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How useful randomness for cryptography can emerge from multicore-implemented complex networks of chaotic maps

Introduction

Nowadays, complex networks exist everywhere. In the recent decade, they have been widely investigated partly due to their wide applications in many fields of science such as neural networks, ecosystems, the Internet, the WWW, electrical power grids, communication systems, etc., and partly due to their broad scientific progress in physics, mathematics, engineering, biology, etc.

In a new kind of bottom up demarche in mathematics, opposed to the top down approach of using mathematics for modelling, we introduced recently complex networks of chaotic maps in order to improve the growing research field of cryptography based chaos.

In this article, after recalling basics of chaotic maps and their use when coupled, we explore thoroughly some new topologies of complex networks of chaotic maps, showing up their excellent properties for cryptographic purpose. Cryptography based chaos needs reproducible pseudo random numbers. They are obtained coupling chaotic maps of different nature in special ways. Reproducibility is required in order to synchronize encryption and decryption processes.

Cryptography based chaos needs also secret keys to avoid any recovering of plain text messages by malicious intruders. Both reproducibility and secrecy in randomness are easily obtained by new topologies of complex networks we present in this article.

In Section 2 we recall some recent topologies of systems of piecewise linear chaotic maps and useful tools to assess the randomness of the iterated numbers they generate. In Section 3 we examine mainly topologies of 2-D coupled map, highlighting good candidates of Chaos Pseudo Random Number Generators (CPRNG). In Section 4 we present a family of p-Dimensional networks whose we study numerically a particular realization, up to one hundred trillion iterations using multicore computers.

Piecewise linear chaotic map of order p

Efficient CPRNG have been recently introduced in [START_REF] Lozi | Chaotic pseudo random number generators via ultra weak coupling of chaotic maps and double threshold sampling sequences[END_REF]. The idea of applying discrete chaotic dynamical systems, intrinsically, exploits the property of extreme sensitivity of trajectories to small changes of initial conditions. They use the ultra weak multidimensional coupling of p 1-dimensional dynamical systems which preserve the chaotic properties of the continuous models in numerical experiments. The process of chaotic sampling and mixing of chaotic sequences, which is pivotal for these families, works perfectly in numerical simulation when floating point (or double precision) numbers are handled by a computer.

It is noteworthy that these families of very weakly coupled maps are more powerful than the usual formulas used to generate chaotic sequences mainly because only additions and multiplications are used in the computation process; no division being required. Moreover, the computations are done using floating point or double precision numbers, allowing the use of the powerful Floating Point Unit (FPU) of the modern microprocessors. In addition, a large part of the computations can be parallelized taking advantage of the multicore microprocessors which are of common use in laptop computers.

In this article, we are looking for chaotic systems which satisfy the required parameters properties (Table 1) for CPRNG design.

The alternate system with auto-coupling and ring-coupling (1) has been initially selected because it has sufficient randomness and high chaoticity [START_REF] Lozi | Emergence of randomness from chaos[END_REF]. It has been only studied in the chaotic range of parameters in the aim of applications to chaotic cryptography. Classical analysis in term of stability of fixed points, periodic points and bifurcations remains an open problem. The system successfully passed statistical and numerical tests such as: autocorrelation; cross-correlation; uniform distribution [START_REF] Espinel | Ring-coupled chaotic generator for coherent and non-coherent detection[END_REF][START_REF] Lozi | Chaotic pseudo random number generators via ultra weak coupling of chaotic maps and double threshold sampling sequences[END_REF]. (1) n | + k 1 ((1e 1 )x (2) n + e 1 x (1) n ) x (1) n + e p x

M p : ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ x (1) n+1 = 1 -2|x
(2) n+1 = 1 -2|x (2) n | + k 2 ((1 -e 2 )x (3) n + e 2 x (2) n ) . . . x (p) n+1 = 1 -2|x (p) n | + k p ((1 -e p )x
(p) n ) (1)
where the parameters k j = ( -1) j+1 , and e i ∈]0, 1[ are the encryption keys, x ∈ R p , T p = [-1, 1] p by the map M p = T p → T p . In addition, at each iteration a point must be checked and fed back to the torus [-1, 1] p (Figure 1) applying the following conditions:

if x (j) n+1 < -1 then add 2 if x (j) n+1 > 1 then subtract 2 (2) 
The equations make system dynamics to run on the torus [-1, 1] p and impact on the system complexity.

p. 2 The mapping M p is defined in algorithmic way by [START_REF] Aguirregabiria | Robust chaos with variable lyapunov exponent in smooth one-dimensional maps[END_REF] and [START_REF] Ariffin | Modified Baptista type chaotic cryptosystem via matrix secret key[END_REF], in order to highlight how it is built using the symmetric tent map of the interval [-1, 1] together with the very weak coupling between components.

It can be defined in a more traditional mathematical fashion using modulo function:

M p : ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ x (1) n+1 = ((2 -2|x (1) n | + k 1 ((1 -e 1 )
x (2) n (1) n + e p x

+ e 1 x (1) n )) mod 1) -1 x (2) n+1 = ((2 -2|x (2) n | + k 2 ((1 -e 2 )x (3) n + e 2 x (2) n )) mod 1) -1 . . . x (p) n+1 = ((2 -2|x (p) n | + k p ((1 -e p )x
(p) n )) mod 1) -1 (3) 
However, because this formula introduces unnecessary complexity for the reader, we continue to use the algorithmic way for the next mapping definitions.

Description of the Piecewise linear (PWL) chaotic map

The selected system with auto-coupling (the j-state impacts itself ) and ring-coupling (the j-state impacts the j + 1-state) for information encryption (1) exhibits complex non-linear dynamics, has chaotic properties very similar to pseudo-random properties [START_REF] Lozi | From chaos to randomness via geometric undersampling[END_REF] on the p-dimensional torus. The key element of the system is the symmetric tent map T that is applied to every state on the torus X ∈ [-1, 1] p in Equation (6): (1) n ) T(x (2) n ) . . .

T(X n ) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ T(x

T(x

(p) n ) ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ (4) 
where

T(x) = 1 -2|x| (5) 
is the classical symmetric tent map defined from

[-1, 1] into [-1, 1]. The p-order function f : X n+1 = f (X n ) with X n = (x (1) n , x (2) n , . . . , x (p)
n ) can be rewritten from control point of view with output vector Y n = (y (1) n , y (2) n , . . . , y (p) n ) as follows:

X n+1 = f (X n ) = A T(X n ) (6) p. 3
where Y n = CX n , C is the 1 × p vector line and A is a p × p matrix defined as follows: 

A = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ e 1,1 = 1 - j=p j=2 e 1,j e 1,
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , (7) 
with parameters e i,i = 1 -j=p j=1,j =i e i,j on the diagonal (the matrix A is stochastic if the coupling parameters verify e i,j > 0 for every i and j).

Parameters e i,j generalize coupling relationship of (1) and can be used also as encryption keys for chaotic cryptography. Remark: In (1) we use a symmetric tent map, however any piecewise linear map with the same single humped shape can be used as well.

The weakly coupled maps are able to generate significantly better pseudo-random sequences than 1-D maps due to the size of the phase space which is in higher dimension avoiding therefore short periodic sequences. The advantages are that only additions and multiplications are used in the map, influencing the speed performance. Moreover, the coupled map exhibits a high number of parameters (p × (p -1)) for p coupled equations) ensuring reliable cypher-keys, when used in chaos-based cryptosystems. The parameters are very sensitive to any changes [START_REF] Lozi | Emergence of randomness from chaos[END_REF].

Uniform distribution

An excellent PRNG looks like truly random, when it is unpredictable and there is no correlation between points which have an equal probability. If the generator is capable to produce the sequences uniformly distributed in the phase space and the phase delay, then the system behaviour is like truly random.

There are different tools to analyse points distribution, i.e. histogram, cumulative distribution, etc. However, they give very general information. In order to assess numerical computations more accurately and to study qualitatively the chaotic systems an approximation density function [START_REF] Lozi | Chaotic pseudo random number generators via ultra weak coupling of chaotic maps and double threshold sampling sequences[END_REF] is preferable to the previously mentioned tools. The approximation P M,N (x) of the density is defined by the invariant measure (the probability distribution function) [START_REF] Ross | Introduction to Probability Models[END_REF] corresponding to the 1-dimensional map f going from the interval J ⊂ R into itself (J = [-1, 1]), when computed with floating numbers. The regular partition into M small intervals (boxes) r i of J is defined by

J = M-1 i=0 r i (8) p. 4
where

r i = [s i , s i+1 [ i = 0, M -2 and r M-1 = [s M-1 , 1] (9) 
and

s i = -1 + 2i M , i = 0, . . . , M (10) 
One can remark that each box has a length which is equal to 2 M . The first iterates of the transient regime are discarded, the following are collected. At the end of the computation when N iterates are computed, the value r i is the number of iterates belonging to the interval r i . The numbers P N (s i ) represent the ratio of the number of iterates with N M for each box r i . The approximated P N (s i ) is a M steps function. As M is parameter we write it

P M,N (s i ) = M N ( r i ) ( 11 
)
P M,N (x) is normalized to 2 on the interval J = [-1, 1]. P M,N (x) = P M,N (s i ), ∀x ∈ r i (12) 
In the case of a multidimensional p-coupled system it is important to check the distribution of iterates for each component x 1 , x 2 , . . . , x p of X ⊂ J p . The approximated probability distribution function, P M,N (x j ) is associated to one among the components x j of the analysed system. We denote M disc instead of M and N iter instead of N, as often as they are more meaningful.

The discrepancies E 1 (in norm L 1 ), E 2 (in norm L 2 ) and E ∞ (in norm L ∞ ) between P M disc ,N iter (x j ) (where M disc is the number of boxes, N iter is the number of iterations) and the Lebesgue measure, which is the invariant measure of the uniform randomly distributed process are defined by

E 1,M disc ,N iter (x j ) = P M disc ,N iter (x j ) -0.5 L 1 (13) E 2,M disc ,N iter (x j ) = P M disc ,N iter (x j ) -0.5 L 2 (14) E ∞,M disc ,N iter (x j ) = P M disc ,N iter (x j ) -0.5 L ∞ (15) 
The numerical calculation of the uniform distribution allows us to judge about the system unpredictability. We know that E 1 < E 2 < E ∞ , however the computation of errors with three norms gives a more precise view of uniform distribution of iterates. It allows also to check that computations are not flawed.

In the same way an approximation of the correlation distribution function C M,N (x, y) is obtained numerically, building a regular partition of M 2 small squares (boxes) of J 2 p. 5 embedded in the phase subspace (x l , x m )

s i = -1 + 2i M , t j = -1 + 2i M , i, j = 0, M (16) r i,j = [s i , s i+1 [ × [t j , t j+1 [, i, j = 0, M -2 ( 1 7 ) r M-i,j = [s M-1 , 1] × [t j , t j+1 [, j = 0, M -2 (18) r i,M-1 = [s i , s i+1 [ × [t M-1 , 1], j = 0, M -2 (19) r M-1,M-1 = [s M-1 , 1] × [t M-1 , 1] (20) 
the measure of the area of each box is

(s i+1 -s i ) × (t i+1 -t i ) = 2 M 2 (21) 
Once N + Q iterated points (x l n , x m n ) belonging to these boxes are collected, the number of iterates divided by N M 2 collected in each box r i,j is the value C N (s i , t j ) The approximated probability distribution function C N (x, y) defined here is then a 2-dimensional step function, with M 2 steps. As M can take several values in the next sections, we define

C M,N (S i , t j ) = 1 4 M 2 N (#r i,j ) (22) 
where #r i,j is the number of iterates belonging to the square r i,j and the constant 1/4 allows the normalization of C M,N (x, y) on the square J 2 .

C M,N (x, y) = C M,N (s, t) ∀(x, y) ∈ r i,j (23) 
The discrepancies y) and the uniform distribution on the square, are defined by

E C 1 (in norm L 1 ), E C 2 (in norm L 2 ) and E C ∞ (in norm L ∞ ) between C M disc ,N iter (x,
E C 1 ,M disc ,N iter (x, y) = C M disc ,N iter (x, y) -0.25 L 1 (24) E C 2 ,M disc ,N iter (x, y) = C M disc ,N iter (x, y) -0.25 L 2 (25) E C ∞ ,M disc ,N iter (x, y) = C M disc ,N iter (x, y) -0.25 L ∞ (26) 
Finally let AC M disc ,N iter (x, y) be the autocorrelation distribution function which is the correlation function C M disc ,N iter (x, y) of (23) defined in the phase space (x l n , x l n+1 ) instead of the phase space (x l , x m ) . We define the corresponding discrepancies E AC 1 , E AC 2 , E AC ∞ . We make the same remark as previously done for the use of thee different norms instead of one only.

Injection mechanism for system on torus

As mentioned before, from the initial condition on the torus [-1, 1] p the trajectory will quickly leave the torus if the function ( 1) is applied alone. To keep system trajectories on p. 6 the torus [-1, 1] p , we apply the injection mechanism (27):

if x (j) n+1 < -1 then add 2 if x (j) n+1 > 1 then subtract 2 (27) 
Let us now show how the mechanism works if some points go out of the torus (Figure 1). The unstable system trajectories (in red), which are escaping, are forced to go back to the torus T p = [-1, 1] p (in blue). By this operation, the system dynamics has been maintained within [-1, 1] p . In addition, by this operation the resulting system exhibits more complex dynamics with additional nonlinearity, which is advantageous for chaotic encryption (since it improves the security).

The confinement from torus [-2, 2] p to torus [-1, 1] p of the dynamics is shown in (Figure 2): dynamics crosses from the negative region (blue colored) to the positive one, and conversely, if the points stand in the positive regions (red colored). The maximal torus where points mapped by [START_REF] Aguirregabiria | Robust chaos with variable lyapunov exponent in smooth one-dimensional maps[END_REF] 

could belong is [-2, 2] p .
Auto and ring-coupling between states (Figure 3 ) of the system and injection mechanism influence the system dynamics making it attractive to cryptography.

The system behaviour (1) becomes more complex when increasing its order. The analysis of the 2-D order system showed a potential weakness. The careful distribution analysis has been performed using an approximation P M,N (x) [START_REF] Lozi | From chaos to randomness via geometric undersampling[END_REF] that is defined by the invariant measure. The resulting picture (Figure 4) displays regions where the density is lower, and others where it is more concentrated. Thus, points distribution is not uniform. The space [-1, 1] 2 has been divided into 200 × 200 boxes and in each of them the points probability is calculated. On the graph (Figure 4) the boxes with low probability are blue colored and with high one are red colored, other colors indicate the probability in-between. p. 7 Therefore, only 3-D or 4-D realizations of system (1) are useful. In the next section we explore 2-D topologies which are more efficient than (1).

[-2, 2] 2 ⇒ [-1, 1] 2 ) (a) if x (1) n > 1 then x (1) n -2 or if x (1) n < -1 then x (1) n + 2 (b) if x (2) n > 1 then x (2) n -2 or if x (2) n < -1 then x (2) n + 2.
The geometrical shape of the region with different density of iterates [START_REF] Lozi | From chaos to randomness via geometric undersampling[END_REF] can be easily deduced when using critical lines CL [START_REF] Mira | Chaotic Dynamics in Two-dimensional Noninvertible Maps[END_REF]. The critical lines are singularities of dimension 1, they were introduced by C. Mira fifty years ago. They are a very efficient tool for the analysis of non invertible maps.

Note that small (i.e. weak coupling) parameters e j in (1) are required to guarantee satisfactory topological mixing.

p. 8 

Exploring topologies of coupled chaotic maps

Both logistic (28) and tent (29) maps have been explored for many years in the hope of generating pseudo-random numbers [START_REF] Martinez-Gonzalez | Vhdl implementation for a pseudo random number generator based on tent map[END_REF][START_REF] Wang | A pseudorandom number generator based on piecewise logistic map[END_REF].

f μ (x n ) ≡ L μ (x) = 1 -μx 2 (28) f μ (x n ) ≡ T μ (x) = 1 -μ|x| (29)
Remark: for the sake of simplicity we have defined T 2 (x) as T(x) in Section 2.1 [START_REF] Espinel | Ring-coupled chaotic generator for coherent and non-coherent detection[END_REF].

Some authors proposed to use 1-D chaotic dynamical systems as a base of a cryptosystem [START_REF] Ariffin | Modified Baptista type chaotic cryptosystem via matrix secret key[END_REF][START_REF] Baptista | Cryptography with chaos[END_REF].

Both mapping are topologically conjugate for some parameters [START_REF] Aguirregabiria | Robust chaos with variable lyapunov exponent in smooth one-dimensional maps[END_REF], therefore their topological properties (distribution, chaoticity, etc.) are in some sense similar however due to the structure of numbers of the computers, their numerically behaviour differs dramatically from the theoretical expectations when the iterates are obtained using a computer. The symmetric tent map is drastically numerical unstable: Sharkovskii's theorem applies for it [START_REF] Sharkovskii | Coexistence of cycles of a continuous map of the line into itself[END_REF]. When μ = 2 there exists a period three orbit and therefore an infinity of periodic orbits exist too. Nevertheless the orbit of almost every initial point of the interval [1, -1] of the descretized tent map eventually wind up to the stable fixed point x = -1, and these is no numerical attracting periodic orbit. This behaviour is called the collapse of iterates [START_REF] Lozi | Can we trust in numerical computations of chaotic solutions of dynamical systems?[END_REF]. The numerical behaviour of the iterates is not at all chaotic. It is worse than the numerical behaviour of the logistic map when chaos is assessed. Many papers have been published on collapsing effect [START_REF] Diamond | Collapsing effects in numerical simulation of a class of chaotic dynamical systems and random mappings with a single attracting centre[END_REF].

Some interesting theoretical studies of chaotic dynamical systems on finite sets have also been published [START_REF] Lozi | Global orbit patterns for one dimensional dynamical systems[END_REF]. Therefore, the original idea we introduce in this article, is to combine properties of the tent map ( T μ ) with properties of the logistic one ( L μ ) to build p. 9 a new map showing enhanced properties, through combination in several topologies of the network.

Thus, our proposition has the form:

f μ (x) ≡ TL μ (x) ≡ L μ (x) -T μ (x) = μ|x| -μx 2 = μ(|x| -x 2 ) (30)
which presents the advantage to inverse the shape of the graph of the tent map T μ combined with the graph of the logistic map L μ . When some maps as logistic and tent are used alone in cryptography, due to the collapsing effect [START_REF] Lanford | Informal remarks on the orbit structure of discrete approximations to chaotic maps[END_REF][START_REF] Yuan | Collapsing of chaos in one dimensional maps[END_REF] they show very weak security. Thus, multidimensional maps are often applied to construct PRNG [START_REF] Nejati | A realizable modified tent map for true random number generation[END_REF][START_REF] Wong | A modified chaotic cryptographic method[END_REF]. The system (1) provides a new method to enhance chaotic properties of the tent map thanks to the coupling and under sampling. In another way, we propose to couple T μ map with TL μ map (30) (Figure 5). When used in such context, the TL μ map can be seen as a map of two variables:

TL μ (x (p) , x (q) ) = μ |x (p) | -(x (q) ) 2 (31)
Because two variables are involved in the definition of TL μ , it is therefore convenient and easy to define a new mapping

M μ,p from [-1, 1] p → [-1, 1] p M μ,p ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ x (1) n x (2) n . . . x (p) n ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝
x (1) n+1

x (2) n+1 . . .

x (p) n+1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ T μ (x (1) n ) + TL μ (x (1) n , x (2) n ) T μ (x (2) n ) + TL μ (x (2) n , x (3) n ) . . . T μ (x (p) n ) + TL μ (x (p) n , x (1) n ) (32)
Due to its structure this multidimensional mapping is unstable and the trajectories are mapped outside the initial torus. Therefore, in order to keep bounded in [-1, 1] p the p. 10 iterates, we use the quasi similar to (27) injection mechanism:

if x (i) n+1 < -1 then add 2 if x (i) n+1 > 1 then subtract 2 (33) which allows for 1 ≤ i ≤ p, points to be sent from [-3, 3] p to [-1, 1] p .
The combined use of T μ and TL μ mapping entangles system states. The resulting mapping possesses an attractor because it performs in the same time contraction and stretching of the distance between states. Moreover, this forced motion improves its mixing properties. Therefore, TL μ function is a powerful tool to modify dynamics.

The coupling of those simple maps is good for achieving complexity, because:

• Simple states interact with the whole dynamics.

• The states interaction has a global mixing effect.

Therefore, if we use TL μ instead of simple tent or logistic maps in order to improve their properties of complexity we obtain an excellent effect on chaoticity. Randomness could be achieved in this way. The proposed function improves the complexity of a simple map. The question is how to study the obtained system. Poincaré was one of the first who used graphical analysis of the complex systems. We will use as well graphical approach to study the new chaotic systems, but also, theoretical functions involved in our study. Note that the system (32) can be seen in the scope of a more general point of view, introducing constants k i which generalize considered topologies. It is called alternate if

k i = ( -1) i , 1 ≤ i ≤ p, or non-alternate if k i = +1 or if k i = ( -1) i+1 , 1 ≤ i ≤ p; or k i = -1, 1 ≤ i ≤ p.
It can be a mix of alternate and non-alternate if

k i = +1 or -1 randomly. Let k = (k 1 , k 2 , . . . , k p ) M k μ,p ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ x (1) n x (2) n . . . x (p) n ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝
x (1) n+1

x (2) n+1 . . .

x (p) n+1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ T μ (x (1) n ) + k 1 × TL μ (x (i) n , x (j) n ), i, j = (1, 2) or (2, 1) T μ (x (2) n ) + k 2 × TL μ (x (i) n , x (j) n ), i, j = (2, 3) or (3, 2) . . . T μ (x (p) n ) + k p × TL μ (x (i) n , x (j) n ), i, j = (p, 1) or (1, p) (34)
In this article we will consider only multidimensional mapping possessing the best properties for CPRNG design.

2-D topologies

One of the first aim assigned to our new CPRNG design is to obtain near perfect uniform distribution, the other goals are to obtain a CPRNG.

The general form of the new considered 2-D map is as follows:

M k μ,2
x (1) n x (2) n =

x (1) n+1

x (2) 

n+1 = T μ (x (1) n ) + k 1 × TL μ ((x (i) , x (j) )) T μ (x (2) n ) + k 2 × TL μ ((x (i ) , x (j ) )) (35) p. 11
i j i j #1 +1 +1 1 2 1 2 #2 +1 -1 1 2 1 2 #3 -1 +1 1 2 1 2 #4 -1 -1 1 2 1 2 #5 +1 +1 2 1 2 1 #6 +1 -1 2 1 2 1 #7 -1 +1 2 1 2 1 #8 -1 -1 2 1 2 1 #9 +1 +1 1 2 2 1 #10 +1 -1 1 2 2 1 #11 -1 +1 1 2 2 1 #12 -1 -1 1 2 2 1 #13 +1 +1 2 1 1 2 #14 +1 -1 2 1 1 2 #15 -1 +1 2 1 1 2 #16 -1 -1 2 1 1 2
with i, j, i , j = 1 or 2, i = j and i = j . Considering the above conditions, it is possible to define 16 different maps (see Table 2): Therefore, we will consider only two 2-D systems:

TTL RC μ (x (2) n , x (1) 
n ) non-alternate (case #13): (1) n , x (2) n ) (36) and TTL SC μ (x (1) n , x (2) n ) alternate (case #3):

TTL RC μ : x (1) n+1 = 1 -μ|x (1) n | + μ(|x (2) n | -(x (1) n ) 2 ) = T μ (x (1) n ) + TL μ (x (2) n , x (1) n ) x (2) n+1 = 1 -μ|x (2) n | + μ(|x (1) n | -(x (2) n ) 2 ) = T μ (x (2) n ) + TL μ (x
TTL SC μ :
x (1) n+1 = 1 -μ|x (1) n | -μ(|x (1) n | -(x (2) n ) 2 ) = T μ (x (1) n ) -TL μ (x (1) n , x (2) n ) x (2) n+1 = 1 -μ|x (2) n | + μ(|x (1) (2) n ) + TL μ (x (1) n , x (2) n ) (37) We have chosen systems #3 and #13 because when assessed with respect to the uniform distribution of iterates they give the best results due to balanced processes between contraction and extension.

n | -(x (2) n ) 2 ) = T μ (x

Study of randomness properties of both TTL RC µ and TTL SC µ

Using numerical computations we assess the randomness properties of both 2-dimensional maps. When all requirements 1-8 on Figure 6 are satisfied the dynamical systems associated to those mapping can be considered as pseudo-random and their application to cryptosystems is possible. Whenever one among the eight criteria is not satisfied those mapping generate a less randomly behaviour.

The chaotic behaviour of each map depends essentially on the 'control' parameter μ. When the phase portrait is globally observed, the analyse does not depend on the initial guess x 0 . Therefore, a bifurcation diagram is an appropriate tool to study the dependency of parameter μ. In order to compute this diagram, for every value of μ, an initial value x 0 is arbitrary selected. The map is iterated many times, however the first iterates are discarded, in order to avoid the plotting of a transient regime. The next points are plotted. Afterwards, the process is repeated incrementing slightly μ.

p. 12

The bifurcation diagram of both 2-dimensional mappings TTL RC μ non-alternate (Figure 7) and TTL SC μ alternate (Figure 8) is built computing 10,000 points for each initial guess, the first 1000 of which are discarded. Hence, for every value of the parameter μ, we plot 9000 points. We observe more or less the same patterns in both graphs of components x (1) and x (2) .

For μ belonging to the interval [0, 0.25] a fixed point (i.e. a period 1) is observed. After the greatest value of the parameter interval, the steady state fixed point is transformed in period 2 orbit via a pitchfork bifurcation. This bifurcation is followed by a cascade of bifurcation. When μ increases the dynamical system is eventually chaotic, even if some periodic windows exist in the neighbourhood of μ = 1.1 (Figure 7). The subsequent interval of μ shows chaotic dynamics.

Diagrams of bifurcation are often used for studying the global behaviour of nonlinear maps because they show in a glimpse the dynamics. They are very useful when used with the graph of the Lypunov exponent, it is very simple to determine if a dynamics is chaotic or not. On Figures 9 and 10 we display respectively the Lyapunov exponent of TTL RC μ nonalternate, and TTL SC μ alternate. We use 10, 000 iterations in order to compute such exponents. The range of parameters μ belongs between μ = 0.5 to μ = 2. The value of μ is plotted on the horizontal axis meanwhile the Lyapunov exponent λ is plotted with respect to the scale of the vertical axis.

p. 13

The Lyapunov exponent plotted on those figures correspond exactly with the expected dynamics given by the bifurcation diagram. The positive value of the Lyapunov exponent indicates chaotic dynamics which increases with the increase of μ demonstrating the strongest chaos for μ = 2.

The study highlights that both TTL RC μ non-alternate (Figure 9) and TTL SC μ alternate (Figure 10) maps exhibit a strong chaotic behaviour when μ = 2, therefore we will only consider in the following this value for the parameter. We can see, checking the graphs p. 14 that for each initial point chosen, the trajectories starting from such points look chaotic. Hence, we can study an attractor in the phase space and the phase delay.

In the phase space we plot the iterates in the system x (1) n vs. x (2) n of coordinates in order to analyze the density of the points distribution. Depending on such analysis it is possible to assess the complexity of the behaviour of dynamics, noticing any weakness or inferring on the randomness nature of it.

The plot of the sequence of iterates is done using 2 × 10 4 points obtained by computing 3 × 10 4 points and deleting the first 10 4 points to avoid any plot of the transient regime.

The graphs of the attractor in phase space for TTL RC 2 non-alternate (Figure 11(a)) and TTL SC 2 alternate (Figure 11 points on the whole pattern, but there are some more 'concentrated' regions forming curves on the graph. We will search an answer to the questions: 'Why there are more concentrated regions? From where curves are created?', by considering the injection mechanism.

The dynamics send the iterates between a mixed values equal to +3 and a minimal value equal -3. Equation (33) allows to send those points back to the initial square, however their influence to the dynamics works differently as in the system (1) [START_REF] Lozi | Chaotic pseudo random number generators via ultra weak coupling of chaotic maps and double threshold sampling sequences[END_REF]. Among 2 × 10 4 points generated on those square, 77 % are scattered out of the square [-1, 1] 2 . The multidimensional mechanism consists of p-steps. In each step, when the dynamics is going outbounds the value 2 is added or subtracted to the variables (33).

For the first step 69 % of the points are re-injected to the interval [-1, 1] 2 (Figure 12(b)). After the second step (Figure 12(c)) all points are displaced from the extended range [-3, 3] 2 into the torus [-1, 1] 2 (Figure 12(d)). Therefore, the injection mechanism improves the non-linearity to the behaviour of the iterates, rendering the system more complex which can be seen as an advantage in case of cryptographic usage, from the security point of view.

p. 16 One can note that in the phase space, the attractor of TTL SC 2 alternate map may look uniformly distributed on the whole square, without any concentration of points in special region (11(b)). The injection mechanism works for uniformising the points distribution as shown in Figure 13.

When those PRNG are used for cryptographic purpose, the quality of the cryptosystem mostly rely to the randomness quality of the PRNG. Thus, the uniform generation by its dynamics is one of the most important criterion in order to build a robust PRNG. (Criterion 5, Figure 6).

An approximated invariant measure [START_REF] Lozi | From chaos to randomness via geometric undersampling[END_REF] assesses better then a visual examination of the picture of iterates: the density probability. It is hence used in the aim of providing a precise floating points distribution study. Using such a tool, a better uniform distribution can be reached.

The graph of the function value allows to compare the distribution of points between regions of the graph. The length of each side box is measured by the variable step. In other p. 17 words, the space is divided into a grid of boxes[i, j] of area size equal to step 2 . Then during the generation of iterates, the number of points which are sent to the box[i, j] is counted.

In order to compute the approximate density function the square was divided using a grid of 200 × 200 boxes, i.e. step is fixed to 0.01. Then 10 9 iterates were computed. This number of iterates is the maximum possible to compute the approximate function using only a laptop computer in a reasonable time. The details of the points distribution are displayed on Figures 14 and15. It is obvious that both multidimensional mapping do not give satisfactory uniform distribution in the phase space. However, it is noticed that some p. 18 parts of the graph (13(b)) are perfectly joint regions. This leads to a new idea in order to improve the regularity of the density modifying slightly (37).

A new 2-D chaotic PRNG

Taking into account the results of Section 3.2. the randomness result observed for 2-D topology could be enhanced changing slightly the coupling. In Figure 13(b) both particular regions: top-green and right-red ones have special shape of boundary that can be matched in a pretty way. In this aim we write the mapping TTL SC μ alternate (37) where μ = 2 as follows:

TTL SC 2 (x (1) n , x (2) n ) = x (1) n+1 = 1 + 2(x (2) n ) 2 -4|x (1) n | x (2) n+1 = 1 -2(x (2) n ) 2 + 2(|x (1) n | -|x (2) n |) (38)
The first problem is that the top green colored region occurs after injection is applied. Thus, we develop the system (38) in such way that the green colored region 'stays' in such a position without the injection mechanism. Secondly, we need to reduce the width of the region. Evidently, it is possible to achieve this need by reducing the impact of the state x (1) , with the new following map:

MTTL SC 2 (x (1) n , x (2) n ) = x (1) n+1 = 1 + 2(x (2) n ) 2 -2|x (1) n | x (2) n+1 = 1 -2(x (2) n ) 2 + 2(|x (1) n | -|x (2) n |) (39)
and the injection mechanism (33) is used as well, but restricted to 3 phases:

if x (1) n+1 > 1 then subtract 2 if x (2) n+1 < -1 then add 2 if x (2)
n+1 > 1 then subtract 2 (40)

Figures [START_REF] Ross | Introduction to Probability Models[END_REF][START_REF] Sharkovskii | Coexistence of cycles of a continuous map of the line into itself[END_REF][START_REF] Wang | A pseudorandom number generator based on piecewise logistic map[END_REF] show the result of the modifications highlighting that the 3-phase mechanism (Figure 16) of injection works very well. The techniques we have introduced in this section improve greatly the uniformity of the density of iterates in the phase space (Figures 17,18).

Moreover, using a multicore computer, we were able to compute this distribution up to 10 14 points (Figure 19, Table 3). Those computation results show excellent decreasing distribution errors with respect to the number of iterates. The Lyapunov exponent worths 0.5905 which is the characteristic of a perfect pseudo-random behaviour.

Concerning the distribution of iterates in the phase delay, Figures 20,21 show that it is very good as well. In those figures we plotted as much as 10 9 points. The only concern is in Figure (22(b)) where the tent pattern is recognizable for x (1) variable. However, for many applications, only one output stream of pseudo-random numbers is required, which can be obtained by using x (2) variable. Both variables have a strong coupling impact on themselves and for the global dynamics.

The techniques make uniform iterates distribution on the torus implying strong chaoticity.

MTTL SC 2 alternate map is built using ring-coupling and auto-coupling mechanisms. Since one variable is partially creating the dynamics of the other, we have to check the dependency and repeatability of auto-correlation as well of cross-correlation. Figures 23 p. Table 3. Approximate distribution errors (13, 14, 15), for the system (39) in the phase space.

E AC 1 ,200 , E AC 2 ,200 , E AC ∞ ,200 , N iter x (i) x (j) N iter (x (i) , x (j) ) N iter (x (i) , x (j) ) N iter (x (i) , x (j) )
10 4

x (1) x (2) 1.5532 1.97707 15 10 5

x (1) x (2) 0.51531 0.634136 5 10 6

x (1) x (2) 0.159092 0.200498 1.16 10 7

x (1) x (2) 0.0503666 0.063169 0.252 10 8

x (1) x (2) 0.0159087 0.0199153 0.0792 10 9

x (1) x (2) 0.00503929 0.00630626 0.02748 10 10

x (1) x (2) 0.00160207 0.00200759 0.008996 10 11

x (1) x (2) 0.000505848 0.000631793 0.0029196 10 12

x (1) x (2) 0.000159674 0.000199849 0.00087284 10 13

x (1) x (2) 5.04686e-05 6.30986e-05 0.000281112 10 14

x (1) x (2) 1.59962e-05 2.00927e-05 8.68908e-05

Topological mixing means the system capability to progress over a short period of time. The system from any given initial region or open set of its phase space will be ultimately mixed up with any other region so that it is impossible to predict system evolution.

p. 21 This mapping is spanning through any region or open neighbourhood of a given point in phase space to a larger region of the [-1, 1] 2 square. Therefore, the image of those regions overlap many other leading to a strong mixing property. It is why it is impossible to predict the evolution of the dynamics.

Here we represent the graphical analysis of the 2-D MTTL SC 2 alternate map showing its topological mixing ability. We divide the square [-1, 1] 2 into 4 orthants and we split each of them in a grid of boxes (A2, B2, C2, . . . , O2). Up to 5 × 10 3 iterates are collected in each p. 22 points following the initial guess (x ( 1)

n , x (1) n+1 ) (b) (x (1) n , x (1)
n+1 ) using the box-method.

box of the grid (Figure 25). In the next Figures (Figure 26 Topological mixing can be seen in Figure 26: the points are distributed everywhere over the square. It is near impossible to predict where the iterates will be mapped without the very exact knowledge of the equation of the mapping, the parameters values which can be used as encryption keys when cryptography is involved, or the retrieve of the previous p. 23 

n , x (2)
n ) square of the phase space.

The system has strong mixing property because the images of the regions overlap on many other. As an example taking several points of the box A2 (Figure 25) some are mapped into the same box A2 (Figure 26(a)). However, for some other their behaviour is somewhat different, they are mapped through the boxes O1, I1, P1, C1, B1, E1, H1, M4, N4 (Figure 27), that means their successor belong somewhere in those boxes (Figure 27). Continuing the mapping process, their iterates mix more complexly, the behaviour becomes unpredictable and eventually looks like scattered points everywhere across the space. Colors and letters overlapping on the graphs vividly display that arbitrarily close points in some periods of time will have vastly different behaviours, which means mixing. This phenomenon is quantified through the value of the Largest Lyapunov exponent. The arbitrarily taken points which are far alone will ultimately approach looking nearly the same only for several iterations means mixing as well. Since the new map implies strong chaos, the phase space is thoroughly mixed together after quite a short time. In a forthcoming paper, we will quantify this mixing, building a corresponding Markov transition matrix as in [START_REF] Lozi | From chaos to randomness via geometric undersampling[END_REF].

NIST tests are used to verify randomness and system capability to resist main attacks. As it was discussed earlier the advantage of the binary sequences has to be approximately the same as of the truly random number generator. NIST tests fully cover the statistical tests. For a long time, the tests are used to check the robustness of the PRNG. In order to assess MTTL SC 2 using such tests we have computed up to 4 × 10 6 points, discarding the 5 × 10 5 first ones. Because only binary sequences are accepted as input in NIST tests, we have converted the floating numbers obtained from this 2-dimensional mapping, to binary form. The IEEE-754 standard (32 bit single precision floats) is the standard we have used.

We have assessed successfully both variables x (1) n and x (2) n of this map, proving therefore strong pseudo-randomness of both streams of numbers. This implies robustness against many statistical attacks when those streams of numbers are used in cryptography (Figure 28). Those chaos based generated sequences of iterates can be considered as good as truly random numbers. Thus, if an intruder try to find some clues to generate such sequences, it will be very difficult to find any, those numbers being not distinguishable from true random numbers.

p. 25 We consider now another topology of network of chaotic maps introducing another structurally simple 2-D mapping. The map is described as follows:

NTTL SC 2 (x (1) n , x (2) n ) = ⎧ ⎪ ⎨ ⎪ ⎩ x (1) n+1 = 1 -2|x (2) 
n | = T 2 (x (2) n ) x (2) n+1 = 1 -2(x (2) n ) 2 -2(|x (2) n | -|x (1) n |) = L 2 (x (2) n ) + T 2 (x (2) n ) -T 2 (x (1) n ) (41)
Note, that the first equation corresponds to the tent map. In addition, the injection mechanism (Figure 29) should be applied to hold the dynamics in

[-1, 1] 2 : if x (2) n+1 < -1 then add 2 if x (2) n+1 > 1 then subtract 2 (42) 
The NTTL 2 exhibits an excellent density in phase delay for both states (Figure 30), being very promising in real application.

The NTTL 2 map has a complex dynamics which allow it to resist to cryptographic statistical attacks proved by its good results in NIST tests (Figure 31).

In the next section we investigate topologies in dimension of system more than 2. We expect that the complexity of the dynamics should be more complicated and therefore more similar to pseudo-random dynamics [START_REF] Manjunath | A 3-dimensional piecewise affine map used as a chaotic generator[END_REF].

A new higher-dimensional map

The use of dimensional systems in higher dimensions are expected more effective to simulate pseudo-random properties because there are more interactions between states with more mixing properties. We have observed that dimensions greater or equal to 3 are p. 27 SC 2 alternate (a) x (1) (b) x (2) .

more powerful in order to generate generic pseudo-random sequences. Fortunately, the kind of systems we study in this article are able to increase easily the number of components (i.e. the number of states). Since the specific MTTL SC 2 alternate map cannot be extended with more variables, we describe how to achieve such a task in the goal of improving chaoticity, having a more regular distribution of points, a more complex dynamics than TTL RC 2 (x (2) , x (1) ) alternate map (36).

A good manner to get randomness using chaotic maps is to do some coupling between states using auto-coupling or ring-coupling [START_REF] Lozi | Emergence of randomness from chaos[END_REF]. In this section we consider the special realization of M k μ,p (34) for which we choose k i = +1 for 1 i p and (i, 

j) = (2, 1); (3, 2); . . . (1, p): p -D, TTL RC 2 : ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ x (1) n+1 = 1 -2|x (1) n | + 2(|x (2) n | -(x (1) n ) 2 ) x (2) n+1 = 1 -2|x (2) n | + 2(|x (3) n | -(x (2) n ) 2 ) . . . x (p) n+1 = 1 -2|x (p) n | + 2(|x (1) n | -(x (p) n ) 2 ) (43) p. 28
n , x (1) n+1 ) (b) (x (2) n , x (2) n+1 ).
The injection mechanism (33) is involved at each step. Note, that each of the states has to satisfy the requirements for chaos and randomness. Therefore, the 3-D, 4-D and 5-D systems were studied for criteria 1-8 (Figure 6) independently for each of the state and in a correlation between them. All of the tests have been successfully passed with improving results when the dimension is increased. In this article we provide only the most significant and important tests.

As for system MTTL SC 

n , x (2) n )).
Tables 456). In order to display evolution of decreasing error, we have computed from 10 4 up to 10 14 points, using multicore computer. In those tables the errors are the errors in any phase space: x i n vs. x j n , 1 i, j dimension of the system. Figure 32 summarizes those results for the phase space (x (1) , x (2) ) and the error in norm E AC 1 ,200,N .

Results for the other norms are similar. One can only remark that if for systems 3-D and 5-D the errors are completely similar in magnitude for any phase space (x (i) , x (j) ), it is not exactly the case for 4-D system. For this system the results are less good for (x (1) , x (3) ) and (x (2) , x (4) ) phase spaces than for the other, albeit good enough. The ratio of magnitude p. 30 Table 4.Distribution of iterates errors computed for 3-D TTL RC 2 (x (i) , x (j) ) alternate map with 200 × 200 boxes. being approximately 8 vs 1 depending on the chosen norm of the error. For systems 2-D, after 10 6 generated points the sequences become repeatable because the errors do not longer decrease. The same situation occurs after 10 9 points for the 3-D system, and after 10 13 points for the 4-D system. Up to the computation of 10 14 iterates for the 5-D system (which takes roughly 74 h on a highly-concurrent Sun SPARC Enterprise T5240 server Niagara computer with 128 logical cores) no such repeatable sequences are observed.

E AC 1 ,200 , E AC 2 ,200 , E AC ∞ ,200 , N iter x (i) x (j) N iter (x (i) , x (j) ) N iter (x (i) , x (j) ) N iter (x (i) , x (j) )
p. 31 ) N iter (x (i) , x (j) ) N iter (x (i) , x (j) ) N iter (x (i) , x (j) ) Remark: We use Sun SPARC Enterprise T5240 server with two 1.2 Ghz, 16 core Ultra-SPARC T2+ processors. Each core has 8 hardware contexts, which means the server is capable of running up 128 threads in 'true' (hardware) concurrency.

In the phase-delay space (x

(i) n , x (i) n+1
) we obtain also very good results of uniform repartition of iterates for all 3-D and 5-D systems (see Tables 789). Figure 33 summarizes such results. Identical values for x(1) to x(4) 0.00502109 0.00629915 0.02732 10 10 Identical values for x(1) to x(4) 0.00159193 0.0019977 0.00866 10 11 Identical values for x(1) to x(4) 0.00051438 0.000643966 0.0028136 10 12 Identical values for x(1) to x(4) 0.000189418 0.000238006 0.00098772 10 13 Identical values for x(1) to x(4) 0.000112771 0.000143508 0.000675228 10 14 Identical values for x(1) to x(4) 0.000101139 0.00013067 0.000474188 p. 36 Identical values for x(1) to x(5) 0.15872 0.199793 0.88 10 7 Identical values for x(1) to x(5) 0.0503658 0.0631425 0.26 10 8 Identical values for x(1) to x(5) 0.0159765 0.0200503 0.084 10 9 Identical values for x(1) to x(5) 0.00509015 0.00636626 0.02528 10 10 Identical values for x(1) to x(5) 0.00159581 0.00199936 0.008604 10 11 Identical values for x(1) to x(5) 0.000505068 0.000633088 0.0025432 10 12 Identical values for x(1) to x(5) 0.000160547 0.000201102 0.0008602 10 13 Identical values for x(1) to x(5) 5.0394e-05 6.31756e-05 0.000280168 10 14 Identical values for x(1) to x( 5 (2) , x (1) ) alternate map (b) 4-D TTL RC 2 (x (2) , x (1) ) alternate map.

p. 33

Numerical results provide harmony of the points density between states. In addition, the NIST tests show that the multidimensional map behaves randomly (Figure 34). p. 37

Conclusion

In this paper we have studied several topologies of complex networks of chaotic maps, especially exploring the idea to mix two well-known chaotic maps: the tent map (or PWL map) and the logistic map, which do not possess all the needed properties for encryption purposes when used separately and coupling such maps in complex networks.

Either in 2-D or in upper dimensions the new coupling of mixed tent-logistic map with injection mechanism changed qualitatively the overall system behaviour, increasing their complexity. In a bottom up deMarche of building such networks, we highlighted that useful randomness for cryptographic purpose can emerge from the studied topologies. The proposed systems exhibit strong nonlinear dynamics, demonstrating great sensitivity to initial conditions. They generate strong chaotic dynamics characterized by positive Lyapunov exponents with values far greater than zero. Moreover, concerning the consolidated criteria for robust CPRNG, they successfully comply all the required tests such as: NIST tests, uniform distribution, either in the phase space or in the phase delay, both cross-correlation and autocorrelation tests.

We have checked their complex behaviour doing an analysis of their dynamics using in this aim bifurcation diagram, study of topological mixing.

In conclusion, we were able to demonstrate the totally unpredictable dynamics of such multidimensional mapping, making those systems good potential candidate for high security applications.
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Figure 1 .

 1 Figure 1.Application of the injection mechanism (27) in order to move the points initially belonging to the torus [-2, 2] 2 towards the torus [-1, 1] 2 . Four examples of motions indicated by the displayed arrows.

Figure 2 .

 2 Figure 2. Injection mechanism of the trajectories feed back to the torus ([-2, 2] 2 ⇒ [-1, 1] 2 ) (a) if x

Figure 3 .

 3 Figure 3.Auto and ring-coupling between states of system (1).

Figure 4 .

 4 Figure 4.Approximate density function of (1).

Figure 5 .

 5 Figure 5. Auto and ring-coupling between states of the T μ with TL μ maps.

Figure 6 .

 6 Figure 6.The main criteria for PRNG robustness.

Figure 7 .

 7 Figure 7.(a) Bifurcation diagram of 2-D new map: TTL RC μ non-alternate (36) (b) Magnification of the bifurcation diagram of TTL RC μ non-alternate.

Figure 8 .

 8 Figure 8.Bifurcation diagram of 2-D new map: TTL SC μ alternate (37).

Figure 9 .

 9 Figure 9.Largest Lyapunov exponent for 2-D TTL RC μ non-alternate map (36).

Figure 10 .

 10 Figure 10. Largest Lyapunov exponent for 2-D TTL SCμ alternate map (37).

Figure 11 .

 11 Figure 11. Phase space attractor of 2-D new maps, 2 × 10 4 points are generated (a) TTL RC 2 non-alternate (36) (b) TTLSC 2 alternate (37).

  (b)) maps are quite different. The first one has well-scattered p. 15

Figure 12 .

 12 Figure 12. Injection mechanism [-3, 3] 2 ⇒ [-1, 1] 2 for TTL RC 2 non-alternate map (a) 2-D chaotic map without addition/subtraction (b) injection x

( 1 )

 1 n to the torus [-1, 1] 2 (c) injection x(2) n to the torus [-1, 1] 2 (d) results after passing injection mechanism.

Figure 13 .

 13 Figure 13.Injection mechanism [-3, 3] 2 ⇒ [-1, 1] 2 for TTL SC 2 alternate map (a) 2-D chaotic map without addition/subtraction (b) injection x

( 1 )

 1 n to the torus [-1, 1] 2 (c) injection x(2) n to the torus [-1, 1] 2 (d) results after passing injection mechanism.

Figure 14 .

 14 Figure 14. Approximate density function of TTL RC 2 non-alternate mapping, where step variable is fixed to 0.01. The plotting displays 10 9 points.

Figure 15 .

 15 Figure 15.(a) Plot of the projection on the plane (x 1 , x 2 ) of the approximate function of density of TTL SC 2 alternate map, where 10 9 points are computed. The variable step is fixed to 0, 01. (b) Plot of the approximate function.
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Figure 16 .

 16 Figure 16. Injection mechanism (40) of MTTL SC2 alternate map (39).

Figure 17 .

 17 Figure 17. Approximate density function of MTTL SC2 alternate map (39), where step = 0.01, 10 9 points are generated.

Figure 18 .

 18 Figure 18. Approximate density function in 3D of MTTL SC 2 alternate map, where step = 0.01, 10 9 points are generated.

Figure 19 .

 19 Figure 19. Approximate distribution errors (13), for the system (39).

Figure 20 .

 20 Figure 20. Attractor in the phase delay (x (2) n , x(2) n+1 ), 10 9 points are generated, for the system (39).

Figure 21 .

 21 Figure 21. Attractor in the phase delay (x (2) n , x(2) n+1 ), box-method, 10 9 points are generated, for the system (39) .

Figure 22 .

 22 Figure 22. Density of iterates for the phase delay space where 10 9 points are computed (a) plot of 10 9 points following the initial guess (x

  (a)-(e)) we display the image of those initial boxes (A1, B1, C1, . . . , O1) of the first quadrant by the MTTL SC 2 alternate mapping.

Figure 23 .Figure 24 . 24 Figure 25 .

 23242425 Figure 23.State auto-correlation analysis of the MTTL SC2 alternate map

Figure 26 .

 26 Figure 26. Topological mixing.

Figure 27 .

 27 Figure 27. Grid of boxes (A . . . O) of the four quadrants 1,2,3,4 overlapped by the colored images of the boxes of the first quadrant in the phase space (x (1) n , x (2) n ).

Figure 28 .

 28 Figure 28. Successfull results of the NIST tests for mapping MTTLSC 2 alternate (a) x(1) (b) x(2) .

Figure 29 .

 29 Figure 29. Injection mechanism (40) of NTTL 2 alternate map.

Figure 30 .

 30 Figure 30.Density of iterates of NTTL 2 in the phase delay representation (a) (x(1)

2 ,

 2 all 3-D, 4-D and 5-D systems (43) show a very good points distribution. The errors E AC 1 ,200,N ; E AC 2 ,200,N ; E AC ∞ ,200,N decrease steadily with respect to the number N of generated points and with respect to the dimension of the system (see p. 29

Figure 31 .

 31 Figure 31. NTTL 2 map successfully passed NIST tests.

Figure 32 .

 32 Figure 32. Systems 3-D, 4-D and 5-D, E AC 1 ,200,N (x (1)

Figure 33 .

 33 Figure 33. Systems 3-D, 4-D and 5-D, Errors E C 1 ,200,N (x (1) n , x (1) n+1 ).

Figure 34 .

 34 Figure 34. NIST tests for (a) 3-D TTL RC2 (x(2) , x(1) ) alternate map (b) 4-D TTL RC 2 (x(2) , x(1) ) alternate map.

Table 1 .

 1 Consolidated criteria of robust CPRNG.

	No.	Criteria	Succeed characteristic
	1	Largest Lyapunov exponent	Positive
	2	Attractor in phase space	Dense everywhere
	3	Attractor in phase delay	Dense everywhere
	4	Topological mixing	Complex and fast
	5	Uniform distribution	Decreasing of distribution error
			with increasing generated points
	6	Auto-correlation	Near zero
	7	Cross-correlation	Near zero
	8	NIST tests	Successfully passed

Table 2 .

 2 The sixteen maps defined by Equation (35).

	Case	k 1	k 2

Table 5 .

 5 Distribution of iterates error computed for 4-D TTL RC 2 (x (i) , x(j) ) alternate map with 200 × 200 boxes.

	N iter	(x	(i) n , x	(i) n+1	E AC 1 ,200 ,	E AC 2 ,200 ,	E AC ∞ ,200 ,

Table 5 .

 5 (Continued).

	10 12	x(1) x(2)	0.000209109	0.000260625	0.00098868
		x(1) x(3)	0.0010181	0.00131377	0.0047824
		x(1) x(4)	0.000209131	0.000260484	0.00106452
		x(2) x(3)	0.000209507	0.00026041	0.00105064
		x(2) x(4)	0.00101941	0.00131403	0.00464148
		x(3) x(4)	0.000208125	0.000259515	0.00092748
	10 13	x(1) x(2)	0.000150031	0.000179686	0.000583912
		x(1) x(3)	0.00100668	0.0013004	0.00431795
		x(1) x(4)	0.000150505	0.000180148	0.000604532
		x(2) x(3)	0.00014943	0.000178778	0.000675604
		x(2) x(4)	0.00100677	0.00130022	0.00432338
		x(3) x(4)	0.000149962	0.000179475	0.000645028
	10 14	x(1) x(2)	0.000144162	0.000169327	0.000502641
		x(1) x(3)	0.00100504	0.00129871	0.00426248
		x(1) x(4)	0.000144398	0.0001695	0.000490893
		x(2) x(3)	0.000144101	0.000169222	0.000491529
		x(2) x(4)	0.00100495	0.00129875	0.00427791
		x(3) x(4)	0.000144307	0.00016943	0.000504066

Table 6 .

 6 Distribution of iterates error computed for 5-D TTL RC 2 (x(i) , x(j) ) alternate map with 200 × 200 boxes.

	Points	(x	(i) n , x	(i) n+1 )	E AC 1 ,200 , N iter (x (i) , x (j) )	E AC 2 ,200 , N iter (x (i) , x (j) )	E AC ∞ ,200 , N iter (x (i) , x (j) )
	10 4	x(1) x(2)	1.55915	2.00818	15
		x(1) x(3)	1.5561	1.99539	19
		x(1) x(4)	1.55935	2.00559	15
		x(1) x(5)	1.5568	1.99539	15
		x(2) x(3)	1.55785	2.0018	15
		x(2) x(4)	1.55575	1.98655	15
		x(2) x(5)	1.5584	2.00499	19
		x(3) x(4)	1.55655	1.9962	15
		x(3) x(5)	1.55675	1.99359	19
		x(4) x(5)	1.55625	1.99098	15
	10 5	x(1) x(2)	0.514	0.633448	3.4
		x(1) x(3)	0.5123	0.631481	3.4
		x(1) x(4)	0.51109	0.631335	3.8
		x(1) x(5)	0.51285	0.633132	3.4
		x(2) x(3)	0.5118	0.632158	3.8
		x(2) x(4)	0.51545	0.634173	3.8
		x(2) x(5)	0.51376	0.633599	3.8
		x(3) x(4)	0.51271	0.631303	3.4
		x(3) x(5)	0.51183	0.63046	3.8
		x(4) x(5)	0.5129	0.632822	3.4
	10 6	x(1) x(2)	0.158058	0.198943	0.96
		x(1) x(3)	0.158956	0.199411	0.92
		x(1) x(4)	0.15943	0.200825	0.88
		x(1) x(5)	0.159074	0.200251	0.92
		x(2) x(3)	0.15825	0.199351	0.92
		x(2) x(4)	0.159248	0.200233	1
		x(2) x(5)	0.15889	0.199995	0.84
		x(3) x(4)	0.159136	0.199863	1
		x(3) x(5)	0.159216	0.200545	0.96
		x(4) x(5)	0.158918	0.199639	0.88
	10 7	x(1) x(2)	0.0505508	0.0634574	0.308
		x(1) x(3)	0.0504804	0.0632541	0.272
		x(1) x(4)	0.0501244	0.0628956	0.268
		x(1) x(5)	0.0503472	0.063055	0.296
		x(2) x(3)	0.0503194	0.0632425	0.268
		x(2) x(4)	0.050569	0.0634408	0.296
		x(2) x(5)	0.0506322	0.0635636	0.284
		x(3) x(4)	0.0503476	0.063059	0.256
		x(3) x(5)	0.0504622	0.063331	0.276
		x(4) x(5)	0.0505216	0.0633772	0.288
	10 8	x(1) x(2)	0.0160114	0.0200538	0.0852
		x(1) x(3)	0.0159261	0.0199328	0.0892
		x(1) x(4)	0.0160321	0.0200284	0.0844
		x(1) x(5)	0.0158962	0.019966	0.0844
		x(2) x(3)	0.0159754	0.020018	0.094
		x(2) x(4)	0.0159668	0.020047	0.0808
		x(2) x(5)	0.0160116	0.0200677	0.0904
		x(3) x(4)	0.0158826	0.01993	0.0924
		x(3) x(5)	0.0159341	0.0199285	0.084
		x(4) x(5)	0.0160516	0.0200876	0.0936
							(Continued)
							p. 34

Table 6 .

 6 (Continued).

	10 9	x(1) x(2)	0.00507915	0.0063595	0.02716
		x(1) x(3)	0.00504164	0.00631924	0.02888
		x(1) x(4)	0.00503177	0.00631229	0.02452
		x(1) x(5)	0.00504183	0.00630869	0.02744
		x(2) x(3)	0.00504652	0.00632572	0.02768
		x(2) x(4)	0.00505682	0.00633798	0.02468
		x(2) x(5)	0.00505273	0.00634782	0.02728
		x(3) x(4)	0.00502485	0.00630083	0.03192
		x(3) x(5)	0.00504935	0.00633202	0.0268
		x(4) x(5)	0.00501553	0.00628623	0.02588
	10 10	x(1) x(2)	0.0015927	0.00199644	0.008128
		x(1) x(3)	0.00159456	0.00199969	0.008364
		x(1) x(4)	0.00160091	0.0020046	0.009144
		x(1) x(5)	0.00160204	0.00200558	0.008756
		x(2) x(3)	0.00159442	0.00199577	0.008104
		x(2) x(4)	0.00159961	0.00200365	0.007988
		x(2) x(5)	0.0015934	0.00199718	0.00916
		x(3) x(4)	0.00158123	0.00198712	0.008132
		x(3) x(5)	0.00161268	0.00201818	0.008176
		x(4) x(5)	0.0016008	0.00200208	0.008832
	10 11	x(1) x(2)	0.000506086	0.000633916	0.0025712
		x(1) x(3)	0.000506032	0.000634157	0.002604
		x(1) x(4)	0.000506226	0.000634534	0.0031212
		x(1) x(5)	0.000507563	0.000635621	0.0027628
		x(2) x(3)	0.000508303	0.000636715	0.002912
		x(2) x(4)	0.000505896	0.000632921	0.0025112
		x(2) x(5)	0.000508998	0.000637142	0.0027688
		x(3) x(4)	0.000505468	0.000631842	0.0025664
		x(3) x(5)	0.000505627	0.000633985	0.002762
		x(4) x(5)	0.000503823	0.000632957	0.0025036
	10 12	x(1) x(2)	0.000158795	0.000199203	0.00089288
		x(1) x(3)	0.000159326	0.000199796	0.00086472
		x(1) x(4)	0.000160038	0.000200669	0.00082136
		x(1) x(5)	0.000159048	0.000199636	0.0008704
		x(2) x(3)	0.000160659	0.000201643	0.00090456
		x(2) x(4)	0.000160313	0.000201294	0.00091648
		x(2) x(5)	0.000160462	0.00020094	0.00082616
		x(3) x(4)	0.000158758	0.000198643	0.00091512
		x(3) x(5)	0.000159079	0.000199344	0.00087596
		x(4) x(5)	0.000159907	0.000200293	0.00085868
	10 13	x(1) x(2)	5.03666e-05	6.30356e-05	0.000270156
		x(1) x(3)	5.09066e-05	6.38229e-05	0.000298932
		x(1) x(4)	5.09599e-05	6.39809e-05	0.00026382
		x(1) x(5)	5.00546e-05	6.27638e-05	0.00028508
		x(2) x(3)	5.03313e-05	6.31806e-05	0.000250588
		x(2) x(4)	5.12567e-05	6.43641e-05	0.00030346
		x(2) x(5)	5.10924e-05	6.41551e-05	0.000276092
		x(3) x(4)	5.05484e-05	6.33096e-05	0.000259888
		x(3) x(5)	5.06863e-05	6.36835e-05	0.000292484
		x(4) x(5)	5.03483e-05	6.31095e-05	0.000284756
					(Continued)
					p. 35

Table 6 .

 6 (Continued).

	10 14	x(1) x(2)	1.60489e-05	2.00692e-05	8.53124e-05
		x(1) x(3)	1.73852e-05	2.18348e-05	9.88376e-05
		x(1) x(4)	1.74599e-05	2.18483e-05	9.66572e-05
		x(1) x(5)	1.59133e-05	1.99122e-05	8.96988e-05
		x(2) x(3)	1.60419e-05	2.01421e-05	9.01576e-05
		x(2) x(4)	1.73507e-05	2.17665e-05	9.4832e-05
		x(2) x(5)	1.73496e-05	2.17415e-05	9.1582e-05
		x(3) x(4)	1.59451e-05	1.9985e-05	8.67056e-05
		x(3) x(5)	1.75013e-05	2.19225e-05	9.8746e-05
		x(4) x(5)	1.59445e-05	2.0002e-05	8.79312e-05

Table 7 .

 7 Distribution of iterates errors computed for 3-D TTL in phase delay (x

	(i) n , x	(i) n+1 ) with 200 × 200

Table 8 .

 8 Distribution of iterates errors computed for 4-D TTL in phase delay (x

	(i) n , x	(i) n+1 ) with 200 × 200

Table 9 .

 9 Distribution of iterates errors computed for 5-D TTL in phase delay (x

	(i) n , x	(i) n+1 ) with 200 × 200