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Abstract. In our study we propose to solve the transient heat equation related to a
thermal source moving with non uniform velocity, using the so called PGD method. The
velocity will be parametrized and the coefficients involved in it included as model extra-
coordinates, allowing the calculation of a general parametric solution.

1 Introduction

The Automated Fibre Placement (AFP) process seems to be an interesting approach
to industrialise the manufacturing of composite materials. Actually this method should
allow to create wide pieces of complex geometry without requiring a baking in an expensive
autoclave.

For this, a robot as shown on Fig.1 drapes composite fibres in a wide variety of config-
urations. This is possible not only thanks to the great freedom of movement of the robot,
but also due to the small size of the working head that as been designed by Coriolis
Composites.

The operating principle is the next one:
The fibres, in the form of strips, hike in a sheath up to the working head of the robot
that guides them and drape them over the mould. A Laser flux, driven by optical fibre
and focused on the suitable point, melt the thermoplastic matrix that coats the fibres.
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Compacting roller

Incoming fibres

Optical fiber

Robot 6 axes on
linear positioner

Head of the robot

Guide and cutting fibres Optical system

Mould and substrate

Figure 1: Presentation of the robot

Simultaneously, the compacting roller, as its name suggests, ensure the cohesion be-
tween the substrate (the already draped layers) and the fibre newly melted and laid.

When the robot reaches the edge of the piece, the fibres are cut and the robot reposi-
tions itself in order to drape a new tape of material.

The master elements indicated are shown on Fig.1. Schematically one can represent
the stacking just as on Fig.2.

Substrate

Mould

Incoming fibre

Compacting roller
Melted zone

Figure 2: Representation of the stacking
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The aim of modelling such a process is to optimise it. Indeed, to ensure a good cohesion
between layers, temperature must be high enough to melt the matrix. However in order
not to degrade the material, one must avoid burning it. Therefore the Laser heat source
has to be controlled drastically.

Moreover the AFP process depends on many parameters such as draping velocity,
number and orientation of the plies or materials parameters. By the way, using standard
finite elements methods (FEM) is not an option since one should have to solve a complex
model for a huge set of parameters. That is why we are interested in reduced order model,
and more precisely to one of them, the so called Proper Generalised Decomposition (PGD).

Some work has been carried out, in particular at École Centrale Nantes [1, 2]. In our
study, we consider the transient heat equation with non constant velocity. In addition,
we will try to add this velocity as extra-coordinate of the problem.

2 Modelling the Automated fibre placement

As presented, we are interesting in modelling the temperature field in the piece under
construction.

To simulate the AFP process, many elements have to be taken into account. However,
we restrict to quite a simple problem:
In this framework, we study a section Ω of the piece, along the thickness, figuring a
stacking of some layers. We consider that the heat source moves on the upper edge of
this domain which is assumed to be homogeneous. Before the source heats the material,
this one is at a known and constant temperature. We take into account the conduction
between the piece and the mould (assumed to be at constant temperature) as well as the
convection with air.

Mathematically, we have to solve the heat equation associated with boundary and
initial conditions and presented in Eq.; Fig.3 shows the domain of study.

ρCp∂tu(x, y, t)− div (K · ∇u(x, y, t)) = 0 ∀(x, y, t) ∈ Ω× Ωt;

u(x, y, t) = u0(x, y) on Ω× {tmin} ;

u(x, y, t) = u(y, t) on ΓD × Ωt;

K · ∂nu(x, y, t) = hm (u(x, t)− um(x, t)) on ΓM × Ωt;

K · ∂nu(x, y, t) = ha (u(x, t)− ua(x, t)) on Γa × Ωt;

K · ∂nu(x, y, t) = 0 on ΓN × Ωt;

K · ∂nu(x, y, t) = Φ(x, t) on ΓL × Ωt;

(1)

with

• K =

[
k‖ 0
0 k⊥

]
, tensor of thermal conductivities (W·m−1·K−1),

• ρ density (kg·m−3),
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• Cp specific heat (J·kg−1·K−1),

• u0, u, ua, um respectively initial, fibres, air and mould temperatures (K),

• hm (resp. ha) thermal conductance between composite and mould (resp. air)(W·m−2·K−1),

• Φ source heat flux (W·m−2), depending on the velocity.

Ωy

Ωx

x

y

V (t)

Φ

ΓDΓN

ΓM

ΓLΓa Γa

Ω

L

h

0

(a) Lagrangian description

Ωy

Ωx

x

y

V (t)

Φ

ΓDΓN

ΓM

ΓLΓa Γa

Ω

L

h

0

(b) Eulerian representation

Figure 3: Domain of study

This is for the Lagrangian representation, where the observer is static and sees the
source moving. For us, due to the method we are going to use for solving the problem,
we have to consider the Eulerian description: the observer is on the source, the domain
moves.

Applying the change of reference frame leads to a new equation

ρCp∂tu(x, y, t)− div (K · ∇u(x, y, t)) + ρCpV · ∇u(x, y, t) = 0 ∀(x, y, t) ∈ Ω×Ωt (2)

with the same initial and boundary conditions and the same notations as for the La-
grangian description, but for the heat source term Φ that depends no more on the velocity.

3 Reduced order Model

Among the reduced order models, the PGD (Proper Generalized Decomposition) method
has a particular mention, since this method constructs its basis on the fly and not a pos-
teriori as the POD (Proper Orthogonalised Decomposition [3]) and RB (Reduced Basis
[4, 5]).

The PGD is a generalisation of the radial approximation introduced by P. Ladevèze in
the 80’s [6] which approximation separates space and time
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In the frame of PGD, any coordinate can be separated, these extra-coordinates being
some physical parameters, initial or boundary conditions. . . For example, if the model
involves space, time and k parameters p1, . . . , pk the separated form reads

U(x, y, t, p1, . . . , pk) ≈
N∑
i=1

{
Xi(x)Yi(y)Ti(t)

k∏
j=1

F j
i (pj)

}
(3)

In order to introduce the Proper Generalised Decomposition (PGD) method and before
writing it in the general case, let us consider a very simple example.

3.1 Poisson’s equation

In this section, we are interested in solving the Poisson’s equation given by Eq.(4){
−∆u(x, y) = Q(x, y) ∀(x, y) ∈ Ω = Ωx × Ωy

u(x, y) = 0 on Γ = ∂Ω
(4)

We assume a separated representation of the temperature field u along the two spaces
variables. Therefore we write u as the following sum:

u =
∞∑
i=1

X i(x)Y i(y). (5)

Similarly we suppose Q = Qx ×Qy, without loss of generality.
The Dirichlet’s condition on Γ is set on the separated form:

∀i ∈ [1,∞[ ,

{
X i(0) = X i(1) = 0

Y i(0) = Y i(1) = 0
(6)

We then look for an approximation up of u, defined as follows:

up =

p∑
i=1

X i(x)Y i(y) =

p−1∑
i=1

X i(x)Y i(y) +R(x)S(y) = up−1 +R(x)S(y). (7)

3.1.1 Classical approach

The use of the approached solution up given by relation (7) and choosing the test
function as u∗ = X∗Y +XY ∗ leads to the coupled problem

find R ∈ H1
0 (Ωx) such that ∀X∗ ∈ H1

0 (Ωx)∫
Ω

−∆ (RS)X∗Y dxdy =
∫
Ω

QX∗Y dxdy +
∫
Ω

∆ (up−1)X∗Y dxdy (8)

find S ∈ H1
0 (Ωy) such that ∀Y ∗ ∈ H1

0 (Ωy)∫
Ω

−∆ (RS)XY ∗dxdy =
∫
Ω

QXY ∗dxdy +
∫
Ω

∆ (up−1)XY ∗dxdy (9)
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where the dependencies on x and y were omitted for the sake of clarity.
To get a solution of this non-linear integral problem (since each unknown function

never appears isolated), we use a fixed-point algorithm. Each iteration counts two steps,
repeated until reaching convergence.

The first step assumes S is known from the previous iteration, and computes an update
for R from Eq.(8). From this just updated R, we then update S with Eq.(9). This
procedure continues until convergence reached when ‖Rn−Rn+1‖ ≤ ε̃, the indices denoting
the fixed loop iteration. The converged functions define the new term in the expansion (7)
of up(x, y). If necessary, in order to get the wanted precision, another mode is computed.

The convergence criterion over the modes is the next one.
At the end of the fixed-point loop, the product RS is computed. If the norm of this
matrix is lower than an ε given by the user, we assume the convergence, for-as-much as
the new mode adds only ”ε” to the global solution.

Let NX and NY be the vectors containing the shape functions associated respectively
with each space. We define the mass and stiffness matrices{

MX =
∫

ΩX
NXNT

Xdx and KX =
∫

ΩX
NX,xN

T
X,x
dx

MY =
∫

ΩY
NY NT

Y dy and KY =
∫

ΩY
NY,yN

T
Y,y
dy

(10)

The continuous expressions (8) and (9) can now be written in the discrete form

(
ST .MY .S

)
KX .R +

(
ST .KY .S

)
MX .R =

(
ST .MY .QY

)
MXQX −

−
p−1∑
i=1

{(
ST .MY .Y

i
)
KXXi +

(
ST .KY .Y

i
)
MX .X

i
}

(11)(
RT .MX .R

)
KY .S +

(
RT .KX .R

)
MY .S =

(
RT .MX .QX

)
MY QY −

−
p−1∑
i=1

{(
RT .MX .X

i
)
KY Yi +

(
RT .KX .X

i
)
MY .Y

i
}

(12)

where the bold font denotes the discrete form of continuous functions.
When it converges, this algorithm is pretty fast. However, in many cases we have to

use another approach based on the residual minimisation.

3.1.2 Residual minimisation

When we include strong non-linearities, advection terms, parameters as additional
coordinates. . . , the alternating direction strategy that we used in Sect. 3.1.1 fails: the
computed functional couples do not improve noticeably the solution. As Pierre Ladevèze
proposed many years ago in the framework of the LATIN method, in that case a more
efficient strategy consists of minimizing the residual.
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Considering the Poisson’s equation (4) and with the same notations as above, the
associated discrete residual reads

R = (KX .R)⊗ (MY S) + (MX .R)⊗ (KY .S) + (MX .QX)⊗ (MY .QY ) +

+

p−1∑
i=1

(
KX .X

i
)
⊗
(
MY .Y

i
)

+

p−1∑
i=1

(
MX .X

i
)
⊗
(
KY .Y

i
)

(13)

The stationarity conditions are
∂ ‖R‖2

∂R
= 0 et

∂ ‖R‖2

∂S
= 0.

Since R and S have symmetric roles, we just write the first stationarity condition.

(
ST ·MT

Y ·MY · S
)
KT
X ·KX ·R +

(
ST ·KT

Y ·MY · S
)
MT

X ·KX ·R
+
(
ST ·MT

Y ·KY · S
)
KT
X ·MX ·R +

(
ST ·KT

Y ·KY · S
)
MT

X ·MX ·R =

=
(
ST ·MT

Y ·MY QY

)
KT
X ·MX ·QX +

(
ST ·KT

Y ·MY QY

)
MT

X ·MX ·QX+

+

p−1∑
i=1

[(
ST ·MT

Y ·MY ·Yi
)
KT
X ·KX ·Xi

]
+

p−1∑
i=1

[(
ST ·KT

Y ·MY ·Yi
)
MT

X ·KX ·Xi
]

+

+

p−1∑
i=1

[(
ST ·MT

Y ·KY ·Yi
)
KT
X ·MX ·Xi

]
+

p−1∑
i=1

[(
ST ·KT

Y ·KY ·Yi
)
MT

X ·MX ·Xi
]

(14)

3.2 Tensor notation for general framework

Let Ω be a multidimensional domain involving the coordinates (each one not necessarily
one dimensional). Let’s consider a weak form of a linear problem given by :

a (Ψ (x1, x2, . . . , xN) ,Ψ∗ (x1, x2, . . . , xN)) = b (Ψ∗ (x1, x2, . . . , xN)) (15)

where we are looking to an approximated solution that writes in the continuous form as

Ψ (x1, x2, . . . , xN) =

nF∑
i=1

αiF i
1(x1).F i

2(x2). . . . .F i
N(xN) (16)

The separated representation is built-up from a projection-enrichment iteration scheme.
For this purpose we need to write the continuous expression in a discrete form using the
nodal values of each function. This discrete form is given by

Ψ =

nF∑
i=1

αiF i
1(x1)⊗ F i

2(x2)⊗ . . . ⊗ F i
N(xN) (17)
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(for the sake of clarity we keep the same notation as for continuous functions) for this
purpose the weak form must be transformed into a discrete form written as

Ψ∗TAΨ = Ψ∗TB (18)

with 
A =

nA∑
j=1

Aj1 ⊗ A
j
2 ⊗ . . .⊗ A

j
N (19)

B =

nB∑
j=1

Bj
1 ⊗B

j
2 ⊗ . . .⊗B

j
N (20)

In term of minimisation, the problem to solve writes

ATAΨ = ATB (21)

The enrichment stage includes new candidates for enriching the reduced separated
approximation basis

Ψ =

nF∑
i=1

αiF i
1(x1)⊗ F i

2(x2)⊗ . . . ⊗ F i
N(xN)︸ ︷︷ ︸

ΨF

+R1(x1)⊗R2(x2)⊗ . . . ⊗RN(xN)︸ ︷︷ ︸
ΨR

(22)

Within a fixed point alternating direction algorithm, we look at each iteration for the
computation of a single discrete function Rj assuming all the others known. Thus, when
we are looking for Rj the test function writes

Ψ∗ = R1 ⊗ . . .⊗Rj1 ⊗R∗j ⊗Rj+1 ⊗ . . .⊗RN (23)

The system to be solved within a fixed point strategy writes

ATAΨR +ATAΨF = ATB (24)

with 

ATAΨR =

nA∑
i=1

nA∑
j=1

AikAjkRk

N∏
l=1
l 6=k

RT
l A

i
lA

j
lRl

 (25)

ATAΨF =

nF∑
h=1

nA∑
i=1

nA∑
j=1

αhAikAjkF h
k

N∏
l=1
l 6=k

RT
l A

i
lA

j
lF

h
l

 (26)

ATB =

nA∑
i=1

nA∑
j=1

AikBj
k

N∏
l=1
l 6=k

RT
l A

i
lB

j
l

 (27)
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4 Solving the heat equation

In this section, we are going to apply the PGD framework to Eq.(2) we are interested
in. See that the robot accelerates and slows down, we consider the velocity presents a
ramp, as shown on Fig.4.

t

v

v0

t0 t1 tf

v1

v = v0

v = (v1 − v0) t−t0
t1−t0 + v0

v = v1

IT0
IT1

IT2

Figure 4: Velocity parametrisation

t0, t1, v0 and v1 are parameters given by user: changing one of them requires a new
simulation.

4.1 Separating X, Z and T

We seek for an approximation of the temperature field by writing it under the form

u(x, z, t) ≈
N∑
α=1

Xα(x)Zα(z)Tα(t)

In order to write the tensor representation of the problem, we need some notations.
Let X, Z and T be the vectors containing the shape functions associated respectively
with x, z and t direction space.

On X ΩX = [0, L]
MX =

∫
ΩX

XXTdx HX =
∫

ΩX
X,xX

Tdx KX =
∫

ΩX
X,xX

T
,xdx

ΦX =
∫

ΩX
ΦXTdx UmX

=
∫

ΩX
umXTdx UaX =

∫
ΩX

uaX
Tdx

On Z ΩZ = [0, h]
MZ =

∫
ΩZ

ZZTdz KZ =
∫

ΩZ
Z,zZ

T
,zdz HmZ

=
∫
z=0

ZZTds

HaZ =
∫
z=h

ZZTds BmZ
=
∫
z=0

Zds BaZ =
∫
z=h

Zds

On T IT = [0, tf ]
MT =

∫
IT

TTTdt HT =
∫
IT

T,tT
Tdt

MTv =
∫
IT
v(t)TTTdt BT =

∫
IT

TTdt
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According to the general framework given at §3.2, Table1 gives the decompositions of
the operator associated to the left hand side and right hand side of Eq.(2), separating X,
Z and T .

Table 1: Tensor decompositions of Eq.(2), separating X, Z and T

Aji j = 1 2 3 4 5 6 Bji j = 1 2 3

i=1 (x) k‖KX k⊥MX ρCpMX ρCpHX hmMX haMX ΦX hmUmX
haUaX

2 (z) MZ KZ MZ MZ HMZ
HAZ

BmZ
BmZ

BaZ

3 (t) MT MT MTv HT MT MT Bt Bt Bt

4.2 Velocity as extra-coordinate

In order to improve the modelling, the parameters v0 and v1 involved in the expression
of velocity are added as extra-coordinates. That way, instead of solving the problem each
time we change these values, we will run the computation just once, and get the temper-
ature distribution for any values of v0 and v1 (within a given interval). The unknown u
is written under the separated approximation

u(x, z, t, v0, v1) ≈
N∑
α=1

Xα(x)Zα(z)Tα(t)V α
0 (v0)V α

1 (v1)

The velocity can be written under the separated form

v(t, v0, v1) = v0× f0,t0 + v1× ft1,tf + v0×
(

1− t− t0
t1 − t0

)
× ft0,t1 + v1×

t− t0
t1 − t0

× ft0,t1 (28)

with fa,b =

{
1 if a ≤ t ≤ b,

0 else.

Let V0, V1 be the vectors containing the shape functions associated respectively with
v0 and v1 direction space.

We add the following notations

On T IT = [0, tf ]

MT0 =
∫
IT0

TTTdt MT1v0 =
∫
IT1

(
1− t−t0

t1−t0

)
TTTdt

MT1v1 =
∫
IT1

(
t−t0
t1−t0

)
TTTdt MT2 =

∫
IT2

TTTdt

On V0 IV0 = [v0min
, v0max ]

MV0 =
∫
IV0

V0V0
Tdv0 MV0v =

∫
IV0
v0V0V0

Tdv0 BV0 =
∫
IV0

V0dv0
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On V1 IV1 = [v1min
, v1max ]

MV1 =
∫
IV1

V1V1
Tdv1 MV1v =

∫
IV1
v1V1V1

Tdv1 BV1 =
∫
IV1

V1dv1

According to the general framework given at §3.2, Table2 gives the decomposition of
the operator associated to the left hand side of Eq.(2).

Similarly, Table3 gives the decomposition for the right hand side of Eq.(2). As explained
in §3.2, one has to keep in mind that the modes previously computed add ”some” terms
in the right hand side equation. . .

Table 2: Tensor decomposition for LHS of Eq.(2)

Aji j = 1 2 3 4 5 6 7 8 9

i=1 (x) k‖KX k⊥MX ρCpMX ρCpHX ρCpHX ρCpHX ρCpHX hmMX haMX

2 (z) MZ KZ MZ MZ MZ MZ MZ HMZ
HAZ

3 (t) MT MT HT MT0 MT1v0 MT1v1 MT2 MT MT

4 (v0) MV0 MV0 MV0 MV0v MV0v MV0 MV0 MV0 MV0

5 (v1) MV1 MV1 MV1 MV1 MV1 MV1v MV1v MV1 MV1

Table 3: Tensor decomposition for RHS of Eq.(2)

Bji j = 1 2 3

i=1 (x) ΦX hmUmX
haUaX

2 (z) BmZ
BmZ

BaZ

3 (t) Bt Bt Bt

4 (v0) BV0 BV0 BV0

5 (v1) BV1 BV1 BV1

4.3 Results

Here we give some representations of the results obtained with our code, for different
values of the parameters. Actually we have an abacus that is an hyper-cube of dimension
5, and we simply pick up the temperature field in it once we choose the parameter, what
can be done in real time (obviously once the simulation is done!)

Fig.5 shows the results for the two PGD compared with a classical FEM simulation: the
upper line gives the temperature fields obtained by FEM, at time step t0 (the beginning
of the ramp), t1/2 (half the time interval) and tf (final instant); the next one shows the
results when separating x, y and t, at same time steps; we plot the same for the PGD
over x, y, t, v0 and v1 on the lower line.

To make the comparison relevant, the same discretisations have been used on x, y and
t. The approximations count the same number of modes, computed with the same criteria
of convergence.
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(a) FEM , t = t0 (b) FEM , t = t1/2 (c) FEM , t = tf

(d) XZT , t = t0 (e) XZT , t = t1/2 (f) XZT , t = tf

(g) XZTV0V1, t = t0 (h) XZTV0V1, t = t1/2 (i) XZTV0V1, t = tf

Figure 5: Comparison between the two PGD for v0 = −0.5 and v1 = −1

The slight differences between the two approaches and the FEM computation come
from the small number of modes used to construct the approximation of the temperature
field. Actually, the more modes are added, the more accurate is the solution. In these
results, we restrict to 15 modes, what is few enough to catch the physics, particularly the
sharp incoming heat source flux.

On this problem, it took approximatively XX for the FEM to run.
The first PGD separation returns the solution on YY.
The more complex PGD adding the velocity as extra-coordinate allow to obtain a more
pertinent abacus after ZZ.
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We have to keep in mind that this last simulation provides the temperature field not
only for any space and time position, just as the FEM and the first PGD, but also for
any values of v0 and v1! And once the computation is done, the results are given in real
time: it is only to supply the values of the parameters.

5 Conclusion

This is quite a simple example.
In order to move closer to reality, other phenomena can be considered, as the thermal
conductance between the layers. Indeed, even if the roller compacts the last layer on the
substrate, the contact is not perfect, due to the roughness of the material. This leads to
jumps of temperature within the piece.

Currently we work on this, plus simulate the process with the number of plies as extra
coordinate.

However, we showed that the parametrisation of the velocity is possible with rather
good results.
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