
HAL Id: hal-01742408
https://hal.science/hal-01742408

Submitted on 18 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Fine-Grained Secure Control of Smart
Actuators in Internet of Things

Djamel Eddine Kouicem, Abdelmadjid Bouabdallah, Hicham Lakhlef

To cite this version:
Djamel Eddine Kouicem, Abdelmadjid Bouabdallah, Hicham Lakhlef. Distributed Fine-Grained Se-
cure Control of Smart Actuators in Internet of Things. 5th IEEE International Symposium on Parallel
and Distributed Processing with Applications (ISPA 2017), Dec 2017, Guangzhou, China. pp.653-660.
�hal-01742408�

https://hal.science/hal-01742408
https://hal.archives-ouvertes.fr

Distributed Fine-Grained Secure Control of Smart
Actuators in Internet of Things

Djamel Eddine Kouicem, Abdelmadjid Bouabdallah, Hicham Lakhlef
HEUDIASYC UMR 7253

Sorbonne Universités, Université de Technologie de Compiègne, CNRS
CS 60319 60203 Compiègne Cedex France

{djamel-eddine.kouicem, madjid.bouabdallah, hicham.lakhlef}@hds.utc.fr

Abstract—Internet of Things is a new emerging technology
that promises a new era of Internet through encompassing
seamlessly physical and digital worlds in one single intelligent
ecosystem. This goal is achieved by interconnecting a large
number of smart objects from the physical word such as
smartphones, sensors, robots, connected cars, etc., to Internet.
Nowadays, with the advent of Internet of Things, we need efficient
mechanisms to remotely control IoT smart actuators by users
and controllers using smartphones and IoT devices. This arises
particularly in industrial Cyber-Physical Systems to supervise
industrial processes. However, the complex environment of IoT
systems makes this task very difficult to achieve regarding the
number of connected objects and their resource limitation. In
this paper, we tackle the problem of remote secure control of
IoT actuators. We propose a distributed lightweight fine-grained
access control based on Attribute Based Encryption mechanism
and one way hash chain. We conducted security analysis and
formal verification using AVISPA. The results demonstrated that
our scheme is secure against various attacks. Moreover, the
simulation results demonstrated the scalability and the efficiency
of our solution, which saves substantially energy consumption
and computation costs.

Keywords-Secure control, Internet of Things, Attribute Based
Encryption, Smart Actuators

I. INTRODUCTION

Nowadays, the development in the field of embedded sys-
tems and telecommunications technologies has participated
hugely to create what we call Internet of Things (IoT), which
is basically a new era of Internet that consists to connect
both physical and digital worlds to the Internet. Today, IoT is
implicated in several applications such as healthcare domain,
smart homes, smart grids, manufacturing systems and so on.
IoT promises in the future a new kind of applications where
humans will be able to interact seamlessly with physical
components using their smartphones. So, one can remotely
control several aspects of daily life. This constitutes one of
the important trends in several fields. In this paper, we focus
basically on some kind of IoT applications where we need to
control remotely smart actuators over the Internet using IoT
devices such as mobile devices and smartphones. This arises
particularly in industrial applications to control manufacturing
processes and also in smart home applications to control
home appliances such as the control of home alarm systems,
the monitoring and the regulation of the temperature level,
turning on/off lights, etc. In SCADA based manufacturing

systems, there are a tremendous number of smart actuators and
sensor devices to monitor and control physical infrastructures.
Basically SCADA based control systems are designed in
practice in such a way actuators and robots could be accessed
and controlled remotely via mobile devices [6], [13].

This idea of remote control was investigated in some
previous research works [3], [8], [7], [11] in order to de-
velop efficient protocols. However, most of available solutions
have only interested in implementing remote control protocols
without addressing the security issues that could occur be-
tween mobile devices and remote actuators. Basically, there
are some vulnerabilities related to the underlying network
between mobile devices and smart actuators. As examples
of those vulnerabilities, we can cite, eavesdropping, denial of
service, replay attacks and node compromises among others.
Therefore, an access control mechanism must be put in place
in order to guarantee the execution of sensitive actions by only
the uthorized users. Furthermore, existing security solutions
are not scalable enough to meet the requirements of large
systems such as SCADA systems. Indeed, most of those
solutions don’t allow to define fine-grained security policies
in scalable way to control the access to remote actuators.
Contrary to these solutions and in order to overcome all those
important issues, we propose in this paper a solution that
ensures fine-grained access control.

In this paper, we propose an efficient security protocol to
secure the execution of remote actions on smart actuators. In
our solution, we define fine-grained privileges to the different
users based on their roles in the system. To this end, we take
advantage of the Attribute Based Encryption tool to define
access policies in a more scalable way. Furthermore, we use
one way hash chain as a technique to authenticate IoT devices
while preventing against replay attacks. To the best of our
knowledge, there is no solution that tackles the problem of
secure control of smart actuators in IoT based Cyber-Physical
Systems using fine-grained access control mechanisms such
as Attributed Based Encryption.

In this work, we evaluated the robustness of our solution
in terms of security using AVISPA as a formal verification
tool. Basically, the obtained results demonstrated that our
protocol is secure under various kind of attacks. Beside the
security of our protocol, the performance evaluation using the
cryptographic primitives demonstrated its efficiency and its

scalability.
The structure of the paper is organized as follows. We

present in the following section the related works. Some back-
grounds about Ciphertext-Policy Attribute Based Encryption
and one way hash chain techniques are presented in section III.
Section IV describes the main architecture and the components
of our system. We discuss our solution in section V. Security
analysis and formal verification of our protocol are described
in the section VI. Section VII contains the performance
evaluation of our protocol. Section VIII concludes the paper
and outlines the future works.

II. RELATED WORKS

In this section, we review some secure control based IoT
solutions which are closely related to our work.

In [10], the authors proposed a solution to remotely control
and monitor home appliances via internal and external mobile
devices. The communication between mobile devices and
home appliances is done by GSM network and using SMS
messages to send commands to the home gateway to perform
remote actions. The exchanged control messages are encrypted
using AES standard. As a prototype, they developped a Java
application to control sensorboxes in smart home environe-
ment. The main drawback of this solution is its non scalability
since the architecture is not designed to support large number
of mobile devices. Therefore, the solution could not be applied
in large scale systems such as SCADA systems.

Mantoro et al. [2] proposed an enhanced SSP (Secure simple
pairing) for Bluetooth based comunications between smart-
phones and home appliances in order to control and monitor
IoT devices in small areas. Basically, the enhancement consists
to improve SSP protocol, designed initially for Bluetooth
communications, to resist against man-in-the-middle attack
during the connection between smart home device and the
mobile device.

Wang et al. [12] proposed a lightweight protocol to secure
remote control of IoT devices by portal controllers like smart
phones or tablets. The protocol involves three parts: the IoT
devices, the portal controllers (smart phones in general) and
trust center. The Trust Center is responsible for transfering
the control process to legitimate controllers, those later are
authenticated against IoT devices based on lightweight hash
function and shared keys between IoT devices and controllers.
The protocol is resistant to classical attacks such replay,
DoS, desynchronization and man in the middle attacks and
preserves the privacy of communications like non traceability
of control messages between smart devices and controllers.
However, the protocol has some scalability issues, since each
IoT device needs to share symmetric keys with trust center
and all legitimate portal controllers controlling such device.
In addition, the protocol generates an overhead regarding the
number of exchanged messages.

Compared to the above schemes, our protocol ensures fine-
grained access control while minimizing the overhead of
message exchanges and cost computation thanks to Attribute
Based Encryption and One way hash chain mechanisms.

III. BACKGROUND

In this section, we provide a brief description about
Ciphertext-Policy Attribute Based Encryption mechanism and
one-way hash chain, which serve as techniques to design our
solution.

A. Ciphertext-Policy Attribute Based Encryption

CP-ABE is a powerful encryption tool, proposed by Bethen-
court et al. in [5], to ensure fine-grained access control of data
shared by an owner. The idea of CP-ABE is that the encryption
is done based on a policy that defines relations between a set of
attributes. So, only users that hold a set of attributes that satisfy
the policy are able to decrypt ciphertexts. CP-ABE consists of
four algorithms [5].
• Setup(k): it’s a randomized algorithm which is run by the

authority. It takes k (security parameter) as a parameter
and outputs a master key MK which is kept secret in the
authority and a public key PK which is made public and
used to encrypt data.

• Encrypt(PK ,M ,Γ): it’s a randomized algorithm which
is run by the data owner. It takes as parameters the public
key PK , the message to encrypt M and the policy Γ . The
algorithm outputs the ciphertext CT of the message M
encrypted under the policy Γ .

• Key-Generation(MK , γ): It’s a randomized algorithm,
which is run by the authority to generate secret key Di

for each user i based on a set of attributes γ held by that
user.

• Decrypt(CT ,D ,PK): it’s a deterministic algorithm
which is run by the user that wants to decrypt the
ciphertext CT based on its secret key D . The user is
able to cover the plaintext M only if its secret key D
was generated based on a set of attributes γ that satisfies
the policy Γ (i.e Γ (γ) = 1). Otherwise, the algorithm
outputs ⊥.

B. One way Hash Chain

One-Way Hash Chain is a powerful technique widely used
to authenticate data sources in real-time communications. In
this work, we use this technique as lightweight mechanism to
authenticate IoT devices and users by IoT actuators in such a
way we overcome replay attacks.

Considering a secure one way hash function
H : {0 , 1}∗ → {0 , 1}l , one way hash chain is defined
as a sequence of n hash values: h1 , h2 , . . . , hn for n ∈ N ,
where the hash values hi ∈ {0 , 1}l , for 1 ≤ i ≤ n , are
defined as follows:

hk =

{
H(hk−1) if 1 < k ≤ n
H(m), m ∈ {0, 1}∗ if k = 1

(1)

The hash chain is designed in such a way from a hash value
hi we can compute efficiently the values hj , for j > i , but it
is hard to compute the values hk for k < i .

Each value hi is used as a disposable token to authenticate
one user in one period of time. The order of tokens’ usage is
hn , hn−1 , ..., h1 .

IV. MODELS AND SECURITY REQUIREMENTS

In this section, we provide our system model and the
security requirements that our solution ensures.

A. System model

In our system model, we consider a set of IoT smart
actuators SA = {SA1 ,SA2 , . . .} owned by some owner Oi .
We note that we could have multiple owners that manage
their IoT smart actuators. However for sack of simplicity, we
limit in our discussion to one owner. Our system contains the
following entities:

• Network of actuators: A set of IoT smart actuators
SA = {SA1 ,SA2 , . . .} that form the control system net-
work. These actuators are deployed in an area of interest
and are internet enabled to allow outside users to control
them remotely. We can give as an example an IoT based
industrial control system where we have a set of IoT com-
ponents that are remotely controlled by client IoT devices
which are situated outside of smart actuators network.
Each smart actuator SAj allows remote execution of a
set of actions Aj = {Aj1 ,Aj2 , . . .}. Note that actuators
are usually not powerful, and thereby we have to design
lightweight authentication protocol that is less energy
consuming.

• Gateway: The gateway is deployed at the edge of the
actuators’ network which serves as a relay between IoT
actuators in the inside of the network and other IoT
devices at the outside of the network. It is also charged to
manage access control to IoT actuators to execute actions
remotely.

• Client IoT devices: They consists of a set of different
smart devices D = {D1 ,D2 , . . .} which are used to
execute remote actions on smart actuators. We note that
these devices are supposed to be numerous and each one
of them could handle a set of actions on a subset of
actuators SADi

⊂ SA defined as AADi
=

⋃
j∈SADi

DAij ,
where DAij ⊂ Aj which is a subset of actions executed
by the device Di on the actuator SAj .

• Owner: The owner is a system component that holds
a set of smart actuators. It is responsible to define
the appropriate rules for client IoT devices in order to
perform remote actions on smart actuators held by this
owner. The owner evolves only in the initial steps of
the secure control protocol in order to provide legitimate
users the necessary tokens to execute actions on smart
actuators according the predefined rules.

• Trusted Authority: It consists of a central entity which
is trusted by all the owners, IoT devices, gateways and
IoT actuators in the system. The main goal of the central
authority is to bootstrap the system and manage the key
materials of IoT devices, actuators, owners and gateways
in the system. It operates on offline mode which means
that it’s not implicated in the subsequent actions after the
system initialization.

B. Security model and requirements

In our security model, we consider the following assump-
tions:

• The central authority is completely trusted by all IoT
devices, actuators and also by owners and IoT gateways.

• IoT actuators are not powerful and are not robust against
internal attacks trying to comprise them. Inside threats
and active attacks like DoS/ DDoS are very challenging to
overcome. In this work, we will not discuss mechanisms
that deal with these kind of attacks and therefore we
assume that IoT actuators are available and are not
compromised neither spoofed by other actuators.

• IoT Gateways are supposed to be honest-but-curious
which means that they follow the protocol properly but
they may be curious about users’ behaviors and their
privacy.

• As follow, we note by PKOi and DOi the owner’s public
and private keys respectively. Likewise, PG and DG

are the public and the private keys of the gateway G .
We assume also that the communications between the
gateway G and IoT actuators and between the owner
Oi and the gateway are secure (secure channels are
established between the different entities).

Under the aforementioned assumptions and the system
model previously described, our solution is a lightweight
based token access control protocol to execute actions on
remote actuators. The following security requirements should
be achieved:

• Authentication of the IoT devices: In our protocol, IoT
actuators must authenticate client IoT devices to execute
actions.

• Respect of privileges: Each IoT device Di ∈ D is able
to execute only the permitted actions on each actuator
SAj ∈ SA. In other words, the client Di can only execute
the set of actions DAij on the actuator SAj .

• Replay attacks robustness: Our authentication protocol
must deal with replay attacks. This means that an attacker
or a malicious user that controls an IoT device Dj cannot
use the token Ti(t) elapsed by some IoT device Di

(i 6= j) at the instant t to get access to the same actuator
by using the same token Ti(t) at the instant t + 1 .

V. PROPOSED LIGHTWEIGHT FINE-GRAINED SECURE
CONTROL PROTOCOL

After introducing the system and security models, in this
section, we present in more details our proposed protocol
which allows to control remotely the execution of actions
on smart actuators. In order to design an adaptative and
fine-grained access control protocol, we exploit two main
mechanisms which serve as the building blocks of our protocol
namely: 1) Cipher-Text Attribute Based Encryption and 2) One
way hash chain. Basically, our proposed protocol works in
three steps that we sketch in the rest of the section.

Owner O1

Generate CP-ABE private keys and public

key for IoT devices based on their attributes

Trusted Authority

IoT gateway

2

1

ActionIdentifier Last Hash

Aj1ID1 hlast

...... ...

Lookup table SAj

ChallengeAction Ciphertext

Mj1Aj1 <Cj1,{Cj1}Do1>

Mj2Aj2 <Cj2,{Cj2}Do1>

...... ...

Actuator SAj

ChallengeAction Ciphertext

M11A11 <C11,{C11}Do1>

M12A12 <C12,{C12}Do1>

...... ...

Actuator SA1

Client IoT devices

Define access policy A jk for each

action Ajk on each actuator SAj

Generate the challenges associated for

each action and send them to the gateway

Fig. 1: Secure control protocol.

A. Initialization

In this phase, the trusted authority generates material keys
(public and secret keys) for IoT devices based on the roles of
the users (the attributes held by each device Di).

Each owner Oi defines, for each smart actuator SAj it holds,
the adequate policies for all the actions Ajk ∈ Aj that should
be executed remotely on that actuator. In other words, we
associate for each action Ajk ∈ Aj a policy Pjk that defines
fine-grained access rules based on some attributes held by the
smart IoT devices. The relationships between the attributes
are established based on logical ”AND” and ”OR” gates as
discussed in CP-ABE initial scheme [5].

Subsequently, each owner Oi generates, for each action
Ajk , a random challenge Mjk ∈ {0 , 1}l . Then, it computes
the ciphertext Cjk of the challenge Mjk encrypted under
the policy Pjk using the encryption primitive of CP-ABE
scheme. All the ciphertexts are also signed by the pri-
vate key DOi

of the owner Oi . Finally, the owner sends
all the challenges and their ciphertexts under the form of
a set of Fivepet {< SAj ,Ajk ,Mjk ,Cjk , {Cjk}DOi

> where
SAj ∈ SA,Ajk ∈ Aj}, over a pre-established secure channel,
to the IoT gateway G . This later constructs, for each smart
actuator SAj , three columns table that contains, for each action
Ajk , its corresponding challenge Mjk and the paire: ciphertext
and signature < Cjk , {Cjk}DOi

> as illustrated in the figure
1.

B. Token generation

In this phase, client IoT devices negotiate tokens from
the IoT gateways to execute actions on smart actuators. As
depicted in figure 2 (from step 4 to step 12), many steps are
carried out by three entities: the client IoT device Di , the
gateway G and the smart actuator SAj as follows:
• The client IoT device Di , which wants to execute the

action Ajk on the actuator SAj , sends, first, a request

Natation Description
Oi The owner i
Di The IoT Device i
SAj The smart actuator j
G The gateway that controls access control to smart actuators
Ajk The action k that could be performed on the actuator j
H (∗) One way hash function
{M}K Encryption/Decryption of M with the key K
PK The CP-ABE public key
MK The CP-ABE master key. It must be kept secret in the trusted

authority
SKDi

The CP-ABE secret key of the IoT device Di

Mjk The plaintext used as a challenge to execute the action Ajk

Pjk The access policy defined by the owner to execute the action
Ajk

Cjk The ciphetext of Mjk obtained by CP-ABE encryption algo-
rithm and based on the access policy Pjk

Downer The private key of the owner
PKowner The public key of the owner

DG The private key of the gateway G
PG The public key of the gateway G
CHi The hash chain used by some actuator to authenticate Di

TABLE I: Notations

message containing the pair < SAj ,Ajk > to the gateway
G (step 4).

• By consulting the table related to the actuator
SAj , the gateway G generates randomly a nonce
value Vj ∈ {0 , 1}∗ and sends back the triplet
< {Cjk}Downer

,Cjk ,Vj > to the smart object Di ,
where Cjk , {Cjk}Downer

are the ciphertext related to the
challenge Mjk and its signature respectively (steps 5 and
6).

• The device Di , by receiving the response from the gate-
way, verifies the signature {Cjk}Downer

using the owner’s
public key PKowner . Afterwards, if Di holds the the
CP-ABE private key SKDi

generated based on a set of
attributes that satisfies the policy Pjk , then it will be able

IoT device Di Owner O Gateway G Actuator SAj

<SAj, Ajk, Mjk, Cjk, {Cjk}Do>

Save the entry <Ajk, Mjk, Cjk, {Cjk}Do>

in the SAj's lookup table

Generate the challenge Mjk, encrypt

and sign it

want to execute the

action Ajk on the

actutor SAj • Lookup the table of SAj

• Generate a nonce Vj

• Solve the challenge and cover M'jk

• Generate a symmetric key Sj

• Compute Rjk = H(M'jk || Vj) Response: {Rjk, Sj}PG

Rjk = H(Mjk||Vj) ?

Action Ajk done

No

• Generate Hash Chain CHi = {h1, ..., hn}

• Generate a random identifier IDi

entry : <IDi , Ajk , hn>

Command : < IDi, ht+1 >

Save the entry in a lookup

table

1

2

3

4

5

Challenge : <{Cjk}Do, Cjk, Vj>
6

7

8

9

10

Cover the token and save

<IDi, CHi>

11
12

 ht = H(ht+1) ?

Command to execute the

action Ajk

Token : {IDi , CHi}Sj

End

End

No

13

15

16

14

In
it

ia
li

za
ti

o
n

T
o
k
en

 g
en

er
at

io
n

A
ct

io
n

 e
x

ec
u

ti
o

n

Request : <SAj, Ajk, SAj>

Fig. 2: Flowchart of our protocol.

to decrypt the ciphertext Cjk and thereby it covers the
plaintext M

′

jk . This later will be concatenated to the nonce
value Vj , let Rjk = H (M

′

jk ||Vj) be the resulting hash
value. Next, the device Di generates an AES symmetric
key, which will be used as a session key to communicate
the token. Finally, it sends the response < Rjk ,Sj > to
the gateway G encrypted under the public key PG (step
7 and 8).

• The gateway G , upon receiving the response
{< Rjk ,Sj >}PG

, it decrypts the response message
using its private key PG and it checks out if
H (Mjk ||Vj) = Rjk . If the condition holds, then
the gateway G generates an access token for
the device Di , which consists on the hash chain
CHi = {hi1 , hi2 , . . . , hin}. It generates also an identifier
IDi used to identify and track the action Ajk each time
it’s performed by Di . Finally, the gateway sends the
triplet < IDi ,Ajk , hin > to the actuator SAj and the
whole chain CHi concatenated to the identifier IDi to
the device Di . Note that the token < IDi ,CHi > is

encrypted by the symmetric key Sj before beeing sent.
As illustrated in figure 1, the actuator saves in a lookup
table the triplet < IDi ,Ajk , hin > which is used to
authenticate the device Di whenever the action Ajk is
performed (steps 9 and 10).

C. Action execution

In this phase, the actuator SAj can authenticate remote
IoT devices in real-time. The process of authentication is as
follows:
• The device Di sends a request to the actuator SAj to

execute some action Ajk . The request includes a pair of
information < IDi , hi(n−t) >, where hi(n−t) is the hash
value that is used in the t th access and IDi is the identifier
associated to the action Ajk previously generated by the
gateway G .

• The smart actuator SAj looks for the entry
< IDi ,Ajk , hlast > in its lookup table. If
this entry is found, then it checks out if
H (hi(n−t)) = hi(n−t+1) = hlast . If this condition

holds, the actuator SAj performs the action Ajk

sent remotely as a request by Di . Next, the actuator
SAj updates the value hlast , associated to the entry
< IDi ,Ajk , hlast > in the lookup table, by the received
one hi(n−t) (see figure 1).

VI. SECURITY EVALUATION

In this section, we evaluate the security of our scheme. For
that, we give some security analysis and we provide formal
verification using the AVISPA tool.

A. Security analysis

As follows, we discuss the main security properties that our
proposed protocol respects.

1) Authentication: In our protocol, there are two levels of
authentication. First, the gateway G authenticates the legiti-
mate IoT devices based on a challenge-response authentication
technique. Once the first authentication is done, each smart
actuator SAj authenticates IoT device Di based on one way
hash chain CHi every time an action Ajk is perfomed.

2) Respect of privileges: In our scheme, the execution of
each action Ajk could be performed only by the legitimate
devices. Indeed, the challenge Cjk is encrypted in such a
way only the legitimate devices have the required keys to
decrypt the ciphertext as defined in the access policy Pjk .
Furthermore, CP-ABE scheme does not allow users’ collision
, which means that two or many illegitimate IoT devices can’t
cooperate to construct a secret key that allows them to decrypt
the ciphertext [5].

3) Replay attacks: During the token generation process, the
gateway generates a random nonce value Vi and sends it to the
IoT device Di with the challenge Cjk . The response message
contains the value H (Vi ||Mjk) that reveals no information
about the plaintext Mjk . This response value H (Vi ||Mjk)
cannot be used by another IoT device Dj (i 6= j) to get an
authorized token to execute the same action, since a fresh
random nonce value Vj is generated for each token generation
request.

In addition, the execution of each remote action on smart ac-
tuator elapses one hash value from the hash chain. Therefore,
even thought, an intruder intercepts the hash value hi(n−t) at
instant t , it cannot deduce the next token hi(n−t−1) thanks to
the irreversible mathematical property of the hash function.

B. Formal verification

1) AVISPA tool: We modeled the specifications of our pro-
tocol using the AVISPA’s High-Level Protocol Specification
Language (hlpsl) [1]. The AVISPA tool allows the designers
of security protocols to detect potential attacks and verify if
their designed protocols meet the attended security services.

2) The protocol specifications: In our protocol, we defined
four roles in HLPSL language. Namely: the owner (O),
the gateway (P), the device (D) and the actuator (A) roles
which correspond to the differents agents in our system. The
figure 3 shows the example of the gateway role in which
we specify the different exchanged messages as explained

Fig. 3: Hlpsl specifications of the role P (the gateway).

Fig. 4: The hlpsl specifications’ goals in our protocol

previously. The channel (dy) is modeled in our specifications
based on Dolev-Yao intruder model which means that all the
exchanged messages between all the agents are intercepted
by the intruder. This last can analyze, modify the intercepted
messages or eventualy decrypts them if he knows the requiered
keys.

In our protocol, we analyze some security properties, which
are specified in the goal section of hlpsl specifications as
shown in figure 4. Basically, we verify the following prop-
erties:
• P authenticates D on H (Vi ||Mjk): P generates a nonce

value Vi and sends the challenge Cjk . If D is able to
construct the H (Vi ||Mjk) from the challenge Cjk and
the nonce Vi , P authenticates D.

• A authenticates D on H (h(n−t)): The agent A disposes of
the hash value h(n−t+1). If A receives a hash value h(n−t)
from the agent D such that H (h(n−t)) = h(n−t+1), A
authenticates D.

• Secrecy of CHi : P generates the hash chain CHi . It sends
the hole chain to the agent D. This information must be
kept secrete between P and D.

• Secrecy of hn : P generates the hash chain CHi . It sends
the last generated hash value hn in the hole chain CHi

Fig. 5: Results reported by the OFMC back-end

Computation Storage (bytes)Public key
enc/dec

Secret
key

en/dec

Hash

gateway G 1 4 p 1540
∑

j∈SA |Aj |
IoT device Di 3 1 p + 1 32 |CHi |+ 4
Actuator SAj 0 1 p 36 |CHi |

Owner Ok
∑

j∈SA |Aj | |SA| - -

TABLE II: Computation and storage analysis

to the agent A. This value must be kept secrete between
S, D and A.

3) The obtained results: We can see clearly from the figure
5 that the obtained results demonstrate the security of our
protcol under the test we performed using AVISPA.

VII. PERFORMANCE ANALYSIS

In this section, we present the performance analysis of our
scheme. The table II shows the evaluation of our proposed
scheme in terms of number of execution of cryptographic
operations (enrcyption/ decryption and hash) and the storage
occupation with respect to the number of performed actions
p by an IoT device Di on an actuator SAj . We consider 256
bits as the lenght of each hash value (usage of SHA-256 hash
function). Furthermore, we consider the size of each challenge
equale to 512 bytes. The size of the identifier of each action
is set to 32 bits which allows the owners and the gateway to
manage about 4.2 billions of actions on the actuators.

For IoT devices and actuators, we notice that our protocol
minimises the number of encryption/decryption operations
against an increase of the number of hash computations.
Indeed, the number of executions of encryption/decryption
algorithms does not increase with respect to p. The number

Challenge Lenght (bytes) Mean execution time (seconds)
128 0.10343159533
192 0.10304590583
256 0.10351666125
320 0.10426878214
384 0.10431057986
448 0.10558491747
512 0.10519450596
1024 0.10583648784

TABLE III: Time execution of challenge response

of hash computations increases proportionally to p, but their
cost is damn negligible compared to the high cost of encryp-
tion/decryption operations.

A. Experiment settings

We performed these simulations in a virtual machine 64 bits
ubuntu 16.04 with 2GB of RAM and with Intel(R) Core(TM)
i5-6200U CPU @ 2.30GHz 2.40 GHz Processor. We used the
cpabe toolkit implemented by [4], which is based on PBC-
0.5.4 pairing library [9] to implement algebraic operations.
We used AES as a secret key encryption scheme, SHA256 as
a Hash function, and RSA as a public key encryption scheme.
We developped the different simulation scenarios based on
Python language.

Subsequently, we discuss furthermore the evaluation of
the computation cost of our solution, especially at the IoT
device level. Basically, we performed two test scenarios with
the variation of several parameters in order to evaluate their
impacts on our solution.

B. Scenario 1: The evaluation of token generation cost

In this first scenario, we focus on the token generation phase
of our protocol. For that, we consider one IoT device D that
wants to get a token to execute a certain action on a given actu-
ator. In the test, we compute the execution time that the device
D takes to cover the plaintext associated to the challenge and
produces the response message. We evaluate especially the
impact of the lenght of challenges to be decrypted by D . We
assume also that the challenges are encrypted based on CP-
ABE encryption algorithm using special access policies that
consist of a tree Γ that contains 10 attributes linked with one
”AND” gate, ie. Γ = AND(att1 , ..., att10).

The table III shows the mean execution time of challenge
response, performed by one device during the token generation
phase, with respect to different lenghts of the challenge.

We notice that the execution time elapsed during the token
generation phase is not largely influenced by the length of
challenges. Basically, with challenges of 512 and 1024 bytes,
token generation phase gets a little more time than with the
challenges of 128 bytes; therefore, we recommend the usage
of challenges of 256 bytes as it’s still unbreakable by force
brute attacks while maintaining a good efficiency.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
e
a
n
 e

x
e
c
u
ti

o
n
 t

im
e
 (

se
c
o
n
d
s)

Rate of arrivals (λ)

|D| = 10
|D| = 20
|D| = 30
|D| = 40
|D| = 50
|D| = 60
|D| = 70
|D| = 80
|D| = 90

|D| = 100

Fig. 6: The mean execution time of action execution with
respect to λ and |D |.

C. Scenario 2: The impact of the action execution rate and
the number of IoT devices

In this scenario, we vary the rate of execution of actions
arrivals for several IoT devices. Each device Di perfoms
periodically one action in one actuator. To simplify, we assume
that for each two devices Di and Dj (i 6= j), they execute two
actions on two different actuators. In this test, we assume that
the gateway can handle one request for only one IoT device
at each time, which is the worse case that we can consider
1. We simulate the rate of action execution requests arrivals
according to poisson process of parameter λ. We measure the
time execution from event arrival until the execution of the
action. Note that, one device Di executes the token generation
algorithm only in the first time in order to get the required
token to execute the same action subsequently. Figure 6 shows
the average of execution time of token generation obtained by
varying both the rate λ and the number of IoT devices |D |.

Figure 6 shows that the mean execution time of token
generation and action execution phases is not hugely impacted
by the number of IoT devices |D | neither by the rate of the
execution of actions. Indeed, with |D | = 100 IoT devices that
execute different actions simultaneously and with a rate of one
action per 2 seconds for each device, the execution is about
640 ms. Therefore, our scheme scales very well with complex
systems and it could be useful for real time control systems.

VIII. CONCLUSION

In this paper, we have proposed a distributed protocol to
control the execution of remote actions on smart actuators
using smart objects and mobile devices. Our protocol has
the advantage of being efficient, scalable and allows fine-
grained access control. Furthermore, the security analysis,
using AVISPA toolkit, showed that our protocol is robust

1In the practice, the gateway can handle several requests simultaneously
thanks to multi-threading feature

against various attacks. Moreover, we have demonstrated in
this paper that our protocol is less energy consuming and
scales very well with the number of IoT devices and actuators.
The proposed protocol is very suitable for many applications,
particularly in resource-limited environments. As future work,
it would be interesting to test our scheme in a real application
such as SCADA systems to control industrial processes.

IX. ACKNOWLEDGMENTS

This work was carried out and funded in the framework of
the Labex MS2T. It was supported by the French Government,
through the program ”Investments for the future” managed by
the National Agency for Research (Reference ANR-11-IDEX-
0004-02).

REFERENCES

[1] Avispa v1.1 user manual. Technical report, 2006.
[2] R. Acker and M. Massoth. Secure ubiquitous house and facility control

solution. In 2010 Fifth International Conference on Internet and Web
Applications and Services, pages 262–267, May 2010.

[3] M. T. Ahammed and P. P. Banik. Home appliances control using
mobile phone. In Advances in Electrical Engineering (ICAEE), 2015
International Conference on, pages 251–254. IEEE, 2015.

[4] J. Bethencourt, A. Sahai, and B. Waters. Advanced crypto software
collection. http://acsc.cs.utexas.edu/cpabe/. Accessed: 2017-03-30.

[5] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-
based encryption. In 2007 IEEE Symposium on Security and Privacy
(SP ’07), pages 321–334, May 2007.

[6] A. A. Cárdenas, S. Amin, and S. Sastry. Research challenges for the
security of control systems. In HotSec, 2008.

[7] S. R. Das, S. Chita, N. Peterson, B. A. Shirazi, and M. Bhadkamkar.
Home automation and security for mobile devices. In Pervasive
Computing and Communications Workshops (PERCOM Workshops),
2011 IEEE International Conference on, pages 141–146. IEEE, 2011.

[8] O. Ghabar and J. Lu. Remote control and monitoring of smart home
facilities via smartphone with wi-fly. IARIA, 2015.

[9] B. Lynn. The pairing-based cryptography library.
https://crypto.stanford.edu/pbc/. Accessed: 2017-03-30.

[10] T. Mantoro, M. A. M. Adnan, and M. A. Ayu. Secured communication
between mobile devices and smart home appliances. In 2013 Inter-
national Conference on Advanced Computer Science Applications and
Technologies, pages 429–434, Dec 2013.

[11] F. Pellarin. Communication method and device for remote control of an
actuator for mobile equipment in a building, Feb. 23 2016. US Patent
9,269,261.

[12] Z. Wang, H. Ding, J. Han, and J. Zhao. Secure and efficient control
transfer for iot devices. International Journal of Distributed Sensor
Networks, 9(11):503404, january 2013.

[13] S. Żółkiewski and K. Galuszka. Remote control of industry robots
using mobile devices. In New Contributions in Information Systems
and Technologies, pages 323–332. Springer, 2015.

