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MICROSTRUCTURAL TOPOLOGICAL SENSITIVITIES OF THE
SECOND-ORDER MACROSCOPIC MODEL FOR WAVES IN
PERIODIC MEDIA*

MARC BONNET!, REMI CORNAGGIA}, AND BOJAN B. GUZINAS

Abstract. We consider scalar waves in periodic media through the lens of a second-order effec-
tive, i.e., macroscopic description, and we aim to compute the sensitivities of the germane effective
parameters due to topological perturbations of a microscopic unit cell. Specifically, our analysis
focuses on the tensorial coefficients in the governing mean field equation—including both the leading
order (i.e., quasi-static) terms, and their second-order companions bearing the effects of incipient
wave dispersion. The results demonstrate that the sought sensitivities are computable in terms of
(i) three unit cell solutions used to formulate the unperturbed macroscopic model; (ii) two adoint-
field solutions driven by the mass density variation inside the unperturbed unit cell; and (iii) the
usual polarization tensor, appearing in the related studies of nonperiodic media, that synthesizes
the geometric and constitutive features of a point-like perturbation. The proposed developments
may be useful toward (a) the design of periodic media to manipulate macroscopic waves via the
microstructure-generated effects of dispersion and anisotropy, and (b) subwavelength sensing of pe-
riodic defects or perturbations.
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1. Introduction. Over the past decade, waves in periodic media have been the
subject of mounting attention owing to an exceeding ability of periodic structures
to provide cloaking, noise control, and subwavelength imaging [21, 29, 20]. Funda-
mentally, the latter derive from the underpinning phenomena of frequency-dependent
anisotropy, multiple solution branches, and band gaps [9] that can be manipulated
through a suitable design of the unit stencil. Some of the above and related ef-
fects, including cloaking and a negative index of refraction, are often achieved at long
wavelengths [13]—extending beyond the periodicity cell. This poses the question of
mathematical tools that can aid the design, via, e.g., topology optimization [25], of
periodic “microstructures” toward gaining a desired macroscopic effect.

In this vein, our study aims to distill the sensitivity of wave motion in a periodic
composite due to small topological alterations of its unit cell. In other words, we
consider perturbations that are inherently periodic according to the germane lattice.
With reference to a (dispersive) field equation governing the effective, i.e., macro-
scopic wave motion, we specifically seek to compute the so-called topological sensi-
tivities (TSs) of the coefficients in the field equation with respect to the nucleation
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of a vanishing inhomogeneity inside the microscopic unit cell. The concept of TS
was introduced in the late 1990s (see [24] for references), and can be described as
follows. For a given boundary value problem, one considers (in the classical sense,
an individual) topological perturbation of vanishing size a at some point z inside the
reference domain, and seeks the TS of any relevant quantity J as an a-independent
factor in the leading-order asymptotic expansion of J as a — 0. In this way the
map TS(z), which is typically inexpensive to compute, helps drive the topological
optimization procedure by highlighting the region(s) where medium alterations may
be most beneficial toward increasing or decreasing J.

With the above goal in mind, the natural first step in the analysis is to identify
the field equation that governs the macroscopic wave motion in a “microstructured”
periodic medium. Such an effective model should preferably include the effects of
(anisotropic) wave dispersion to cater for intended applications. To this end, we de-
ploy the framework of two-scale homogenization [6] and pursue the expansion up to
the second order [4, 27|, rather than deploying the competing (physics-based) ap-
proaches such as the Mindlin’s second-gradient theory [22, 5] or the Willis’ concept
of effective constitutive relationships [28, 23]. The key advantage of the adopted
approach resides in the fact that the two-scale paradigm produces a set of unit
cell problems from which the homogenized coefficients are then computed. These
cell problems, endowed with periodic boundary conditions, are (i) of elliptic type
and (ii) well-posed, thus facilitating a systematic derivation of the germane small-
perturbation asymptotics by building upon the related works on conductivity-like
problems [10, 2, 7].

To facilitate the discussion and to maintain a clear link with prior works [4, 27],
we interpret the scalar wave equation within the framework of (elastic) antiplane
shear waves. Notwithstanding such a choice, the ensuing analysis applies to a much
wider range of physical problems (see, e.g., [18, Table 1]), which notably include the
transverse modes of electromagnetic wave propagation. More generally, our work
extends the previous TS analyses of periodic media—performed in the context of
elastostatics and structural shape optimization [14, 3, 26]—to dynamic, i.e., wave
motion problems described via second-order homogenization. Equivalently, this study
can be seen as a follow-up to the small-inclusion asymptotic analyses underpinning the
(approximate) effective description of low-volume fraction dilutions [12] and two-phase
periodic composites; e.g., [2, 18]. In principle, the idea of topological perturbation can
also be applied to the (leading-order) effective description [11] of higher, i.e., “optical”
solution branches for a given periodic medium; the latter topic is, however, beyond
the scope of this study.

The paper is organized as follows. Section 2 provides a review of the relevant two-
scale homogenization results, and introduces topological perturbations of the unit cell.
Section 3 derives the necessary asymptotics for a cascade of the unit cell problems,
and introduces the polarization tensor that arises in the analysis. Our main result,
Theorem 5, which provides the TS expressions for the coefficients featured by the
effective, i.e., macroscopic, field equation, is presented and discussed in section 4.
Section 5 is dedicated to some auxiliary results that were delayed for better read-
ability, while section 6 provides the proof of Theorem 5. Section 7 illustrates via
numerical simulations how the obtained TS results can be used toward subwavelength
sensing, where the information on long-wavelength (anisotropic) dispersion can be
used to localize periodic defects inside the unit cell, due to, e.g., a manufacturing
error. Finally, section 8 highlights the key contributions of our work.
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2. Preliminaries.

2.1. Two-scale homogenization framework. In the context of two-dimen-
sional antiplane elasticity, we consider a reference biperiodic medium whose period-
icity cell Y = (0,1) x (0,a) C R?, @ = O(1), is endowed with smooth ¥ — R
distributions of the shear modulus p(x) and mass density p(x). Note that the latter
restriction can, in principle, be weakened; in particular, piecewise-smooth character-
istics may be considered instead; see Remark 3. Letting € > 0 be a small perturbation
parameter, we next consider an €Y -periodic medium endowed with the shear mod-
ulus pe(x) := p(z/e) and mass density pe(x) := p(x/c). A time-harmonic antiplane
shear wave propagating in such a medium, described in terms of the transverse dis-
placement u = u.(x)e ™!, obeys the field equation
(1) div (/LEVUE) + p€w2u5 =0,
and admits a two-scale expansion [6, 27] of the form
(2) us(x) = ug(z, y) + eur (x,y) + 2ua(x, y) + 2uz(x, y) + o(e?),

whose coefficients ug, u1, ug, us are functions of the “slow” variable & € R? and the
“fast” variable y:=x/c € Y, computable as

) = Uo(x),

y) =Ui(z) + P(y) - VU(x),

y) = Uz(x) + P(y)-VUi(z) + Q(y): V>Us(),

y) = Us(x) + P(y)- VU () + Q(y): VUi () + R(y): V> Uy (),

where U; are the mean displacement fields defined by Uj(x) = (u;)(), (-) denotes
the unit cell average computed with respect to the fast coordinate, i.e.,

(4) () = Y] /Y f(@,y) AV (y);

@

up(x,y
(3)

usz(xr

u (x,
UQ(
(,

signifies the scalar product between two nth-order tensors (n > 2); and P,Q, R
are the so-called unit cell functions defined below. In (3) and thereafter, the gradient
operator V and its powers V? = V(V?™!) act “to the right”, e.g., (VA)ijx = 0; Ay
for a second-order tensor field A. Accordingly, the divergence operator is understood
in a commensurate way, e.g., (divA), = 0;A4;k.

Cell functions and homogenized coefficients. The tensor-valued cell func-
tions P:Y - R?, Q : Y — (R*)? and R : Y — (R?)? solve the well-posed [6]
recursive cell problems

(50) div[py(I+VP)]=0 inY,
? un-VP Y-periodic, (P)=0,
0
(5b) div [p(I& P +VQ)] +/L(I+VP)—p% =0 Y,
n-(I®QP+VQ) Y-periodic, (Q)=0,
div[p(I®Q+ VR)| + n(I® P+ VQ)
0 1 0 1
5c¢ _ Ll @ o KB i
(5c) pP®QO+p[QO®QO QO} 0 inY,

n- (I®Q + VR) Y-periodic, (R)=0.
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In (5), o" € R, @' € R?, u® € (R?)2, pu! € (R?)3 are constant tensorial quantities
given by

a) o' =
(©) ()917
Qi

<p>, (C) “O:<M(VP+I)>sym’
(b) pt=

(pP), () (W(VQ+IxP))

sym’

Here, the subscript “sym” indicates tensor symmetrization obtained by averaging over
all component index permutations. In particular, for a tensor A of order n and a given
n-tuple of indices I € {1,2}", we have

™ (Asm)y = o 3 Aot

’ o€ell,

where IT,, denotes the set of all permutations o (I). In the following, we will also make
use of the higher-order “descendants” of (6), namely, 0> € (R?)? and p? € (R?)%,
defined by

(8) (a) 0*=(rQ) (b) p2=(uW(VR+I2Q))

sym’
One may note that the entries in (6) obey the following interrelationship, which, in
particular, causes the bracketed factor of p in (5¢) to vanish.

LEMMA 1. The tensorial quantities in (6) satisfy the “reciprocity” relationship
ut=(e'en’),.-

Proof. The claim is verified by (i) taking the tensor product of @ and (5a) and

of P and (5b), (ii) subtracting the obtained equalities, (iii) integrating over Y, and
(iv) symmetrizing the resulting tensor equality in the sense of (7). d

Cell problems, weak formulation. Let V,, denote the function spaces of (pth-
order tensor-valued, zero-mean, Y-periodic functions) given by

V=V, ={weH' (Y;R), (w)yy =0, w Y-periodic},

9
©) VY, = {'w € HI(Y; (R2)p), (wyy =0, w Y—periodic} forp>1

with the implicit convention that V (without subscript) refers to V,, for some unspec-
ified p. In what follows, we will also denote by w™ the reversal of tensor indexes; for
instance, one has (w™");jx = (w)ik;; for a fourth-order tensor w. In this setting, each
of the cell problems in (5) has a weak formulation. On introducing the bilinear form

(10) <<'w,'u>>nX = /X n(Vw)T Vo dV

associated with elastic strain energy for some domain X C R? and shear modulus 7,
tensor-valued cell functions P € V1, Q € V2, and R € V3 can be shown to solve the
weak problems

(11a) (w, P>>’; = —F(w) for all weV,

(11b) (w,Q)y = J(w,P)+ K®w)—L%w) forallweV,

(11c) (w, R>>l;, J(w, Q) + K% (w) — L% (w) for all we V.
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The right-hand sides of (11a)—(11c) involve the bilinear form J, defined by
(12) J(w,v) = /Yu(wT® Vv — (Vw)"®@v) dV
and the linear functionals

(13)
F(w):/yu(V'w)TdV =—-J(w,1),

KQ(w):/ pw I dV, KR(w):/ pw @I P dV,
Y Y
©° u°
L9(w) = / pwe e av, L% (w) = / et o pav.
Y 4 Y Y

Although the weak problems (11) involve scalar test functions (reflecting the fact
that the problems governing each scalar component of P, Q, R are uncoupled), it will
be convenient in the following to extend (11) together with the affiliated linear and
bilinear forms to tensor-valued test functions w—a need to which definitions (10),
(12), and (13) cater. The definition (12) of J further implies that, for any pair (v, w)
of scalar or tensor-valued functions,

(14) J(w,v) = —J (v, w).

With reference to (13), we note that the homogenized shear moduli can be written
in terms of the functionals F' and K¢ as

(15a) p = [Y[7HFP) + YK ) s
(15b) pl= [Y[THF@Q) + K°(P)),.,
(15¢) p’ = [YI"((F(R) + K°Q)) .

Mean field. Let U(x) denote the (macroscopic) mean field associated with w.,
defined by

U(z) = (uo + eur + e2ug + e3us + o(?))
= Up(x) + eUi(x) + 2Us(x) + 3Us(x) + o(e?).

Its O(e®) approximation, U®) := U° 4 eU; + €2U, + £3Us, can, in particular, be
shown [27] to satisfy the homogenized field equation

(16)  p": VAU 4 2p?2:VAU® 4 w2 (0"U®) + 202 VEU®)) = o(e?),

where ¢, u°, o2, and p? are given by (6) and (8). Note that the contribution of
o' and p! in (16) vanishes as a consequence of Lemma 1, while the o(¢?) remainder
(instead of expected O(e?) residual) stems from the analogous relationship linking @3
and p? to their lower-order companions.

2.2. Perturbed cell configuration. Let Ap > —mingey pu(x) and Ap >
— mingey p(x) be prescribed material contrasts. We now introduce at some z €Y a
small inhomogeneity B, = z+ al3 of size a and shape B, endowed with the shear mod-
ulus g + Ap and mass density p + Ap. The material characteristics of the perturbed



2062 M. BONNET, R. CORNAGGIA, AND B. B. GUZINA

cell Y, are, hence, pu, = p+ x(Ba)Ap and p, = p+ x(Ba)Ap, where x(-) denotes the
characteristic function of a perturbation. The size a is assumed to be sufficiently small
so that B, € Y, whereby u, = p and p, = p in the vicinity of 0Y. We use notations
<<w7v> ’;,a, P, etc., and J,, K ?, etc. whenever cell problems and effective charac-
teristics are considered for the perturbed cell. The weak cell problems (11a)—(11c) for
the perturbed cell then read

(17a) (w, Pa>>’;/a = —F,(w) for all weV,
(17b) (w, Q)" = Ja(w, Py) + K (w) — LE(w)  forallweV,
(17¢) (w,Ra )" = Ja(w,Q,) + Ki(w) — L (w)  forallweV.

Moreover, introducing the cell function perturbations p, := P, — P, q, :=Q, — Q,
and r, := R, — R and combining problems (17a)—(17¢) with problems (11a)—(11c),
we obtain the following identities:

(w.pa)y + (. Po)y! = ~AFq(w)

(18a) for all w eV,
(wa.)y + (0, Q)5 = Ada(w, Po) + J(w,p,) + AKS (w) — AL (w)

(18b) for all w eV,
(w.ra + (0, Ra) " = Ado(w,Q,) + J(w,q,) + AKF(w) — AL (w)

(18c) for all weV,

AF,():=F.() = F(-), Ad,(-,v,) := Jo(-,v4) — J (-, v4).

In particular, one has

(19) AF,(w) = Ap/ (Vw)TdV.
Ba
2.3. Topological sensitivity of the effective properties. Let f = f(u,p)
stand for any of the effective tensors defined in (6) and (8) for the reference unit cell Y’
and, similarly, let f, = f(uq, pa) denote its companion computed for Y,. Our main
goal is to determine the TS Df(z) of f due to nucleation of a small inhomogeneity
B, at z €Y, defined through the expansion

(20) fo = f +v(@)Df(z)+ o(v(a)) as a—0,

where the homogeneous scaling function v(a) is to be determined. In general Df(z)
is a function of the nucleation locus z, the shape B of B,, and the material properties
of Y and Y,. The latter dependence is both explicit (through definitions (6) and (8))
and implicit (through the cell functions solving (5)).

3. Cell solution asymptotics. The derivation of topological expansion (20)
for the effective properties featured in the mean field equation (16) is predicated on
knowing the asymptotic behavior of the cell functions as a — 0, a prerequisite to which
this section is devoted. To this end, the weak problems (11) for the perturbed cell are
first reformulated as volume integral equations (VIEs), which are then expanded about
a — 0. Such an approach facilitates the computation of the sought asymptotics, as the
geometrical support of the volume integral operator is the vanishing inhomogeneity
B,.
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3.1. First cell problem.

Volume integral equation. Let G(-,x) denote the periodic Green’s function
for the (unperturbed) cell Y, i.e., the (Y-periodic and zero-mean) field created by a
unit point source at * € Y, whereby

(1) —divi (ptV1G(-, z)) = 6(- —x) inY,
<G(~,w)> =0, G(,x) and pn-ViG(,x) Y — periodic,

where div; and V; imply differentiation with respect to the first argument. The
solution of (21) can be conveniently decomposed as

(22)  G(nz) = Guol —mpl) + Col,), qu;n):—%mw

where G (+; 1) solves —div (nVGoo ) = 8(-) (i.e., Goo(+; 1) is the fundamental solution
for an infinite homogeneous medium with shear modulus 7) while the complementary
part G is an H'(Y') function.

On testing the first equation in (21) by a function w € VNC!(w) (where w, € Y

is a neighborhood of &) and applying the first Green’s identity to the resulting left-
hand side, the Green’s function is seen to verify
(23) <<G(o,a:),w>>i = w(x), zeY, weVNCH(w,).
The assumed smoothness of 1 ensures the interior regularity of P solving (5a), which
in turn allows us to use w = P in (23) (see also Remark 3 on the case of piecewise-
smooth background material). We can, in addition, set w = G(-,«) in (11a) (the
resulting integrals being well-defined although G(-,x) € V). Performing these opera-
tions shows that P admits the explicit representation

(24) P(z)=-F(G(-,x)), zeY.

Similar arguments are applicable to the perturbed cell function P,, which solves (17a)
and satisfies the smoothness requirement in (23) for « € B, U (Y'\ B,). Using (23)
with w = P, gives

(G(.x), Pyt = Pu(x) + (G(~2), Po)y",  x€BaU(Y\By).

Combining the above equality and the weak problem (17a) with w = G(-,«) and
representation (24), the restriction of P, to B, is found to satisfy the VIE

(25) (Z+Ly)Po(m) = P(x) — AF,(G(-,)), x € By,

where AF, is given by (19) and the integral operator £, : H'(B,) — H'(B,) is
defined as

Lof@) = (G2 1) = Bu [ ViG(n.2)- V() AV ().

Then, extending (25) to & € Y \ B, yields an explicit representation formula for P,
outside of B,.
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Asymptotic expansion of the first cell solution. By analogy with the small-
inclusion asymptotic expansions for simpler two-dimensional problems [7, 10], we
introduce scaled coordinates for points x € B, such that

T =z+ax, dV(x) = a* AV (z),

and assume the following ansatz for the expansion of P, inside B, (hereon called the
inner expansion):

(26) P,(x) = P(z)+aP(Z) + o(a), x € B,.

The governing (volume integral) equation for P; is then sought by inserting the
above ansatz into (25), expanding the resulting equation about a =0, and retaining
the leading-order contribution. This approach relies on the following expansions being
verified by the Green’s function:

(272) Gly.2) = G (§=214(2) — g I+ O(L).
(27b) ViG(y. ) = 0 VG (5— & 1(2)) + O(1),

and also uses the Taylor expansion P(x) = P(z)+az-V P(z)+o(a) of the background
cell solution P (which is valid since the assumed local smoothness of y at the interior
point z ensures adequate regularity of P in a neighborhood of z). The resulting
leading O(a) order contribution to the VIE (25) is the integral equation

(28) (I+Ls)Pi(z) = @ (VP+I)(2), zeB,

with P (z) := P1(Z) + T and the integral operator L, defined by
(29) £af(@) = Au | VO (5-2:0(2))- V(@) VD).
To obtain (28), we have in particular used that
AFL(G(w) = A [ ViG(w.2) dV (1) = alL3)(@) + ofa).

Then, letting U denote the solution of the integral equation
(30) (I+L0)U(®) = =, z€B,

we have P (z) =U(z)-(VP+1I)(z). The ansatz (26) therefore results in the inner
expansion

(31)  Pu(z)=P(z)+a{U(x) (VP+I)(z) — T} +o(a), xeB,, xzeB
of P,, whose justification then stems from the following lemma (whose proof is given
in Appendix A).

LEMMA 2. There exists a constant ap > 0 such that

(32) HPa(w) —P(z) - a{ U(z)- (VP+I)(z) - i} ||H1(Bu = O(aQ), a<ap.

)

The perturbation p, also obeys the following lemma, given for later reference and
proved in Appendix B.

LEMMA 3. The perturbation p, = P, — P satisfies |p,| r2(v) = o(a).
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3.2. Cell solution asymptotics: The main result. The second and third
cell problems (17b) and (17c¢) can likewise be reformulated as VIEs, rendering the
asymptotic treatment of their inner solutions amenable to the same general approach.
Uunlike (25), however, the right-hand sides of the governing VIEs for Q, and R,
feature integrals over Y in addition to those over B,. This makes the derivation of
their leading-order asymptotic form more involved, and the corresponding proofs are
deferred to section 5. The asymptotic form (31) of P, and the analogous results
established in section 5 for Q, and R, are gathered in the following proposition.

PROPOSITION 4. The cell functions P, Q,, R, admit in B, the following expan-
sions:
P,(x) = P(z) +a{U(x)- (VP+I)(z) -z} + o(a
Q.(x)=Q(2)+a{U(2) (VQ+I®P)(z)— a:®P (2)} + o
x€B,, z:=a '(x—2)€B,
R,(z) = R(2) +a{U(z) (VR+I®Q)(2) —2®Q(2)} + o(a

where U is the solution of the canonic integral equation (30).

Remark 1. The VIE (30) is identical to that arising for an inhomogeneity B (with
modulus p(z)+Apu) embedded in a homogeneous background R? with modulus yu(z),
subjected to a uniform far-field gradient.

3.3. Polarization tensor and expansion of integrals. In the following, we
will repeatedly use expansions of quantities such as <<'w, P, >>§”, where the (possibly

tensor-valued) function w is regular in a neighborhood of B, and does not depend on
a. Thanks to Proposition 4 and the Taylor expansion of w about z, we have

(w. Py

- AM/B (Vw)" VP, dV

= Ap(Vw)* / VU () (VP+I)(z) dV(g) — |B|I} +o(a?).
We introduce the polarization tensor A given by
(34) A= AB.u(2).50) = A [ YUG) V(@)

this definition being identical to that used in many earlier asymptotic studies involving
nonperiodic media, e.g., [10, 15, 1]. The tensor A is, in particular known to be

symmetric (e.g., [10, Lemma 5]). The above expansion of {(w, Pa>>g” then takes the
more concise form

(35)  (w,Pu)y" = a*(Vw)"(2) {A-(VP+I) - Ap|BIT}H(2) + o(a?).

Similar expansions involving @, and R, are obtained, using Proposition 4 and (34),
as

(36a) (w.Q,)5" = a*(Vw)(2)-{A-(VQ+I®P) — Ap|BII@ P}(2) + o(a?),

(36b)  (w, R.)>" = a2(Vw)"(2)-{A- (VR+I2Q) — AulBII®Q}(2) + o(a?).

B,
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4. Topological sensitivities. The following theorem, whose proof is deferred
to section 6, gives the TSs of the effective material properties featured in the field
equation (16) governing the third-order approximation of the mean (macroscopic)
wavefield in a medium with periodic microstructure; it is the main result of this work.

THEOREM 5. Consider a small inhomogeneity B, =z + a3 with radius a, shape
B, shear modulus p—+ Ap, and mass density p+ Ap (where Ap>—mingey p(x) and
Ap>—mingey p(x) are uniform material contrasts), nucleated at some point z €Y
inside the periodic unit cell. Moreover, let the adjoint solutions 8 €V and (for any
veV,) X[v] € Vi1 be defined by problems

(37a) {w, 5>>l;,
(37D) (w. XT0])}
The affiliated TSs of the effective material properties (6) and (8), as defined through

expansion (20) with v(a) = |Y|~1a?, are given in terms of the background cell func-
tions P,Q, R, the adjoint solutions § and X [B], and the polarization tensor A by

/ (p—0"Yw dvV forallweV,
v

J(v,w) forallweV.

Do’ (z) = |B|Ap,
D (z) = {(VP+I)T-A-(VP+I) }(z),
Dol(z) = {DQOP ~VB-A-(VP+I) }(z),

0
Du'(z) = %{Dd@uo +0'®@Du’ — D' ®% }Sym(Z),
De(z) = { (- VX[8] + BI)-A:(VP+I) - V3-A-(VQ+I2P)} (2)

+{pe(@-st5) - Ll (ow - D)) (a)

Du(z) = {2(VP+1)"A:(VR+12Q)
~(VQ+I9P)"A-(VQ+I&P)} (2)
+ { [De® + Do’ (PoP —2Q)] ®Z§ + §(<pP®P> - 0°%)
0
® (Duo - DQOF> } (z).

sym

Remark 2. Lemma 1, which holds true for any configuration of the material in
Y, implies that Do®, Do', Du, and Du' are related through
{De'@p’ + o' @Du’}  =Do’u' +o’Dp'.
Indeed, expressing Du' by means of this identity yields the formula given in Theo-
rem 5.

Remark 3. Consider the case where the background material parameters pu,p
are only piecewise smooth. Then, transmission conditions of the form [[v]] =0
and [pm-Vov] = 0 must be added [27] to the cell problems in strong form (with
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v=P,Q, R for problems (5) and v = G(-,x) for problem (21)), and are implicitly
embedded in the weak problem (11). The TS formulas given by Theorem 5 remain
valid in this case, provided the inhomogeneity locus z lies away from any material
discontinuity line. This stems from the fact that the analyses carried out in sections
3 and 4 require u and p to be smooth only in a neighborhood of z. For example, this
weakened assumption is sufficient for decomposition (22) of the Green’s function to
hold and for Taylor expansions of the background cell solutions to have requisite local
validity wherever required.

Remark 4. In the case of constant mass density, o° = p while o', 0%, 3, and p'
vanish identically (the latter by Lemma 1). In such situations, the dependence on Ap
and Ay of the featured TSs occurs via the terms Dg? = |B|Ap and A, respectively.
With reference to (16), the resulting formula Dg?(z) = { Do"Q }Sym(z)7 in particular,
characterizes the singular perturbation of the governing field equation once a point-like
inertial heterogeneity is periodically introduced in a medium with otherwise constant
mass density. In the context of the second-order macroscopic model for waves in
periodic media, this perturbation (w?@? : V2(-)) is solely responsible for the coupling
between the temporal and spatial derivatives.

In the case of constant shear modulus, we have P = 0 by the well-posedness of
the homogeneous problem (5a), implying u® = uI and o' = 0, as well as Du’ = A
(as shown by [2]).

Remark 5. If B, is an ellipse such that B has principal directions (a1, as2) and
semiaxes lengths (1,~), we have [1]

K(2) K(2)

(38) [B =7y, A=my(y+1)u(2) [m‘“@‘“ Tt R

(12®02},

having set k(z) := Ap/p(z). The case where B, is a disk corresponds to v =1.
Remark 6. The present expression for the TS Du® has the same structure as that

given by [14] for plane-strain two-dimensional elastostatics.

5. Cell solution asymptotics: Proofs for the second and third problems.
Following the approach of section 3.1, the unperturbed cell functions @ and R are
found to read

(39a) Q(z) = J(G(-,z), P) + K?(G(-,=)) - L?(G(-,z)),
(39b) R(z) = J(G(-,2),Q) + K"(G(,z)) - L"(G(,, @),
where G is the periodic Green’s function given by (21). The relevant weak prob-

lems (11b), (11c), (17b), and (17c) for the perturbed cell then help demonstrate that
the restrictions of Q, and R, to B, satisfy the VIEs

(40a) (IT+La)Q,(x)
= Q(m) + AJa(G(Ww)v Pa) + J(G(',.’B),pa) + AKaQ(G(a m))
— ALZ(G(-,z)),
(40b)  (Z+L.)Ra(x)
= R(w) + AJa(G('7 33)7 Qa) + J(G(, .CE), qa) + AK?(G(v :l:))
— AL{(G( ).
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5.1. Second cell problem. Consider an inner expansion of the second cell
solution Q, of the form

Q.(2) = Q(2) +aQ,(2) + o(a).

The corresponding expansion of VIE (40a) follows the same general approach as that
of (25), but is more involved as it requires determining the asymptotic behavior of
various terms appearing on the right-hand side of (40a).

Asymptotic form of AK9(G(-,x)) and AL?(G(+,x)). Both AKY(G(-, x))
and ALZ(G(-,)) are integrals over B, that involve G but not its gradient. On
recalling the definitions (13) of K% and L%, introducing the scaled coordinates in

the relevant integrals, and invoking the asymptotic behavior (27a) of G, one finds
via (27a) that

(41a) AK®(G(-,x)) = O(a®*lna),  AL?(G(,z)) = O(a’lna).

Asymptotic form of AJ,(G(-,x), Pg). From definition (12), we have

ATL(G(2), P.) = Ap / Gy, @)V Pq(y) dV (y)

Ba

A / ViG(y,z)® Po(y) dV(y), x<B,.
B,

For y,x € B,, one has G(y,z) = O(lna), VP,(y) = O(1) thanks to (31), and
dV(y) = O(a?). Accordingly, the first integral above behaves as O(a?Ina). On the
other hand, from (27b) and (31), one finds the the second integral to be O(a), and
we have

(41Db)
AJ(G(,z),P,) = fa{Au/BVGOO(in;u(z)) dV(Q)}@Pa(z) + o(a)
=—aLls[y®P(2)](x) + ofa), x € B,.

Asymptotic form of J(G(:,x),p,). Recalling (12), this term is defined as
an integral over the whole cell Y, which makes its asymptotic evaluation as a — 0
less straightforward (see also Remark 7 below). We circumvent this difficulty by an
indirect evaluation of J(G(:,x),p,). Let X[G(-, )] be the solution of the adjoint
problem (37b) with v = G(-, @), i.e.,

<<w,X[G(,:c)]>>; = J(G(, x),w) for all we V.

By definition (12), J(G(-, ), w) is a combination of volume potentials (with densities
w and Vw), whose known mapping properties (see, e.g., [17, Thm. 6.1.12]) ensure
that w — J(G(-,x),w) is a continuous linear functional on H'(Y). Therefore, the
variational problem (41) is well-posed. On setting w =p,, we accordingly have

(4le)  J(G(,m),p,) = (Po, X[G(,2) )y = ((X[G(.2)].pa)y)

Next, we use the weak formulation (18a) for p, with w = X [G(-,«)], which allows
us to express J(G(+,x),p,) in terms of integrals over the vanishing inclusion support
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J(G(w),p,) = ~((X[G(2)], Po)y! + AFL(X[G(,)]))

_ —AM/B (VP + )" VX[C( )] dV.

a

By the Cauchy—Schwarz inequality, and since the first cell solution asymptotics (31)
allows one to show that ||V P, +1I|12(p,) < Ca for some C >0, we have

| J(G (@), pa) | < 1Al VPo+I|| o [[VX[G( ) ]

< Iz 5.
< Ca|Ap||| VX [G(-, )]

2.

Moreover, since X [G(-,x)] is an H'(Y) function that does not depend on a,

’ VX|[G(,z)] ’2 XxB, defines a sequence of measurable functions whose pointwise limit
VX|[G(,z)] —0asa—0
by Lebesgue’s dominated convergence theorem, and we obtain

is zero almost everywhere in Y. Consequently,

lz2s.)

(41d) J(G(a 113), pa) = O(CL).

Remark 7. Merely using that the mapping w — J(G(-,x),w) is continuous on
H'(Y) together with the known estimate |p,|m1(yy = O(a) would only yield the
suboptimal estimate J(G(-, x),p,) = O(a).

Inner expansion of Q,. By virtue of (41a), (41b), (41d), one finds the leading-
order (O(a)) behavior of the VIE (40a) to read

(I+Ls)Q)(z) = 2 (VQ+I®P)(2),

having set Q' (Z) := Q;(Z)+Z ® P(z). The inner expansion of Q, is therefore given
by

(42) Q,(x)=Q(2)+a{U(z)- (VQ+I®P)(z) — z®P(2)}+0(a), € By, TEDB,

where U again solves (30).

5.2. Third cell problem. Following the same approach, we seek the inner ex-
pansion of the third cell solution as

R,(z) = R(2) + aRy(Z) + o(a).

The expansion of the VIE (40b), like that of (40a), requires determining the asymp-
totic behavior of various terms appearing in its right-hand side, some of them defined
as integrals over Y.

Asymptotic form of AK¥(G(-,z)) and ALF(G(-,z)). From definition
(13), we have

AK[(Ge2) = Au [

G(,z)IoP,dV —l—/ pG( x)I®p, dV.
Ba Y

The first term on the right-hand side behaves as O(a?Ina) by the argument used to
obtain (41a). Moreover, Lemma 3 and the Cauchy—Schwartz inequality (G(-, ) being
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a L2(Y) function) imply that the second integral behaves as o(a). A similar analysis
applies to ALY(G(-,)), given by

0
ALE(G(2)) = Ap / G2 @ P, v
Ba a
0

+ LPG(~,m){(’£§)®Pa+’;0®pa}dva

using, in addition, the fact that pQ /0% —u®/0° = O(v(a)) = O(a?) by Theorem 5 (this
invocation being legitimate since that part of Theorem 5 only relies on the asymptotic
behavior of P,). Concluding, we have

(43a) AKE(G(,@) = o(a),  ALF(G(,)) = ofa).
Asymptotic form of AJ,(G(-,x),Q,). A derivation analogous to that of
(41Db) gives
(430)  ATL(G(-2).Qu) = ~a{An [ VG (m-511(2)) V(@) } 9Qu(2) + ola)
= —al[g®2Q(2)](Z) + o(a), x € B,.

Asymptotic form of J(G(:,x), q,). By analogy to the case of J(G(-,x),p,),
the term J(G(, ), q,)—given by an integral over the whole cell Y—can be recast as

J(G(" :E), qa) = <<qa’ X[G(ﬁl:” >>$ = (<<X[G(’ x)]7qa>>;)T'
Then, invoking problem (18b) with w = X [G(:,x)], we obtain

(430) <<X[G(,$)],qa>>l;, = _<<X[G(’w)]an> 25 + AJG(X[G('vw)]aPa)
+J(X[G(2)],p,) + AKZ (X [G(,2)]) - ALZ(X[G(,z))).
Thanks to (41c), we have

J(X[G(,2)],p,) = (X [X[G(,2)]].p)o)"

Since X[X|[G(-,x)]] is an H'(Y) function (actually having more regularity than
X[G(-,x)]), the argument leading to (41d) applies, allowing us to show that
J(X[G(-,x)],p,) = o(a). The remaining contributions to the right-hand side of (43c)
can likewise be shown to behave as o(a) thanks to (43a) and a similar argument ap-
plied to the first two terms. As a result, we have

(43d) J(G('7w)7qa) = 0((1).

Inner expansion of R,. The VIE (40b) can now be expanded with the help
of (43a), (43b), (43d). Its leading-order (O(a)) contribution furnishes the integral
equation

(IT+Lx)Ry(2) =2 (VR+I®Q)(2),
wherein R} (Z) := R1(Z)+Z®Q(z). The inner expansion of R, is therefore given by
(44) Ry(z) = R(z)+a{U(z)( VR+I2Q)(z)—z2Q(2) } +0(a), x € B,, ZE€B,
where U solves (30).
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6. Proof of Theorem 5.
Density, zeroth order. By virtue of (6a), one immediately finds
0o — 0" = {pa—p) = a®IY|7'B|Ap = v(a)Dy".

Shear modulus, zeroth order. From the definition (15a) of u°, we have
T
(45) Hl — 10 = Y| (AFW(Po) + F(p,) + a*AplBIT ) sy

The leading contributions as a — 0 of the right-hand side of the above equality are
to be evaluated. We begin by noting that

(46a) (AFG(PQ)+G2A/L|B|I)T: Au/ (I+VP,) dV = a®? A(VP+I ) (z)+o(a?),

a

where the last equality follows from expansion (31) and the definition (34) of A.
Turning to the contribution of F(p,), we have

(F(p,)"=—{(P.,p.)}

by virtue of (11a). Moreover, for any w € V that is regular in the neighborhood
of B, the weak problem (18a) for p, implies

(46b) (w,p, )y = —(w, Po)}" — AF,(w) = —a?(Vw)(2)A( VP ) (2)+o(a?),

due to (35). Accordingly, by using w = P in (46b) we find
(46¢) (F(p,))"=a*(VP)"(2)-A-(VP+I)(2) + o(a?).

The sought for expression for Du® in Theorem 5 then follows from definition (20) of
the TS and the use of (46a) and (46¢) in (45).

Density, first order. To evaluate D!, we deploy the definition (6b) of o' and
write

(47) 0, — @' = (paPa—pP) = Ap(xp,Pa) + (ppa)-

Then, using the expansion of P, as in Proposition 4, we have

(48a)  Ap{xp,Pa) = a®|Y|7'|BIApP(2) + o(a®) = v(a)De"(2)P(2) + o(a®).

Besides, on recalling (37a) with w=p, and the fact that (p,) = 0, one finds
(ppa) = ((p= "), ) =Y (pa: BYY»

which can then be evaluated using (46b) with w = 5 as

(48b) (ppo) = —0(a)VB(2)-A- (VP +I)(z) + o(a®).

The sought for result for D! follows from using (48a) and (48b) in (47).
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Shear modulus, first order. Recalling the definition (15b) of pu!, we have

(19) b —pt = Y[ {AFL(Q,) + AK2(P.) + F(a,) + K°(p,) |

sym

First, we have

G0 AF.(Q)+AKI(P) = Au [ (VQ,+IeP,) Qv

a

=a*(VQ+I®P)(2)- A + o(a®),

where the last equality makes use of the symmetry of A and expansions (31), (34),
and (42).

To determine the asymptotic contribution of K Q (p,), we begin by using the weak
problem (11b) with w = p, and write

K®(p,) = (p.,Q)y — J(p,, P)+ L%(p,) = <<pa» Q+ /6’Zs>>i — J(p,, P),

where the second equality uses the adjoint problem (37a) with w = p, and the fact
that (p,) = 0. On applying (46b) with w = Q +3u’/0", we accordingly find
0

(50b) K(p,) = —a*(VP+I)"(2)-4-( VQ+V§e ’;—O)(z) — J(p,, P) + o(a?).

The leading contribution of F(q,)" in (49) remains to be determined, and this
requires a somewhat more involved derivation. First, the weak statement (1la)
with w = q, gives

(50¢) F(q,) = ~((P,2.)y)"

We then note that, for any w € V, the governing problem (18b) implies

A
(50d) (w,q,)% = —(w, Q) 5" +Adu(w, P)+J(w,p,) + AKS (w) — AL (w).
Further, the following expansions hold for any w € V that is smooth in a neighborhood

of By:

(50e)  (w, Qa>>§:‘ =a*(Vw)"(2)-{A-(VQ+I®P) — Au|BII®P)}(z) + o(a®),

(50f) AJo(w, P,) = a2{wT®A~ (VP+I) - AplB|(w™® I + (Vw)'® P) }(z)
+o(a?),
(50g)  AKZ(w)=a?AuB{w ®I}(z) + o(a?),

0 w
(50h)  ALZ(w) = a2|Y|{DQOw®% + <’;0> (D’ - DQO%) }(2) + o(a?).
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Inserting these expressions into (50d) yields

(501) (w,q,)} = o~ (Vw)"A-(VQ+I2P) +w'eA-(VP+I)}(z)+J(w,p,)

0 w 0
- a2|Y\{DQOw®Z—O + <i)0 ) ® (D;J,O — DQO%) }(z) + o(a?).

We now set w = P in the above expression, so that (50c) yields
(50)) Fl(q,) = a2{ (VQ+IeP)"A-VP - (VP+I)T-A®P}(z) _J(P,p,)

0 P 0 T
+ a2\Y|{DQOP®Z—O + <pgo> ® (Duo - DQOZ—O) } (2) + o(a?).

On substituting (50a), (50b), and (50j) into the formula (49) for modulus pertur-
bation pl — !, one finds

0 1 0
pl—pt = (Z2{'DQOP®% + @ ®(Du0 7D90%>

&
0
LU LSRRV ZEL g )

sym

thanks to the reciprocity identity (14). The claimed formula for Du! is finally estab-
lished by using the expression for D! in the above expansion.

Density, second order. Here, we follow the approach used to derive Dg.. On
recalling the definition (8a) of g%, we write

(51) Qi - 92 = <paQa _pQ>sym = AP<XBaQa>sym + <an>sym-
Then, the cell solution asymptotics (17b) and the formula for Dg°(z) yield
(52a)  Ap(xp,Q.) = ®[Y[T'B|ApQ(2) +o(a®) = v(a){De’Q}(2) + o(a®),

while the leading contribution of {(pq,) is evaluated by resorting to the adjoint prob-
lem (37a) with w=gq,:

(52b)  (pas) = ((p=0")aa) = [Y['{aa. B)y = VI ((B,qa)y)"
The expansion of the above result is then given by (50i) with w = 3, i.e.,

(52¢) (B,a.)y =a*{ — VB-A-(VQ+I@P) + BA-(VP+I) }(2) + J(5,p,)

(pB)

2 0 n°
B Y{Dg [CLaN A
Y] P

0 0 ©° 2
(2w = D%5 ) }(2) +ola?).
where J(8,p,) can be expanded as
(52)  J(8,p) = (P XI5y = — (XI5, P! + AFL(X[3]))

- _a2{(vp+I)T-A.VX[5]}(z) +o(a?)

having used the adjoint problem (37b), the weak problem (18a) for p,, and expan-
sion (35). The sought expression for Dg? is finally found by using (52a)—(52d) in (51).
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Shear modulus, second order. The approach previously used for deriving
Du' is used again. Recalling definition (15¢) of u?, we thus need to evaluate the
leading contribution as a — 0 of

(53)  pi-w?= V| {AF.(R.) + AK(Q,) + F(ra) + K°(a,)}

sym

First, similarly to (50a), we have

(54a) AF,(R,) + AK?(Q Ap(VR,+1I®Q,)"d
B,

a*(VR+I®Q)'(z) A+ o(a?).

What remains to be determined is the leading contribution of F(r,) + K%(q,).
Following now-familiar lines, we have

(54b) (F(ra) + K%(q,))"
—(P.ra)y + K(q.)"
= (P, R.)}," —AJu(P,Q,) - J(P,q,)— AK(P) + AL(P) + K%(g,)"

by virtue of (18c) with w = P, and

(P.R.)"
_ {(VP) A (VR+12Q) - Au|B|(VP)T®Q}(z) + o(a?),
Jo(P.Q,)

—a {P@A-(VQ+I®P) — Ap|B|(PRI®P + (VP)'2Q) }(z) + o(a?),
similar to expansions (50e) and (50f). Moreover, one finds that

~J(P,q,) +K%q,)"=-J(P.q,) + ((2..Q)y ) + L%(q,)"— J(q,. P)"

(@ + o (5.0}

thanks to the weak problem (11b) for @, property (14) of J, and the adjoint prob-
lem (37a) for 3. On recalling (52c) and retracing the derivation of Dg?, we have

(B.a.)y = a®|Y|(De® — D°Q)(2) + o(a?),
while (@, qa>> can be evaluated via (50i) with w = Q. As a result,
—J(P.g,) + K%(q,)"

(g
:aQ{ ~VQ"“A(VQ+I®P)+Q"®A. (VP+I)}(z)+J(Q p.)
0

+a2|Y|{H—O (DQ *DQOQ) DQOQ®O§®(DM DQOZ )}(z)
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Next, from definitions (13) applied to both the unperturbed and perturbed cells, we
have

~AKXP)+ALE(P)

- a2{ BIP® (Apl;s - A,uI) QP+ |Z)/O|<pP®(DNO - 'DQOZS ) (z)®P>}(z)
+L%p,) — K"(p,) + o(a®).

On deploying the weak problem (11c) with w=p, and recalling (46b), one finds

L%(p,) — K"(p,) = J(p,. Q) — {p.. R)}
=J(p.. Q) +a*{(VP+I)"A-VR}(z) + o(a?).

Collecting the above expansions of the terms on the right-hand side of (54b) and
performing symmetrization (7), we find

(54c)
[F(ra) + K%q,)] 0

:CLQ[{(2VP+I)T~A~(VR+I®Q)_(VQ+I®P)T'A'(VQ+I®P)}(Z)
+ |Y|Z§®{’Dgz—|—'DQO(P®P—2Q)}(Z)

+|Y|Q10{(<pP®P>—92)®(DNO—DQOZ§)}(z)} + o(a?).

sym

The sought for formula for Du? as in Theorem 5 then follows by substituting (54a)
and (54c) into (53).

7. Numerical illustrations. In what follows, we provide two examples exer-
cising the sensitivity formulas in Theorem 5 for simple unit cells and perturbation
shapes. The computations of the cell and adjoint functions is performed using the
finite element platform FreeFem—++ [16, 19].

7.1. Fast computation of the sensitivity coefficients. By neglecting the
o(v(a)) remainder in (20), one obtains the leading-order perturbation of the coef-
ficients of homogenization (¢°, u°, etc.) due to insertion of a small inhomogeneity
inside the reference unit cell. Note that such an approximation is also relevant to
small-volume-fraction composites [12, 2], in which context the expansion has been
extended to higher orders [18] in order to handle O(1) volume fractions. To our
knowledge, however, such computations are normally performed for biphased mate-
rials (i.e., for inclusions in a homogeneous matrix) and not for additional inclusions
nucleating in an already periodic medium (see also Remark 6).

As an illustration, we show in Figure 1 the error made by the approximation p%+
la—yz"DuO(z) of pf for a reference “chessboard” unit cell perturbed by a “stiff” ellip-
soidal inclusion with semiaxes (a,0.2a), centered at z = (0.25,0.25). It is seen that
even for values of a close to 0.25 (this value being the limit for which the smoothness
assumptions inside B, cease to hold), the maximum approximation error remains be-
low 1%. Note also that this error is O(a*), instead of expected O(a®); on the basis
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Relative error [p) — u® — %DHO‘//L?L

10°F i
10 =
P —e—Error on (10)11
= —a-Error on (1)1
1059 --0(a")
0.1 0.15 0.2

Inclusion size a

FI1G. 1. Approzimation of ul by its leading-order topological expansion for a chessboard unit cell
perturbed by an ellipsoidal inclusion with Ap =1 and semiazes (a,0.2a), centered at z=(0.25,0.25).
Left: perturbed unit cell where the light (resp., dark) gray indicates p = 1 (resp., p = 2). Right:
relative error made by the leading-order approzimation of a u9 in terms of its diagonal entries. The
mass density of all constituents inside the perturbed unit cell is p = 1.

of a recent higher-order TS analysis [7], we believe (without proof for now) that this
holds for any centrally symmetric inclusion.
2
Here it is useful to recall that evaluating pu®+ ﬁ,—lDuo requires (i) computing P

and u® for the reference cell once and for all; (ii) computing the polarization tensor
A(u(z), Ap, B) for a given material contrast Ap, shape B, and each location z of the
inclusion; and (iii) scaling the result Du®(2) = {(VP+I)"A-(VP+1)}(z) by %
for given a (provided that the smoothness assumptions on p inside B, hold). This
computational effort should be compared to that underpinning the exact evaluation
of pY, which requires solving a new cell function, P,, for each choice of inclusion, i.e.,
each set (z, B, A, a), that could be very costly for complex (reference and perturbed)
cell configurations.

Remark 8. Step (ii) above requires a minimal computational effort when the an-
alytical expression for A is known—as is the case with ellipsoidal inclusions; see
Remark 5. In situations when B is arbitrary, on the other hand, step (ii) necessitates
solving the free-space transmission problem (30) anew for each value taken by the
ratio Ap/p(z). For piecewise-homogeneous reference cells, this entails only a few
evaluations; considering the chessboard unit cell in Figure 1 for example, the evalu-
ation of A for arbitrary B and any z would (given Ap) require only two solutions
of (30).

7.2. Subwavelength sensing of periodic structures. We set up the sec-
ond example as a defect identification procedure, where a “defective” chessboard-like
material (hereon referred to as the manufactured material) is interrogated by plane
waves. The sensory data, used to probe for defects, are the phase velocities of such
waves for several directions of incidence—as captured over a low-frequency (and thus
long-wavelength) range. In the identification procedure, the experimental phase ve-
locities are compared to their reference values, computed for the designed material.
The observed anisotropic dispersion, which is a key feature of the sensory data, is
captured only via second-order homogenization, so that both zero-order (Dg", Du®)
and second-order (Dg?, Du?) coefficient sensitivities given by Theorem 5 are needed
to interpret the data. This is shown next.

Topological sensitivity of the phase velocity. We first recall the second-order, mean
field equation

(55) pO: VU + 2p? VU + w? (U + 2" V2U) = o(e?),
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according to (16). To characterize the dispersion of a homogenized material, we set the
mean field as a plane wave propagating in direction d = (cos 6, sin §) with wavenumber
k, ie., U(x) o e*¥® On substituting this plane wave into (55) and neglecting the
o(?) remainder, one obtains the characteristic relation

(56) 52(M2 . d®4>k4 _ ((NJO +52w291) . d®2) k2 +w290 =0

(with d®? := d®d and d®** := d®d®d® d) which in turn yields the anisotropic
dispersion formula

1/2

HO: d®2 _ 52k2ﬂ25 d®4
o0 — e2k2t: d®2

(57) c(h.d) = = :(

For perturbed unit cells, the expansion ¢, = c+v(a)De+o(v(a)) (ie., (20) for f, =c¢,)
holds, and Dc is expressed in terms of the sensitivities of the homogenized coefficients:

(58)  De(k,d, z)
[Dp® : d®* — 2k2Dp? : d®* — (c(k,d))? (Do — 2k*De' = d%) ] (2)
2 (o0 — e2k2g" : d®2) ’

Quasi-static and dynamic misfit functionals. In what follows, the manufactured
material is illuminated by plane waves with wavenumbers (kp),=1.n, propagating in
directions (6;)j=1..n,. The sensory data are thus the phase velocities c°**(k,,d;),
where d; = (cosb;,sin;). For given wavenumber and direction of incidence (k,d),
we define the cost functional

(59) J(k,d) = = [e(k,d) — > (k,d)]”,

DN | =

quantifying the misfit between the designed and observed phase velocities. We also
define the dynamic cost functional J¥, extracting the effects of dispersion, as

(60) den(k7d):%[Ac(k,d)—AcobS(k,d)}27 Ack,d) = c(k,d) — c(kmin, d),

where ki, is the smallest observed wavenumber (typically, kmyin= k1 > 0). The T'Ss
of these two misfit functionals depend on the sensitivity Dc given by (58) as

DJ(k,d, z) (c(k,d) — ¢ (k, d)) De(k, d, z),
DIY(k,d,z) = (Ac(k,d) — Ac®™(k,d)) (De(k, d, z) — De(kmin, d, 2)) .

(61)

In this setting, we finally define the aggregate quasi-static and dynamic cost function-
als as

Ny Ng N
(62) T = > J(kwin,dy)  and  JY = 3N Nk, dy),
Jj=1 j=1p=1

whose sensitivities D75 and DJW™ are computed by way of (61).
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p=1 p=12 p=1 p=12

F1G. 2. Designed (left) and manufactured (right) 1 X 1 unit cell of a chessboard-like material.

Example: Incorrectly manufactured chessboard-like material. The chessboard-like
material, as designed, is depicted in the left panel of Figure 2, featuring the coefficient
ratios fimax = Thmin and pmax = 1.2pmin. For this configuration, the coefficients of
homogenization are computed as

0° = 1.1pmin, 1 = 2.65mind,
Hi111 = H390 = 4.36 X 10> i,

63
N o' =115 x 10 puinl,  p? 1§ pfian = 1.20 X 1072 i,

2 2
Hi112 = Hi222 = 0.

The chessboard-like material, as manufactured, has a defective top-left box in each
unit cell, where p = 4 instead of u = 7 as shown in the right panel of Figure 2.

To identify and localize the defect, the plane-wave probing grid has Ny =7 incident
directions 0;=(j—3)m/8, j=1, Ny, and Ny =10 wavenumbers k, =2p /30, p=1, Nj.
With such hypotheses, the shortest wavelength used to probe the periodic structure
is roughly Apin = 27/ky, ~ 7 which, relative to the 1 x 1 size of the unit cell, implies
sensing below the classical diffraction limit. With reference to the above sensing grid,
the left panel in Figure 3 compares the second-order approximation of the phase ve-
locity (57) with the numerical values of ¢(k, d)—as computed via the Floquet—Bloch
transform [27]—for both the designed and manufactured unit cell configuration. As
can be seen from the display, the second-order approximation of anisotropic dispersion
for the designed material agrees reasonably well with numerical simulations, noting
that the small discrepancy between the two is attributed primarily to a limited ac-
curacy of the numerical (Floquet-Bloch) solution due to a combination of material
discontinuities inside the unit cell (which slow down the numerical convergence) and
computer memory limitations. In contrast, there is a notable discrepancy between
the dispersive characteristics of the designed and manufactured material, which jus-
tifies the use of 7% as a basis for (periodic) defect identification. From the results
for Ac(k,d) shown in the right panel of Figure 3, this is also the case with J%™, not-
ing that some of the probing directions are in this case redundant owing to inherent
symmetries of the designed and manufactured unit cell.

In this setting, the quasistatic sensitivity DJ5%*t(z) serves as an indicator of the
relative stiffness of the manufactured material (stiffer or softer than the designed
material), via the sign of Au which gives DJ%%* < 0. In this vein, Figure 4 plots
DJ®a(2) over the support of the unit cell, assuming both Ay = 1 (left panel)
and Ap = —1 (right panel). To simplify the discussion, the analysis assumes prior
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Phase velocities c(k, d)

Dispersion Ac(k,d)

1.56 0
1.54 |
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1.52
-0.01 |
15|
1.48 + —9 = 70.25 s 4 -0.015 + —0 = 70.25 s
—0=-0.125 7 —0=-0.1257
1.46 0=0m 1 0=0m
—0=01257 002 g 01257
L4 __p—0251 ] —0=0257
142 |—0=03757 0.025 1|__9=0375n
—6O0=05m —0=05m
1.4 : : : : -0.03 : : : :
0 0.5 1 1.5 2 0 0.5 1 1.5 2
k k

FiG. 3. Left: phase velocity c(k,d) for the designed chessboard material (homogenized model—
dashed, numerical values—solid), and manufactured chessboard material (numerical values—
dotted). Right: anisotropic dispersion shown in terms of Ac(k,d) = c(k,d) — c(kmin,d). Note
that the results for directions 0 = {0,7/2} coincide, as do those for directions 6 = {—w/4,7/4} and
0 ={-n/8,7/8,3m/8}.

knowledge of the fact that the mass density of the unit cell is manufactured exactly
(see Figure 1) by letting Ap = 0. For Ay = 1, we see that DJ5%* > 0 everywhere;
in other words, adding a stiff inclusion to the designed unit cell anywhere would only
increase the quasistatic misfit functional. On the contrary, for Ay = —1 one has
DTt < 0 everywhere (as expected) since the manufactured material is softer than
designed. In light of its sign semidefiniteness for given Ap, however, D75 appears
to have no localizing capabilities in that it cannot locate (even approximately) the
support of a periodic defect inside the unit cell.

To tackle the latter drawback, we deploy the dynamic sensitivity DJW™ as a
sensing lens in Figure 5, taking Ay = —1 thanks to the quasi-static result. Indeed,
the dynamic sensitivity appears to serve as a remarkable defect locator: DJV™ > 0
over most of the intact quarter-cells—which are manufactured correctly (except near
material interfaces, where the sensitivities tend to localize), while DJ¥® < 0 over
the entire defective upper-left quarter-cell as expected, but also over the lower-right
quarter-cell. The latter, however, should not be surprising, since (for the manufac-
tured material at hand) the support of the unit cell could be chosen such that the
defective quatrer-cell appears as either upper-left or lower-right. In light of this result,
the long-wavelength sensing of periodic defects or perturbations could be established
by (i) considering the anisotropic dispersion-based cost functionals (62), (ii) choosing
the sign of Ay so that DJ5(2) < 0 everywhere, and (iii) identifying the support of
a perturbation inside the unit cell via regions where DJ %" (z) < 0.

8. Summary. In this work, explicit formulas are derived for the sensitivities of
the second-order macroscopic model for waves in periodic media due to topological
perturbations of the microscopic unit cell. The sensitivity analysis focuses on the
tensorial (mass density and elastic modulus) coefficients in the governing field equa-
tion, featuring the macroscopic dispersive effects brought about by the presence of
the macrostructure. The results demonstrate that the sought derivatives are express-
ible in terms of (i) three unit cell solutions featured by the (unperturbed) macroscopic
model; (ii) two adoint-field solutions stemming from the mass density variations in the
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FiG. 4. Distribution of quasi-static sensitivity DJ*?t(2) over the unit cell assuming Ap = 1
(left) and Ap = —1 (right). The near-interface points are omitted from the plot.
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Fi1G. 5. Distribution of dynamic sensitivity Djdyn(z) over the unit cell assuming Ay = —1.

The near-interface points are omitted from the plot, and a threshold is applied to the most positive
TS wvalues (as only their sign is of interest) so that the color scale is symmetric around 0.

unperturbed periodic medium; and (iii) the usual polarization tensor, appearing in the
TS studies of nonperiodic media, that synthesizes the geometric and material char-
acteristics of a point-like perturbation. The proposed developments may especially
aid (a) the design of periodic solids, focused on manipulating the long-wavelength
material response via microstructure-generated effects of dispersion and anisotropy,
and (b) subwavelength sensing of periodic defects or perturbations. Finally, we ex-
pect the proposed idea to also work in more general situations involving, e.g., in-plane
(elastodynamic) Navier equations, albeit at a cost of notably heavier algebra.

Appendix A. Proof of Lemma 2. The proof of the claim is very similar to
that in [8, Prop. 2], so we highlight only the main steps.

On writing the linear combination (25)—ax(28) of the relevant VIEs, the inner
expansion error 8, := Py (x) — P(z) —a{ [U(z)(VP+I)(z)—& }] is found to satisfy
the integral equation (Z+ L, )d,(z) = v,(x), where

(64) ~,(x):=P(x)— P(z)—ax -VP(2)
—Au{ /B V1Goly, z) - VU( y:) dV(y)} (VP +I)(z).

The claimed estimate is then established by showing that, for a sufficiently small,
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we have (i) the bounded invertibility of Z+ £, : H'(B,) — H'(B,), uniformly in
a, and (ii) the estimate H'yaHHl(Ba) < Ca®. We first introduce the decomposition
Lo = LP + LS induced by decomposition (22) of the Green’s kernel. In this setting,
the proof of (i) follows from a Neumann series argument by showing first that Z+£5° is
invertible with bounded inverse, the bound being uniform in a for sufficiently small a,
and second that ||[£¢ — L£S°]| = O(a). Concerning the proof of (i), we have that
|[P(x) — P(z) — az - VP(2)| g1 (p,) = O(a?) as the norm of the Taylor-expansion
remainder of a function @ — P(x), which is smooth in a neighborhood of = z. The
remaining (integral) part of v, is also O(a?) by virtue of the kernel G.(y,x) being
smooth in a neighborhood of (z,y) = (z, z).

Appendix B. Proof of Lemma 3. Equation (25), treated as a representation
formula, gives p, = —L,(Pq + @) in B, U (Y \ B,). With Lo, given by (29), d,, L3°,
and LS as given in Appendix A, and P; as introduced in (26), we have

P, =—0Lo(P1+ &) — L6, — Lo(Py+ ) =: pé —|—p2 +p2.

We readily have that [|p2||12(yy = O(a?) (by virtue of Lemma 2 and the boundedness
of £3°, uniform in a, as a H'(B,) — L*(Y) operator) and that ||p3||;2yy = O(a?)
(because the smoothness of the kernel VG, in Y x Y, together with |B,| = O(a?),
implies p3 = O(a?) pointwise in V). Regarding pl, on the other hand, one finds by

the rescaling of coordinates that

||pi($)||2L2(y)

iy
(Y—2)/a

Since VGoo(y — @;pu(2)) = O(|z|™') as |&] — oo, the above integral over
(Y — z)/a can be shown to be of order O(Ina) as a — 0. Consequently, ||ps ()] z2(y)
= o(a), which completes the proof of the lemma.

Mu [ Ve(i-mn() - V(Pi+9) V()| V(@)
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