity.
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Table 1. Consolidated criteria of robust CPRNG.

No. Criteria Succeed characteristic

1 Largest Lyapunov exponent Positive
2 Attractor in phase space Dense everywhere
3 Attractor in phase delay Dense everywhere
4 Topological mixing Complex and fast
5 Uniform distribution Decreasing of distribution error

with increasing generated points
6 Auto-correlation Near zero
7 Cross-correlation Near zero
8 NIST tests Successfully passed

The mappingMp is defined in algorithmic way by (1) and (2), in order to highlight how
it is built using the symmetric tent map of the interval [−1, 1] together with the very weak
coupling between components.

It can be defined in a more traditional mathematical fashion using modulo function:

Mp :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(1)
n+1 = ((2 − 2|x(1)

n | + k1((1 − e1)x
(2)
n + e1x

(1)
n )) mod 1) − 1

x(2)
n+1 = ((2 − 2|x(2)

n | + k2((1 − e2)x
(3)
n + e2x

(2)
n )) mod 1) − 1

...

x(p)
n+1 = ((2 − 2|x(p)

n | + kp((1 − ep)x
(1)
n + epx

(p)
n )) mod 1) − 1

(3)

However, because this formula introduces unnecessary complexity for the reader, we
continue to use the algorithmic way for the next mapping definitions.

2.1. Description of the Piecewise linear (PWL) chaotic map

The selected system with auto-coupling (the j-state impacts itself ) and ring-coupling (the
j-state impacts the j+ 1-state) for information encryption (1) exhibits complex non-linear
dynamics, has chaotic properties very similar to pseudo-random properties [11] on the
p-dimensional torus. The key element of the system is the symmetric tent map T̄ that is
applied to every state on the torus X ∈ [−1, 1]p in Equation (6):

T̄(Xn) =

⎛
⎜⎜⎜⎜⎝
T(x(1)

n )

T(x(2)
n )
...

T(x(p)
n )

⎞
⎟⎟⎟⎟⎠ (4)

where
T(x) = 1 − 2|x| (5)

is the classical symmetric tent map defined from [−1, 1] into [−1, 1].
The p-order function f : Xn+1 = f (Xn) with Xn = (x(1)

n , x(2)
n , . . . , x(p)

n ) can be rewritten
from control point of view with output vector Yn = (y(1)

n , y(2)
n , . . . , y(p)

n ) as follows:

Xn+1 = f (Xn) = AT̄(Xn) (6)

p. 3



where Yn = CXn, C is the 1 × p vector line and A is a p × pmatrix defined as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1,1 = 1 −
j=p∑
j=2

e1,j e1,2 · · · e1,p−1 e1,p

e2,1 e2,2 = 1 −
j=p∑

j=1,j �=2
e2,j · · · e2,p−1 e2,p

...
. . .

...
...

...
. . .

...
...

ep,1
...

... ep,p−1 ep,p = 1 −
j=p−1∑
j=1

ep,j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

with parameters ei,i = 1 −∑j=p
j=1,j �=i ei,j on the diagonal (the matrix A is stochastic if the

coupling parameters verify ei,j > 0 for every i and j).
Parameters ei,j generalize coupling relationship of (1) and can be used also as encryption

keys for chaotic cryptography.
Remark: In (1) we use a symmetric tent map, however any piecewise linear map with the
same single humped shape can be used as well.

The weakly coupled maps are able to generate significantly better pseudo-random
sequences than 1-D maps due to the size of the phase space which is in higher dimension
avoiding therefore short periodic sequences. The advantages are that only additions and
multiplications are used in the map, influencing the speed performance. Moreover, the
coupled map exhibits a high number of parameters (p× (p− 1)) for p coupled equations)
ensuring reliable cypher-keys, when used in chaos-based cryptosystems. The parameters
are very sensitive to any changes [8].

2.2. Uniform distribution

An excellent PRNG looks like truly random, when it is unpredictable and there is no
correlation between points which have an equal probability. If the generator is capable to
produce the sequences uniformly distributed in the phase space and the phase delay, then
the system behaviour is like truly random.

There are different tools to analyse points distribution, i.e. histogram, cumulative
distribution, etc. However, they give very general information. In order to assess nu-
merical computations more accurately and to study qualitatively the chaotic systems an
approximation density function [7] is preferable to the previously mentioned tools. The
approximation PM,N (x) of the density is defined by the invariant measure (the probability
distribution function) [16] corresponding to the 1-dimensional map f going from the
interval J ⊂ R into itself (J = [−1, 1]), when computed with floating numbers. The
regular partition intoM small intervals (boxes) ri of J is defined by

J =
M−1⋃
i=0

ri (8)
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where

ri = [si, si+1[ i = 0, M − 2 and rM−1 = [sM−1, 1] (9)

and

si = −1 + 2i
M

, i = 0, . . . ,M (10)

One can remark that each box has a length which is equal to
2
M

. The first iterates of the
transient regime are discarded, the following are collected. At the end of the computation
when N iterates are computed, the value �ri is the number of iterates belonging to the
interval ri. The numbers PN (si) represent the ratio of the number of iterates with

N
M

for
each box ri. The approximated PN (si) is aM steps function. AsM is parameter we write it

PM,N (si) = M
N

(�ri) (11)

PM,N (x) is normalized to 2 on the interval J = [−1, 1].

PM,N (x) = PM,N (si), ∀x ∈ ri (12)

In the case of a multidimensional p-coupled system it is important to check the dis-
tribution of iterates for each component x1, x2, . . . , xp of X ⊂ Jp. The approximated
probability distribution function, PM,N (xj) is associated to one among the components xj

of the analysed system. We denote Mdisc instead of M and Niter instead of N , as often as
they are more meaningful.

The discrepancies E1 (in norm L1), E2 (in norm L2 ) and E∞ (in norm L∞) between
PMdisc ,Niter (xj) (where Mdisc is the number of boxes, Niter is the number of iterations) and
the Lebesguemeasure, which is the invariantmeasure of the uniform randomly distributed
process are defined by

E1,Mdisc ,Niter (x
j) = ‖PMdisc ,Niter (x

j) − 0.5‖L1 (13)
E2,Mdisc ,Niter (x

j) = ‖PMdisc ,Niter (x
j) − 0.5‖L2 (14)

E∞,Mdisc ,Niter (x
j) = ‖PMdisc ,Niter (x

j) − 0.5‖L∞ (15)

The numerical calculation of the uniform distribution allows us to judge about the
system unpredictability. We know that E1 < E2 < E∞, however the computation of errors
with three norms gives a more precise view of uniform distribution of iterates. It allows
also to check that computations are not flawed.

In the same way an approximation of the correlation distribution function CM,N (x, y)
is obtained numerically, building a regular partition of M2 small squares (boxes) of J2
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embedded in the phase subspace (xl , xm)

si = −1 + 2i
M

, tj = −1 + 2i
M

, i, j = 0,M (16)

ri,j = [si, si+1[ × [tj, tj+1[, i, j = 0,M − 2 (17)
rM−i,j = [sM−1, 1] × [tj, tj+1[, j = 0,M − 2 (18)
ri,M−1 = [si, si+1[ × [tM−1, 1], j = 0,M − 2 (19)

rM−1,M−1 = [sM−1, 1] × [tM−1, 1] (20)

the measure of the area of each box is

(si+1 − si) × (ti+1 − ti) =
(

2
M

)2
(21)

OnceN +Q iterated points (xln, xmn ) belonging to these boxes are collected, the number
of iterates divided by N

M2 collected in each box ri,j is the value CN (si, tj) The approxi-
mated probability distribution function CN (x, y) defined here is then a 2-dimensional step
function, withM2 steps. AsM can take several values in the next sections, we define

CM,N (Si, tj) = 1
4
M2

N
(#ri,j) (22)

where #ri,j is the number of iterates belonging to the square ri,j and the constant 1/4 allows
the normalization of CM,N (x, y) on the square J2 .

CM,N (x, y) = CM,N (s, t) ∀(x, y) ∈ ri,j (23)

The discrepancies EC1 (in norm L1), EC2 (in norm L2 ) and EC∞ (in norm L∞ ) between
CMdisc ,Niter (x, y) and the uniform distribution on the square, are defined by

EC1,Mdisc ,Niter (x, y) = ‖CMdisc ,Niter (x, y) − 0.25‖L1 (24)
EC2,Mdisc ,Niter (x, y) = ‖CMdisc ,Niter (x, y) − 0.25‖L2 (25)
EC∞,Mdisc ,Niter (x, y) = ‖CMdisc ,Niter (x, y) − 0.25‖L∞ (26)

Finally let ACMdisc ,Niter (x, y) be the autocorrelation distribution function which is the
correlation function CMdisc ,Niter (x, y) of (23) defined in the phase space (xln, xln+1) instead
of the phase space (xl , xm) . We define the corresponding discrepancies EAC1 ,EAC2 ,EAC∞ .
We make the same remark as previously done for the use of thee different norms instead
of one only.

2.3. Injection mechanism for system on torus

As mentioned before, from the initial condition on the torus [−1, 1]p the trajectory will
quickly leave the torus if the function (1) is applied alone. To keep system trajectories on
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Figure 1.Application of the injection mechanism (27) in order to move the points initially belonging
to the torus [−2, 2]2 towards the torus [−1, 1]2. Four examples of motions indicated by the displayed
arrows.

the torus [−1, 1]p, we apply the injection mechanism (27):

if x(j)
n+1 < −1 then add 2

if x(j)
n+1 > 1 then subtract 2 (27)

Let us now show how the mechanism works if some points go out of the torus
(Figure 1). The unstable system trajectories (in red), which are escaping, are forced to
go back to the torus Tp = [−1, 1]p (in blue). By this operation, the system dynamics
has been maintained within [−1, 1]p. In addition, by this operation the resulting system
exhibits more complex dynamics with additional nonlinearity, which is advantageous for
chaotic encryption (since it improves the security).

The confinement from torus [−2, 2]p to torus [−1, 1]p of the dynamics is shown in
(Figure 2): dynamics crosses from the negative region (blue colored) to the positive one,
and conversely, if the points stand in the positive regions (red colored). Themaximal torus
where points mapped by (1) could belong is [−2, 2]p.

Auto and ring-coupling between states (Figure 3 ) of the system and injection mecha-
nism influence the system dynamics making it attractive to cryptography.

The system behaviour (1) becomes more complex when increasing its order. The
analysis of the 2-D order system showed a potential weakness. The careful distribution
analysis has been performed using an approximation PM,N (x) (11) that is defined by the
invariant measure. The resulting picture (Figure 4) displays regions where the density is
lower, and others where it is more concentrated. Thus, points distribution is not uniform.
The space [−1, 1]2 has been divided into 200 × 200 boxes and in each of them the points
probability is calculated. On the graph (Figure 4) the boxes with low probability are blue
colored andwith high one are red colored, other colors indicate the probability in-between.
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Figure 2. Injection mechanism of the trajectories feed back to the torus ([−2, 2]2 ⇒ [−1, 1]2) (a) if
x(1)
n > 1 then x(1)

n − 2 or if x(1)
n < −1 then x(1)

n + 2 (b) if x(2)
n > 1 then x(2)

n − 2 or if x(2)
n < −1 then

x(2)
n + 2.

Figure 3.Auto and ring-coupling between states of system (1).

Therefore, only 3-D or 4-D realizations of system (1) are useful. In the next section we
explore 2-D topologies which are more efficient than (1).

The geometrical shape of the region with different density of iterates [11] can be easily
deduced when using critical lines CL [14]. The critical lines are singularities of dimension
1, they were introduced by C. Mira fifty years ago. They are a very efficient tool for the
analysis of non invertible maps.

Note that small (i.e. weak coupling) parameters ej in (1) are required to guarantee
satisfactory topological mixing.
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Figure 4.Approximate density function of (1).

3. Exploring topologies of coupled chaotic maps

Both logistic (28) and tent (29) maps have been explored for many years in the hope of
generating pseudo-random numbers [13,18].

fμ(xn) ≡ Lμ(x) = 1 − μx2 (28)
fμ(xn) ≡ Tμ(x) = 1 − μ|x| (29)

Remark: for the sake of simplicity we have defined T2(x) as T(x) in Section 2.1 (5).
Some authors proposed to use 1-D chaotic dynamical systems as a base of a cryptosystem

[2,3].
Bothmapping are topologically conjugate for some parameters [1], therefore their topo-

logical properties (distribution, chaoticity, etc.) are in some sense similar however due to
the structure of numbers of the computers, their numerically behaviour differs dramatically
from the theoretical expectations when the iterates are obtained using a computer. The
symmetric tent map is drastically numerical unstable: Sharkovskii’s theorem applies for it
[17]. When μ = 2 there exists a period three orbit and therefore an infinity of periodic
orbits exist too. Nevertheless the orbit of almost every initial point of the interval [1,−1] of
the descretized tent map eventually wind up to the stable fixed point x = −1, and these is
no numerical attracting periodic orbit. This behaviour is called the collapse of iterates [9].
The numerical behaviour of the iterates is not at all chaotic. It is worse than the numerical
behaviour of the logistic map when chaos is assessed. Many papers have been published
on collapsing effect [4].

Some interesting theoretical studies of chaotic dynamical systems on finite sets have
also been published [10]. Therefore, the original idea we introduce in this article, is to
combine properties of the tent map ( Tμ ) with properties of the logistic one ( Lμ ) to build

p. 8
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Figure 5.Auto and ring-coupling between states of the Tμ with TLμ maps.

a new map showing enhanced properties, through combination in several topologies of
the network.

Thus, our proposition has the form:

fμ(x) ≡ TLμ(x) ≡ Lμ(x) − Tμ(x) = μ|x| − μx2 = μ(|x| − x2) (30)

which presents the advantage to inverse the shape of the graphof the tentmapTμ combined
with the graph of the logistic map Lμ.

When some maps as logistic and tent are used alone in cryptography, due to the
collapsing effect [6,20] they show very weak security. Thus, multidimensional maps are
often applied to construct PRNG[15,19]. The system (1) provides a newmethod to enhance
chaotic properties of the tent map thanks to the coupling and under sampling. In another
way, we propose to couple Tμ map with TLμ map (30) (Figure 5). When used in such
context, the TLμ map can be seen as a map of two variables:

TLμ(x(p), x(q)) = μ
(
|x(p)| − (x(q))2

)
(31)

Because two variables are involved in the definition of TLμ, it is therefore convenient
and easy to define a new mappingMμ,p from [−1, 1]p → [−1, 1]p

Mμ,p

⎛
⎜⎜⎜⎜⎝
x(1)
n

x(2)
n
...

x(p)
n

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
x(1)
n+1
x(2)
n+1
...

x(p)
n+1

⎞
⎟⎟⎟⎟⎠ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Tμ(x(1)
n ) + TLμ(x(1)

n , x(2)
n )

Tμ(x(2)
n ) + TLμ(x(2)

n , x(3)
n )

...

Tμ(x(p)
n ) + TLμ(x(p)

n , x(1)
n )

(32)

Due to its structure this multidimensional mapping is unstable and the trajectories
are mapped outside the initial torus. Therefore, in order to keep bounded in [−1, 1]p the
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iterates, we use the quasi similar to (27) injection mechanism:

if x(i)
n+1 < −1

then add 2

if x(i)
n+1 > 1

then subtract 2 (33)

which allows for 1 ≤ i ≤ p, points to be sent from [−3, 3]p to [−1, 1]p.
The combined use of Tμ and TLμ mapping entangles system states. The resulting

mapping possesses an attractor because it performs in the same time contraction and
stretching of the distance between states.Moreover, this forcedmotion improves itsmixing
properties. Therefore, TLμ function is a powerful tool to modify dynamics.

The coupling of those simple maps is good for achieving complexity, because:

• Simple states interact with the whole dynamics.
• The states interaction has a global mixing effect.

Therefore, if we useTLμ instead of simple tent or logisticmaps in order to improve their
properties of complexity we obtain an excellent effect on chaoticity. Randomness could be
achieved in this way. The proposed function improves the complexity of a simple map.
The question is how to study the obtained system. Poincaré was one of the first who used
graphical analysis of the complex systems. We will use as well graphical approach to study
the new chaotic systems, but also, theoretical functions involved in our study.

Note that the system (32) can be seen in the scope of a more general point of view,
introducing constants ki which generalize considered topologies. It is called alternate if
ki = ( − 1)i, 1 ≤ i ≤ p, or non-alternate if ki = +1 or if ki = ( − 1)i+1 , 1 ≤ i ≤ p;
or ki = −1, 1 ≤ i ≤ p. It can be a mix of alternate and non-alternate if ki = +1 or −1
randomly. Let k = (k1, k2, . . . , kp)

Mk
μ,p

⎛
⎜⎜⎜⎜⎝
x(1)
n

x(2)
n
...

x(p)
n

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
x(1)
n+1
x(2)
n+1
...

x(p)
n+1

⎞
⎟⎟⎟⎟⎠ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Tμ(x(1)
n ) + k1 × TLμ(x(i)

n , x(j)
n ), i, j = (1, 2) or (2, 1)

Tμ(x(2)
n ) + k2 × TLμ(x(i)

n , x(j)
n ), i, j = (2, 3) or (3, 2)

...

Tμ(x(p)
n ) + kp × TLμ(x(i)

n , x(j)
n ), i, j = (p, 1) or (1, p)

(34)
In this article we will consider only multidimensional mapping possessing the best

properties for CPRNG design.

3.1. 2-D topologies

One of the first aim assigned to our new CPRNG design is to obtain near perfect uniform
distribution, the other goals are to obtain a CPRNG.

The general form of the new considered 2-D map is as follows:

Mk
μ,2

(
x(1)
n

x(2)
n

)
=
(
x(1)
n+1
x(2)
n+1

)
=
{
Tμ(x(1)

n ) + k1 × TLμ((x(i), x(j)))

Tμ(x(2)
n ) + k2 × TLμ((x(i′), x(j′)))

(35)
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Table 2. The sixteen maps defined by Equation (35).

Case k1 k2 i j i′ j′

#1 +1 +1 1 2 1 2
#2 +1 −1 1 2 1 2
#3 −1 +1 1 2 1 2
#4 −1 −1 1 2 1 2
#5 +1 +1 2 1 2 1
#6 +1 −1 2 1 2 1
#7 −1 +1 2 1 2 1
#8 −1 −1 2 1 2 1
#9 +1 +1 1 2 2 1
#10 +1 −1 1 2 2 1
#11 −1 +1 1 2 2 1
#12 −1 −1 1 2 2 1
#13 +1 +1 2 1 1 2
#14 +1 −1 2 1 1 2
#15 −1 +1 2 1 1 2
#16 −1 −1 2 1 1 2

with i, j, i′, j′ = 1 or 2, i �= j and i′ �= j′. Considering the above conditions, it is possible to
define 16 different maps (see Table 2):

Therefore, wewill consider only two 2-D systems:TTLRCμ (x(2)
n , x(1)

n )non-alternate (case
#13):

TTLRCμ :
{
x(1)
n+1 = 1 − μ|x(1)

n | + μ(|x(2)
n | − (x(1)

n )2) = Tμ(x(1)
n ) + TLμ(x(2)

n , x(1)
n )

x(2)
n+1 = 1 − μ|x(2)

n | + μ(|x(1)
n | − (x(2)

n )2) = Tμ(x(2)
n ) + TLμ(x(1)

n , x(2)
n )

(36)
and TTLSCμ (x(1)

n , x(2)
n ) alternate (case #3):

TTLSCμ :
{
x(1)
n+1 = 1 − μ|x(1)

n | − μ(|x(1)
n | − (x(2)

n )2) = Tμ(x(1)
n ) − TLμ(x(1)

n , x(2)
n )

x(2)
n+1 = 1 − μ|x(2)

n | + μ(|x(1)
n | − (x(2)

n )2) = Tμ(x(2)
n ) + TLμ(x(1)

n , x(2)
n )

(37)
We have chosen systems #3 and #13 because when assessed with respect to the uniform

distribution of iterates they give the best results due to balanced processes between
contraction and extension.

3.2. Study of randomness properties of both TTLRCµ and TTLSCµ

Using numerical computationswe assess the randomness properties of both 2-dimensional
maps. When all requirements 1–8 on Figure 6 are satisfied the dynamical systems asso-
ciated to those mapping can be considered as pseudo-random and their application to
cryptosystems is possible.

Whenever one among the eight criteria is not satisfied those mapping generate a less
randomly behaviour.

The chaotic behaviour of each map depends essentially on the ‘control’ parameter μ.
When the phase portrait is globally observed, the analyse does not depend on the initial
guess x0. Therefore, a bifurcation diagram is an appropriate tool to study the dependency
of parameter μ.
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Figure 6.The main criteria for PRNG robustness.

Figure 7.(a) Bifurcation diagram of 2-D new map: TTLRCμ non-alternate (36) (b) Magnification of the
bifurcation diagram of TTLRCμ non-alternate.

In order to compute this diagram, for every value of μ, an initial value x0 is arbitrary
selected. The map is iterated many times, however the first iterates are discarded, in order
to avoid the plotting of a transient regime. The next points are plotted. Afterwards, the
process is repeated incrementing slightly μ.

The bifurcation diagram of both 2-dimensional mappings TTLRCμ non-alternate
(Figure 7) and TTLSCμ alternate (Figure 8) is built computing 10,000 points for each initial
guess, the first 1000 of which are discarded. Hence, for every value of the parameter μ, we
plot 9000 points. We observe more or less the same patterns in both graphs of components
x(1) and x(2).

For μ belonging to the interval [0, 0.25] a fixed point (i.e. a period 1) is observed. After
the greatest value of the parameter interval, the steady state fixed point is transformed
in period 2 orbit via a pitchfork bifurcation. This bifurcation is followed by a cascade of
bifurcation. When μ increases the dynamical system is eventually chaotic, even if some
periodic windows exist in the neighbourhood of μ = 1.1 (Figure 7). The subsequent
interval of μ shows chaotic dynamics.

Diagrams of bifurcation are often used for studying the global behaviour of nonlinear
maps because they show in a glimpse the dynamics. They are very useful when used with
the graph of the Lypunov exponent, it is very simple to determine if a dynamics is chaotic
or not.
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Figure 8.Bifurcation diagram of 2-D newmap: TTLSCμ alternate (37).

Figure 9.Largest Lyapunov exponent for 2-D TTLRCμ non-alternate map (36).

On Figures 9 and 10 we display respectively the Lyapunov exponent of TTLRCμ non-
alternate, and TTLSCμ alternate. We use 10, 000 iterations in order to compute such expo-
nents. The range of parameters μ belongs between μ = 0.5 to μ = 2. The value of μ is
plotted on the horizontal axis meanwhile the Lyapunov exponent λ is plotted with respect
to the scale of the vertical axis.

The Lyapunov exponent plotted on those figures correspond exactly with the expected
dynamics given by the bifurcation diagram. The positive value of the Lyapunov exponent
indicates chaotic dynamics which increases with the increase of μ demonstrating the
strongest chaos for μ = 2.

The study highlights that both TTLRCμ non-alternate (Figure 9) and TTLSCμ alternate
(Figure 10) maps exhibit a strong chaotic behaviour when μ = 2, therefore we will only
consider in the following this value for the parameter. We can see, checking the graphs
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Figure 10. Largest Lyapunov exponent for 2-D TTLSCμ alternate map (37).

Figure 11.Phase space attractor of 2-D newmaps, 2× 104 points are generated (a) TTLRC2 non-alternate
(36) (b) TTLSC2 alternate (37).

that for each initial point chosen, the trajectories starting from such points look chaotic.
Hence, we can study an attractor in the phase space and the phase delay.

In the phase space we plot the iterates in the system x(1)
n vs. x(2)

n of coordinates in order
to analyze the density of the points distribution. Depending on such analysis it is possible
to assess the complexity of the behaviour of dynamics, noticing any weakness or inferring
on the randomness nature of it.

The plot of the sequence of iterates is done using 2× 104 points obtained by computing
3 × 104 points and deleting the first 104 points to avoid any plot of the transient regime.

The graphs of the attractor in phase space for TTLRC2 non-alternate (Figure 11(a)) and
TTLSC2 alternate (Figure 11(b)) maps are quite different. The first one has well-scattered
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Figure 12. Injection mechanism [−3, 3]2 ⇒ [−1, 1]2 for TTLRC2 non-alternate map (a) 2-D chaotic map
without addition/subtraction (b) injection x(1)

n to the torus [−1, 1]2 (c) injection x(2)
n to the torus [−1, 1]2

(d) results after passing injection mechanism.

points on thewhole pattern, but there are somemore ‘concentrated’ regions forming curves
on the graph.Wewill search an answer to the questions: ‘Why there aremore concentrated
regions? From where curves are created?’, by considering the injection mechanism.

The dynamics send the iterates between amixed values equal to+3 and aminimal value
equal −3. Equation (33) allows to send those points back to the initial square, however
their influence to the dynamics works differently as in the system (1) [7]. Among 2 × 104

points generated on those square, 77 % are scattered out of the square [−1, 1]2. The
multidimensional mechanism consists of p-steps. In each step, when the dynamics is going
outbounds the value 2 is added or subtracted to the variables (33).

For the first step 69% of the points are re-injected to the interval [−1, 1]2 (Figure 12(b)).
After the second step (Figure 12(c)) all points are displaced from the extended range
[−3, 3]2 into the torus [−1, 1]2 (Figure 12(d)). Therefore, the injection mechanism im-
proves the non-linearity to the behaviour of the iterates, rendering the system more
complex which can be seen as an advantage in case of cryptographic usage, from the
security point of view.
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Figure 13. Injection mechanism [−3, 3]2 ⇒ [−1, 1]2 for TTLSC2 alternate map (a) 2-D chaotic map
without addition/subtraction (b) injection x(1)

n to the torus [−1, 1]2 (c) injection x(2)
n to the torus

[−1, 1]2 (d) results after passing injection mechanism.

One can note that in the phase space, the attractor of TTLSC2 alternate map may look
uniformly distributed on the whole square, without any concentration of points in special
region (11(b)). The injection mechanism works for uniformising the points distribution
as shown in Figure 13.

When those PRNG are used for cryptographic purpose, the quality of the cryptosystem
mostly rely to the randomness quality of the PRNG. Thus, the uniform generation by
its dynamics is one of the most important criterion in order to build a robust PRNG.
(Criterion 5, Figure 6).

An approximated invariant measure (11) assesses better then a visual examination of
the picture of iterates: the density probability. It is hence used in the aim of providing a
precise floating points distribution study. Using such a tool, a better uniform distribution
can be reached.

The graph of the function value allows to compare the distribution of points between
regions of the graph. The length of each side box is measured by the variable step. In other

p. 16
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Figure 14. Approximate density function of TTLRC2 non-alternate mapping, where step variable is fixed
to 0.01. The plotting displays 109 points.

Figure 15.(a) Plot of the projection on the plane (x1, x2) of the approximate function of density of
TTLSC2 alternate map, where 109 points are computed. The variable step is fixed to 0, 01. (b) Plot of the
approximate function.

words, the space is divided into a grid of boxes[i, j] of area size equal to step2. Then during
the generation of iterates, the number of points which are sent to the box[i, j] is counted.

In order to compute the approximate density function the square was divided using a
grid of 200 × 200 boxes, i.e. step is fixed to 0.01. Then 109 iterates were computed. This
number of iterates is the maximum possible to compute the approximate function using
only a laptop computer in a reasonable time. The details of the points distribution are
displayed on Figures 14 and 15. It is obvious that both multidimensional mapping do not
give satisfactory uniform distribution in the phase space. However, it is noticed that some
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parts of the graph (13(b)) are perfectly joint regions. This leads to a new idea in order to
improve the regularity of the density modifying slightly (37).

3.3. A new 2-D chaotic PRNG

Taking into account the results of Section 3.2. the randomness result observed for 2-D
topology could be enhanced changing slightly the coupling. In Figure 13(b) both particular
regions: top-green and right-red ones have special shape of boundary that can be matched
in a pretty way. In this aim we write the mapping TTLSCμ alternate (37) where μ = 2 as
follows:

TTLSC2 (x(1)
n , x(2)

n ) =
{
x(1)
n+1 = 1 + 2(x(2)

n )2 − 4|x(1)
n |

x(2)
n+1 = 1 − 2(x(2)

n )2 + 2(|x(1)
n | − |x(2)

n |) (38)

The first problem is that the top green colored region occurs after injection is applied.
Thus, we develop the system (38) in such way that the green colored region ‘stays’ in such
a position without the injection mechanism. Secondly, we need to reduce the width of the
region. Evidently, it is possible to achieve this need by reducing the impact of the state x(1),
with the new following map:

MTTLSC2 (x(1)
n , x(2)

n ) =
{
x(1)
n+1 = 1 + 2(x(2)

n )2 − 2|x(1)
n |

x(2)
n+1 = 1 − 2(x(2)

n )2 + 2(|x(1)
n | − |x(2)

n |) (39)

and the injection mechanism (33) is used as well, but restricted to 3 phases:

if x(1)
n+1 > 1 then subtract 2

if x(2)
n+1 < −1 then add 2

if x(2)
n+1 > 1 then subtract 2 (40)

Figures 16–18 show the result of the modifications highlighting that the 3-phase mech-
anism (Figure 16) of injection works very well. The techniques we have introduced in this
section improve greatly the uniformity of the density of iterates in the phase space (Figures
17, 18).

Moreover, using a multicore computer, we were able to compute this distribution up
to 1014 points (Figure 19, Table 3). Those computation results show excellent decreasing
distribution errors with respect to the number of iterates. The Lyapunov exponent worths
0.5905 which is the characteristic of a perfect pseudo-random behaviour.

Concerning the distribution of iterates in the phase delay, Figures 20, 21 show that it
is very good as well. In those figures we plotted as much as 109 points. The only concern
is in Figure (22(b)) where the tent pattern is recognizable for x(1) variable. However, for
many applications, only one output stream of pseudo-random numbers is required, which
can be obtained by using x(2) variable. Both variables have a strong coupling impact on
themselves and for the global dynamics.

The techniques make uniform iterates distribution on the torus implying strong
chaoticity.

MTTLSC2 alternate map is built using ring-coupling and auto-coupling mechanisms.
Since one variable is partially creating the dynamics of the other, we have to check the
dependency and repeatability of auto-correlation as well of cross-correlation. Figures 23
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Figure 16. Injection mechanism (40) ofMTTLSC2 alternate map (39).

Figure 17. Approximate density function of MTTLSC2 alternate map (39), where step = 0.01, 109 points
are generated.

and 24 display the results of this 2-dimensional mapping. The same excellent results are
presented in Figure 23 for auto-correlation, and in Figure 24 for cross-correlation. One
can see that graphs lie near the zero axis.
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Figure 18.Approximate density function in 3D ofMTTLSC2 alternate map, where step = 0.01, 109 points
are generated.

Table 3. Approximate distribution errors (13, 14, 15), for the system (39) in the phase space.

EAC1,200, EAC2,200, EAC∞ ,200,
Niter x(i)x(j) Niter(x(i) , x(j)) Niter(x(i) , x(j)) Niter(x(i) , x(j))

104 x(1)x(2) 1.5532 1.97707 15
105 x(1)x(2) 0.51531 0.634136 5
106 x(1)x(2) 0.159092 0.200498 1.16
107 x(1)x(2) 0.0503666 0.063169 0.252
108 x(1)x(2) 0.0159087 0.0199153 0.0792
109 x(1)x(2) 0.00503929 0.00630626 0.02748
1010 x(1)x(2) 0.00160207 0.00200759 0.008996
1011 x(1)x(2) 0.000505848 0.000631793 0.0029196
1012 x(1)x(2) 0.000159674 0.000199849 0.00087284
1013 x(1)x(2) 5.04686e−05 6.30986e−05 0.000281112
1014 x(1)x(2) 1.59962e−05 2.00927e−05 8.68908e−05

Topological mixing means the system capability to progress over a short period of time.
The system from any given initial region or open set of its phase space will be ultimately
mixed up with any other region so that it is impossible to predict system evolution.
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Figure 19. Approximate distribution errors (13), for the system (39).

Figure 20. Attractor in the phase delay (x(2)
n , x(2)

n+1), 10
9 points are generated, for the system (39).

This mapping is spanning through any region or open neighbourhood of a given point
in phase space to a larger region of the [−1, 1]2 square. Therefore, the image of those
regions overlap many other leading to a strong mixing property. It is why it is impossible
to predict the evolution of the dynamics.

Here we represent the graphical analysis of the 2-DMTTLSC2 alternate map showing its
topological mixing ability. We divide the square [−1, 1]2 into 4 orthants and we split each
of them in a grid of boxes (A2,B2,C2, . . . ,O2). Up to 5× 103 iterates are collected in each
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Figure 21. Attractor in the phase delay (x(2)
n , x(2)

n+1), box-method, 109 points are generated, for the system
(39) .

Figure 22. Density of iterates for the phase delay space where 109 points are computed (a) plot of 109

points following the initial guess (x(1)
n , x(1)

n+1) (b) (x
(1)
n , x(1)

n+1) using the box-method.

box of the grid (Figure 25). In the next Figures (Figure 26(a)–(e)) we display the image
of those initial boxes (A1,B1,C1, . . . ,O1) of the first quadrant by the MTTLSC2 alternate
mapping.

Topological mixing can be seen in Figure 26: the points are distributed everywhere over
the square. It is near impossible to predict where the iterates will be mapped without the
very exact knowledge of the equation of the mapping, the parameters values which can
be used as encryption keys when cryptography is involved, or the retrieve of the previous
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Figure 23.State auto-correlation analysis of theMTTLSC2 alternate map

Figure 24.Correlation between states of theMTTLSC2 alternate map.

iterates as well. Due to sensitivity to initial condition, a small error in the knowledge of any
initial condition can lead to very different behaviour of the iterates.
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Figure 25.Grid of the boxes (A, B, C , . . . ,O) of the (x(1)
n , x(2)

n ) square of the phase space.

The system has strong mixing property because the images of the regions overlap on
many other. As an example taking several points of the box A2 (Figure 25) some are
mapped into the same box A2 (Figure 26(a)). However, for some other their behaviour is
somewhat different, they aremapped through the boxesO1, I1, P1,C1,B1,E1,H1,M4,N4
(Figure 27), that means their successor belong somewhere in those boxes (Figure 27).
Continuing the mapping process, their iterates mix more complexly, the behaviour be-
comes unpredictable and eventually looks like scattered points everywhere across the
space. Colors and letters overlapping on the graphs vividly display that arbitrarily close
points in some periods of time will have vastly different behaviours, which means mixing.
This phenomenon is quantified through the value of the Largest Lyapunov exponent. The
arbitrarily takenpointswhich are far alonewill ultimately approach lookingnearly the same
only for several iterations means mixing as well. Since the new map implies strong chaos,
the phase space is thoroughly mixed together after quite a short time. In a forthcoming
paper, we will quantify this mixing, building a corresponding Markov transition matrix as
in [11].

NIST tests are used to verify randomness and system capability to resist main attacks.
As it was discussed earlier the advantage of the binary sequences has to be approximately
the same as of the truly random number generator. NIST tests fully cover the statistical
tests. For a long time, the tests are used to check the robustness of the PRNG. In order
to assess MTTLSC2 using such tests we have computed up to 4 × 106 points, discarding
the 5 × 105 first ones. Because only binary sequences are accepted as input in NIST tests,
we have converted the floating numbers obtained from this 2-dimensional mapping, to
binary form. The IEEE-754 standard (32 bit single precision floats) is the standard we have
used.

We have assessed successfully both variables x(1)
n and x(2)

n of this map, proving there-
fore strong pseudo-randomness of both streams of numbers. This implies robustness
against many statistical attacks when those streams of numbers are used in cryptography
(Figure 28). Those chaos based generated sequences of iterates can be considered as good
as truly random numbers. Thus, if an intruder try to find some clues to generate such
sequences, it will be very difficult to find any, those numbers being not distinguishable
from true random numbers.
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Figure 26. Topological mixing.
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Figure 27.Grid of boxes (A . . .O) of the four quadrants 1,2,3,4 overlapped by the colored images of the
boxes of the first quadrant in the phase space (x(1)

n , x(2)
n ).

We consider now another topology of network of chaotic maps introducing another
structurally simple 2-D mapping. The map is described as follows:

NTTLSC2 (x(1)
n , x(2)

n ) =

⎧⎪⎨
⎪⎩
x(1)
n+1 = 1 − 2|x(2)

n | = T2(x
(2)
n )

x(2)
n+1 = 1 − 2(x(2)

n )2 − 2(|x(2)
n | − |x(1)

n |)
= L2(x

(2)
n ) + T2(x

(2)
n ) − T2(x

(1)
n )

(41)

Note, that the first equation corresponds to the tent map. In addition, the injection
mechanism (Figure 29) should be applied to hold the dynamics in [−1, 1]2:

if x(2)
n+1 < −1 then add 2

if x(2)
n+1 > 1 then subtract 2 (42)

TheNTTL2 exhibits an excellent density in phase delay for both states (Figure 30), being
very promising in real application.

The NTTL2 map has a complex dynamics which allow it to resist to cryptographic
statistical attacks proved by its good results in NIST tests (Figure 31).

In the next section we investigate topologies in dimension of system more than 2. We
expect that the complexity of the dynamics should be more complicated and therefore
more similar to pseudo-random dynamics [12].

4. A new higher-dimensional map

The use of dimensional systems in higher dimensions are expected more effective to
simulate pseudo-random properties because there are more interactions between states
with more mixing properties. We have observed that dimensions greater or equal to 3 are

p. 27



Figure 28. Successfull results of the NIST tests for mappingMTTLSC2 alternate (a) x(1) (b) x(2).

more powerful in order to generate generic pseudo-random sequences. Fortunately, the
kind of systemswe study in this article are able to increase easily the number of components
(i.e. the number of states).

Since the specific MTTLSC2 alternate map cannot be extended with more variables, we
describe how to achieve such a task in the goal of improving chaoticity, having a more
regular distribution of points, a more complex dynamics than TTLRC2 (x(2), x(1)) alternate
map (36).

A good manner to get randomness using chaotic maps is to do some coupling between
states using auto-coupling or ring-coupling [8]. In this section we consider the special
realization of Mk

μ,p (34) for which we choose ki = +1 for 1 � i � p and (i, j) =
(2, 1); (3, 2); . . . (1, p):

p − D,TTLRC2 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(1)
n+1 = 1 − 2|x(1)

n | + 2(|x(2)
n | − (x(1)

n )2)

x(2)
n+1 = 1 − 2|x(2)

n | + 2(|x(3)
n | − (x(2)

n )2)
...

x(p)
n+1 = 1 − 2|x(p)

n | + 2(|x(1)
n | − (x(p)

n )2)

(43)
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Figure 29. Injection mechanism (40) of NTTL2 alternate map.

Figure 30.Density of iterates of NTTL2 in the phase delay representation (a) (x
(1)
n , x(1)

n+1) (b) (x
(2)
n , x(2)

n+1).

The injection mechanism (33) is involved at each step.
Note, that each of the states has to satisfy the requirements for chaos and randomness.

Therefore, the 3-D, 4-D and 5-D systems were studied for criteria 1–8 (Figure 6) indepen-
dently for each of the state and in a correlation between them. All of the tests have been
successfully passed with improving results when the dimension is increased. In this article
we provide only the most significant and important tests.

As for system MTTLSC2 , all 3-D, 4-D and 5-D systems (43) show a very good points
distribution. The errors EAC1,200,N ;EAC2,200,N ;EAC∞,200,N decrease steadily with respect to
the number N of generated points and with respect to the dimension of the system (see
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Figure 31. NTTL2 map successfully passed NIST tests.

Figure 32. Systems 3-D, 4-D and 5-D, EAC1,200,N(x(1)
n , x(2)

n )).

Tables 4–6 ). In order to display evolution of decreasing error, we have computed from
104 up to 1014 points, using multicore computer. In those tables the errors are the errors
in any phase space: xin vs. xjn, 1 � i, j � dimension of the system. Figure 32 summarizes
those results for the phase space (x(1), x(2)) and the error in norm EAC1,200,N .

Results for the other norms are similar. One can only remark that if for systems 3-D
and 5-D the errors are completely similar in magnitude for any phase space (x(i), x(j)), it is
not exactly the case for 4-D system. For this system the results are less good for (x(1), x(3))
and (x(2), x(4)) phase spaces than for the other, albeit good enough. The ratio of magnitude
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Table 4.Distribution of iterates errors computed for 3-D TTLRC2 (x(i), x(j)) alternate map with 200 × 200
boxes.

EAC1,200, EAC2,200, EAC∞ ,200,
Niter x(i)x(j) Niter(x(i) , x(j)) Niter(x(i) , x(j)) Niter(x(i) , x(j))

104 x(1) x(2) 1.5568 2.0006 15
x(1) x(3) 1.55615 1.99218 15
x(2) x(3) 1.56015 2.01236 15

105 x(1) x(2) 0.5163 0.63752 3.8
x(1) x(3) 0.51246 0.632626 3.4
x(2) x(3) 0.51364 0.633454 3.4

106 x(1) x(2) 0.160282 0.201211 0.88
x(1) x(3) 0.160272 0.201644 0.92
x(2) x(3) 0.159704 0.200846 0.92

107 x(1) x(2) 0.0509584 0.0637174 0.264
x(1) x(3) 0.0510062 0.0639212 0.328
x(2) x(3) 0.0508942 0.0637151 0.026

108 x(1) x(2) 0.0176344 0.0220618 0.0856
x(1) x(3) 0.0176219 0.02207 0.0948
x(2) x(3) 0.0175315 0.0219646 0.0916

109 x(1) x(2) 0.00911485 0.0112042 0.0408
x(1) x(3) 0.00907769 0.0111668 0.04576
x(2) x(3) 0.00906877 0.0111685 0.04204

1010 x(1) x(2) 0.00783204 0.00942348 0.0293
x(1) x(3) 0.00782634 0.00942161 0.028612
x(2) x(3) 0.00784682 0.00943308 0.031216

1011 x(1) x(2) 0.00771201 0.0092317 0.0273972
x(1) x(3) 0.00771015 0.0092324 0.0270468
x(2) x(3) 0.00771428 0.00923352 0.0262988

1012 x(1) x(2) 0.00769998 0.0092118 0.0261484
x(1) x(3) 0.00770078 0.00921384 0.0261491
x(2) x(3) 0.00769833 0.00921204 0.0261546

1013 x(1) x(2) 0.00769867 0.00921041 0.0260495
x(1) x(3) 0.00769895 0.00921083 0.0259947
x(2) x(3) 0.00769905 0.00921094 0.0259662

1014 x(1) x(2) 0.00769874 0.00921054 0.02608
x(1) x(3) 0.00769895 0.00921067 0.026042
x(2) x(3) 0.00769873 0.00921049 0.0260237

being approximately 8 vs 1 depending on the chosen norm of the error. For systems 2-
D, after 106 generated points the sequences become repeatable because the errors do not
longer decrease. The same situation occurs after 109 points for the 3-D system, and after
1013 points for the 4-D system. Up to the computation of 1014 iterates for the 5-D system
(which takes roughly 74 h on a highly-concurrent Sun SPARC Enterprise T5240 server
Niagara computer with 128 logical cores) no such repeatable sequences are observed.
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Table 5.Distribution of iterates error computed for 4-D TTLRC2 (x(i), x(j)) alternate map with 200 × 200
boxes.

EAC1,200, EAC2,200, EAC∞ ,200,
Niter (x(i)n , x(i)n+1) Niter(x(i) , x(j)) Niter(x(i) , x(j)) Niter(x(i) , x(j))

104 x(1) x(2) 1.55725 1.9964 15
x(1) x(3) 1.55695 1.9976 15
x(1) x(4) 1.55625 1.99539 15
x(2) x(3) 1.55985 2.01097 15
x(2) x(4) 1.5541 1.98494 15
x(3) x(4) 1.55615 1.99319 15

105 x(1) x(2) 0.51083 0.631607 4.2
x(1) x(3) 0.51184 0.631645 3.4
x(1) x(4) 0.51172 0.631082 3.8
x(2) x(3) 0.51413 0.63353 3.4
x(2) x(4) 0.51618 0.636735 3.4
x(3) x(4) 0.51506 0.634999 3.4

106 x(1) x(2) 0.158256 0.199192 1.04
x(1) x(3) 0.158918 0.199753 1
x(1) x(4) 0.15942 0.200724 0.92
x(2) x(3) 0.158746 0.200455 0.92
x(2) x(4) 0.16029 0.201252 0.92
x(3) x(4) 0.158228 0.199217 0.84

107 x(1) x(2) 0.0504002 0.0632736 0.312
x(1) x(3) 0.0501062 0.0629123 0.372
x(1) x(4) 0.050657 0.0634455 0.252
x(2) x(3) 0.050618 0.0633568 0.272
x(2) x(4) 0.0506104 0.0635347 0.26
x(3) x(4) 0.050197 0.0630166 0.288

108 x(1) x(2) 0.0157924 0.0197939 0.0848
x(1) x(3) 0.0160034 0.0200479 0.086
x(1) x(4) 0.0159352 0.0199486 0.0884
x(2) x(3) 0.0160063 0.0200269 0.0932
x(2) x(4) 0.0160009 0.0200713 0.0972
x(3) x(4) 0.0159821 0.0200349 0.0828

109 x(1) x(2) 0.00506758 0.00634845 0.02916
x(1) x(3) 0.0051405 0.00646279 0.02872
x(1) x(4) 0.00507518 0.00638122 0.03116
x(2) x(3) 0.00508724 0.00635539 0.02548
x(2) x(4) 0.0051651 0.0064819 0.02904
x(3) x(4) 0.00506246 0.00634861 0.02752

1010 x(1) x(2) 0.00159046 0.00199353 0.008152
x(1) x(3) 0.00190656 0.00240003 0.010208
x(1) x(4) 0.00159748 0.00200329 0.008604
x(2) x(3) 0.0016072 0.00201414 0.008136
x(2) x(4) 0.00190768 0.00239212 0.010296
x(3) x(4) 0.00159866 0.00200415 0.008992

1011 x(1) x(2) 0.000521561 0.000653761 0.0030604
x(1) x(3) 0.00113195 0.00144655 0.0057648
x(1) x(4) 0.000520847 0.000652876 0.0028436
x(2) x(3) 0.000521564 0.000654063 0.0029228
x(2) x(4) 0.00113732 0.00144898 0.0059528
x(3) x(4) 0.000521442 0.000651506 0.0027404

(Continued)
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Table 5. (Continued).

1012 x(1) x(2) 0.000209109 0.000260625 0.00098868
x(1) x(3) 0.0010181 0.00131377 0.0047824
x(1) x(4) 0.000209131 0.000260484 0.00106452
x(2) x(3) 0.000209507 0.00026041 0.00105064
x(2) x(4) 0.00101941 0.00131403 0.00464148
x(3) x(4) 0.000208125 0.000259515 0.00092748

1013 x(1) x(2) 0.000150031 0.000179686 0.000583912
x(1) x(3) 0.00100668 0.0013004 0.00431795
x(1) x(4) 0.000150505 0.000180148 0.000604532
x(2) x(3) 0.00014943 0.000178778 0.000675604
x(2) x(4) 0.00100677 0.00130022 0.00432338
x(3) x(4) 0.000149962 0.000179475 0.000645028

1014 x(1) x(2) 0.000144162 0.000169327 0.000502641
x(1) x(3) 0.00100504 0.00129871 0.00426248
x(1) x(4) 0.000144398 0.0001695 0.000490893
x(2) x(3) 0.000144101 0.000169222 0.000491529
x(2) x(4) 0.00100495 0.00129875 0.00427791
x(3) x(4) 0.000144307 0.00016943 0.000504066

0.00001
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1
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Figure 33. Systems 3-D, 4-D and 5-D, Errors EC1,200,N(x(1)
n , x(1)

n+1).

Remark: We use Sun SPARC Enterprise T5240 server with two 1.2 Ghz, 16 core Ultra-
SPARC T2+ processors. Each core has 8 hardware contexts, which means the server is
capable of running up 128 threads in ‘true’ (hardware) concurrency.

In the phase-delay space (x(i)
n , x(i)

n+1) we obtain also very good results of uniform
repartition of iterates for all 3-D and 5-D systems (see Tables 7–9). Figure 33 summarizes
such results.
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Table 6. Distribution of iterates error computed for 5-D TTLRC2 (x(i), x(j)) alternate map with 200 × 200
boxes.

Points (x(i)n , x(i)n+1) EAC1,200, EAC2,200, EAC∞ ,200,
Niter(x(i) , x(j)) Niter(x(i) , x(j)) Niter(x(i) , x(j))

104 x(1) x(2) 1.55915 2.00818 15
x(1) x(3) 1.5561 1.99539 19
x(1) x(4) 1.55935 2.00559 15
x(1) x(5) 1.5568 1.99539 15
x(2) x(3) 1.55785 2.0018 15
x(2) x(4) 1.55575 1.98655 15
x(2) x(5) 1.5584 2.00499 19
x(3) x(4) 1.55655 1.9962 15
x(3) x(5) 1.55675 1.99359 19
x(4) x(5) 1.55625 1.99098 15

105 x(1) x(2) 0.514 0.633448 3.4
x(1) x(3) 0.5123 0.631481 3.4
x(1) x(4) 0.51109 0.631335 3.8
x(1) x(5) 0.51285 0.633132 3.4
x(2) x(3) 0.5118 0.632158 3.8
x(2) x(4) 0.51545 0.634173 3.8
x(2) x(5) 0.51376 0.633599 3.8
x(3) x(4) 0.51271 0.631303 3.4
x(3) x(5) 0.51183 0.63046 3.8
x(4) x(5) 0.5129 0.632822 3.4

106 x(1) x(2) 0.158058 0.198943 0.96
x(1) x(3) 0.158956 0.199411 0.92
x(1) x(4) 0.15943 0.200825 0.88
x(1) x(5) 0.159074 0.200251 0.92
x(2) x(3) 0.15825 0.199351 0.92
x(2) x(4) 0.159248 0.200233 1
x(2) x(5) 0.15889 0.199995 0.84
x(3) x(4) 0.159136 0.199863 1
x(3) x(5) 0.159216 0.200545 0.96
x(4) x(5) 0.158918 0.199639 0.88

107 x(1) x(2) 0.0505508 0.0634574 0.308
x(1) x(3) 0.0504804 0.0632541 0.272
x(1) x(4) 0.0501244 0.0628956 0.268
x(1) x(5) 0.0503472 0.063055 0.296
x(2) x(3) 0.0503194 0.0632425 0.268
x(2) x(4) 0.050569 0.0634408 0.296
x(2) x(5) 0.0506322 0.0635636 0.284
x(3) x(4) 0.0503476 0.063059 0.256
x(3) x(5) 0.0504622 0.063331 0.276
x(4) x(5) 0.0505216 0.0633772 0.288

108 x(1) x(2) 0.0160114 0.0200538 0.0852
x(1) x(3) 0.0159261 0.0199328 0.0892
x(1) x(4) 0.0160321 0.0200284 0.0844
x(1) x(5) 0.0158962 0.019966 0.0844
x(2) x(3) 0.0159754 0.020018 0.094
x(2) x(4) 0.0159668 0.020047 0.0808
x(2) x(5) 0.0160116 0.0200677 0.0904
x(3) x(4) 0.0158826 0.01993 0.0924
x(3) x(5) 0.0159341 0.0199285 0.084
x(4) x(5) 0.0160516 0.0200876 0.0936

(Continued)
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Table 6. (Continued).

109 x(1) x(2) 0.00507915 0.0063595 0.02716
x(1) x(3) 0.00504164 0.00631924 0.02888
x(1) x(4) 0.00503177 0.00631229 0.02452
x(1) x(5) 0.00504183 0.00630869 0.02744
x(2) x(3) 0.00504652 0.00632572 0.02768
x(2) x(4) 0.00505682 0.00633798 0.02468
x(2) x(5) 0.00505273 0.00634782 0.02728
x(3) x(4) 0.00502485 0.00630083 0.03192
x(3) x(5) 0.00504935 0.00633202 0.0268
x(4) x(5) 0.00501553 0.00628623 0.02588

1010 x(1) x(2) 0.0015927 0.00199644 0.008128
x(1) x(3) 0.00159456 0.00199969 0.008364
x(1) x(4) 0.00160091 0.0020046 0.009144
x(1) x(5) 0.00160204 0.00200558 0.008756
x(2) x(3) 0.00159442 0.00199577 0.008104
x(2) x(4) 0.00159961 0.00200365 0.007988
x(2) x(5) 0.0015934 0.00199718 0.00916
x(3) x(4) 0.00158123 0.00198712 0.008132
x(3) x(5) 0.00161268 0.00201818 0.008176
x(4) x(5) 0.0016008 0.00200208 0.008832

1011 x(1) x(2) 0.000506086 0.000633916 0.0025712
x(1) x(3) 0.000506032 0.000634157 0.002604
x(1) x(4) 0.000506226 0.000634534 0.0031212
x(1) x(5) 0.000507563 0.000635621 0.0027628
x(2) x(3) 0.000508303 0.000636715 0.002912
x(2) x(4) 0.000505896 0.000632921 0.0025112
x(2) x(5) 0.000508998 0.000637142 0.0027688
x(3) x(4) 0.000505468 0.000631842 0.0025664
x(3) x(5) 0.000505627 0.000633985 0.002762
x(4) x(5) 0.000503823 0.000632957 0.0025036

1012 x(1) x(2) 0.000158795 0.000199203 0.00089288
x(1) x(3) 0.000159326 0.000199796 0.00086472
x(1) x(4) 0.000160038 0.000200669 0.00082136
x(1) x(5) 0.000159048 0.000199636 0.0008704
x(2) x(3) 0.000160659 0.000201643 0.00090456
x(2) x(4) 0.000160313 0.000201294 0.00091648
x(2) x(5) 0.000160462 0.00020094 0.00082616
x(3) x(4) 0.000158758 0.000198643 0.00091512
x(3) x(5) 0.000159079 0.000199344 0.00087596
x(4) x(5) 0.000159907 0.000200293 0.00085868

1013 x(1) x(2) 5.03666e−05 6.30356e−05 0.000270156
x(1) x(3) 5.09066e−05 6.38229e−05 0.000298932
x(1) x(4) 5.09599e−05 6.39809e−05 0.00026382
x(1) x(5) 5.00546e−05 6.27638e−05 0.00028508
x(2) x(3) 5.03313e−05 6.31806e−05 0.000250588
x(2) x(4) 5.12567e−05 6.43641e−05 0.00030346
x(2) x(5) 5.10924e−05 6.41551e−05 0.000276092
x(3) x(4) 5.05484e−05 6.33096e−05 0.000259888
x(3) x(5) 5.06863e−05 6.36835e−05 0.000292484
x(4) x(5) 5.03483e−05 6.31095e−05 0.000284756

(Continued)
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Table 6. (Continued).

1014 x(1) x(2) 1.60489e−05 2.00692e−05 8.53124e−05
x(1) x(3) 1.73852e−05 2.18348e−05 9.88376e−05
x(1) x(4) 1.74599e−05 2.18483e−05 9.66572e−05
x(1) x(5) 1.59133e−05 1.99122e−05 8.96988e−05
x(2) x(3) 1.60419e−05 2.01421e−05 9.01576e−05
x(2) x(4) 1.73507e−05 2.17665e−05 9.4832e−05
x(2) x(5) 1.73496e−05 2.17415e−05 9.1582e−05
x(3) x(4) 1.59451e−05 1.9985e−05 8.67056e−05
x(3) x(5) 1.75013e−05 2.19225e−05 9.8746e−05
x(4) x(5) 1.59445e−05 2.0002e−05 8.79312e−05

Table 7. Distribution of iterates errors computed for 3-D TTL in phase delay (x(i)
n , x(i)

n+1) with 200 × 200
boxes.

Points (x(i)n , x(i)n+1) EC1,200 EC2,200 EC∞ ,200

104 Identical values for x(1) x(2) and x(3) 1.55575 1.99058 15
105 Identical values for x(1) x(2) and x(3) 0.51516 0.634375 3.4
106 Identical values for x(1) x(2) and x(3) 0.160148 0.201038 0.92
107 Identical values for x(1) x(2) and x(3) 0.0505148 0.0633416 0.26
108 Identical values for x(1) x(2) and x(3) 0.0164343 0.0205923 0.0888
109 Identical values for x(1) x(2) and x(3) 0.00640451 0.00804826 0.03748
1010 Identical values for x(1) x(2) and x(3) 0.00420824 0.00533879 0.02388
1011 Identical values for x(1) x(2) and x(3) 0.00392619 0.00499949 0.0231904
1012 Identical values for x(1) x(2) and x(3) 0.00388937 0.00496257 0.0219244
1013 Identical values for x(1) x(2) and x(3) 0.00388768 0.0049599 0.0222608
1014 Identical values for x(1) x(2) and x(3) 0.003887 0.00495925 0.0222616

Table 8. Distribution of iterates errors computed for 4-D TTL in phase delay (x(i)
n , x(i)

n+1) with 200 × 200
boxes.

Points (x(i)n , x(i)n+1) EC1,200 EC2,200 EC∞ ,200

104 Identical values for x(1) to x(4) 1.5571 1.996 15
105 Identical values for x(1) to x(4) 0.51115 0.631113 3.4
106 Identical values for x(1) to x(4) 0.158472 0.198974 0.88
107 Identical values for x(1) to x(4) 0.0503522 0.0632225 0.256
108 Identical values for x(1) to x(4) 0.0159245 0.0199042 0.084
109 Identical values for x(1) to x(4) 0.00502109 0.00629915 0.02732
1010 Identical values for x(1) to x(4) 0.00159193 0.0019977 0.00866
1011 Identical values for x(1) to x(4) 0.00051438 0.000643966 0.0028136
1012 Identical values for x(1) to x(4) 0.000189418 0.000238006 0.00098772
1013 Identical values for x(1) to x(4) 0.000112771 0.000143508 0.000675228
1014 Identical values for x(1) to x(4) 0.000101139 0.00013067 0.000474188

p. 36



Table 9. Distribution of iterates errors computed for 5-D TTL in phase delay (x(i)
n , x(i)

n+1) with 200 × 200
boxes.

Points (x(i)n , x(i)n+1) EC1,200 EC2,200 EC∞ ,200

104 Identical values for x(1) to x(5) 1.5577 2.0012 19
105 Identical values for x(1) to x(5) 0.51372 0.633959 3.8
106 Identical values for x(1) to x(5) 0.15872 0.199793 0.88
107 Identical values for x(1) to x(5) 0.0503658 0.0631425 0.26
108 Identical values for x(1) to x(5) 0.0159765 0.0200503 0.084
109 Identical values for x(1) to x(5) 0.00509015 0.00636626 0.02528
1010 Identical values for x(1) to x(5) 0.00159581 0.00199936 0.008604
1011 Identical values for x(1) to x(5) 0.000505068 0.000633088 0.0025432
1012 Identical values for x(1) to x(5) 0.000160547 0.000201102 0.0008602
1013 Identical values for x(1) to x(5) 5.0394e−05 6.31756e−05 0.000280168
1014 Identical values for x(1) to x(5) 1.59929e−05 2.00533e−05 9.89792e−05

Figure 34. NIST tests for (a) 3-D TTLRC2 (x(2), x(1)) alternate map (b) 4-D TTLRC2 (x(2), x(1)) alternate map.

Numerical results provide harmony of the points density between states. In addition,
the NIST tests show that the multidimensional map behaves randomly (Figure 34).
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5. Conclusion

In this paper we have studied several topologies of complex networks of chaotic maps,
especially exploring the idea to mix two well-known chaotic maps: the tent map (or PWL
map) and the logistic map, which do not possess all the needed properties for encryption
purposes when used separately and coupling such maps in complex networks.

Either in 2-D or in upper dimensions the new coupling of mixed tent-logistic map
with injection mechanism changed qualitatively the overall system behaviour, increasing
their complexity. In a bottom up deMarche of building such networks, we highlighted that
useful randomness for cryptographic purpose can emerge from the studied topologies.
The proposed systems exhibit strong nonlinear dynamics, demonstrating great sensitivity
to initial conditions. They generate strong chaotic dynamics characterized by positive
Lyapunov exponents with values far greater than zero. Moreover, concerning the con-
solidated criteria for robust CPRNG, they successfully comply all the required tests such
as: NIST tests, uniform distribution, either in the phase space or in the phase delay, both
cross-correlation and autocorrelation tests.

We have checked their complex behaviour doing an analysis of their dynamics using in
this aim bifurcation diagram, study of topological mixing.

In conclusion, we were able to demonstrate the totally unpredictable dynamics of
such multidimensional mapping, making those systems good potential candidate for high
security applications.
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