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MICROSTRUCTURAL TOPOLOGICAL SENSITIVITIES OF THE
SECOND-ORDER MACROSCOPIC MODEL FOR WAVES IN PERIODIC MEDIA

MARC BONNET†, RÉMI CORNAGGIA‡, AND BOJAN B. GUZINA§,∗

ABSTRACT. We consider scalar waves in periodic media through the lens of a second-order
effective i.e. macroscopic description, and we aim to compute the sensitivities of the germane
effective parameters due to topological perturbations of a microscopic unit cell. Specifically, our
analysis focuses on the tensorial coefficients in the governing mean-field equation – including both
the leading order (i.e. quasi-static) terms, and their second-order companions bearing the effects
of incipient wave dispersion. The results demonstrate that the sought sensitivities are computable
in terms of (i) three unit-cell solutions used to formulate the unperturbed macroscopic model;
(ii) two adoint-field solutions driven by the mass density variation inside the unperturbed unit
cell; and (iii) the usual polarization tensor, appearing in the related studies of non-periodic
media, that synthesizes the geometric and constitutive features of a point-like perturbation. The
proposed developments may be useful toward (a) the design of periodic media to manipulate
macroscopic waves via the microstructure-generated effects of dispersion and anisotropy, and
(b) sub-wavelength sensing of periodic defects or perturbations.
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1. Introduction. Over the past decade, waves in periodic media have been the subject of mounting
attention owing to an exceeding ability of periodic structures to provide cloaking, noise control, and sub-
wavelength imaging [21, 29, 20]. Fundamentally, the latter derive from the underpinning phenomena of
frequency-dependent anisotropy, multiple solution branches, and band gaps [9] that can be manipulated
through a suitable design of the unit stencil. Some of the above and related effects, including cloaking
and a negative index of refraction, are often achieved at long wavelengths [13] – extending beyond the
periodicity cell. This poses the question of mathematical tools that can aid the design, via e.g. topology
optimization [25], of periodic “microstructures” toward gaining a desired macroscopic effect.

In this vein, our study aims to distill the sensitivity of wave motion in a periodic composite due
to small topological alterations of its unit cell. In other words, we consider perturbations that are
inherently periodic according to the germane lattice. With reference to a (dispersive) field equation
governing the effective i.e. macroscopic wave motion, we specifically seek to compute the so-called
topological sensitivities (TS) of the coefficients in the field equation with respect to the nucleation of a
vanishing inhomogeneity inside the microscopic unit cell. The concept of TS was introduced in the late
1990s, see [24] for references, and can be described as follows. For a given boundary value problem,
one considers (in the classical sense an individual) topological perturbation of vanishing size a at some
point z inside the reference domain, and seeks the TS of any relevant quantity J as an a-independent
factor in the leading-order asymptotic expansion of J as a → 0. In this way the map TS(z), which
is typically inexpensive to compute, helps drive the topological optimization procedure by highlighting
the region(s) where medium alterations may be most beneficial toward increasing or decreasing J .

With the above goal in mind, the natural first step in the analysis is to identify the field equation that
governs the macroscopic wave motion in a “micro-structured” periodic medium. Such effective model
should preferably include the effects of (anisotropic) wave dispersion to cater for intended applications.
To this end, we deploy the framework of two-scale homogenization [6] and pursue the expansion
up to the second order [4, 27], rather than deploying the competing (physics-based) approaches
such as the Mindlin’s second-gradient theory [22, 5] or the Willis’ concept of effective constitutive
relationships [28, 23]. The key advantage of the adopted approach resides in the fact that the two-
scale paradigm produces a set of unit cell problems from which the homogenized coefficients are then
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computed. These cell problems, endowed with periodic boundary conditions, are (i) of elliptic type and
(ii) well-posed, thus facilitating a systematic derivation of the germane small-perturbation asymptotics
by building upon the related works on conductivity-like problems [10, 2, 7].

To facilitate the discussion and to maintain a clear link with prior works [4, 27], we interpret the
scalar wave equation within the framework of (elastic) antiplane shear waves. Notwithstanding such
choice, the ensuing analysis applies to a much wider range of physical problems, see e.g. [18, Table 1],
which notably include the transverse modes of electromagnetic wave propagation. More generally, our
work extends the previous TS analyses of periodic media – performed in the context of elastostatics
and structural shape optimization [14, 3, 26] – to dynamic i.e. wave motion problems described
via second-order homogenization. Equivalently, this study can be seen as a follow-up to the small-
inclusion asymptotic analyses underpinning the (approximate) effective description of low-volume
fraction dilutions [12] and two-phase periodic composites, e.g. [2, 18]. In principle, the idea of
topological perturbation can also be applied to the (leading-order) effective description [11] of higher
i.e. “optical” solution branches for a given periodic medium; the latter topic is however beyond the
scope of this study.

The paper is organized as follows. Section 2 provides a review of the relevant two-scale homogeniza-
tion results, and introduces topological perturbations of the unit cell. Section 3 derives the necessary
asymptotics for a cascade of the unit cell problems, and introduces the polarization tensor that arises
in the analysis. Our main result, Theorem 2, which provides the TS expressions for the coefficients fea-
tured by the effective i.e. macroscopic field equation, is presented and discussed in Section 4. Section 5
is dedicated to some auxiliary results that were delayed for better readability, while Section 6 provides
the proof of Theorem 2. Section 7 illustrates via numerical simulations how the obtained TS results
can be used toward sub-wavelength sensing, where the information on long-wavelength (anisotropic)
dispersion can be used to localize periodic defects inside the unit cell, due to e.g. a manufacturing
error. Finally, Section 8 highlights the key contributions of our work.

2. Preliminaries.

2.1. Two-scale homogenization framework. In the context of 2D antiplane elasticity, we consider
a reference bi-periodic medium whose periodicity cell Y = (0, 1) × (0, α) ⊂ R2, α = O(1), is endowed
with smooth Y → R distributions of the shear modulus µ(x) and mass density ρ(x). Note that
the latter restriction can in principle be weakened; in particular, piecewise-smooth characteristics
may be considered instead, see Remark 3. Letting ε > 0 be a small perturbation parameter, we
next consider an εY -periodic medium endowed with the shear modulus µε(x) := µ(x/ε) and mass
density ρε(x) := ρ(x/ε). A time-harmonic antiplane shear wave propagating in such medium, described
in terms of the transverse displacement u = uε(x)e−iωt, obeys the field equation

div
(
µε∇uε

)
+ ρεω

2uε = 0, (1)

and admits a two-scale expansion [6, 27] of the form

uε(x) := u0(x,y) + εu1(x,y) + ε2u2(x,y) + ε3u3(x,y) + o(ε3), (2)

whose coefficients u0, u1, u2, u3 are functions of the “slow” variable x ∈ R2 and the “fast” variable y :=
x/ε ∈ Y , computable as

u0(x,y) = U0(x),

u1(x,y) = U1(x) + P (y)·∇U0(x),

u2(x,y) = U2(x) + P (y)·∇U1(x) +Q(y) :∇2U0(x),

u3(x,y) = U3(x) + P (y)·∇U2(x) +Q(y) :∇2U1(x) +R(y):∇3U0(x),

(3)

where Uj are the mean displacement fields defined by Uj(x) = 〈uj〉(x), 〈·〉 denotes the unit cell average
computed with respect to the fast coordinate, i.e.

〈f〉(x) = |Y |−1

∫

Y

f(x,y) dV (y); (4)
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“:” signifies the scalar product between two nth-order tensors (n > 2); and P ,Q,R are the so-
called unit cell functions defined below. In (3) and thereafter, the gradient operator ∇ and its powers

∇j = ∇(∇j−1) act “to the right”, e.g. (∇A)ijk = ∂iAjk for a second-order tensor fieldA. Accordingly,
the divergence operator is understood in a commensurate way, e.g. (divA)k = ∂jAjk.

Cell functions and homogenized coefficients. The tensor-valued cell functions P : Y → R2,
Q : Y → (R2)2, and R : Y → (R2)3 solve the well-posed [6] recursive cell problems

div
[
µ(I + ∇P )

]
= 0 in Y ,

µn·∇P Y -periodic, 〈P 〉 = 0

}
(5a)

div
[
µ(I⊗P + ∇Q)

]
+ µ(I + ∇P )− ρµ

0

%0
= 0 in Y ,

µn·
(
I⊗P + ∇Q) Y -periodic, 〈Q〉 = 0

}
(5b)

div
[
µ(I⊗Q+ ∇R)

]
+ µ(I⊗P + ∇Q)− ρP ⊗ µ

0

%0
+ ρ
[ %1

%0
⊗ µ

0

%0
− µ

1

%0

]
= 0 in Y ,

µn·
(
I⊗Q+ ∇R) Y -periodic, 〈R〉 = 0

}
(5c)

In (5), %0 ∈R, %1 ∈R2, µ0 ∈ (R2)2, µ1 ∈ (R2)3 are constant tensorial quantities given by

(a) %0 =
〈
ρ
〉
,

(b) %1 =
〈
ρP
〉
,

(c) µ0 =
〈
µ(∇P +I)

〉
sym

,

(d) µ1 =
〈
µ(∇Q+I⊗P )

〉
sym

.
(6)

Here, the subscript “sym” indicates tensor symmetrization obtained by averaging over all component
index permutations. In particular, for a tensor A of order n and a given n-tuple of indices I ∈ {1, 2}n,
we have (

Asym

)
I

=
1

n!

∑

σ∈Πn

Aσ(I) (7)

where Πn denotes the set of all permutations σ(I). In the sequel, we will also make use of their
higher-order “descendants”, namely %2 ∈ (R2)2 and µ2 ∈ (R2)4, defined by

(a) %2 =
〈
ρQ
〉

sym
, (b) µ2 =

〈
µ(∇R+I⊗Q)

〉
sym

. (8)

One may note that the entries in (6) obey the following interrelationship, which in particular causes
the bracketed factor of ρ in (5c) to vanish.

Lemma 1. The tensorial quantities in (6) satisfy the “reciprocity” relationship %0µ1 =
(
%1⊗µ0

)
sym

.

Proof. The claim is verified by: (i) taking the tensor product of Q and (5a) and of P and (5b),
(ii) subtracting the obtained equalities, (iii) integrating over Y , and (iv) symmetrizing the resulting
tensor equality in the sense of (7). �

Cell problems, weak formulation. Let Vp denote the function spaces of (pth order tensor-valued,
zero-mean, Y -periodic functions) given by

V := V0 =
{
w ∈H1

(
Y ;R

)
, 〈w〉Y = 0, w Y -periodic

}
,

Vp =
{
w ∈H1

(
Y ; (R2)p

)
, 〈w〉Y = 0, w Y -periodic

}
for p ≥ 1,

(9)

with implicit convention that V (without subscript) refers to Vp for some unspecified p. In what follows,
we will also denote by wT the reversal of tensor indexes; for instance, one has (wT)ijkl = (w)lkji for
a fourth-order tensor w. In this setting, each of the cell problems in (5) has a weak formulation. On
introducing the bilinear form

〈〈
w,v

〉〉η
X

=

∫

X

η (∇w)T ·∇v dV (10)
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associated with elastic strain energy for some domain X ⊂R2 and shear modulus η, tensor-valued cell
functions P ∈V1, Q∈V2 and R∈V3 can be shown to solve the weak problems

〈〈
w,P

〉〉µ
Y

= −F (w) for all w ∈V, (11a)
〈〈
w,Q

〉〉µ
Y

= J(w,P ) +KQ(w)−LQ(w) for all w ∈V, (11b)
〈〈
w,R

〉〉µ
Y

= J(w,Q) +KR(w)−LR(w) for all w ∈V. (11c)

The right-hand sides of equations (11a-c) involve the bilinear form J , defined by

J(w,v) =

∫

Y

µ
(
wT⊗∇v − (∇w)T⊗v

)
dV (12)

and the linear functionals

F (w) =

∫

Y

µ(∇w)T dV = −J(w, 1),

KQ(w) =

∫

Y

µwT⊗I dV, KR(w) =

∫

Y

µwT⊗I⊗P dV,

LQ(w) =

∫

Y

ρwT⊗ µ
0

%0
dV, LR(w) =

∫

Y

ρwT⊗ µ
0

%0
⊗P dV.

(13)

Although the weak problems (11) involve scalar test functions (reflecting the fact that the problems
governing each scalar component of P ,Q,R are uncoupled), it will be convenient in the sequel to
extend (11) together with the affiliated linear and bilinear forms to tensor-valued test functions w – a
need to which definitions (10), (12) and (13) cater. The definition (12) of J further implies that, for
any pair (v,w) of scalar or tensor-valued functions,

J(w,v) = −JT(v,w). (14)

With reference to (13), we note that the homogenized shear moduli can be written in terms of the

functionals F and KQ as

µ0 = |Y |−1
(
F (P ) + |Y |〈µ〉I

)
sym

, (15a)

µ1 = |Y |−1
(
F (Q) +KQ(P )

)
sym

, (15b)

µ2 = |Y |−1
(
F (R) +KQ(Q)

)
sym

. (15c)

Mean field. Let U(x) denote the (macroscopic) mean field associated with uε, defined by

U(x) =
〈
u0 + εu1 + ε2u2 + ε3u3 + o(ε3)

〉
= U0(x) + εU1(x) + ε2U2(x) + ε3U3(x) + o(ε3).

Its O(ε3) approximation, U (3) := U0 +εU1 +ε2U2 +ε3U3, can in particular be shown [27] to satisfy the
homogenized field equation

µ0 :∇2U (3) + ε2µ2 :∇4U (3) + ω2
(
%0U (3) + ε2%2 :∇2U (3)

)
= o(ε3), (16)

where %0, µ0, %2 and µ2 are given by (6) and (8). Note that the contribution of %1 and µ1 in (16)
vanishes as a consequence of Lemma 1, while the o(ε3) remainder (instead of expected O(ε3) residual)
stems from the analogous relationship linking %3 and µ3 to their lower-order companions.

2.2. Perturbed cell configuration. Let ∆µ > −minx∈Y µ(x) and ∆ρ > −minx∈Y ρ(x) be pre-
scribed material contrasts. We now introduce at some z ∈ Y a small inhomogeneity Ba = z + aB of
size a and shape B, endowed with the shear modulus µ+ ∆µ and mass density ρ+ ∆ρ. The material
characteristics of the perturbed cell Ya are hence µa = µ+χ(Ba)∆µ and ρa = ρ+χ(Ba)∆ρ, where χ(·)
denotes the characteristic function of a perturbation. The size a is assumed to be sufficiently small so
that Ba b Y , whereby µa = µ and ρa = ρ in the vicinity of ∂Y . We use notations

〈〈
w,v

〉〉µa
Y

, P a etc.,

and Ja, KQ
a etc. whenever cell problems and effective characteristics are considered for the perturbed
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cell. The weak cell problems (11a-c) for the perturbed cell then read
〈〈
w,P a

〉〉µa
Y

= −F a(w) for all w ∈V, (17a)
〈〈
w,Qa

〉〉µa
Y

= Ja(w,P a) +KQ
a (w)−LQa (w) for all w ∈V, (17b)

〈〈
w,Ra

〉〉µa
Y

= Ja(w,Qa) +KR
a (w)−LRa (w) for all w ∈V. (17c)

Moreover, introducing the cell function perturbations pa := P a−P , qa :=Qa−Q and ra :=Ra−R
and combining problems (17a-c) with problems (11a-c), we obtain the following identities:

〈〈
w,pa

〉〉µ
Y

+
〈〈
w,P a

〉〉∆µ
Ba

= −∆F a(w) for all w ∈V, (18a)
〈〈
w, qa

〉〉µ
Y

+
〈〈
w,Qa

〉〉∆µ
Ba

= ∆Ja(w,P a) + J(w,pa) + ∆KQ
a (w)−∆LQa (w) for all w ∈V, (18b)

〈〈
w, ra

〉〉µ
Y

+
〈〈
w,Ra

〉〉∆µ
Ba

= ∆Ja(w,Qa) + J(w, qa) + ∆KR
a (w)−∆LRa (w) for all w ∈V, (18c)

∆F a(·) := F a(·)− F (·), ∆Ja(·,va) := Ja(·,va)− J(·,va) In particular, one has

∆F a(w) = ∆µ

∫

Ba

(∇w)T dV. (19)

2.3. Topological sensitivity of the effective properties. Let f = f(µ, ρ) stand for any of the
effective tensors defined in (6) and (8) for the reference unit cell Y , and similarly let fa = f(µa, ρa)
denote its companion computed for Ya. Our main goal is to determine the topological sensitivity Df(z)
of f due to nucleation of a small inhomogeneity Ba at z ∈ Y , defined through the expansion

fa = f + υ(a)Df(z) + o(υ(a)) as a→ 0, (20)

where the homogeneous scaling function υ(a) is to be determined. In general Df(z) is a function of the
nucleation locus z, the shape B of Ba, and the material properties of Y and Ya. The latter dependence
is both explicit (through definitions (6) and (8)) and implicit (through the cell functions solving (5)).

3. Cell solution asymptotics. The derivation of topological expansion (20) for the effective
properties featured in the mean field equation (16) is predicated on knowing the asymptotic behavior
of the cell functions as a → 0, a prerequisite to which this section is devoted. To this end, the weak
problems (11) for the perturbed cell are first reformulated as volume integral equations (VIEs), which
are then expanded about a→ 0. Such approach facilitates the computation of the sought asymptotics,
as the geometrical support of the volume integral operator is the vanishing inhomogeneity Ba.

3.1. First cell problem.

Volume integral equation. Let G(·,x) denote the periodic Green’s function for the (unperturbed)
cell Y , i.e. the (Y -periodic and zero-mean) field created by a unit point-source at x∈ Y whereby

−div1(µ∇1G(·,x)) = δ(·−x) in Y ,
〈
G(·,x)

〉
= 0, G(·,x) and µn·∇1G(·,x) Y − periodic,

(21)

where div1 and ∇1 imply differentiation with respect to the first argument. The solution of (21) can
be conveniently decomposed as

G(·,x) = G∞(· − x;µ(x)) + Gc(·,x), G∞(r; η) = − 1

2πη
ln |r| (22)

where G∞(·; η) solves −div
(
η∇G∞

)
= δ(·) (i.e. G∞(·; η) is the fundamental solution for an infinite

homogeneous medium with shear modulus η) while the complementary part Gc is a H1(Y ) function.

On testing the first equation in (21) by a function w ∈V∩C1(ωx) (where ωx b Y is a neighborhood
of x) and applying the first Green’s identity to the resulting left-hand side, the Green’s function is seen
to verify 〈〈

G(·,x),w
〉〉µ
Y

= w(x), x∈ Y, w ∈V ∩C1(ωx). (23)
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The assumed smoothness of µ ensures the interior regularity of P solving (5a), which in turn allows to
use w=P in (23) (see also Remark 3 on the case of piecewise-smooth background material). We can
in addition set w = G(·,x) in (11a) (the resulting integrals being well defined although G(·,x) 6∈ V).
Performing these operations shows that P admits the explicit representation

P (x) = −F (G(·,x)), x∈ Y (24)

Similar arguments are applicable to the perturbed cell function P a, which solves (17a) and satisfies the
smoothness requirement in (23) for x∈Ba ∪ (Y \Ba). Using (23) with w=P a gives

〈〈
G(·,x),P a

〉〉µa
Y

= P a(x) +
〈〈
G(·,x),P a

〉〉∆µ
Ba

x∈Ba ∪ (Y \Ba).

Combining the above equality with the weak problem (17a) with w = G(·,x) and representation (24),
the restriction of P a to Ba is found to satisfy the volume integral equation

(
I+La

)
P a(x) = P (x)−∆F a(G(·,x)), x∈Ba, (25)

where ∆F a is given by (19) and the integral operator La : H1(Ba)→ H1(Ba) is defined as

Laf(x) =
〈〈
G(·,x), f

〉〉∆µ
Ba

= ∆µ

∫

Ba

∇1G(y,x)·∇f(y) dV (y).

Then, extending (25) to x ∈ Y \Ba yields an explicit representation formula for P a outside of Ba.

Asymptotic expansion of the first cell solution. By analogy with the small-inclusion asymptotic
expansions for simpler two-dimensional problems [7, 10], we introduce scaled coordinates for points
x∈Ba such that

x = z + ax̄, dV (x) = a2 dV (x̄),

and assume the following ansatz for the expansion of P a inside Ba (hereon called the inner expansion):

P a(x) = P (z) + aP 1(x̄) + o(a), x ∈ Ba. (26)

The governing (volume integral) equation for P 1 is then sought by inserting the above ansatz
into equation (25), expanding the resulting equation about a = 0 and retaining the leading-order
contribution. This approach relies on the following expansions being verified by the Green’s function:

G(y,x) = G∞
(
ȳ− x̄;µ(z)

)
− 1

2πµ(z)
ln a+O(1), (27a)

∇1G(y,x) = a−1∇G∞
(
ȳ− x̄;µ(z)

)
+O(1), (27b)

and also uses the Taylor expansion P (x) = P (z) + ax̄·∇P (z) + o(a) of the background cell solution
P (which is valid since the assumed local smoothness of µ at the interior point z ensures adequate
regularity of P in a neighborhood of z). The resulting leading O(a) order contribution to the VIE (25)
is the integral equation

(
I+L∞

)
P ′1(x̄) = x̄·

(∇P +I
)
(z) x̄∈B, (28)

with P ′1(x̄) := P 1(x̄) + x̄ and the integral operator L∞ defined by

L∞f(x̄) = ∆µ

∫

B
∇G∞

(
ȳ− x̄;µ(z)

)
·∇f(ȳ) dV (ȳ). (29)

To obtain equation (28), we have in particular used that

∆F a(G(·,x)) = ∆µ

∫

Ba

∇1G(y,x) dV (y) = a [L∞ȳ](x̄) + o(a).

Then, letting U denote the solution of the integral equation
(
I+L∞

)
U(x̄) = x̄, x̄∈B, (30)
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we have P ′1(x̄) = U(x̄)·
(∇P +I

)
(z). The ansatz (26) therefore results in the inner expansion

P a(x) = P (z) + a
{
U(x̄)·

(∇P +I
)
(z)− x̄

}
+ o(a) x∈Ba, x̄∈B (31)

of P a, whose justification then stems from the following lemma (whose proof is given in Appendix A):

Lemma 2. There exists a constant aP > 0 such that
∥∥P a(x)− P (z)− a

{
U(x̄)·

(∇P +I
)
(z)− x̄

}∥∥
H1(Ba)

= O(a2) a<aP . (32)

The perturbation pa also obeys the following lemma, given for later reference and proved in Appendix B:

Lemma 3. The perturbation pa = P a − P satisfies ‖pa‖L2(Y ) = o(a).

3.2. Cell solution asymptotics: the main result. The second and third cell problems (17b)
and (17c) can likewise be reformulated as volume integral equations, rendering the asymptotic treatment
of their inner solutions amenable to the same general approach. Unlike (25), however, the right-hand
sides of the governing VIEs for Qa and Ra feature integrals over Y in addition to those over Ba.
This makes the derivation of their leading-order asymptotic form more involved, and the corresponding
proofs are deferred to Section 5. The asymptotic form (31) of P a and the analogous results established
in Section 5 for Qa and Ra are gathered in the following proposition:

Proposition 1. The cell functions P a,Qa,Ra admit in Ba the following expansions:

P a(x) = P (z) + a
{
U(x̄)·

(∇P +I
)
(z)− x̄

}
+ o(a),

Qa(x) = Q(z) + a
{
U(x̄)·

(∇Q+I⊗P
)
(z)− x̄⊗P (z)

}
+ o(a), x∈Ba, x̄ := a−1(x−z)∈B,

Ra(x) = R(z) + a
{
U(x̄)·

(∇R+I⊗Q
)
(z)− x̄⊗Q(z)

}
+ o(a),

where U is the solution of the canonic integral equation (30).

Remark 1. The VIE (30) is identical to that arising for an inhomogeneity B (with modulus µ(z)+∆µ)
embedded in a homogeneous background R2 with modulus µ(z), subjected to a uniform far-field
gradient.

3.3. Polarization tensor and expansion of integrals. In the sequel, we will repeatedly use

expansions of quantities such as
〈〈
w,P a

〉〉∆µ
Ba

, where the (possibly tensor-valued) function w is regular

in a neighborhood of Ba and does not depend on a. Thanks to Proposition 1 and the Taylor expansion
of w about z, we have

〈〈
w,P a

〉〉∆µ
Ba

= ∆µ

∫

Ba

(∇w)T·∇P a dV

= a2∆µ(∇w)T(z)·
{ ∫

B
∇U(ȳ)·

(∇P +I
)
(z) dV (ȳ)− |B|I

}
+ o(a2).

We introduce the polarization tensor A given by

A = A(B, µ(z),∆µ) := ∆µ

∫

B
∇U(ȳ) dV (ȳ), (34)

this definition being identical to that used in many earlier asymptotic studies involving non-periodic
media, e.g. [10, 15, 1]. The tensor A is in particular known to be symmetric (e.g. [10, Lemma 5]).

The above expansion of
〈〈
w,P a

〉〉∆µ
Ba

then takes the more concise form

〈〈
w,P a

〉〉∆µ
Ba

= a2(∇w)T(z)·
{
A·
(∇P +I

)
−∆µ|B|I

}
(z) + o(a2). (35)
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Similar expansions involving Qa and Ra are obtained, using Proposition 1 and (34), as

〈〈
w,Qa

〉〉∆µ
Ba

= a2(∇w)T(z)·
{
A·
(∇Q+I⊗P

)
−∆µ|B|I⊗P

}
(z) + o(a2), (36a)

〈〈
w,Ra

〉〉∆µ
Ba

= a2(∇w)T(z)·
{
A·
(∇R+I⊗Q

)
−∆µ|B|I⊗Q

}
(z) + o(a2). (36b)

4. Topological sensitivities. The following theorem, whose proof is deferred to Section 6, gives
the topological sensitivities of the effective material properties featured in the field equation (16)
governing the third-order approximation of the mean (macroscopic) wavefield in a medium with periodic
microstructure; it is the main result of this work.

Theorem 2. Consider a small inhomogeneity Ba = z + aB with radius a, shape B, shear modulus
µ+ ∆µ and mass density ρ+ ∆ρ (where ∆µ >−minx∈Y µ(x) and ∆ρ >−minx∈Y ρ(x) are uniform
material contrasts), nucleated at some point z ∈ Y inside the periodic unit cell. Moreover, let the adjoint
solutions β ∈V and (for any v ∈Vp) X[v] ∈ Vp+1 be defined by problems

〈〈
w, β

〉〉µ
Y

=

∫

Y

(ρ−%0)w dV for all w ∈V, (37a)

〈〈
w,X[v]

〉〉µ
Y

= J(v, w) for all w ∈V. (37b)

The affiliated topological sensitivities of the effective material properties (6) and (8), as defined through
expansion (20) with υ(a) = |Y |−1a2, are given in terms of the background cell functions P ,Q,R, the
adjoint solutions β and X[β], and the polarization tensor A by

D%0(z) = |B|∆ρ,

Dµ0(z) =
{(∇P +I

)T·A·
(∇P +I

)}
(z),

D%1(z) =
{
D%0P −∇β ·A·

(∇P +I
)}

(z),

Dµ1(z) =
1

%0

{
D%1⊗µ0 + %1⊗Dµ0 −D%0%1⊗ µ

0

%0

}
sym

(z),

D%2(z) =
{(
−∇X[β] + βI

)
·A·

(∇P +I
)
−∇β ·A·

(∇Q+ I⊗P
)}

sym
(z)

+
{
D%0

(
Q− βµ

0

%0

)
− 〈ρβ〉

%0

(
Dµ0 −D%0µ

0

%0

)}
sym

(z),

Dµ2(z) =
{

2
(∇P +I

)T·A·
(∇R+ I⊗Q

)
−
(∇Q+I⊗P

)T·A·
(∇Q+I⊗P

)}
sym

(z)

+
{[
D%2 +D%0

(
P ⊗P − 2Q

)]
⊗ µ

0

%0
+

1

%0

(〈
ρP ⊗P

〉
− %2

)
⊗
(
Dµ0 −D%0µ

0

%0

)}
sym

(z).

Remark 2. Lemma 1, which holds true for any configuration of the material in Y , implies that
D%0, D%1, Dµ0 and Dµ1 are related through

{
D%1⊗µ0 + %1⊗Dµ0

}
sym

= D%0µ1 + %0Dµ1. Indeed,

expressing Dµ1 by means of this identity yields the formula given in Theorem 2.

Remark 3. Consider the case where the background material parameters µ, ρ are only piecewise-smooth.
Then, transmission conditions of the form

[[
v
]]

= 0 and
[[
µn·∇v]]= 0 must be added [27] to the cell

problems in strong form (with v=P ,Q,R for problems (5) and v=G(·,x) for problem (21)), and are
implicitly embedded in the weak problem (11). The topological sensitivity formulas given by Theorem 2
remain valid in this case, provided the inhomogeneity locus z lies away from any material discontinuity
line. This stems from the fact that the analyses carried out in Section 3 and Section 4 require µ and ρ
to be smooth only in a neighborhood of z. For example, this weakened assumption is sufficient for
decomposition (22) of the Green’s function to hold and for Taylor expansions of the background cell
solutions to have requisite local validity wherever required.

Remark 4. In the case of constant mass density, %0 = ρ while %1,%2, β and µ1 vanish identically (the
latter by Lemma 1). In such situations, the dependence on ∆ρ and ∆µ of the featured topological
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sensitivities occurs via the terms D%0 = |B|∆ρ and A, respectively. With reference to (16), the
resulting formula D%2(z) =

{
D%0Q

}
sym

(z) in particular characterizes the singular perturbation of the

governing field equation once a point-like inertial heterogeneity is periodically introduced in a medium
with otherwise constant mass density. In the context of the second-order macroscopic model for waves
in periodic media, this perturbation (ω2%2 : ∇2(·)) is solely responsible for the coupling between the
temporal and spatial derivatives.

In the case of constant shear modulus, we have P = 0 by the well-posedness of the homogeneous
problem (5a), implying µ0 = µI and %1 = 0, as well as Dµ0 = A (as shown by [2]).

Remark 5. If Ba is an ellipse such that B has principal directions (a1,a2) and semi-axe lengths (1, γ),
we have [1]:

|B| = πγ, A = πγ(γ+1)µ(z)
[ κ(z)

1 + γ + γκ(z)
a1⊗a1 +

κ(z)

1 + γ + κ(z)
a2⊗a2

]
, (38)

having set κ(z) := ∆µ/µ(z). The case where Ba is a disk corresponds to γ = 1.

Remark 6. The present expression for the topological sensitivity Dµ0 has the same structure as that
given by [14] for plane-strain two-dimensional elastostatics.

5. Cell solution asymptotics: proofs for the second and third problems. Following the
approach of Section 3.1, the unperturbed cell functions Q and R are found to read

Q(x) = J(G(·,x),P ) +KQ(G(·,x))−LQ(G(·,x)), (39a)

R(x) = J(G(·,x),Q) +KR(G(·,x))−LR(G(·,x)), (39b)

where G is the periodic Green’s function given by (21). The relevant weak problems (11b), (11c), (17b)
and (17c) for the perturbed cell then help demonstrate that the restrictions of Qa and Ra to Ba satisfy
the volume integral equations
(
I+La

)
Qa(x) = Q(x) + ∆Ja(G(·,x),P a) + J(G(·,x),pa) + ∆KQ

a (G(·,x))−∆LQa (G(·,x)), (40a)
(
I+La

)
Ra(x) = R(x) + ∆Ja(G(·,x),Qa) + J(G(·,x), qa) + ∆KR

a (G(·,x))−∆LRa (G(·,x)). (40b)

5.1. Second cell problem. Consider an inner expansion of the second cell solution Qa of the form

Qa(x) = Q(z) + aQ1(x̄) + o(a).

The corresponding expansion of VIE (40a) follows the same general approach as that of (25), but is
more involved as it requires determining the asymptotic behavior of various terms appearing on the
right-hand side of (40a).

Asymptotic form of ∆KQ
a (G(·,x)) and ∆LQa (G(·,x)). Both ∆KQ

a (G(·,x)) and ∆LQa (G(·,x)) are

integrals over Ba that involve G but not its gradient. On recalling the definitions (13) of KQ
a and LQa ,

introducing the scaled coordinates in the relevant integrals and invoking the asymptotic behavior (27a)
of G, one finds via (27a) that

∆KQ
a (G(·,x)) = O(a2 ln a), ∆LQa (G(·,x)) = O(a2 ln a). (41a)

Asymptotic form of ∆Ja(G(·,x),P a). From definition (12), we have

∆Ja(G(·,x),P a) = ∆µ

∫

Ba

G(y,x)∇P a(y) dV (y) − ∆µ

∫

Ba

∇1G(y,x)⊗P a(y) dV (y), x∈Ba.

For y,x ∈ Ba, one has G(y,x) = O(ln a), ∇P a(y) = O(1) thanks to (31), and dV (y) = O(a2).
Accordingly, the first integral above behaves as O(a2 ln a). On the other hand, from (27b) and (31),
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one finds the the second integral to be O(a), and we have

∆Ja(G(·,x),P a) = −a
{

∆µ

∫

B
∇G∞(ȳ− x̄;µ(z)) dV (ȳ)

}
⊗P a(z) + o(a)

= −aL∞
[
ȳ⊗P (z)

]
(x̄) + o(a), x∈Ba. (41b)

Asymptotic form of J(G(·,x),pa). Recalling (12), this term is defined as an integral over the whole
cell Y , which makes its asymptotic evaluation as a→ 0 less straightforward (see also Remark 7 below).
We circumvent this difficulty by an indirect evaluation of J(G(·,x),pa). LetX

[
G(·,x)

]
be the solution

of the adjoint problem (37b) with v = G(·,x), i.e.
〈〈
w,X

[
G(·,x)

]〉〉µ
Y

= J(G(·,x), w) for all w ∈V.
By definition (12), J(G(·,x), w) is a combination of volume potentials (with densities w and ∇w),
whose known mapping properties (see e.g. [17, Thm. 6.1.12]) ensure that w 7→ J(G(·,x), w) is a
continuous linear functional on H1(Y ). Therefore, the variational problem (41) is well-posed. On
setting w=pa, we accordingly have

J(G(·,x),pa) =
〈〈
pa,X

[
G(·,x)

]〉〉µ
Y

=
(〈〈
X
[
G(·,x)

]
,pa
〉〉µ
Y

)T
. (41c)

Next, we use the weak formulation (18a) for pa with w = X
[
G(·,x)

]
, which allows to express

J(G(·,x),pa) in terms of integrals over the vanishing inclusion support Ba:

J(G(·,x),pa) = −
(〈〈
X
[
G(·,x)

]
,P a

〉〉∆µ
Ba

+ ∆F a
(
X
[
G(·,x)

]))T

= −∆µ

∫

Ba

(∇P a+I)T·∇X[G(·,x)
]

dV.

By the Cauchy-Schwarz inequality, and since the first cell solution asymptotics (31) allows to show that
‖∇P a+I‖L2(Ba) 6 Ca for some C > 0, we have
∣∣J(G(·,x),pa)

∣∣ 6 |∆µ|
∥∥∇P a+I

∥∥
L2(Ba)

∥∥∇X[G(·,x)
]∥∥

L2(Ba)
6 Ca|∆µ|

∥∥∇X[G(·,x)
]∥∥

L2(Ba)
.

Moreover, since X
[
G(·,x)

]
is an H1(Y ) function that does not depend on a,

∣∣∇X[G(·,x)
]∣∣2χBa

defines a sequence of measurable functions whose pointwise limit is zero almost everywhere in Y .
Consequently,

∥∥∇X[G(·,x)
]∥∥

L2(Ba)
→ 0 as a → 0 by Lebesgue’s dominated convergence theorem,

and we obtain
J(G(·,x),pa) = o(a). (41d)

Remark 7. Merely using that the mapping w 7→ J(G(·,x), w) is continuous on H1(Y ) together with the
known estimate ‖pa‖H1(Y ) = O(a) would only yield the sub-optimal estimate J(G(·,x),pa) = O(a).

Inner expansion of Qa. By virtue of (41a,b,d), one finds the leading-order (O(a)) behavior of the
VIE (40a) to read (

I+L∞
)
Q′1(x̄) = x̄·

(∇Q+I⊗P
)
(z),

having set Q′1(x̄) := Q1(x̄)+ x̄⊗P (z). The inner expansion of Qa is therefore given by

Qa(x) = Q(z) + a
{
U(x̄)·

(∇Q+I⊗P
)
(z)− x̄⊗P (z)

}
+ o(a), x∈Ba, x̄∈B, (42)

where U again solves (30).

5.2. Third cell problem. Following the same approach, we seek the inner expansion of the third cell
solution as

Ra(x) = R(z) + aR1(x̄) + o(a).

The expansion of the VIE (40b), like that of (40a), requires determining the asymptotic behavior of
various terms appearing in its right-hand side, some of them defined as integrals over Y .
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Asymptotic form of ∆KR
a (G(·,x)) and ∆LRa (G(·,x)). From definition (13), we have

∆KR
a (G(·,x)) = ∆µ

∫

Ba

G(·,x)I⊗P a dV +

∫

Y

µG(·,x)I⊗pa dV.

The first term on the right-hand side behaves as O(a2 ln a) by the argument used to obtain (41a).
Moreover, Lemma 3 and the Cauchy-Schwartz inequality (G(·,x) being a L2(Y ) function) imply that

the second integral behaves as o(a). A similar analysis applies to ∆LRa (G(·,x)), given by

∆LRa (G(·,x)) = ∆ρ

∫

Ba

G(·,x)
µ0
a

%0
a

⊗P a dV +

∫

Y

ρG(·,x)
{( µ0

a

%0
a

− µ
0

%0

)
⊗P a +

µ0

%0
⊗pa

}
dV,

using in addition the fact that µ0
a/%

0
a−µ0/%0 = O(υ(a)) = O(a2) by Theorem 2 (this invokation being

legitimate since that part of Theorem 2 only relies on the asymptotic behavior of P a). Concluding, we
have

∆KR
a (G(·,x)) = o(a), ∆LRa (G(·,x)) = o(a). (43a)

Asymptotic form of ∆Ja(G(·,x),Qa). A derivation analogous to that of (41b) gives

∆Ja(G(·,x),Qa) = −a
{

∆µ

∫

B
∇G∞(ȳ− x̄;µ(z)) dV (ȳ)

}
⊗Qa(z) + o(a)

= −aL∞
[
ȳ⊗Q(z)

]
(x̄) + o(a), x∈Ba. (43b)

Asymptotic form of J(G(·,x), qa). By analogy to the case of J(G(·,x),pa), the term J(G(·,x), qa)
– given by an integral over the whole cell Y , can be recast as

J(G(·,x), qa) =
〈〈
qa,X

[
G(·,x)

]〉〉µ
Y

=
(〈〈
X
[
G(·,x)

]
, qa
〉〉µ
Y

)T
.

Then, invoking problem (18b) with w = X
[
G(·,x)

]
, we obtain

〈〈
X
[
G(·,x)

]
, qa
〉〉µ
Y

= −
〈〈
X
[
G(·,x)

]
,Qa

〉〉∆µ
Ba

+ ∆Ja(X
[
G(·,x)

]
,P a) + J(X

[
G(·,x)

]
,pa)

+ ∆KQ
a (X

[
G(·,x)

]
)−∆LQa (X

[
G(·,x)

]
). (43c)

Thanks to (41c), we have

J(X
[
G(·,x)

]
,pa) =

(〈〈
X
[
X[G(·,x)]

]
,pa
〉〉µ
Y

)T
.

Since X
[
X[G(·,x)]

]
is an H1(Y ) function (actually having more regularity than X[G(·,x)]), the

argument leading to (41d) applies, allowing us to show that J(X
[
G(·,x)

]
,pa) = o(a). The remaining

contributions to the right-hand side of (43c) can likewise be shown to behave as o(a) thanks to (43a)
and a similar argument applied to the first two terms. As a result, we have

J(G(·,x), qa) = o(a). (43d)

Inner expansion of Ra. The volume integral equation (40b) can now be expanded with the help
of (43a,b,d). Its leading-order (O(a)) contribution furnishes the integral equation

(
I+L∞

)
R′1(x̄) = x̄·

(∇R+I⊗Q
)
(z).

wherein R′1(x̄) := R1(x̄)+ x̄⊗Q(z). The inner expansion of Ra is therefore given by

Ra(x) = R(z) + a
{
U(x̄)·

(∇R+I⊗Q
)
(z)− x̄⊗Q(z)

}
+ o(a), x∈Ba, x̄∈B, (44)

where U solves (30).

6. Proof of Theorem 2.

Density, zeroth-order. By virtue of (6a), one immediately finds

%0
a − %0 = 〈ρa−ρ〉 = a2|Y |−1|B|∆ρ = υ(a)D%0.



12 MARC BONNET†, RÉMI CORNAGGIA‡, AND BOJAN B. GUZINA§,∗

Shear modulus, zeroth-order. From the definition (15a) of µ0, we have

µ0
a − µ0 = |Y |−1

(
∆F a(P a) + F (pa) + a2∆µ|B|I

)T

sym. (45)

The leading contributions as a → 0 of the right-hand side of the above equality are to be evaluated.
We begin by noting that

(
∆F a(P a) + a2∆µ|B|I

)T
= ∆µ

∫

Ba

(
I + ∇P a

)
dV = a2A·

(∇P +I
)
(z) + o(a2), (46a)

where the last equality follows from expansion (31) and the definition (34) of A. Turning to the
contribution of F (pa), we have

(F (pa))T = −
〈〈
P ,pa

〉〉µ
Y

by virtue of (11a). Moreover, for any w ∈ V that is regular in the neighborhood of Ba, the weak
problem (18a) for pa implies

〈〈
w,pa

〉〉µ
Y

= −
〈〈
w,P a

〉〉∆µ
Ba
−∆F a(w) = −a2(∇w)T(z)·A·

(∇P +I
)
(z) + o(a2), (46b)

due to (35). Accordingly, by using w=P in (46b) we find

(F (pa))T = a2(∇P )T(z)·A·
(∇P +I

)
(z) + o(a2). (46c)

The sought expression for Dµ0 in Theorem 2 then follows from definition (20) of the topological
sensitivity and the use of (46a) and (46c) in (45).

Density, first-order. To evaluate D%1, we deploy the definition (6b) of %1 and write

%1
a − %1 = 〈ρaP a−ρP 〉 = ∆ρ〈χBaP a〉 + 〈ρpa〉. (47)

Then, using the expansion of P a as in Proposition 1, we have

∆ρ〈χBaP a〉 = a2|Y |−1|B|∆ρP (z) + o(a2) = υ(a)D%0(z)P (z) + o(a2). (48a)

Besides, on recalling (37a) with w=pa and the fact that 〈pa〉 = 0, one finds

〈ρpa〉 =
〈

(ρ−%0)pa
〉

= |Y |−1
〈〈
pa, β

〉〉µ
Y
,

which can then be evaluated using (46b) with w = β as

〈ρpa〉 = −υ(a)∇β(z)·A·
(∇P +I

)
(z) + o(a2). (48b)

The sought result for D%1 follows from using (48a) and (48b) in (47).

Shear modulus, first order. Recalling the definition (15b) of µ1, we have

µ1
a − µ1 = |Y |−1

{
∆F a(Qa) + ∆KQ

a (P a) + F (qa) +KQ(pa)
}

sym
. (49)

First, we have

∆F a(Qa) + ∆KQ
a (P a) = ∆µ

∫

Ba

(∇Qa + I⊗P a

)
T dV = a2

(∇Q+ I⊗P
)T

(z) ·A + o(a2), (50a)

where the last equality makes use of the symmetry of A and expansions (31), (34) and (42).

To determine the asymptotic contribution of KQ(pa), we begin by using the weak problem (11b)
with w = pa and write:

KQ(pa) =
〈〈
pa,Q

〉〉µ
Y
− J(pa,P ) +LQ(pa) =

〈〈
pa , Q+ β

µ0

%0

〉〉µ
Y
− J(pa,P ),
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where the second equality uses the adjoint problem (37a) with w = pa and the fact that 〈pa〉 = 0. On
applying (46b) with w = Q+βµ0/%0, we accordingly find

KQ(pa) = −a2
(∇P +I

)T
(z)·A·

(
∇Q+ ∇β⊗ µ

0

%0

)
(z)− J(pa,P ) + o(a2). (50b)

The leading contribution of F (qa)T in (49) remains to be determined, and this requires a somewhat
more involved derivation. First, the weak statement (11a) with w = qa gives

F (qa) = −
(〈〈
P , qa

〉〉µ
Y

)T
. (50c)

We then note that, for any w ∈ V , the governing problem (18b) implies

〈〈
w, qa

〉〉µ
Y

= −
〈〈
w,Qa

〉〉∆µ
Ba

+ ∆Ja(w,P a) + J(w,pa) + ∆KQ
a (w)−∆LQa (w). (50d)

Further, the following expansions hold for any w ∈ V that is smooth in a neighborhood of Ba:

〈〈
w,Qa

〉〉∆µ
Ba

= a2(∇w)T(z)·
{
A·
(∇Q+I⊗P

)
−∆µ|B|I⊗P )

}
(z) + o(a2), (50e)

∆Ja(w,P a) = a2
{
wT⊗A·

(∇P +I
)
−∆µ|B|

(
wT⊗I + (∇w)

T⊗P
)}

(z) + o(a2), (50f)

∆KQ
a (w) = a2∆µ|B|

{
wT⊗I

}
(z) + o(a2), (50g)

∆LQa (w) = a2|Y |
{
D%0w⊗ µ

0

%0
+
〈ρw〉
%0
⊗
(
Dµ0 −D%0µ

0

%0

)}
(z) + o(a2), (50h)

Inserting these expressions in (50d) yields

〈〈
w, qa

〉〉µ
Y

= a2
{
− (∇w)

T·A·
(∇Q+ I⊗P

)
+wT⊗A·

(∇P +I
)}

(z) + J(w,pa)

− a2|Y |
{
D%0w⊗ µ

0

%0
+
〈ρw〉
%0
⊗
(
Dµ0 −D%0µ

0

%0

)}
(z) + o(a2). (50i)

We now set w = P in the above expression, so that (50c) yields

F (qa) = a2
{(∇Q+ I⊗P

)T·A·∇P − (∇P +I
)T·A⊗P

}
(z)− JT(P ,pa)

+ a2|Y |
{
D%0P ⊗ µ

0

%0
+
〈ρP 〉
%0
⊗
(
Dµ0 −D%0µ

0

%0

)}T

(z) + o(a2). (50j)

On substituting (50a), (50b) and (50j) in the formula (49) for modulus perturbation µ1
a − µ1, one

finds

µ1
a − µ1 = a2

{
D%0P ⊗ µ

0

%0
+
%1

%0
⊗
(
Dµ0 −D%0µ

0

%0

)
− |Y |−1

(∇P +I
)T·A·∇β⊗ µ

0

%0

}
sym

(z),

thanks to the reciprocity identity (14). The claimed formula for Dµ1 is finally established by using the
expression for D%1 in the above expansion.

Density, second-order. Here, we follow the approach used to derive D%1
a. On recalling the

definition (8a) of %2, we write

%2
a − %2 = 〈ρaQa−ρQ〉sym = ∆ρ〈χBaQa〉sym + 〈ρqa〉sym. (51)

Then, the cell solution asymptotics (17b) and the formula for D%0(z) yield

∆ρ〈χBaQa〉 = a2|Y |−1|B|∆ρQ(z) + o(a2) = υ(a)
{
D%0Q

}
(z) + o(a2), (52a)

while the leading contribution of 〈ρqa〉 is evaluated by resorting to the adjoint problem (37a) with
w= qa:

〈ρqa〉 =
〈

(ρ−%0)qa
〉

= |Y |−1
〈〈
qa, β

〉〉µ
Y

= |Y |−1
(〈〈
β, qa

〉〉µ
Y

)T
. (52b)
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The expansion of the above result is then given by (50i) with w = β, i.e.

〈〈
β, qa

〉〉µ
Y

= a2
{
−∇β ·A·

(∇Q+ I⊗P
)

+ βA·
(∇P +I

)}
(z) + J(β,pa)

− a2|Y |
{
D%0β

µ0

%0
+
〈ρβ〉
%0

(
Dµ0 −D%0µ

0

%0

)}
(z) + o(a2), (52c)

where J(β,pa) can be expanded as

J(β,pa) =
〈〈
pa,X[β]

〉〉µ
Y

= −
(〈〈
X[β],P a

〉〉∆µ
Ba

+ ∆F a(X[β])
)T

= −a2
{(∇P +I

)T·A·∇X[β]
}

(z) + o(a2) (52d)

having used the adjoint problem (37b), the weak problem (18a) for pa, and expansion (35). The sought
expression for D%2 is finally found by using (52a)–(52d) in (51).

Shear modulus, second order. The approach previously used for deriving Dµ1 is used again.
Recalling definition (15c) of µ2, we thus need to evaluate the leading contribution as a→ 0 of

µ2
a − µ2 = |Y |−1

{
∆F a(Ra) + ∆KQ

a (Qa) + F (ra) +KQ(qa)
}

sym
, (53)

First, similarly to (50a), we have:

∆F a(Ra) + ∆KQ
a (Qa) =

∫

Ba

∆µ
(∇Ra + I⊗Qa

)
T dV = a2

(∇R+ I⊗Q
)T

(z) ·A+ o(a2). (54a)

What remains to be determined is the leading contribution of F (ra) + KQ(qa). Following now-
familiar lines, we have

(
F (ra) +KQ(qa)

)T
= −

〈〈
P , ra

〉〉µ
Y

+KQ(qa)T

=
〈〈
P ,Ra

〉〉∆µ
Ba
−∆Ja(P ,Qa)− J(P , qa)−∆KR

a (P ) + ∆LRa (P ) +KQ(qa)T (54b)

by virtue of (18c) with w = P , and

〈〈
P ,Ra

〉〉∆µ
Ba

= a2
{

(∇P )T·A·
(∇R+ I⊗Q

)
−∆µ|B|(∇P )T⊗Q

}
(z) + o(a2),

∆Ja(P ,Qa) = a2
{
P ⊗A·

(∇Q+I⊗P
)
−∆µ|B|

(
P ⊗I⊗P + (∇P )

T⊗Q
)}

(z) + o(a2)

similar to expansions (50e) and (50f). Moreover, one finds that

−J(P , qa)+KQ(qa)T = −J(P , qa)+
(〈〈
qa,Q

〉〉µ
Y

)T
+LQ(qa)T−J(qa,P )T =

〈〈
Q, qa

〉〉µ
Y

+
µ0

%0
⊗
〈〈
β, qa

〉〉µ
Y
,

thanks to the weak problem (11b) for Q, property (14) of J , and the adjoint problem (37a) for β. On
recalling (52c) and retracing the derivation of D%2, we have

〈〈
β, qa

〉〉µ
Y

= a2|Y |
(
D%2 −D%0Q

)
(z) + o(a2),

while
〈〈
Q, qa

〉〉µ
Y

can be evaluated via (50i) with w = Q. As a result,

−J(P , qa) +KQ(qa)T = a2
{
−∇QT·A·

(∇Q+ I⊗P
)

+QT⊗A·
(∇P +I

)}
(z) + J(Q,pa)

+ a2|Y |
{ µ0

%0
⊗
(
D%2 −D%0Q

)
−D%0Q⊗ µ

0

%0
− %

2

%0
⊗
(
Dµ0 −D%0µ

0

%0

)}
(z).

Next, from definitions (13) applied to both the unperturbed and perturbed cells, we have

−∆KR
a (P ) + ∆LRa (P ) = a2

{
|B|P ⊗

(
∆ρ
µ0

%0
−∆µI

)
⊗P +

|Y |
%0

〈
ρP ⊗

(
Dµ0 −D%0µ

0

%0

)
(z)⊗P

〉}
(z)

+LR(pa)−KR(pa) + o(a2).
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On deploying the weak problem (11c) with w=pa and recalling (46b), one finds

LR(pa)−KR(pa) = J(pa,Q)−
〈〈
pa,R

〉〉µ
Y

= J(pa,Q) + a2
{(∇P +I

)T·A·∇R}(z) + o(a2).

Collecting the above expansions of the terms on the right-hand side of (54b) and performing sym-
metrization (7), we find

[
F (ra) +KQ(qa)

]
sym

= a2
[{(

2∇P +I
)T·A·

(∇R+ I⊗Q
)
−
(∇Q+I⊗P

)T·A·
(∇Q+I⊗P

)}
(z)

+ |Y |µ
0

%0
⊗
{
D%2 +D%0

(
P ⊗P − 2Q

)}
(z)

+ |Y | 1

%0

{(〈
ρP ⊗P

〉
− %2

)
⊗
(
Dµ0 −D%0µ

0

%0

)}
(z)
]

sym
+ o(a2). (54c)

The sought formula for Dµ2 as in Theorem 2 then follows by substituting (54a) and (54c) in (53).

7. Numerical illustrations. In what follows, we provide two examples exercising the sensitivity
formulas in Theorem 2 for simple unit cells and perturbation shapes. The computations of the cell and
adjoint functions is performed using the finite element platform FreeFem++ [16, 19].

7.1. Fast computation of the sensitivity coefficients. By neglecting the o(υ(a)) remainder
in (20), one obtains the leading-order perturbation of the coefficients of homogenization (%0,µ0 e.t.c.)
due to insertion of a small inhomogeneity inside the reference unit cell. Note that such approximation
is also relevant to small-volume-fraction composites [12, 2], in which context the expansion has been
extended to higher-orders [18] in order to handle O(1) volume fractions. To our knowledge, however,
such computations are normally performed for bi-phased materials (i.e. for inclusions in a homogeneous
matrix) and not for additional inclusions nucleating in an already periodic medium (see also Remark 6).

As an illustration, we show in Fig. 1 the error made by the approximation µ0+ a2

|Y |Dµ0(z) of µ0
a for

a reference “chessboard” unit cell perturbed by a “stiff” ellipsoidal inclusion with semi-axes (a, 0.2a),
centered at z=(0.25, 0.25). It is seen that even for values of a close to 0.25 (this value being the limit
for which the smoothness assumptions inside Ba cease to hold), the maximum approximation error
remains below 1%. Note also that this error is O(a4), instead of expected O(a3); on the basis of a
recent higher-order TS analysis [7], we believe (without proof for now) that this holds for any centrally
symmetric inclusion.

Here it is useful to recall that evaluating µ0 + a2

|Y |Dµ0 requires: (i) computing P and µ0 for the

reference cell once and for all ; (ii) computing the polarization tensor A(µ(z),∆µ,B) for a given
material contrast ∆µ, shape B, and each location z of the inclusion, and (iii) scaling the result

Dµ0(z) = {(∇P +I)T·A·(∇P +I)}(z) by a2

|Y | for given a (provided that the smoothness assumptions

on µ inside Ba hold). This computational effort should be compared to that underpinning the exact
evaluation of µ0

a, which requires solving a new cell function, P a, for each choice of inclusion i.e. each
set (z,B,∆µ, a), that could be very costly for complex (reference and perturbed) cell configurations.

Remark 8. Step (ii) above requires a minimal computational effort when the analytical expression for A
is known – as is the case with ellipsoidal inclusions, see Remark 5. In situations when B is arbitrary,
on the other hand, step (ii) necessitates solving the free-space transmission problem (30) anew for
each value taken by the ratio ∆µ/µ(z). For piecewise-homogeneous reference cells, this entails only a
few evaluations; considering the “chessboard” unit cell in Fig. 1 for example, the evaluation of A for
arbitrary B and any z would (given ∆µ) require only two solutions of (30).

7.2. Sub-wavelength sensing of periodic structures. We set up the second example as a defect
identification procedure, where a “defective” chessboard-like material (hereon referred to as the
manufactured material) is interrogated by plane waves. The sensory data, used to probe for defects, are
the phase velocities of such waves for several directions of incidence – as captured over a low-frequency
(and thus long-wavelength) range. In the identification procedure, the experimental phase velocities
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a
b

z
0.1 0.15 0.2
Inclusion size a

10 -5

10 -4

10 -3

Relative error j70
a ! 7

0 ! a2

jY jD7
0j=70

a

Error on (70
a)11

Error on (70
a)22

O(a4)

Figure 1. Approximation of µ0
a by its leading-order topological expansion for a “chessboard” unit cell

perturbed by an ellipsoidal inclusion with ∆µ = 1 and semi-axes (a, 0.2a), centered at z=(0.25, 0.25).
Left: perturbed unit cell where the light (resp. dark) grey indicates µ = 1 (resp. µ = 2). Right: relative
error made by the leading-order approximation of µ0

a in terms of its diagonal entries. The mass density
of all constituents inside the perturbed unit cell is ρ = 1.

are compared to their reference values, computed for the designed material. The observed anisotropic
dispersion, which is a key feature of the sensory data, is captured only via second-order homogenization,
so that both zero-order (D%0, Dµ0) and second-order (D%2, Dµ2) coefficient sensitivities given by
Theorem 2 are needed to interpret the data. This is shown next.

Topological sensitivity of the phase velocity. We first recall the second-order, mean field equation

µ0 :∇2U + ε2µ2 :∇4U + ω2
(
%0U + ε2%1 :∇2U

)
= o(ε3), (55)

according to (16). To characterize the dispersion of a homogenized material, we set the mean field as
a plane wave propagating in direction d = (cos θ, sin θ) with wavenumber k, i.e. U(x) ∝ eikd·x. On
substituting this plane wave into (55) and neglecting the o(ε3) remainder, one obtains the characteristic
relation

ε2(µ2 : d⊗4)k4 −
(
(µ0 + ε2ω2%1) : d⊗2

)
k2 + ω2%0 = 0, (56)

(with d⊗2 :=d⊗d and d⊗4 :=d⊗d⊗d⊗d) which in turn yields the anisotropic dispersion formula

c(k,d) =
ω(k,d)

k
=

(
µ0 : d⊗2 − ε2k2µ2 : d⊗4

%0 − ε2k2%1 : d⊗2

)1/2

. (57)

For perturbed unit cells, the expansion ca = c+ υ(a)Dc+ o(υ(a)) (i.e. (20) for fa = ca) holds, and Dc
is expressed in terms of the sensitivities of the homogenized coefficients:

Dc(k,d, z) =

[
Dµ0 : d⊗2 − ε2k2Dµ2 : d⊗4 − (c(k,d))

2 (D%0 − ε2k2D%1 : d⊗2
) ]

(z)

2
(
%0 − ε2k2%1 : d⊗2

) . (58)

Quasi-static and dynamic misfit functionals. In what follows, the manufactured material is
illuminated by plane waves with wavenumbers (kp)p=1..Nk propagating in directions (θj)j=1..Nθ . The
sensory data are thus the phase velocities cobs(kp,dj), where dj = (cos θj , sin θj). For given wavenumber
and direction of incidence (k,d), we define the cost functional

J(k,d) =
1

2

[
c(k,d)− cobs(k,d)

]2
, (59)

quantifying the misfit between the designed and observed phase velocities. We also define the dynamic
cost functional Jdyn, extracting the effects of dispersion, as

Jdyn(k,d) =
1

2

[
∆c(k,d)−∆cobs(k,d)

]2
, ∆c(k,d) = c(k,d)− c(kmin,d), (60)
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where kmin is the smallest observed wavenumber (typically, kmin = k1 > 0). The topological sensitivities
of these two misfit functionals depend on the sensitivity Dc given by (58) as

DJ(k,d, z) =
(
c(k,d)− cobs(k,d)

)
Dc(k,d, z),

DJdyn(k,d, z) =
(
∆c(k,d)−∆cobs(k,d)

)
(Dc(k,d, z)−Dc(kmin,d, z)) ,

(61)

In this setting, we finally define the aggregate quasistatic and dynamic cost functionals as

J stat =

Nθ∑

j=1

J(kmin,dj) and J dyn =

Nθ∑

j=1

Nk∑

p=1

Jdyn(kp,dj), (62)

whose sensitivities DJ stat and DJ dyn are computed by way of (61).

Example: incorrectly manufactured chessboard-like material. The chessboard-like material,
as designed, is depicted in the left panel of Fig. 2, featuring the coefficient ratios µmax = 7µmin and
ρmax = 1.2ρmin. For this configuration, the coefficients of homogenization are computed as

%0 = 1.1ρmin µ0 = 2.65µminI

%1 = 1.15× 10−4ρminI µ2 :





µ2
1111 = µ2

2222 = 4.36× 10−3µmin

µ2
1122 = 1.20× 10−2µmin

µ2
1112 = µ2

1222 = 0

. (63)

The chessboard-like material, as manufactured, has a defective top-left box in each unit cell, where
µ = 4 instead of µ = 7 as shown in the right panel of Fig. 2.

ρ = 1
µ = 1

ρ = 1
µ = 1

ρ = 1.2
µ = 7

ρ = 1.2
µ = 7

ρ = 1.2
µ = 4

ρ = 1
µ = 1

ρ = 1
µ = 1

ρ = 1.2
µ = 7

Figure 2. Designed (left) and manufactured (right) 1× 1 unit cell of a chessboard-like material.

To identify and localize the defect, the plane-wave probing grid has Nθ = 7 incident directions
θj=(j − 3)π/8, j=1, Nθ and Nk=10 wavenumbers kp=2p π/30, p=1, Nk. With such hypotheses, the
shortest wavelength used to probe the periodic structure is roughly λmin = 2π/kNk ' π which, relative
to the 1× 1 size of the unit cell, implies sensing below the classical diffraction limit. With reference to
the above sensing grid, the left panel in Fig. 3 compares the second-order approximation of the phase
velocity (57) with the numerical values of c(k,d) – as computed via Floquet-Bloch transform [27] –
for both the designed and manufactured unit cell configuration. As can be seen from the display, the
second-order approximation of anisotropic dispersion for the designed material agrees reasonably well
with numerical simulations, noting that the small discrepancy between the two is attributed primarily
to a limited accuracy of the numerical (Floquet-Bloch) solution due to a combination of material
discontinuities inside the unit cell (which slow down the numerical convergence) and computer memory
limitations. In contrast, there is a notable discrepancy between the dispersive characteristics of the
designed and manufactured material, which justifies the use of J stat as a basis for (periodic) defect
identification. From the results for ∆c(k,d) shown in the right panel of Fig. 3, this is also the case
with J dyn, noting that some of the probing directions are in this case redundant owing to inherent
symmetries of the designed and manufactured unit cell.



18 MARC BONNET†, RÉMI CORNAGGIA‡, AND BOJAN B. GUZINA§,∗

0 0.5 1 1.5 2
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1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56
Phase velocities c(k; d)

3 = !0:25 :
3 = !0:125 :
3 = 0 :
3 = 0:125 :
3 = 0:25 :
3 = 0:375 :
3 = 0:5 :

0 0.5 1 1.5 2
k

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0
Dispersion "c(k; d)

3 = !0:25 :
3 = !0:125 :
3 = 0 :
3 = 0:125 :
3 = 0:25 :
3 = 0:375 :
3 = 0:5 :

Figure 3. Left: phase velocity c(k,d) for the designed chessboard material (homogenized model -
dashed, numerical values - solid), and manufactured chessboard material (numerical values - dotted).
Right: anisotropic dispersion shown in terms of ∆c(k,d) = c(k,d)−c(kmin,d). Note that the results for
directions θ = {0, π/2} coincide, as do those for directions θ = {−π/4, π/4} and θ = {−π/8, π/8, 3π/8}.

In this setting, the quasistatic sensitivity DJ stat(z) serves as an indicator of the relative stiffness
of the manufactured material (stiffer or softer than the designed material), via the sign of ∆µ which
gives DJ stat < 0. In this vein, Fig. 4 plots DJ stat(z) over the support of the unit cell, assuming
both ∆µ = 1 (left panel) and ∆µ = −1 (right panel). To simplify the discussion, the analysis assumes
prior knowledge of the fact that the mass density of the unit cell is manufactured exactly (see Fig. 1)
by letting ∆ρ = 0. For ∆µ = 1, we see that DJ stat > 0 everywhere; in other words, adding a stiff
inclusion to the designed unit cell anywhere would only increase the quasistatic misfit functional. On
the contrary, for ∆µ = −1 one has DJ stat 6 0 everywhere (as expected) since the manufactured
material is softer than designed. In light of its sign semi-definiteness for given ∆µ, however, DJ stat

appears to have no localizing capabilities in that it cannot locate (even approximately) the support of
a periodic defect inside the unit cell.

To tackle the latter drawback, we deploy the dynamic sensitivity DJ dyn as a sensing lense in Fig. 5,
taking ∆µ = −1 thanks to the quasi-static result. Indeed, the dynamic sensitivity appears to serve as
a remarkable defect locator : DJ dyn > 0 over most of the intact quarter-cells – which are manufactured
correctly (except near material interfaces, were the sensitivities tend to localize), while DJ dyn 6 0 over
the entire “defective” upper-left quarter-cell as expected, but also over the lower-right quartercell. The
latter, however, should not be surprising, since (for the manufactured material at hand) the support of
the unit cell could be chosen such that the defective quatrer-cell appears as either upper-left or lower-
right. In light of this result, the long-wavelength sensing of periodic defects or perturbations could be
established by (i) considering the anisotropic dispersion-based cost functionals (62), (ii) choosing the
sign of ∆µ so that DJ stat(z) 6 0 everywhere, and (iii) identifying the support of a perturbation inside
the unit cell via regions where DJ dyn(z) 6 0.

8. Summary. In this work, explicit formulas are derived for the sensitivities of the second-order
macroscopic model for waves in periodic media due to topological perturbations of the microscopic unit
cell. The sensitivity analysis focuses on the tensorial (mass density and elastic modulus) coefficients
in the governing field equation, featuring the macroscopic dispersive effects brought about by the
presence of the macrostructure. The results demonstrate that the sought derivatives are expressible
in terms of (i) three unit-cell solutions featured by the (unperturbed) macroscopic model; (ii) two
adoint-field solutions stemming from the mass density variations in the unperturbed periodic medium;
and (iii) the usual polarization tensor, appearing in the topological sensitivity studies of non-periodic
media, that synthesizes the geometric and material characteristics of a point-like perturbation. The
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Figure 4. Distribution of quasistatic sensitivity DJ stat(z) over the unit cell assuming ∆µ = 1 (left)
and ∆µ = −1 (right). The near-interface points are omitted from the plot.

Figure 5. Distribution of dynamic sensitivity DJ dyn(z) over the unit cell assuming ∆µ = −1. The
near-interface points are omitted from the plot, and a threshold is applied to the most positive TS
values (as only their sign is of interest) so that the color scale is symmetric around 0.

proposed developments may especially aid (a) the design of periodic solids, focused on manipulating
the long-wavelength material response via microstructure-generated effects of dispersion and anisotropy,
and (b) sub-wavelength sensing of periodic defects or perturbations. Finally, we expect the proposed
idea to also work in more general situations involving e.g. in-plane (elastodynamic) Navier equations,
albeit at a cost of notably heavier algebra.
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A. Proof of Lemma 2. The proof of the claim is very similar to that in [8, Prop. 2], so we highlight
only the main steps.

On writing the linear combination (25)−a×(28) of the relevant VIEs, the inner expansion error
δa := P a(x) − P (z) − a

{
[U(x̄) ·

(∇P + I
)
(z) − x̄

}
] is found to satisfy the integral equation(

I+La
)
δa(x) = γa(x), where

γa(x) := P (x)−P (z)−ax̄·∇P (z)−∆µ
{ ∫

Ba

∇1Gc(y,x)·∇U
( y−z

a

)
dV (y)

}
·(∇P+I)(z). (64)

The claimed estimate is then established by showing that, for a sufficiently small, we have (i) the
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bounded invertibility of I + La : H1(Ba) → H1(Ba), uniformly in a, and (ii) the estimate∥∥γa
∥∥
H1(Ba)

≤ Ca2. We first introduce the decomposition La = L∞a +Lc
a induced by decomposition (22)

of the Green’s kernel. In this setting, the proof of (i) follows from a Neumann series argument
by showing first that I +L∞a is invertible with bounded inverse, the bound being uniform in a for
sufficiently small a, and second that ‖Lc

a−L∞a ‖ = O(a). Concerning the proof of (ii), we have that
‖P (x) − P (z) − ax̄ · ∇P (z)‖H1(Ba) = O(a2) as the norm of the Taylor-expansion remainder of a
function x 7→ P (x), which is smooth in a neighborhood of x= z. The remaining (integral) part of γa
is also O(a2) by virtue of the kernel Gc(y,x) being smooth in a neighborhood of (x,y) = (z, z).

B. Proof of Lemma 3. Equation (25), treated as a representation formula, gives pa = −La(P a+x)
in Ba∪ (Y \Ba). With L∞ given by (29), δa,L∞a and Lc

a as given in Appendix A, and P 1 as introduced
in (26), we have

pa = −aL∞(P 1 + x̄)− L∞a δa − Lc
a(P a + x) =: p1

a + p2
a + p3

a.

We readily have that ‖p2
a‖L2(Y ) = O(a2) (by virtue of Lemma 2 and the boundedness of L∞a , uniform

in a, as a H1(Ba) → L2(Y ) operator) and that ‖p3
a‖L2(Y ) = O(a2) (because the smoothness of the

kernel ∇1Gc in Y ×Y , together with |Ba| = O(a2), implies p3
a = O(a2) pointwise in Y ). Regarding p1

a,
on the other hand, one finds by the rescaling of coordinates that

‖p1
a(x)‖2L2(Y ) = a4

∫

(Y−z)/a

∣∣∣∆µ
∫

B

∇G∞
(
ȳ− x̄;µ(z)

)
·∇(P 1 + ȳ) dV (ȳ)

∣∣∣
2

dV (x̄).

Since ∇G∞
(
ȳ− x̄;µ(z)

)
= O(|x̄|−1) as |x̄| → ∞, the above integral over (Y − z)/a can be shown to

be of order O(ln a) as a → 0. Consequently, ‖p1
a(x)‖L2(Y ) = o(a), which completes the proof of the

lemma.


