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Algorithmic Completeness of BSP Languages

Yoann Marquer, Frédéric Gava

Abstract

The Bulk-Synchronous Parallel (BSP) bridging model is a candidate for a simple and
practical definition for High Performance Computing (HPC) algorithms. These BSP al-
gorithms have been axiomatized, then captured by the operational semantics of the BSP
Abstract State Machines (ASM-BSP), an extension of the ASM model of Gurevich. In
this technical report, we define a minimal imperative language While-BSP, and prove that
this model of computation fairly simulates the executions of the ASM-BSP machines, and
reciprocally that ASM-BSP simulates While-BSP. Therefore, While-BSP is algorithmically
complete for the BSP algorithms, and so does usual programming languages like Pregel, or
imperative languages using the BSPLIB library.

Keywords. ASM, BSP, Semantics, Algorithm, Simulation

1 Introduction

1.1 Context of the work

Usual sequential imperative languages such as C or Java are said Turing-complete, which means
that they can simulate (up to unbounded memory) the input-output relation of a Turing machine
and thus compute (according to the Church Thesis) every effectively calculable functions.

But algorithmic completeness is a stronger notion than Turing-completeness. It focuses
not only on the input-output (ie the functional) behavior of the computation but on the step-
by-step (ie the algorithmic) behavior. Indeed, a model could compute all the desired functions,
but some algorithms (ways to compute these functions) could be missing:

1. For example, a Turing machine with one tape can simulate a Turing machine with two
tapes, so they are usually seen as equivalent. But it has been proven in [BBD+04] that the
palindrome recognition, which can be done in O (n) steps (where n is the size of the word)
with two tapes, requires at least O

(
n2/ log(n)

)
steps with only one tape. Strictly speaking,

that means that the algorithm in O (n) requires at least two tapes, even if its result can
be simulated. Therefore, a Turing machine with two tapes is functionally equivalent to a
Turing machine with one tape, but they are not algorithmically equivalent.

2. Another example is the computation of the greatest common divisor: it is known that an
imperative language with only “for-loop” statements can compute all primitive recursive
functions and not more. But it has also been proved [Col91] that such a language cannot
compute the gcd with the smaller complexity (one speak of “ultimate obstinacy ”) whereas
it is possible using a “while” statement. Therefore, some algorithms cannot be written in
a language even if another algorithm can be written which compute the same function.

The question is whether a model of computation is algorithmically complete or not. In
other words, if this model can compute a set of functions, can it compute these functions in
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every possible way ? This question rises interest because thus we could guarantee that the best
possible algorithm can effectively be written in this model to compute the desired function.

The conceptual difficulty of this question is to clearly define what is meant by “algorithm”,
because even if a program or a computable functions are well-defined objects (by using the Church
Thesis), usually the word “algorithm” is at most a vague concept, or a way to name programs
written in pseudo-code. In other words, we need a Church thesis for algorithms. The Church
Thesis can be seen as a consequence of the functional equivalence between models of computation
like Turing machines, lambda-calculus or recursive functions. Unfortunately, their is no proof
of algorithmic equivalence between proposed models for the algorithms, like the Abstract State
Machines (ASM) of Gurevich [Gur00] or the recursive equations of Moschovakis [Mos01].

Nevertheless, the axiomatic approach of Gurevich appeared convincing for the community:
instead of claiming that a particular model of computation captures in itself the behavior of the
algorithms, Gurevich proposed three postulates for the sequential algorithms:

1. Sequential Time: a sequential algorithm computes step by step

2. Abstract State: a state of the execution can be abstracted as a (first-order) structure

3. Bounded Exploration: only a bounded amount of read or write can be done at each step
of computation

The Gurevich Thesis states that every sequential algorithms (Algo) is captured by these
three postulates. Thus, he proved in [Gur00] that the set of the sequential algorithms is exactly
the set of his Abstract State Machines, therefore ASM = Algo. This proves that the opera-
tional approach of the ASM is equivalent to the axiomatization approach of the the sequential
algorithms Algo.

In [Mar18], the first author proved that usual imperative programming languages are not
only Turing-complete but also algorithmically complete. This has been done by proving that
a minimal imperative language While is algorithmically equivalent to the Abstract State
Machines of Gurevich: While ' ASM, which means that the executions are the same, up to
fresh variables and temporal dilation (more details are given at Section 6 p.11). Thus, we have
While ' Algo, and any programming language containing While commands is algorithmically
complete (for sequential algorithms).

In the High Performance Computing (HPC) context, such a result is nowadays impossible
to obtain. The main problem is the lack of definitions of what HPC computing formally is: the
community lacks a consensual definition for the class of HPC algorithms. Using a bridging
model [Val90] is a first step to this solution. It provides a conceptual bridge between the
physical implementation of the machine and the abstraction available to a programmer of that
machine. It also simplifies the task of the algorithm design, their programming and ensures a
better portability from one system to another. And, most importantly, it allows the reasoning
of the costs of the algorithms.

We conscientiously limit our work to the Bulk-Synchronous Parallel (BSP) bridging model
[Bis04, SHM97] because it has the advantage of being endowed with a simple model of execution.
We leave more complex HPC models to future work. Moreover, there are many different libraries
and languages for programming BSP algorithms. The best known are the BSPLIB for C
[HMS+98] or Java [SYK+10], BSML [BGG+10], Pregel [MAB+10] for big-data, etc.

In [MG18], the authors have axiomatized the set AlgoBSP of the BSP algorithms by ex-
tending the three postulates of Gurevich from a single processor X to a p-tuple of processors(
X1, . . . , Xp

)
working simultaneously, and adding a fourth postulate to take into account the

BSP super-steps model of execution: a BSP algorithm alternates between a computation phase
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when the processors compute independently from the others, and communication phase when
the processors send or receive messages.

Then, we have extended the ASM model to p-tuple of processors by applying the ASM
program to every processor at the same time, and assuming an abstract communication function
when the processors has finished their computations. We proved that this extension ASMBSP

is the operational counterpart of the axiomatically defined BSP algorithms, in other words that
ASMBSP = AlgoBSP.

1.2 Content of the work

In the Section 3 p.4 we remind our four postulates for AlgoBSP, and in the Section 4 p.7 we
remind the definition of ASMBSP, with the theorem ASMBSP = AlgoBSP.

As in [Mar18], we think that a minimal imperative language is more convenient than a
transition function to determine classes in time or space, or simply to be compared to more usual
programming languages. Therefore, we define at the Section 5 p.9 the operational semantics of
our core imperative programming language WhileBSP, which is our candidate for algorithmic
completeness (for BSP algorithms).

We want to emphasize that our work is about a formal algorithmic model and not on ar-
chitectures/machines or on formal verification of specific BSP algorithms/programs. Our work
aims to be an intermediary between programming languages and an algorithm model, the class
of BSP algorithms. Many definitions used here are well known to the ASM community.

We detail the notion of algorithmic equivalence at the Section 6 p.11. We prove in the
Section 7 p.12 that ASMBSP simulates WhileBSP, and we prove at the Section 8 p.15 that
WhileBSP simulates ASMBSP.

Therefore we prove in this technical report that WhileBSP ' ASMBSP. Because ASMBSP =
AlgoBSP, that means that our core language WhileBSP is algorithmically complete for the class
of BSP algorithms. We discuss at the Section 9 p.19 details and explanations about the proof
and the approach.

2 Preliminaries

Definition 2.1 (Structure). A (first-order) structure X is given by:

1. A (potentially infinite) set U(X) called the universe (or domain) of X

2. A finite set of function symbols L(X) called the signature (or language) of X

3. For every symbol s ∈ L(X) an interpretation sX such that:

(a) If c has arity 0 then cX is an element of U(X)

(b) If f has an arity α > 0 then f
X

is an application: U(X)α → U(X)

In order to have a uniform presentation, as in [Gur00] we consider constant symbols of the
signature as 0-ary function symbols, and relation symbols R as their indicator function χR.
Therefore, every symbol in L(X) is a function. Moreover, partial functions can be implemented
with a special symbol undef, and we assume in this paper that every signature contains the
boolean type (at least true, false, ¬ and ∧) and the equality.

We distinguish in the signature L(X) = Stat (X)∪Dyn (X) the dynamical symbols Dyn (X)
which can be updated (see p.5) and the static symbols Stat (X) which cannot.
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Definition 2.2 (Term). A term θ of L(X) is defined by induction:

1. If c ∈ L(X) has arity 0, then c is a term

2. If f ∈ L(X) has an arity α > 0 and θ1, . . . , θα are terms, then f (θ1, . . . , θα) is a term

The interpretation θ
X

of a term θ in a structure X is defined by induction on θ:

1. If θ = c is a constant symbol, then θ
X def

= cX

2. If θ = f (θ1, . . . , θα) where f is a symbol of the language L(X) with arity α > 0 and

θ1, . . . , θα are terms, then θ
X def

= f
X
(
θ1
X
, . . . , θα

X
)

A formula F is a term with a particular form :

F
def
= true | false | R (θ1, . . . , θα) | ¬F | (F1 ∧ F2)

where R is a relation symbol (ie a function with output true
X

or false
X

) and θ1, . . . , θα are terms.

We say that a formula is true (respectively false) in X if F
X

= true
X

(respectively false
X

).
Notice that we use only formulas without quantifier, so we don’t need the notion of logical

variables. Instead, we will use the word variables for dynamical symbols with arity 0.

3 Axiomatization of the BSP algorithms

In this section, we give an axiomatic presentation by defining BSP algorithms as the objects
verifying four postulates, which are a “natural” extension of the three postulates of Gurevich for
the sequential algorithms in [Gur00].

Postulate 1 (Sequential Time). A BSP algorithm A is given by:

1. a set of states S(A)

2. a set of initial states I(A) ⊆ S(A)

3. a transition function τA : S(A)→ S(A)

An execution of A is a sequence of states S0, S1, S2, . . . such that S0 is an initial state, and
for every t ∈ N, St+1 = τA(St).

Instead of defining a set of final states for the algorithms, we will say that a state St of an
execution is final if τA(St) = St. Indeed, in that case the execution is S0, S1, . . . , St−1, St, St, . . .
so, from an external point of view the execution will seem to have stopped. We say that an
execution is terminal if it contains a final state. In that case, its duration is defined by:

time(A,S0)
def
=

{
min

{
t ∈ N | τ tA(S0) = τ t+1

A (S0)
}

if the execution is terminal
∞ otherwise

A parallel model of computation uses a machine with multiple computing units (processors,
cores, etc.), which have their own memory. Therefore, a state St of the algorithm must be a
p-tuple St =

(
X1
t , . . . , X

p
t

)
, where p is the number of computing units.

Notice that the number of processors is not fixed for the algorithm, so A can have
states using different number of processors. In this report, we will simply consider that this
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number is preserved during a particular execution. In other words: the number of processors is
fixed by the initial state.

Notice also that we assume that the processors are synchronous, as opposed to the
standard approach in [BG03], which is a simplification in order to obtain a more accessible
model which deals with small steps of computation or communication, and not wide steps.

If
(
X1, . . . , Xp

)
is a state of the algorithm A, then the structures X1, . . . , Xp will be called

processor memories or local memories. The set of the local memories of A will be denoted by
M(A).

Notice that, as in [Gur00], we assume that the relevant symbols are internalized by the
computing units, so we assume that the processors share the same signature L(A). But we
don’t assume that they have the same universe. In fact, the data structures (ie the part of the
language which does not depend on the execution) of two distinct processors are not identical
but isomorphic.

Moreover, we are interested in the algorithm and not a particular implementation (for example
the name of the objects), therefore in the following postulate we will consider the states up to
multi-isomorphism:

Definition 3.1 (Multi-Isomorphism).
−→
ζ is a multi-isomorphism between two states(

X1, . . . , Xp
)

and
(
Y 1, . . . , Y q

)
if p = q and

−→
ζ is a p-tuple of applications ζ1, . . . , ζp such that

for every 1 ≤ i ≤ p, ζi is an isomorphism between Xi and Y i.

Postulate 2 (Abstract States). For every BSP algorithm A:

1. The states of A are tuples of (first-order) structures with the same signature L(A), which
is finite and contains the booleans and the equality

2. S(A) and I(A) are closed by multi-isomorphism

3. The transition function τA preserves the universes and the numbers of processors, and
commutes with multi-isomorphisms

For a parallel algorithm A, let X be a local memory of A, f ∈ L(A) be a dynamic α-ary
function symbol, and a1, . . . , aα, b be elements of the universe U(X). We say that (f, a1, . . . , aα)
is a location of X, and that (f, a1, . . . , aα, b) is an update on X at the location (f, a1, . . . , aα).

For example, if x is a variable then (x, 42) is an update at the location x. But symbols with
arity α > 0 can be updated too. For example, if f is a one-dimensional array, then (f, 0, 42) is
an update at the location (f, 0).

If u is an update then X � u is a new structure of signature L(A) and universe U(X) such
that the interpretation of a function symbol f ∈ L(A) is:

f
X�u

(−→a )
def
=

{
b if u = (f,−→a , b)
f
X

(−→a ) otherwise

For example, in X � (f, 0, 42), every symbol has the same interpretation than in X, except

maybe for f because f
X�(f,0,42)

(0) = 42 and f
X�(f,0,42)

(a) = f
X

(a) otherwise. We precised

“maybe” because it may be possible that f
X

(0) is already 42. Indeed, if f
X

(−→a ) = b then the
update (f,−→a , b) is said trivial inX, because nothing has changed: in that caseX�(f,−→a , b) = X.

If ∆ is a set of updates then ∆ is consistent if it does not contain two distinct updates with
the same location. Notice that if ∆ is inconsistent, then there exists (f,−→a , b), (f,−→a , b′) ∈ ∆ with
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b 6= b′. We assume in that case that the entire set of updates clashes:

f
X�∆

(−→a )
def
=

{
b if (f,−→a , b) ∈ ∆ and ∆ is consistent

f
X

(−→a ) otherwise

If X and Y are two local memories of the same algorithm A then there exists a unique

consistent set ∆ =
{

(f,−→a , b) | fY (−→a ) = b and f
X

(−→a ) 6= b
}

of non trivial updates such that

Y = X � ∆. This ∆ is called the difference between the two local memories, and is denoted
by Y �X.

Let
−→
X =

(
X1, . . . , Xp

)
be a state of the parallel algorithm A. According to the transition

function τA, the next state is τA
(
X1, . . . , Xp

)
, which will be denoted by

(
τA(
−→
X )1, . . . , τA(

−→
X )p

)
.

We denote by ∆i(A,
−→
X )

def
= τA(

−→
X )i � Xi the set of updates done by the i-th processor of

A on the state
−→
X , and by

−→
∆(A,

−→
X )

def
=
(

∆1(A,
−→
X ), . . . ,∆p(A,

−→
X )
)

the multiset of updates

done by A on the state
−→
X .

In particular, if a state
−→
X is final, then τA(

−→
X ) =

−→
X , so

−→
∆(A,

−→
X ) =

−→
∅ .

Let A be an algorithm and T be a set of terms of L(A). We say that two states
(
X1, . . . , Xp

)
and

(
Y 1, . . . , Y q

)
of A coincide over T if p = q and for every 1 ≤ i ≤ p and for every t ∈ T we

have t
Xi

= t
Y i

.
The third postulate states that only a bounded number of terms can be read or updated

during a computation step:

Postulate 3 (Bounded Exploration for Processors). For every BSP algorithm A there exists

a finite set T (A) of terms such that for every state
−→
X and

−→
Y , if they coincide over T (A) then

−→
∆(A,

−→
X ) =

−→
∆(A,

−→
Y ), ie for every 1 ≤ i ≤ p, we have ∆i(A,

−→
X ) = ∆i(A,

−→
Y ).

This T (A) is called the exploration witness of A. As in [Gur00], we assume (without lost
of generality) that T (A) is closed by subterms.

We said at the beginning of the section that these three postulates are a “natural” extension
of the three postulates of Gurevich. Indeed, we proved in [MG18] that an object verifying our
postulates 1, 2 and 3 with p = 1 processor in every initial state is a sequential algorithms in the
sense of [Gur00].

For a BSP algorithm, the sequence of states is organized by using supersteps. Notably, the
communication between the processor memories occurs only during a communication phase. In
order to do so, a BSP algorithm A will use two functions compA and commA indicating if the
algorithm runs computations or runs communications (followed by a synchronization):

Postulate 4 (Superstep Phases). For every BSP algorithm A there exists two applications
compA : M(A)→ M(A) commuting with isomorphisms, and commA : S(A)→ S(A), such that
for every state

(
X1, . . . , Xp

)
:

τA
(
X1, . . . , Xp

)
=


(
compA(X1), . . . , compA(Xp)

)
if there exists 1 ≤ i ≤ p
such that compA(Xi) 6= Xi

commA

(
X1, . . . , Xp

)
otherwise

A BSP algorithm is an object verifying these four postulates, and we denote by AlgoBSP

the set of the BSP algorithms.
A state

(
X1, . . . , Xp

)
will be said in a computation phase if there exists 1 ≤ i ≤ p such

that compA(Xi) 6= Xi. Otherwise, the state will be said in a communication phase.
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We remind that a state
−→
X is said final if τA(

−→
X ) =

−→
X . Therefore, according to the fourth

postulate, a final state must be in a communication phase such that commA(
−→
X ) =

−→
X .

4 The ASM-BSP Model

The four postulates of the section 3 p.4 define the BSP algorithms with an axiomatic point of
view, but that does not mean that they have a model. Or, in other words, that they are defined
in an operational point of view.

In the same way that Gurevich proved in [Gur00] that his model of computation ASM (Ab-
stract State Machines) captures the set of the sequential algorithms, we proved in the technical
report [MG18] that the ASMBSP model captures the BSP algorithms.

Definition 4.1 (ASM Program).

Π
def
= f (θ1, . . . , θα) := θ0

| if F then Π1 else Π2 endif

| par Π1 ‖ . . . ‖ Πn endpar

where F is a formula, f has arity α and t1, . . . , tα, t0 are terms.

Notice that if n = 0 then par Π1 ‖ . . . ‖ Πn endpar is the empty program. If in the command
if F then Π1 else Π2 endif the program Π2 is empty we will write simply if F then Π1 endif.

Definition 4.2 (Terms Read by an ASM program).

Read (f (θ1, . . . , θα) := θ0)
def
= {θ1, . . . , θα, θ0}

Read (if F then Π1 else Π2 endif)
def
= {F} ∪ Read (Π1) ∪ Read (Π2)

Read (par Π1 ‖ . . . ‖ Πn endpar)
def
= Read (Π1) ∪ · · · ∪ Read (Πn)

An ASM machine is a kind of Turing Machine using not a tape but an abstract structure X:

Definition 4.3 (ASM Operational Semantics).

∆(f (θ1, . . . , θα) := θ0, X)
def
=
{(
f
X
, θ1

X
, . . . , θα

X
, θ0

X
)}

∆(if F then Π1 else Π2 endif, X)
def
= ∆(Πi, X)

where

{
i = 1 if F is true on X
i = 2 otherwise

∆(par Π1 ‖ . . . ‖ Πn endpar, X)
def
= ∆(Π1, X) ∪ · · · ∪∆(Πn, X)

Notice that the semantics of the par command is a set of updates done simultaneously, which
differs from an usual imperative framework.

As for BSP algorithms, a state of an ASMBSP machine will be a p-tuple of processors(
X1, . . . , Xp

)
. We assume that ASMBSP programs are SPMD (Single Program Multiple Data),

which means that at each step of computation the program Π is executed individually on each
processor. Therefore an ASM program Π induces a multiset of updates and a transition function:

−→
∆(Π,

(
X1, . . . , Xp

)
)

def
=
(
∆(Π, X1), . . . ,∆(Π, Xp)

)
τΠ(X1, . . . , Xp)

def
=
(
X1 � ∆(Π, X1), . . . , Xp � ∆(Π, Xp)

)
If τΠ(

−→
X ) =

−→
X , then every processor has finished its computation steps. In that case we

assume that there exists a communication function to ensure the communications between pro-
cessors:
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Definition 4.4 (ASMBSP). An ASMBSP machine A is a triplet (S(A), I(A), τA) such that:

1. S(A) is a set of tuples of structures with the same signature L(A), which is finite and
contains the booleans and the equality, and S(A) is closed by multi-isomorphism

2. I(A) ⊆ S(A) is closed by multi-isomorphism, and is the set of the initial states

3. τA : S(A) → S(A) verifies that there exists an ASM program Π and an application
commA : S(A)→ S(A) such that:

τA(
−→
X ) =

{
τΠ(
−→
X ) if τΠ(

−→
X ) 6=

−→
X

commA(
−→
X ) otherwise

4. commA verifies that:

(a) For every state
−→
X such that τΠ(

−→
X ) =

−→
X , commA preserves the universes and the

number of processors, and commutes with multi-isomorphisms

(b) There exists a finite set of terms T (commA) such that for every state
−→
X and

−→
Y with

τΠ(
−→
X ) =

−→
X and τΠ(

−→
Y ) =

−→
Y , if they coincide over T (commA) then

−→
∆(A,

−→
X ) =

−→
∆(A,

−→
Y ).

We denote by ASMBSP the set of the ASMBSP machines. As for the BSP algorithms, a state−→
X is said final if τA(

−→
X ) =

−→
X . So, by the previous definition, if

−→
X is final then τΠ(

−→
X ) =

−→
X and

commA(
−→
X ) =

−→
X .

The last conditions about the communication function may seem arbitrary, but they are
required to ensure that the communication function is not a kind of magic device. We discussed
some issues and we constructed an example of such communication function in [MG18].

Proposition 4.5 (Computations of BSP Algorithms are BSP ASMs). For every BSP algorithm

A, there exists an ASM program ΠA such that for every state
−→
X in a computation phase:

−→
∆(ΠA,

−→
X ) =

−→
∆(A,

−→
X )

This ASM program ΠA has a normal form:

if F1 then Π1

else if F2 then Π2

...
else if Fc then Πc

endif . . . endif

where for every local memory X from a state in a computing phase, one and only one of these for-
mulas F1, . . . , Fc is true, and the ASM programs Π1, . . . ,Πc are simultaneous update commands
par u1 ‖ . . . ‖ um endpar producing distinct non-clashing sets of non-trivial updates.

By using this proposition, we proved in [MG18] that the axiomatic presentation of AlgoBSP

and the operational presentation of ASMBSP corresponds to the same set of objects:

Theorem 4.6. AlgoBSP = ASMBSP

Corollary 4.7. Every ASMBSP program has a normal form.

Proof. According to the previous theorem, an ASMBSP is a BSP algorithm, and every BSP
algorithm is captured by an ASMBSP with a program in normal form. Thus, our initial ASMBSP

is equal to an ASMBSP with a program in normal form.
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5 The While-BSP Model

In this section we present a SPMD (Single Program Multiple Data) version of a While language,
because this programming language is minimal. Indeed, the While programs are only sequential
updates, conditionals and unbounded loop. So, if WhileBSP is algorithmically equivalent to the
BSP algorithms then every imperative language containing these control flow commands are
algorithmically complete (in the sense of our definition p.12) for the BSP algorithms.

As in ASMBSP, this WhileBSP language uses first-order structures as data structures, and
not a particular architecture: this is not a concrete language but an abstract one. Any concrete
data structure which can be used for ASMBSP can be used for WhileBSP, and vice versa. In
other words, in this paper we prove that both models of computations are equivalent, up to data
structures. So, our main theorem p.14 and p.18 is a statement about control flow, and not data
structures.

Moreover, as in ASMBSP, processors of a WhileBSP program will compute locally until the
machine requires a communication step, which will be indicated with the command comm:

Definition 5.1 (While Programs).

commands: c
def
= f (θ1, . . . , θα) := θ0

| if F {P1} else {P2}
| while F {P}
| comm

programs : P
def
= end

| c;P

where F is a formula, f has arity α and θ1, . . . , θα, θ0 are terms.

Similarly to the ASM programs, we write only if F {P} for if F {P} else {end}. More-
over, the composition of commands c;P is extended to composition of programs P1;P2 by

end;P2
def
= P2 and (c;P1);P2

def
= c; (P1;P2).

The operational semantics of While is formalized by a state transition system, where a state
of the system is a pair P ? X of a While program P and a structure X, and a transition is
determined only by the head command and the current structure:

Definition 5.2 (Operational Semantics of While).

f (θ1, . . . , θα) := θ0;P ? X � P ? X �
(
f
X
, θ1

X
, . . . , θα

X
, θ0

X
)

if F {P1} else {P2};P3 ? X � Pi;P3 ? X

where

{
i = 1 if F is true in X
i = 2 otherwise

while F {P1};P2 ? X � P ? X

where

{
P = P1; while F {P1};P2 if F is true in X
P = P2 otherwise

This transition system is deterministic. We denote by �t the succession of t steps. The
only states without successor are comm;P ? X and end ? X. We say that a While program P
terminates locally on a processor X, which will be denoted by P ↓ X, if there exists t, P ′ and
X ′ such that P ?X �t comm;P ′ ?X ′ or P ?X �t end ?X ′. This t will be denoted by time(P,X),
and this X ′ by P (X). If P does not terminate locally on X, which will be denoted by P ↑ X,
then we assume that time(P,X) =∞. We proved in [Mar18] that:
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Proposition 5.3 (Composition of Programs). P1;P2 ↓ X if and only if P1 ↓ X and P2 ↓ P1(X),
such that:

1. P1;P2(X) = P2(P1(X))

2. time(P1;P2, X) = time(P1, X) + time(P2, P1(X))

For every t ≤ time(P,X), there exists a unique Pt and Xt such that P ? X �t Pt ? Xt. This
Pt will be denoted by τ tX(P ), and this Xt by τ tP (X). Notice that τP is not a transition function
in the sense of the first postulate p.4 because τ tP (X) 6= τ1

P ◦ · · · ◦ τ1
P (X). We denote by ∆(P,X)

the succession of updates made by P on X:

∆(P,X)
def
=

⋃
0≤t<time(P,X)

τ t+1
P (X)� τ tP (X)

Unlike the ASM, only one update can be done at each step. Therefore, if P ↓ X then ∆(P,X)
is finite. Moreover, we say that P is without overwrite on X if ∆(P,X) is consistent (see p.5).
We proved in [Mar18] that:

Lemma 5.4 (Updates without overwrite). If P ↓ X without overwrite then ∆(P,X) = P (X)�
X.

As in ASMBSP, processors of a WhileBSP program will compute locally until the beginning
of the communication phase. The operational semantics of WhileBSP is formalized by a state

transition system, where a state of the system is a pair
−→
P ?
−→
X of a p-tuple

−→
P =

(
P 1, . . . , P p

)
of

While programs, and a p-tuple
−→
X =

(
X1, . . . , Xp

)
of structures.

−→
P will be said in a computation phase if there exists 1 ≤ i ≤ p such that P i 6= end and

for every P , P i 6= comm;P . Otherwise,
−→
P will be said in a communication phase. We define:

−→τ −→
X

(
−→
P )

def
=
(
τX1(P 1), . . . , τXp(P p)

)
−→τ −→

P
(
−→
X )

def
=
(
τP 1(X1), . . . , τPp(Xp)

)
where, for every P ? X, τX(P ) and τP (X) are defined by:

P ? X � τX(P ) ? τP (X) if P ? X has a successor
P ? X = τX(P ) ? τP (X) otherwise

Definition 5.5 (WhileBSP). A WhileBSP machineM is a quadruplet (S(M), I(M), P, commM )
verifying that:

1. S(M) is a set of tuples of structures with the same signature L(M), which is finite and
contains the booleans and the equality

2. I(M) ⊆ S(M), and the initial states of the transition system have the form P ? X, where
X ∈ I(M)

3. P is a While program with terms from L(M)

4. commM : S(M) 7→ S(M) is an application which preserves the universes and the number
of processors, and admits an exploration witness as in the definition 4.4 p.8.
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The operational semantics of WhileBSP is defined by:

−→
P ?
−→
X
−→�

{ −→τ −→
X

(
−→
P ) ?−→τ −→

P
(
−→
X ) if

−→
P is in a computation phase

−−→
next(

−→
P ) ? commM (

−→
X ) if

−→
P is in a communication phase

where
−−→
next(P 1, . . . , P p) =

(
next(P 1), . . . ,next(P p)

)
, with next(comm;P ) = P and next(end) =

end.

Notice that, according to this definition, a state
−→
X of a WhileBSP machine M is final if

every program of the state transition system is end and if commM (
−→
X ) =

−→
X .

6 Fair Simulation

In this section, we call model of computation a set of programs associated with an operational
semantics, like our definition of ASMBSP p.8 and our definition of WhileBSP p.10.

Sometimes a literal identity can be proven between two models of computation. For example,
Serge Grigorieff and Pierre Valarcher proved in [GV12] that classes of Evolving MultiAlgebras (a
variant of Gurevich’s ASMs) can be identified to Turing Machines, Random Access Machines or
other sequential models of computation. But generally, only a simulation can be proven between
two models of computation.

We say that a model of computation M1 simulates another model M2 if for every program
P2 of M2 there exists a program P1 of M1 producing “similar” executions from the initial states.
By “similar” we mean up to a bounded number of fresh variables and up to temporal dilation,
concepts which are introduced in the following examples:

Example 6.1 (Fresh Variables). In these common examples, in order to simulate the same
behavior, a fresh variable is introduced in the code:

1. loop n {P} can be simulated by i := 0; while i 6= n {P ; i := i + 1; }, by using a fresh
variable i.

2. An exchange x ↔ y between two variables x and y can be simulated by v := x; x :=
y; y := v, by using a fresh variable v.

So, the signature L1 of the simulating program is an extension of the signature L2 of the
simulated program, in other words L1 ⊇ L2. The signature must remain finite, so L1 \ L2 must
be finite, but this is not enough. Using a function symbol with arity α > 0 would be unfair
because it could store an unbounded amount of information. So, in our definition 6.5 p.12 of
the simulation we will only assume that L1 \ L2 is a finite set of variables. Moreover, to prevent
the introduction of new information, we will assume that these “fresh” variables are uniformly
initialized (ie their value is the same in the initial processors, up to isomorphism).

Definition 6.2 (Restriction of Structure). Let X be a structure with signature L1, and let L2

be a signature such that L1 ⊇ L2. The restriction of X to the signature L2 will be denoted
X|L2 and is defined as a structure of signature L2 such that U(X|L2) = U(X) and for every

f ∈ L2 we have f
X|L2 = f

X
. In the other way, X will be called an extension of X|L2 .

Example 6.3 (Temporal Dilation). During every “step” of a Turing machine, the state of the
machine is updated, a symbol is written in the cell, and the head may move left or right. But the
notion of elementary action is very arbitrary. We may consider either a machine M3 requiring
three steps to do these three elementary actions, or a machine M1 requiring only one step to do
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the three aspects of one multi-action. An execution
−→
X of M3 corresponds to an execution

−→
Y of

M1 if for every three steps of M3 the state is the same than M1:

M3 X0, X1, X2, X3, X4, X5, X6, X7, X8, . . .
M1 Y0, Y1, Y2, . . .

In other words, if M3 is three times faster than M1, these execution may be considered
equivalent. For every t, we have X3t = Yt, so we say that there is a temporal dilation d = 3.
In this example, the temporal dilation is uniform for every program, but in the definition 6.5
p.12 this temporal dilation may depend on the simulated program.

Example 6.4 (Ending Time). Notice that the temporal dilation is not sufficient to ensure that
the final states are the same. Indeed, in the previous example, even if Yt is terminal for M1, we
have an infinite loop for M3:

M3 . . . , X3t, X3t+1, X3t+2, X3t, X3t+1, X3t+2, . . .
M1 . . . , Yt, Yt, . . .

So, we add to the following definition an ending time e ensuring that the simulating program
terminates if the simulated program has terminated:

Definition 6.5 (Fair Simulation). Let M1 and M2 be two models of computation. We say that
M1 simulates M2 if for every program P2 of M2 there exists a program P1 of M1 such that:

1. L(P1) ⊇ L(P2), and L(P1) \ L(P2) is a finite set of fresh variables depending only on P2,
and uniformly initialized

and if there exists d > 0 and e ≥ 0 depending only on P2 such that for every execution
S′0, S

′
1, S
′
2, . . . of P2 there exists an execution S0, S1, S2, . . . of P1 verifying that:

2. for every t ∈ N, Sd×t|L(P2) = S′t

3. time(P1, S0) = d× time(P2, S
′
0) + e

If M1 simulates M2 and M2 simulates M1, then these models of computation will be said
algorithmically equivalent, which will be denoted by M1 'M2.

Notice that the parameters of the simulation, ie the fresh variables, the temporal dilation and
the ending time, depends on what is simulated and not on a particular state of the execution.

Moreover, if M1 and M2 are algorithmically equivalent, and M2 is a set of algorithms (as
the set of BSP algorithms defined at the section 3 p.4) then we will say that the model of
computation M1 is algorithmically complete for the class of algorithms M2.

Because in this report we prove p.14 and p.18 that WhileBSP ' ASMBSP, and because we
proved in [MG18] that ASMBSP = AlgoBSP, that means that our minimal model WhileBSP

defined p.10 is algorithmically complete for the BSP algorithms.

7 ASM-BSP simulates While-BSP

The simplest idea to translate a While program P into an ASM program is to add a variable
for the current line of the program and follow the flow of execution. We detail in [Mar18] why
this naive solution does not work as intended. Instead, we will add a bounded number of boolean
variables bP1

, . . . , bPk , where P1, . . . , Pk are the programs occurring during a possible execution
of the simulated program P .
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The set of these programs will be called the control flow graph G(P ) of the program P .
Before defining it we must introduce the following notation:

G(P1);P2
def
= {P ;P2 | P ∈ G(P1)}

Definition 7.1 (Control Flow Graph).

G(end)
def
= {end}

G(comm;P )
def
= {comm;P}
∪ G(P )

G(f (θ1, . . . , θα) := θ0;P )
def
= {f (θ1, . . . , θα) := θ0;P}
∪ G(P )

G(if F {P1} else {P2};P3)
def
= {if F {P1} else {P2};P3}
∪ G(P1);P3

∪ G(P2);P3

∪ G(P3)

G(while F {P1};P2)
def
= G(P1); while F {P1};P2

∪ G(P2)

We prove in [Mar18] that card(G(P )) ≤ length(P )+1, where the length of a While program
P is defined in the usual way. Therefore, the number of boolean variables bPi , where Pi ∈ G(P ),
is bounded by a number depending only of P .

A processor X of the WhileBSP machine M will be simulated by the ASM machine A by
using the same processor X but with new symbols L(A) = L(M) ∪ {bPi | Pi ∈ G(P )} such that
one and only one of the bPi is true. This extension of the structure X will be denoted by X[bPi ].

An initial processor X for the While program P will be simulated by the processor X[bP ],
and during the execution the boolean variable which is true at a given step of a given processor
is determined by the translation ΠP of the program P :

Definition 7.2 (Translation of a While Program).

ΠP
def
= par ‖Pi∈G(P ) if bPi then JPiK

ASM
endif endpar

where the translation JPiK
ASM

of the first step of Pi is defined at the table 1 p.14.

Notice that we distinguished two cases for the translation of the while command. Indeed,
if we did not, then the ASM would have tried to do two updates bwhile F {P1};P2

:= false and
bP1;while F {P1};P2

:= true. But, in the case where the body P1 = end, both would have clashed
and the ASM would have stopped. This behavior is not compatible with the While program,
which would had looped forever. To preserve this behavior, we modified the translation and
added a fresh variable b∞ which prevents the ASM from terminating. An other solution would
have been to forbid empty body for the while commands in the definition 5.1 p.9, as it is done
in [Mar18] and in the submitted version of this report.

Therefore, we can prove that the ASM program ΠP simulates step-by-step the While pro-
gram P :

Proposition 7.3 (step-by-step Simulation of a While program). For every 0 ≤ t < time(P,X):

τΠP (τ tP (X)[bτtX(P )]) = τ t+1
P (X)[bτt+1

X (P )]
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JendKASM def
= par endpar

Jcomm;P KASM def
= par endpar

Jf (θ1, . . . , θα) := θ0;P KASM def
=

par bf(θ1,...,θα):=θ0;P := false
‖ f (θ1, . . . , θα) := θ0

‖ bP := true
endpar

Jif F {P1} else {P2};P3K
ASM def

=

par bif F {P1} else {P2};P3
:= false

‖
if F then bP1;P3

:= true
else bP2;P3

:= true
endif

endpar

Jwhile F {end};P KASM def
=

if F then b∞ := ¬b∞

else

par bwhile F {end};P := false
‖ bP := true

endpar

endif

Jwhile F {c;P1};P2K
ASM def

=

par bwhile F {c;P1};P2
:= false

‖
if F then bc;P1;while F {c;P1};P2

:= true
else bP2

:= true
endif

endpar

Table 1: Translation of one step of a While program

Proof. The proof is made by case on τ tX(P ), similarly to the proof in the long version of [Mar18],
except that there is a new command comm and new terminal states comm;P ? X.

Therefore, we can prove that ASMBSP simulates WhileBSP in the sense of the definition 6.5
p.12, with at most length(P ) + 2 fresh variables, a temporal dilation d = 1 and an ending time
e = 0. Such simulation is said to be strictly step-by-step (see the discussion at section 9 p.19).

Theorem 7.4. ASMBSP simulates WhileBSP.

Proof. LetM = (S(M), I(M), P, commM ) be a WhileBSP machine, and letA = (S(A), I(A), τA)
be an ASMBSP machine such that:

• S(A) is an extension of S(M) by using the boolean variables bPi with Pi ∈ G(P ), and b∞.

• Every X ∈ I(A) is a X|L(M) ∈ I(M) such that only bP is true.

• The ASM program of the machine A is the program ΠP defined p.13.

• commA is commM for the symbols of L(M), and for the boolean variables bPi and b∞:

– if bcomm;P is true in a processor then bcomm;P becomes false and bP becomes true,

– otherwise the boolean variables bPi and b∞ remain unchanged.

According to the definition of the simulation p.12, there is three points to prove:

1. L(A) = L(M)∪{bPi | Pi ∈ G(P )}∪{b∞}, where card(G(P )) ≤ length(P )+1, so the number
of fresh variables is finite and depends only of the simulated program P .
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Until a communication phase, the ASM program ΠP is applied to every processor, and
according to the proposition 7.3 the execution corresponds to the operational semantics of the
While programs defined p.9.

A processor terminates if bcomm;P or bend is true. When every processor has terminated, the
state is in a communication phase and commA apply the communication commM and moves the
boolean variables from bcomm;P to bP , thus respecting the behavior of the application next p.10.

2. So, one step of the WhileBSP machine M is simulated by d = 1 step of the ASMBSP

machine A.

3. Moreover, a state
−→
X of the ASMBSP machine A is final if τΠ(

−→
X ) =

−→
X and commA(

−→
X ) =

−→
X ,

and this happens if and only if bend is true for every processor and commM (
−→
X ) =

−→
X .

Therefore, the ASMBSP machine A stops if and only if the WhileBSP machine M stops,
and the ending time is e = 0.

8 While-BSP simulates ASM-BSP

We prove the simulation in to steps:

1. We translate the ASM program Π into an imperative program P step
Π simulating one step

of Π.

2. Then, we construct a While program PΠ which repeats P step
Π during the computation

phase, and detects the communication phase by using a formula F end
Π .

Because the ASM and While programs have the same updates and conditionals, an intuitive
translation JΠKWhile

of an ASM program Π could be:

Definition 8.1 (Naive translation of one step of ASM).

Jf (θ1, . . . , θα) := θ0K
While def

= f (θ1, . . . , θα) := θ0; end

Jif F then Π1 else Π2 endifKWhile def
= if F {JΠ1K

While} else {JΠ2K
While}; end

Jpar Π1 ‖ . . . ‖ Πn endparKWhile def
= JΠ1K

While
; . . . ; JΠnK

While

But an ASM program like par x := y ‖ y := x endpar which exchanges the values of the
variables x and y is translated into x := y; y := x; end which sets the value of x to the value of y,
and leaves y unchanged. To capture the simultaneous behavior of the ASM programs, we need
to substitute the terms read in Π (see the definition 4.2 p.7) by fresh variables:

Definition 8.2 (Substitution of a term by a variable).

(f (θ1, . . . , θα) := θ0) [v/θ]
def
= f (θ1[v/θ], . . . , θα[v/θ]) := θ0[v/θ]

(if F then Π1 else Π2 endif) [v/θ]
def
= if F [v/θ] then Π1[v/θ] else Π2[v/θ] endif

(par Π1 ‖ . . . ‖ Πn endpar) [v/θ]
def
= par Π1[v/θ] ‖ . . . ‖ Πn[v/θ] endpar

where θ1[v/θ2]
def
=

{
v if θ1 = θ2

θ1 otherwise
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Because these variables are fresh, if θ1 and θ2 are distinct terms then Π[v1/θ1][v2/θ2] =
Π[v2/θ2][v1/θ1]. Let θ1, . . . , θr be the terms of Read (Π) defined p.7. For every term θ ∈ Read (Π),

we add to L(Π) a fresh variable vθ, and we denote by [−→vθ/
−→
θ ] the successive substitutions

[vθ1/θ1] . . . [vθr/θr].

The While program vθ1 := θ1; . . . ; vθr := θr; JΠK
While

[−→vθ/
−→
θ ] captures the simultaneous

behavior of the ASM program Π. But, according to our definition of the simulation p.12, one
step of the ASM program Π must be translated into exactly d steps of the While program. Thus,

we must ensure that JΠKWhile
[−→vθ/
−→
θ ] computes the same number of steps for every execution.

According to the corollary 4.7 p.8, we can assume that the ASM program Π is in normal
form:

if F1 then Π1

else if F2 then Π2

...
else if Fc then Πc

endif . . . endif

where for every local memory X from a state in a computing phase, one and only one of these
formulas F1, . . . , Fc is true, and the programs Πi have the form par ui1 ‖ . . . ‖ uimi endpar

where ui1, . . . , u
i
mi are mi update commands, and produce distinct non-clashing sets of non-trivial

updates (the proof is made in [MG18]).
Let m = max1≤i≤c{mi}. We pad (as in [FZG10]) every block of mi update commands by

using a skip n command, defined by induction:

skip 0
def
= end

skip n+ 1
def
= if true {end}; skip n

The translation P step
Π of one step of the ASM program Π is given explicitly at the table 2

p.17, and we prove that it requires exactly r + c+m steps (which depends only of Π) for every
extension X of a processor of the ASMBSP machine with the fresh variables {vθ | θ ∈ Read (Π)}.

Proposition 8.3 (Translation of one step of an ASM program).

(P step
Π (X)�X)|L(Π) = ∆(Π, X|L(Π))

time(P step
Π , X) = r + c+m

where r = card(Read (Π)), c is the number of formulas in the ASM program Π in normal form,
and m is the maximum number of updates per block of updates in Π.

Proof. The proof is done in [Mar18] by using the lemma 5.4 p.10. Indeed, P step
Π is terminal

because it contains no loop, and it is without overwrite on X because Π is in normal form.

Therefore, we can prove by induction on t that for every processor X in a computation

phase we have

t times︷ ︸︸ ︷
P step

Π ◦ · · · ◦ P step
Π (X) = τ tΠ(X|L(Π)). We aim to repeat P step

Π until the end of the
computation phase which is, according to the definition 4.4 p.8, the termination of Π.

Because every update block Πi of the ASM program Π in normal form produces a non-
clashing set of non-trivial updates, if Π can terminate then there exists a Πi which is the empty
program par endpar. Moreover, because the blocks produce distinct set of updates, this Πi is
the only empty block of updates in Π. Therefore, we can define the termination formula F end

Π :
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Π = P step
Π

def
=

vθ1 := θ1;
vθ2 := θ2;
...
vθr := θr;

if F1 then if vF1
{

par f(
−→
θ1

1) := θ1
1 f(−→vθ11 ) := vθ11 ;

‖ f(
−→
θ1

2) := θ1
2 f(−→vθ12 ) := vθ12 ;

‖
...

...

‖ f(
−−→
θ1
m1

) := θ1
m1

f(−−→vθ1m1
) := vθ1m1

;

endpar skip (c+m)− (1 +m1) }
else if F2 then else { if vF2 {

par f(
−→
θ2

1) := θ2
1 f(−→vθ21 ) := vθ21 ;

‖ f(
−→
θ2

2) := θ2
2 f(−→vθ22 ) := vθ22 ;

‖
...

...

‖ f(
−−→
θ2
m2

) := θ2
m2

f(−−→vθ2m2
) := vθ2m2

;

endpar skip (c+m)− (2 +m2) }
...

...
else if Fc then else { if vFc {

par f(
−→
θc1) := θc1 f(−→vθc1) := vθc1 ;

‖ f(
−→
θc2) := θc2 f(−→vθc2) := vθc2 ;

‖
...

...

‖ f(
−−→
θcmc) := θcmc f(−−→vθcmc ) := vθcmc ;

endpar skip (c+m)− (c+mc) }
endif . . . endif ; end } . . . ; end } ; end

Table 2: Translation P step
Π of one step of the ASM program Π

Definition 8.4 (The termination formula).

F end
Π

def
=

{
Fi if there exists 1 ≤ i ≤ c such that Πi = par endpar

false otherwise

Lemma 8.5 (Correctness of the termination formula).

min

t ∈ N | F end
Π

t times︷ ︸︸ ︷
P step

Π ◦ · · · ◦ P step
Π (X)

= true

 = time(Π, X|L(Π))

Proof. The proof is made by using the definition 8.4 p.17 of the termination formula, based on
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the fact that Π is in normal form, and the proposition 8.3 p.16 establishing that the program
P step

Π simulates one step of the ASM program Π.

So, a computation phase of the ASM program Π can be simulated by a While program like
while ¬F end

Π {P step
Π }; end.

According to the definition of the ASMBSP p.8, the communication phase begins at the
termination of the ASM program Π, and continues until Π can do the first update of the next
computation phase, ie when F end

Π becomes false.
The execution ends when F end

Π is true and the communication function commA changes noth-
ing. By using the exploration witness T (commA) (defined p.8) of the communication function,
the processor can locally know whether the communication function has updated it or not at the
last step, but it cannot know if the communication function has globally terminated. Therefore,
we use a fresh boolean bend

commA
updated by the communication function commA itself to detect

if the communication phase has terminated.
Let PΠ be the While program defined at the table 3 p.18, which is the translation of the

ASM program Π. Notice that comm is executed only if F end
Π is true. That means that the

fresh boolean bend
commA

can be set to true only if F end
Π is true and commA has terminated, which

indicates the end of the execution.

PΠ
def
= while ¬bend

commA
{

if F end
Π {

skip (r + c+m)− 1;
comm;
end }

else {
P step

Π ;
end };

end };
end

Table 3: Translation PΠ of the ASM program Π

Theorem 8.6. WhileBSP simulates ASMBSP.

Proof. Let A = (S(A), I(A), τA) be an ASMBSP machine, with an ASM program Π and a com-
munication function commA, and let M = (S(M), I(M), P, commM ) be a WhileBSP machine
such that:

• S(M) is an extension of S(A) by using the fresh variables vθ1 , . . . , vθr with {θ1, . . . , θr} =
Read (Π), and the fresh boolean bend

commA
.

• Every X ∈ I(M) is a X|L(A) ∈ I(A), such that the fresh variables are initialized with the

value of undef, and the fresh boolean bend
commA

to false.

• The While program P of the machine M is the program PΠ defined at the table 3 p.18.

• commM is commA for the symbols of L(A), and for the fresh variables:

– commM leaves unchanged the variables vθ for θ ∈ Read (Π)

– if commA changes nothing, then commM sets bend
commA

to true

18



According to the definition of the simulation p.12, there is three points to prove:

1. L(M) = L(A) ∪ {vθ | θ ∈ Read (Π)} ∪ {bend
commA

}, so we have r + 1 fresh variables, with
r = card(Read (Π)), which depends only of the ASM program Π.

Moreover, during the execution of PΠ:

• The while command checks in one step whether the execution has terminated or not.

• Then, the if command checks in one step whether F end
Π is true or not which, according to

the lemma 8.5 p.17, indicates whether Π has terminated or not:

– If Π has terminated, then (r + c + m) − 1 steps1 are done by the skip command,
then the head command of the execution becomes a comm, and the processor waits
for the other processors to do the communication commM , which is done in one step.
Moreover, if commA has terminated, bend

commA
becomes true during commM .

– If Π has not terminated then P step
Π is executed in r + c + m steps, and according to

the proposition 8.3 p.16 simulates one step of the ASM program Π.

Then the execution comes backs to the while command.

Notice that the comm command are after the skip in order to be the last thing done by a
processor during the simulation of a communication step of the ASMBSP machine. This ensures
the synchronization of the processors when some are in a computation phase and others are
waiting the communication.

2. A computation step or a communication step of the ASMBSP machine is simulated by
exactly d = 2 + r + c+m steps of the WhileBSP machine.

3. A terminal state of the ASMBSP machine is reached when Π has terminated for every
processor and the communication function commA changes nothing. In such state, the
while command checks bend

commA
which was false during the entire execution, then the if

command checks that F end
Π is true, then skip (r + c + m) − 1, then the communication

is done and sets bend
commA

to true. Then the while command verifies that the execution is
terminated, and the program reaches the end after e = d+ 1 steps.

9 Discussion

In this section, as Gurevich did in [Gur99], we present the discussion about our result by using
a dialog between the authors and Quisani, an imaginary scrupulous colleague:

authors: Therefore, by using the two parts of the theorem p.14 and p.18, we obtain in
the sense of the definition 6.5 p.12 that:

WhileBSP ' ASMBSP

In other words, our imperative programming language WhileBSP defined p.10 is
algorithmically equivalent to the BSP algorithms AlgoBSP axiomatized in [MG18],

1↑ By construction of the program in normal form, we have c ≥ 1, because if Π cannot terminate there is at
least one block of updates in Π, and otherwise there is at least the empty block of updates. So (r+c+m)−1 ≥ 0.
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where we proved that ASMBSP = AlgoBSP. And by algorithmically equivalent, we
mean that the executions are the same, up to a bounded number of fresh variables,
a constant temporal dilation, and a constant ending time.

quisani: Speaking of the simulation, even if the two parts of your theorem corresponds
to your definition of the simulation, it appears that one way is easier than the other.
Indeed, in the first part p.14 the temporal dilation was d = 1 and the ending time
e = 0, which does not depend on the simulated program, whereas in the second part
p.18 the temporal dilation was d = 2 + r + c+m and the ending time e = d+ 1.
Could we find a better simulation with uniform parameters, which means that
they do not depend on the simulated program?

a: Not with the model of computation WhileBSP defined p.10, because only one update
can be done at every step of computation. But indeed, we can imagine an alternative
definition of the WhileBSP model, where while and if commands costs 0 step and
tuple-updates like (x, y) := (y, x) are allowed (for every size of tuples, not only
couples).
In that case, the simulation could have been done with the same translation but with
a uniform cost of d = 1 and e = 1. We can even get rid off the ending time by
assuming that bend

commA
is updated at the last step of the communication function, and

not when the communication function changes nothing.
In a way, such alternate model is algorithmically closer to the ASMBSP model, be-
cause there is a quasi-identity (only the fresh variables are necessary) between them.
But in this report we preferred a minimal model of computation, which can be more
easily compared to practical computing languages.

q: Speaking of the cost model, you defined an alternation of computation phases and
communication phases for the ASMBSP and for the WhileBSP, but they don’t coin-
cide in the translation. Indeed, a computation step of an ASMBSP is translated into
several computation steps in WhileBSP then an execution of the comm command.
So, there are many more supersteps in the simulation of the ASMBSP than in the
execution of the ASMBSP itself. Therefore, your simulation does not respect the cost
model of the AlgoBSP defined in [MG18].

a: Strictly speaking, you are perfectly right. And this cannot be avoided, at least for our
definition of WhileBSP, because the communication function is called via the comm

command, and the program PΠ simulating the ASM program Π internalizes the test
required to know if the program does a computation step or a communication step,
test which is done by the operational semantics and not the program in the definition
4.4 p.8 of ASMBSP.
But the “computation steps” done by the WhileBSP program during a communi-
cation phase are only tests (or updates done by the communication function itself)
and not updates done by the program, so it may be misleading to call them proper
computation steps.
If we call computation steps only the updates commands, communication steps the
comm command and administrative steps the if and while command, and if we
call computation phase a succession of computation or administrative steps, and
communication phase a succession of communication or administrative steps, then the
number of supersteps done by an ASMBSP is preserved by our translation. Therefore,
the cost model is preserved.
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q: Fine. But if you don’t have an identity (d = 1 and e = 0) up to fresh variables,
why do you bother to simulate one step in a constant number of step. Why not a
polynomial number of steps ?

a: Indeed, usually a simulation is seen acceptable if the simulation costs O (f(n)) steps,
where f is a polynomial function and n is the duration for the simulated machine. But
in this report we are not interested in the simulation of the function (the input-output
behavior) but the simulation of the algorithm (the step-by-step behavior).
For example, a Turing machine with one tape can polynomially simulate a Turing
machine with two tapes, so they are usually seen as equivalent. But it has been
proven in [BBD+04] that the palindrome recognition, which can be done in O (n)
steps (where n is the size of the word) with two tapes, requires at least O

(
n2/ log(n)

)
steps with only one tape. Strictly speaking, that means that the algorithm in O (n)
requires at least two tapes, even if its result can be polynomially simulated.
A consequence of the temporal dilation d and the ending time e is that we simulate
an execution costing n steps by an execution costing O (n) steps, so the complexity
in time is strictly preserved, but our simulation is even more restrictive (and so our
main theorem is stronger).
Indeed, in this report we simulate not only the output and the duration (a functional
simulation) but we simulate every step of the execution by d steps (an algorithmic
simulation). So we preserve the intentional behavior and not only the exten-
sional behavior of the simulated algorithm.
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