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ABSTRACT: The quantum photodynamics of a simple diatomic molecule with a
permanent dipole immersed within an optical cavity containing a quantized radiation
field is studied in detail. The chosen molecule under study, lithium fluoride (LiF), is
characterized by the presence of an avoided crossing between the two lowest 1Σ
potential energy curves (covalent-ionic diabatic crossing). Without field, after
prompt excitation from the ground state 1 1Σ, the excited nuclear wave packet
moves back and forth in the upper 2 1Σ state, but in the proximity of the avoided
crossing, the nonadiabatic coupling transfers part of the nuclear wave packet to the
lower 1 1Σ state, which eventually leads to dissociation. The quantized field of a
cavity also induces an additional light crossing in the modified dressed potential
energy curves with similar transfer properties. To understand the entangled
photonic-nuclear dynamics, we solve the time-dependent Schrödinger equation by
using the multiconfigurational time-dependent Hartree method (MCTDH). The
single mode quantized field of the cavity is represented in the coordinate space instead of in the Fock space, which allows us to
deal with the field as an additional vibrational mode within the MCTDH procedure on equal footing. We prepare the cavity with
different quantum states of light, namely, Fock states, coherent states, and squeezed coherent states. Our results reveal pure
quantum light effects on the molecular photodynamics and the dissociation yields of LiF, which are quite different from the light-
undressed case and which cannot be described in general by a semiclassical approach using classical electromagnetic fields.

■ INTRODUCTION

The interaction of molecules with light is a cornerstone in the
development of molecular quantum mechanics. Within the last
decades, the two different areas of (i) quantum optics and (ii)
semiclassical molecular dynamics have evolved almost
independently. The former is mostly interested in new
emerging phenomena rising from the quantum nature of
light, using model Hamiltonians for open quantum systems
with a minimal number of states (qubits).1,2 The latter focuses
on the molecular structure and dynamics under conditions in
which the quantum description of light is not required and the
interaction with continuous wave (cw) radiaton or pulsed lasers
employs semiclassical approximations, which incorporate the
classical fields from Maxwell electrodynamics.3 In this case,
methods of solution involving a large number of vibronic states
is the rule. A no-man’s land located in between is still quite
unexplored: ab initio polaritonic molecular photodynamics, i.e.,
many-state molecular dynamics (with a full vibronic descrip-
tion) along with a full quantum description of light. Of course,
the physical situation with the conditions of application of such
a full quantum theory must be met. A potential case is
represented by molecules passing by or confined within optical
cavities.4,5

Since the seminal works by Zewail,3,6 it was clear that
molecular photoreactions can be controlled with the use of
ultrashort laser fields. The area of photodynamics with
ultrashort laser pulses, down to the regimen of attosecond,
has developed rapidly in the last years.7 However, in these
recent theoretical studies the molecule is subject to classical
fields. When an atom or molecule is confined within a quantum
cavity, the light must be considered as a set of quantized modes
and the tools of quantum optics apply. There is a vast literature
on cavity quantum electrodynamics (cavity QED) specially
dedicated to atom-cavity interactions and control.4,5 The study
of molecular photodynamics in quantum cavities is more scarce
but nevertheless quite intense at present.8−16

Molecules in cavities may reach a strong coupling regime in
the light−matter interaction, resulting in structure and
dynamics better understood under consideration of light-
modified (or dressed) potential energy surfaces. A strong
coupling regime is favored by the small volume of the cavity,
hence the potential use of confinements in micro- or
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nanocavities. The typical treatment in quantum optics for these
coupled systems is based in models like the two-state Jaynes−
Cummings model.1 The eigenstates of the Jaynes−Cummings
model (which assumes the RWA approximation) are called
dressed (by the light) states. From the eigenvalues of the
dressed states one can extract the new dressed potential energy
surfaces of the molecule, which in the molecular case display
new avoided crossings or conical intersections induced by the
light. This phenomena of light-induced crossings (LIC) and
conical intersections (LICI) is well described in the literature.17

Also, most of the interesting molecular photoreactivity is
produced through electronic excited states. The molecular wave
packets promoted to these excited states find different light-
modified landscapes for its subsequent dynamics, thus opening
new channels for photophysical or photochemical reactions. A
goal in control theory is to select specific reaction paths by
manipulating the evolution of the wave packet in the manifold
of excited states. Note that in this strong coupling regime the
molecular modes of motion and the light cavity modes become
entangled in a combined nonseparable light−matter wave
function.
In this work we address the inner workings of the

photodynamics of a diatomic molecule like LiF inside a
quantized optical cavity. Previous recent papers10,11,14,15 have
studied the heavier molecule NaI. From the theoretical point of
view, because the LiF is lighter than NaI, its nuclear dynamics is
faster. Then similar physics occurring in NaI also takes place in
LiF but in a shorter time, which is a computational advantage.
We show in this work that the molecular cavity photodynamics
of LiF may drastically change upon the quantum field present
in the cavity. In addition, contrary to previous statements,14,15

we believe that our results indicate that the fully quantum
nature of the radiation is expressed in features that cannot be
reproduced whatsoever using a classical light.

■ THEORY
We assume an optical cavity with a single mode confined
radiation with frequency ωc. In basic textbooks in quantum
optics1,2 it is shown that the quantized field can be represented
by a quantum harmonic oscillator (HO) with mass unity for
each radiation mode given by its frequency ωc. The field
Hamiltonian is simply Ĥfield = ℏωc(a ̂†a ̂ + 1/2). The electric field
operator for a single mode (propagated along the q direction
but polarized in the z direction with unit vector εẑ) reads

ε̂ = ̂ + ̂ ̂†E q E a a kq( ) ( ) sin( )z z0 (1)

where = ωℏ
ϵ

E
V0

c

0
is the field amplitude and V is the volume of

the cavity. The quantum version of the two-state (after ground
and excited) {|g⟩, |e⟩} Rabi model with dipolar coupling μ̂ge is
named the Jaynes−Cummings model,1,2 whose Hamiltonian
before the RWA approximation reads

ω σ ω λ σ σ

̂ = ̂ + ̂ + ̂

= ℏ ̂ + ℏ ̂ ̂ + + ℏ ̂ + ̂ ̂ + ̂† †
+ −

H H H H

a a a a
1
2

( 1/2) ( )( )

I
Mol Field MF

0 3 c

(2)

where ω0 = (Ee − Eg)/ℏ is the natural frequency, the coupling
factor λ is defined as λ = μ̂ge;zE0 sin(kq)/ℏ, σ̂+ = |e⟩⟨g| and σ̂− =
σ̂+
† are transition operators, and σ̂3 = |e⟩⟨e| − |g⟩⟨g| is the
inversion operator. The Jaynes-Cumings model admits a
general time-dependent solution in the interaction picture
(and within the RWA) in the entangled form |Ψ(t)⟩ =
∑n=0

M [an(t)|g,n⟩ + bn(t)|e,n⟩],
1 for any two-state bare system

prepared initially as a superposition |ψ(0)⟩Mol = Cg|g⟩ + Ce|e⟩
and any field represented in the Fock basis of photons, i.e.,
|ψ(0) ⟩field = ∑n=0

M Cn|n⟩ (can be a Fock state, a coherent state, a
vacuum squezeed state, a squeezed coherent state, etc.). In the
present molecular problem, the quantity M, the number of
states in the superposition in the Fock space, can be large,
which makes this route of solution very demanding. To
circumvent the difficulties related to the representation of light
in a Fock basis, one can rely on the direct representation of the
cavity light mode as a quantum harmonic oscillator of mass

unity in coordinate space.11 Because ̂ + ̂ = ̂ω†
ℏ

a a x( ) 2 c the

interaction term in the Jaynes−Cummings Hamiltonian is

expressed as μ χω σ σ̂ ℏ ̂ ̂ + ̂+ −x2 ( )ge c , with χ =
ℏ ϵ

kqsin( )
V
1

0
.

All these ideas can be applied to the solution of the two-state
molecular photodynamics of a linear molecular like LiF. In this
work we assume for simplicity that LiF molecules within the
cavity are oriented along the polarization axis of the cavity
radiation field, so that only Σ−Σ radiative transitions are
allowed. In the absence of radiation the usual method of
solution is to expand the total vibronic wave function for a
diatomic molecule in terms of the complete set of adiabatic
electronic states. In this two-state model, they are named {|g⟩, |
e⟩} whose energies Eg(R) and Ee(R), respectively, correspond
to the potential energy curves (PEC) as functions of the
internuclear distance R. Thus, the total wave packet has the
form |Ψ(t)⟩ = φg(R,t)|g⟩ + φe(R,t)|e⟩, where φi(R,t) (i = e, g)
represents the time-dependent nuclear wave packet moving in
its respective PEC. When the interaction with the quantized
cavity is also included, the ansatz takes instead the form

φ φ|Ψ ⟩ = | ⟩ + | ⟩t R x t R x t( ) ( , , ) g ( , , ) eg e (3)

where now φi(R,x,t) represent entangled wave packets for the
joint vibrational and cavity photonic mode dynamics. To solve
the photodynamics of the molecule in the cavity, the time-
d e p e n d e n t S c h r ö d i n g e r e q u a t i o n ( TD S E ) ,

ℏ − ̂ |Ψ ⟩ =∂
∂

⎡⎣ ⎤⎦H ti ( ) 0
t

, must be solved. In this particular

problem, the total Hamiltonian (2) must include the molecular
Hamiltonian for the diatom LiF, i.e., ĤMol = T̂N + Ĥel. Here, the
adiabatic basis of electronic states are eigenfunctions of the
electronic Hamiltonian, i.e., [Ĥel − Eg(R)]|g⟩ = 0 and [Ĥel −
Ee(R)]|e⟩ = 0. With these premises, if we insert the ansatz (3)
into the TDSE we obtain an equation in matrix form
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(4)

where μ is the reduced nuclear mass and μij (with i,j = g,e) are
the molecular electronic dipole moments and the matrix
elements for C,

μ

μ

= − ℏ ⟨ | ∂
∂

| ⟩ ∂
∂

+ ⟨ | ∂
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| ⟩
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2

(5)

correspond to the well-known nonadiabatic couplings. In
compact matrix form this Hermitian term reads

= − +
μ

ℏ ⎡⎣ ⎤⎦C F H2
R2
d

d

2

. The term H with second derivatives

with respect to R is more difficult to compute in general, but
with an expansion in two electronic states is simple. If one
inserts the completeness 1̂ = ∑i=g,e|i⟩⟨i| in hij one arrives to the

identity = +H F
R
F2 d

d
. In our particular case

=
−

⎛

⎝
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⎟⎟
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ge
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is an anti-Hermitian matrix, so that

=
−| |

− −| |

⎛
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d
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d
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2

(7)

Here H is also an antihermitian matrix but, compensated with

the term F2
R
d

d
, the full matrix C is Hermitian and the

propagation preserves unitarity. In short, only one nonadiabatic
coupling, fge(R), must be computed.
The system of dynamic coupled eqs 4 can be solved in

different ways. We choose to solve it by using the multi-
configura t iona l t ime-dependent Har t ree method
(MCTDH),18,19 for which a computational toolkit is made
available for free upon request.20 In brief, the photonic-nuclear
wave packets φg,e(R,x,t) (with two degrees of freedom) are
expanded in terms of time-dependent single particle functions
ϕjκ
(κ)(Qκ,t) for each coordinate Qκ. In our case the MCTDH

ansatz takes the form

∑ ∑φ ϕ ϕ=
= =

R x t A t R t x t( , , ) ( ) ( , ) ( , )
j

n

j

n

j j j
R

j
x

g,e
1 1

.
( ) ( )

R

R

x

x

R x R x
(8)

The single particle functions are represented in terms of a sin-
DVR primitive basis set for the molecular coordinate R and
HO-DVR primitive basis set for the cavity mode coordinate x
as follows

∑ϕ χ= =
=

q t C t q q R x( , ) ( ) ( ) ,j
q

i

N

j i
q

i
q( )

1

( ) ( )
q

q

q (9)

In the MCTDH method of solution it is necessary to obtain the
time-dependent expansion coefficients AjR.jx(t) as well as the
time-dependent single particle functions to build the total wave
packet. The MCTDH equations of motion for the set
coefficients AJ(t) and single particle funcions are19,21

∑

ϕ ρ ϕ

̇ = ⟨Φ | |Φ ⟩

̇ = − ⟨ ⟩κ κ κ κ κ−

A H A

P H

i

i (1 )( )

J
L

J L L

( ) ( ) ( ) 1 ( ) ( )
(10)

These equations are implemented in the MCTDH software
package.20 MCTDH package requires the input of the potential
energy surfaces (PES) involved. In this case, the (R,x)-PES for

the ground state g is Eg(R) + ω χω μ+ ℏx R x2 ( )1
2 c

2 2
c gg and

for the excited state is Ee(R) + ω χω μ+ ℏx R x2 ( )1
2 c

2 2
c ee . It

means that these PES contain the molecular PECs of LiF (1 1Σ
for g and 2 1Σ for e) plus the radiation HO potential and the
diagonal terms of the interaction with the dipole moments μgg
and μee that cannot be discarded in this polar molecule. The
MCTDH provides, among many other observables, the time-
dependent evolution of populations for the g and e light−
matter entangled states, the dissociation probabilities computed
with the flux moving across a complex absorbing potential and,
more interestingly, the separate entangled wave packets
φg(R,x,t) and φe(R,x,t), evolving in the g and e PES, which
we call g-wave packet and e-wave packet in this work. The
temporal analysis of these wave packets helps us reveal the
underlying mechanism in this complex entangled photonic-
nuclear dynamics.

■ RESULTS AND DISCUSSION
In this fully ab initio study the PECs and couplings (dipolar
plus nonadiabatic) must be computed at the highest level of
theory available before any molecular dynamics calculation. For
that purpose we use the electronic structure package
MOLPRO.22 For the PECs, we have performed a complete
active space (CAS) calculation of the two lowest 1Σ states of
LiF using a multiconfigurational self-consistent field (MCSCF)
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method, then followed by multireference configuration
interaction (MRCI) method, using the aug-cc-pVQZ basis
set, with the LiF molecule oriented along the z axis. In addition,
the nonadiabatic couplings and dipole moments (diagonal and
nondiagonal) were computed with the wave functions at the
MRCI level. In the case of the nonadiabatic couplings, these
were calculated with MOLPRO using a finite differences
method for the derivatives involving the MRCI wave
function.23 Figure 1 shows the adiabatic PECs of the two

lowest 1Σ states for LiF, the diagonal dipole moments μgg(R),
μee(R) of these two states (LiF has a permanent dipole), the
nondiagonal transition dipole moment μge(R), and the
nonadiabatic couplings fge(R). The latter indicates a strong
coupling between the two states at the avoided crossing located
at R = 13.1 au. Due to this anticrossing the electronic wave
functions exchange their character and, consequently, their
adiabatic molecular properties (like μgg and μee) follow the
behavior seen in Figure 1. It is important to note that whereas

μee is close to zero from the Franck−Condon region to the
avoided crossing region, μgg is clearly dominant against μge, so
that diagonal couplings cannot be disregarded in the dynamics.
It is known that the presence of radiation (both in the

semiclassical or quantum form) induces light-induced crossings
(LIC) between states coupled by the radiation. In the quantized
version, within the Jaynes−Cumming model, the two new
dressed states (eigenstates of the total Hamiltonian) show a
splitting in the form:10

=
+

± ℏ Ω±E
E R E R

R
( ) ( )

2 2
( )n

g e
c (11)

where Eg(R) and Ee(R) are the adiabatic energies and Ωnc is the
Rabi frequency, i.e.,

λΩ = + + ΔR R n R( ) 4[ ( )] ( 1) ( )n
2

c cc (12)

Here λ is the interaction coupling factor, nc stands for the Fock
photon number in the cavity, and Δc = [Ee(R) − Eg(R)]/ℏ −
ωc is known as detuning. In the case of LiF, the dressed curves
are plotted in Figure 1 for two cavity mode frequencies, ωc =
1.24 eV and ωc = 2.47 eV. The light-induced crossing (LIC)
appears at the internuclear distance RLIC where the energy
difference between the adiabatic curves, [Ee(R) − Eg(R)]/ℏ,
equals the cavity mode frequency ωc (in Figure 1 we do not
show the more irrelevant second crossing at a larger
internuclear distance). This means that the chosen mode
frequency ωc turns out to be an interesting control parameter in
the subsequent dynamics by selecting the position of the LIC.
It is worth noting that in our time-dependent approach we
expand the total wave packet in terms of the unperturbed
Hamiltonian (noninteracting molecular adiabatic states plus
field states), so that the effect of the LIC that appears in the
stationary dressed state picture must be represented by the
adiabatic basis and the interaction within the MCTDH
dynamics. In other words, though the dipolar and nonadiabatic
couplings are directly introduced in the dynamics, the LIC is
not; nevertheless, it arises as a dynamical interaction. From
Figure 1 it is clear that the light induces effective dressed
potentials in the R-direction, with shifted turning points and
modified energetics. In our MCTDH method, we stress that
the fully entangled wave packet dynamics takes place in
po ten t i a l ene rgy su r f a ce s g i ven by E g / e (R) +

ω χω μ+ ℏx R x2 ( )1
2 c

2 2
c gg/ee , and the dynamics cannot be

separated in the x and R coordinates.
The initial state must be prepared as an eigenfunction of the

unperturbed Hamiltonian (molecule plus field), expressed as a
direct product of the vibrational ground state of the 1 1Σ state
and the ground state corresponding to the harmonic oscillator
of the cavity. To initiate the molecular dynamics in the upper 2
1Σ state, we assume a prompt electronic excitation (produced
by an intense laser field at t < 0) from the vibrational ground
state in the 1 1Σ state. Due to the Franck−Condon
approximation, it reduces to place the v″ = 0 vibrational state
of the 1 1Σ state in the 2 1Σ PEC. Note that concerning NaI,
the initial wave packet v″ = 0 was artificially shifted11,14,15 to the
right of the equilibrium distance to avoid a dominant direct
dissociation through the 2 1Σ state. This is not required in our
present study of LiF. The initial molecular wave packet is
obtained by using a direct diagonalization of the nuclear
Schrödinger equation in a basis or using the relaxation method
with imaginary time. Concerning the initial state of the HO,

Figure 1. (Top panel) Potential energy curves of the two lowest
adiabatic states of LiF molecule ground (g) 1 1Σ state and excited (e)
2 1Σ state. These states display a (covalent-ionic) avoided crossing at R
= 13.1 au. The zero energy is set at the bottom of the ground state and
the equilibrium internuclear distance is R = 3 au. (Middle panel)
Diagonal dipolar moments μgg(R) and μee(R), and transition dipolar
moment μge(R), along with the nonadiabatic coupling fge(R). Note the
different scales in the y-axis. (Lower panel) Modified potential energy
curves for the light-dressed states due to two different cavity mode
frequencies, ωc = 1.24 eV and ωc = 2.47 eV, that show LIC located at
R = 8.5 au and R = 6.5 au, respectively (internuclear distances at which
the detuning Δ = [Ee(R) − Eg(R)]/ℏ] − ωc is zero). Adiabatic
potential energy curves Eg(R) and Ee(R) are also introduced for
comparison (dashed lines).
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which must be also placed in the, so to speak, upper HO
potential, our idea is to introduce different initial states of
quantized light in the cavity, namely, (i) a Fock state, (ii) a
coherent state, and (iii) a squeezed state, being the most
common pure radiation states in quantum optics.1,2 We do not
address the feasibility of the experimental preparation of these
radiation states within the cavity. Our aim is to show that the
molecular photodynamics can be quite different according to
the selected quantum state of radiation and to the choice of
radiation mode frequency ωc. For the purpose of illustration,
we have introduced in Figure 2 the three types of radiation

quantum states. The vacuum Fock state |0⟩ corresponds to the
ground state of the HO with potential ω x1

2 c
2 2 and it is an

stationary state. A coherent state |α⟩ with a chosen average
number of photons n ̅ is a superposition of Fock states with

average energy E̅ = ∑n = 0
∞ Pn(n ̅)En(ωc), where = − ̅ ̅

!P en
n n

n

n

and

ω= ℏ +( )E nn c
1
2
. The coherent state is not an energy

eigenstate and it bounces back and forth within the HO
potential without losing its shape. The squeezed coherent state
|α, ξ⟩ is another superposition of Fock states but, at variance, its
wave packet, in addition to moving back and forth in the HO
potential, breathes (it widens and narrows by modifying its
width and height). Due to the interaction term that couples the
e and g states, χω μℏ R x2 ( )c ge , the initial Fock states in the

upper HO potential (linked to the 2 1Σ molecular state) couple
to Fock states of the lower HO potential (linked to the 1 1Σ
state).
Although the cavity photodynamics of NaI has been recently

treated in refs 10, 11, 14, and 15, we provide a more
comprehensive account of the inner workings of the underlying
mechanisms that give shape to the time-dependent populations
and the dissociation yields in the similar molecule LiF. We want
to address the problem assuming that the cavity can be filled
with different types of quantum states of radiation, namely,
Fock states, coherent states, and squeezed coherent states,
which are known to have very different properties.

Photodynamics with Fock States. In the case of Fock
states, the initial total wave packet is a direct product χv=0

g (R) ×
ψn″=0(x), where χv=0

g (R) is the vibrational ground state of the 1
1Σ state and ψn″=0(x) is the ground state of the HO with mass
unity and frequency ωc (i.e., the radiation Fock vacuum state
|0⟩ represented in coordinate space). As a rule, we have used a
radial box for the vibrational mode with R ∈ [1.6, 60] au and
another box for the HO mode with x ∈ [−xmax: xmax] au, with
xmax = 30−70, large enough indeed to accommodate the three
different quantum states of radiation under study, especially for
the wide squeezed state. In our MCTDH calculation, we
normally use nR = nx = 10−15 single particle functions to
represent both the molecular state in the nuclear box and the
radiation state in the radiation box. The number of primitive
basis sets is NR = 1169 for the molecular vibrational mode and
Nx = 200−350 for the radiation mode.
We study the evolution of this initial state subject to the

molecule−cavity interaction, using different cavity mode
frequencies. These frequencies are selected for the matching
ωc = [Ee(R) − Eg(R)]/ℏ (detuning zero) in the LiF potential
energy curves (Figure 1) to choose the position RLIC of the
LIC, where the dressed curves are nearly degenerate (see
Theory section). In Table 1 we include the cavity mode

frequencies (and the corresponding wavelengths) used in this
work, which range from the visible to the IR sectors in the
electromagnetic spectrum. We also indicate in this table the
corresponding position of the LIC in the PECs of LiF. Note
that for ωc → 0 the LIC approaches the position of the
nonadiabatic coupling (NAC), not induced by the radiation,
located at RNAC = 13.1 au in LiF.
The time-dependent populations for the g-state (linked to 1

1Σ) are plotted in Figure 3a,b. The dissociation yield that
comes from a portion of the e-wave packet transferred to the g-
state through the different couplings (cavity and nonadiabatic)
are included in Figure 3c. For the largest ωc values (3.01, 2.47,
and 2.09 eV), the g-population shows short-time oscillations
with a clear periodicity (the larger the frequency, the shorter
the period). These oscillations tend to fade out at the long time
limit. This effect is produced by the interaction with the cavity
radiation, because in the absence of the cavity the only effective

Figure 2. (a) Scheme of different quantum states of radiation prepared
on the upper harmonic oscillator (HO) potential with cavity mode
frequency ωc = 2.47 (associated with the 2 1Σ state), namely, a Fock
state or HO eigenstate |n⟩ (shadow in blue or yellow), a coherent state
|α⟩ (shadow in green), and a squeezed coherent state |α, ξ⟩ (in red)
(the last at two different times at which it narrows or widens). Vertical
arrows indicate transitions from the prepared radiation quantum states
in the upper HO potential to the Fock states in the lower HO
potential (also with the same frequency ωc and associated with the 1
1Σ state). Also, because in the Franck−Condon region μee(R) ∼ 0
intrastate dipole transitions are dominant only in the lower HO
potential due to the large μgg value. (b) Entangled photonic-nuclear
probability density that appears (empty at t = 0) in the lower PES at t
= 0.5 fs, along the vibrational mode coordinate R and the harmonic
oscillator mode coordinate x, for an initial vacuum Fock state and ωc =
2.47 eV. (c) Same as (b) but at a time t = 1 fs. The g-wave packet thus
evolves from a one-node to a two-node splitting in less than 1 fs (see
text).

Table 1. Set of Cavity Mode Wavelengths λc and Frequencies
ωc Used in This Worka

λc [nm] 400 500 600 700 1000 2250
ωc [eV] 3.01 2.47 2.09 1.76 1.24 0.54
RLIC [au] 5.8 6.5 7.0 7.5 8.5 10.5

aThe cavity frequency determines the position of the light-induced
crossing (LIC) at the internuclear distance RLIC, where the detuning
Δc = [Ee(R) − Eg(R)]/ℏ − ωc is zero.
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coupling corresponds to the NAC located at R = 13.1 au and, in
this case, the 1 1Σ population does not show oscillations (see
also Figure 3). In the absence of radiation, the latter NAC is an
efficient coupling (Figure 1), because more than half the
population of the e-wave packet is transferred to the g-state
from the e-state at t ∼ 100 fs. Eventually, all this population
transferred to the ground state 1 1Σ leads to dissociation
(Figures 1 and 3c). All dissociation yields are computed with
the flux crossing a complex absorbing potential located at R =
58 au, at the edge of our spatial R-grid of size 60 au. This
absorbing layer is reached by the g-wave packet in less than 400
fs. Note that the 1 1Σ population increases steadily again from t

= 500 fs. At this time the e-wave packet (reflected from the
repulsive right side of the 2 1Σ PES) meets again the NAC and
a portion is transferred once more to the ground 1 1Σ state (the
increasing spreading of the e-wave packet causes the slow
increase of the population during the subsequent visits to the
NAC). Because the e-wave packet bounces back and forth in
the 2 1Σ potential and it crosses the NAC region twice within a
vibrational cycle (two transfers to the ground state), at t → ∞
the whole population initially located in the upper 2 1Σ state
will eventually lead to full dissociation of the LiF molecule
through the 1 1Σ state. In our MCTDH simulations (due to
computational limitations), with a final time of 1 ps for the
propagation, the e-wave packet does not complete a full
vibrational cycle in the 2 1Σ state, so that the highest
dissociation yield at this time is 0.6.
Back to the field-dressed case, the oscillations in the

populations tend to disappear as ωc decreases (see cases with
ωc = 1.76,1.24 and 0.54 eV in Figure 3). As ωc → 0, the
position of the LIC approaches the location of the NAC and
the effect of the cavity radiation vanishes. Also, note that the
periodicity τ of the oscillations present in the time-dependent
populations (τ = 140 fs for ωc = 3.01 eV, τ = 200 fs for ωc =
2.47 eV, and τ = 280 fs for ωc = 2.09 eV in Figure 3a) also
emerges in the dissociation yields. Whereas for the undressed
LiF molecule only the presence of a NAC produces a single
burst of dissociation within the time window of the first
picosecond, the effect of the cavity field is to produce a train of
dissociating wave packets with a ωc-dependent periodicity τ.
For the three larger values of ωc, after each period τ, the
dissociation yield increases by a quantity that is almost
independent of the cavity mode frequency ωc (i.e., same
amounts but at different time delays). This is because the
dissociative g-wave packet always comes from the e-wave
packet through the NAC with the same transfer rate, at variance
with the variable transfer rate at the LIC, because this
interaction strength itself depends upon ωc. For the three
smaller values of ωc (1.76, 1.24, and 0.54 eV) the behavior of
the dissociation yield represents a tug of war between the LIC
and the NAC effects. The closer proximity of the LIC to the
NAC makes the NAC physics dominant, but still there is an
interfering LIC contribution, which is less effective for smaller
ωc values.
To understand the inner workings of the cavity photo-

dynamics of LiF, we choose to analyze in detail the prototypical
case with cavity frequency ωc = 2.47 eV. At this initial total
energy the dissociation process comes through the population
transfer from the upper e-PES to the lower g-PES. Then, the
time-dependent populations in these two states as well as the
evolution of the probability densities for the corresponding g-
and e-wave packets are plotted in Figures 4 and 5, respectively.
The initial unentangled photonic-nuclear e-wave packet at t =

0 in 2 1Σ is approximately a direct product of two Gaussians of
different widths. Its compact form is quite robust during
dissociation (Figure 5). However, the underlying dynamics is
better understood following the g-wave packet density in Figure
4. First, at t = 24 fs we appreciate that the g-wave packet splits
in three portions along the x (radiation mode) coordinate. In
fact, this splitting happens to occur below 1 fs. In Figure 2 we
have included the g-wave packet density at t = 0.5 and t = 1 fs,
which shows a distribution with one node and two nodes,
respectively. The interaction term χω μℏ R x2 ( )ijc causes

transitions, so to speak, between vibronic states in both the

Figure 3. (a) Time-dependent population corresponding to the
adiabatic ground state 1 1Σ for the molecule LiF initially fully excited
in the 2 1Σ and coupled with the radiation present in a cavity in the
form of the Fock vacuum state |0⟩. Probabilities are included for three
different cavity mode frequencies ωc = 3.01 eV (red solid line), ωc =
2.47 eV (blue dashed line), ωc = 2.09 eV (green dashed-dotted line),
with χ = 0.05. The population for isolated LiF molecule (without a
cavity) is also included as a reference (thick gray line) and its rapid
decay after 400 fs is due to the presence of the absorbing potential
situated at R = 58 au. The periodicity between consecutive maxima is
indicated in the figure. (b) Same as (a) but for smaller cavity mode
frequencies: ωc = 1.76 eV (black solid line), ωc = 1.24 eV (gray dashed
line), and ωc = 0.54 eV (orange dashed-dotted line). Again, the
probability of cavity-undressed LiF is also included as a reference. (c)
Total dissociation probability (fully represented by the flux escaping
asymptotically above the dissociation threshold of the ground state 1
1Σ), for the same six cavity mode frequencies ωc present in (a) and
(b).
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molecular (through μeg(R)) and the HO subsystems (through
x). According to Figure 1, the dipole moment μeg(R) is not
zero in LiF for R > Re (Re ∼ 3 au is the equilibrium distance),
so that transitions between the upper (e) and lower (g) HO
states take place promptly. According to HO dipole selection
rules, its ground state ψn′=0

e makes a sudden and dominant
transition to ψn″=1

g in the lower HO potential (hence the g-wave
packet is created with a single node at the beginning).
Moreover, whereas the diagonal dipole moment μee is almost
negligible in Re < R < 12 au, the diagonal dipole moment μgg is
not (Figure 1). Indeed, its magnitude is larger than the
transition dipole moment μeg in the same region. This means

that the interaction term χω μℏ R x2 ( )c gg also produces

intrastate HO transitions within the g-state, from the previously
populated n″ = 1 to n″ = 0 and mainly n″ = 2 (Figure 2), which

generates a two-node g-wave packet extended in the x
coordinate whose shape remains robust during its propagation
in the confined zone 0 < R < RLIC, the inner region of the
dressed potential E−(R) (Figure 1). These e−g transitions at
short R < RLIC are always present because the cavity interaction
is always switched on but it is feeble because is quite out of
resonance (the detuning is zero only at the position of the
LIC).
The cavity interaction depletes the upper state population

when the e-wave packet reaches the LIC, located at R = 6.5 au
for ωc = 2.47 eV. At this internuclear distance the transition
dipole moment μeg is much more effective and the e-wave
packet passing through the LIC produces a one-node g-wave
packet in the lower PES that propagates with an inherited
momentum. Although this newly LIC-created wave function
approaches the NAC region, the two-node g-wave packet has

Figure 4. Snapshots of the time-dependent evolution for the probability density of the entangled radiation-molecule wave packet moving in the

potential energy surface ω χω μ+ + ℏE R x R x( ) 2 ( )g
1
2 c

2
c gg (eq 4) of LiF. The plot corresponds to a cavity mode frequency ωc = 2.47 eV,

interaction factor χ = 0.05, and the radiation is set up initially as the vacuum Fock state |0⟩. The times ti for the snapshots are connected with
different features present in the population of the g − 1 1 Σ state (upper panel). Arrows indicate the direction of motion of the wave packet and its
size is related to the magnitude of its momentum. Vertical lines within the snapshots indicate the internuclear distance R = 6.5 au for the location of
light-induced crossing (LIC) and the internuclear distance R = 13.1 au for the nonadiabatic crossing (NAC).

Figure 5. Same as Figure 4 but for the population and time-dependent probability density of the e − 2 1 Σ state (initially populated at t = 0) moving

within the potential energy surface given by ω χω μ+ + ℏE R x R x( ) 2 ( )e
1
2 c

2
c ee . Snapshots are taken at the same times as in Figure 4 for comparison.
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almost completed a vibrational cycle (approximately τ = 56 fs)
from t = 24 to t = 80 fs, inside the dressed 1 1Σ state. Similarly,
the one-node g-wave packet bounces back and forth confined in
the region RLIC < R < RNAC with a period τ ∼ 200 fs.
The second enhancement of the ground state population is

due to the NAC at R = 13.1 au. Between t = 80 fs and t = 104 fs
the remaining e-wave packet almost disappears because its
density is fully transferred to the g-state at t = 104 fs (see time
t4 in Figures 4 and 5). This latter portion of the g-wave packet
finally leads to dissociation. The middle one-node g-wave
packet, after reflection from the 1 1Σ turning point near the
NAC, approaches the LIC at t ∼ 144 fs. Again, the efficient LIC
drives a large portion (∼0.6) of the one-node g-wave packet
back to the upper e-PES, where a nodeless and extended e-wave
packet emerges with its inherited momentum. In other words,
from t = 144 to t = 240 fs the initial e-wave packet is partially
reconstructed thanks to the LIC. Therefore, from this time
onward, the full mechanism is again repeated, but with a smaller
initial population. This cyclic mechanism explains the main
features present in the populations in Figure 3a.
In conclusion, there are notorious features introduced by the

cavity interaction, namely, (i) multiple splittings of the wave
packet along the internuclear distance R (at the LIC and at the
NAC) and the presence of nodes along the x coordinate due to
radiation mode transitions, (ii) portions of the density remain
bound and confined in the regions 0 < R < RLIC and RLIC < R <
RNAC, and (iii) dissociation fluxes can be produced with a
higher repetition rate and controllable delay (by choosing the
cavity mode frequency) than with undressed molecules.
Note that the wave packet dynamics in Figure 4 does not

preserve a parity symmetry x → −x for the densities. This is
bec au se the PES fo r the g round s t a t e r e ad s

ω χω μ+ + ℏE R x R x( ) 2 ( )g
1
2 c

2
c gg and the nonzero negative

value of μgg for R produces an additional linear potential in the
x direction (see graphic in the Abstract with the 3D plot of the
g- and e-PES). As mentioned above, we have included the

adiabatic PECs and interaction couplings (cavity and non-
adiabatic terms) so that the effective dressed states and LIC
between them must be reproduced by our basis dynamically.
From the time-dependent densities we learn of the virtual
presence of the LIC; our strong cavity transitions occur at the
RLIC positions predicted by the dressed state picture (Table 1).
Moreover, the two-node g-wave packet confined at short 0 < R
< RLIC shows different reflections and vibrational periods for
each chosen cavity mode frequency ωc. For instance, for ωc =
3.1 eV this portion of the g-wave packet is reflected at R ∼ 4 au,
for ωc = 2.47 the turning point is at R ∼ 5 au (Figure 4), and
for ωc = 2.09, 1.76, and 1.24 eV this inner g-wave packet travels
up to R ∼ 6, 7, and 8 au, respectively, and then is reflected back.
This is an indication of the existence of a movable LIC between
virtual dressed PES.

Photodynamics with Coherent States. Now we assume
that the optical cavity is filled with a coherent radiation. The
coherent state of light in the position space representation is
given by1

ψ
π

=
Δα

α

− −⟨ ⟩ Δ ⟨ ⟩α α α
⎛
⎝⎜

⎞
⎠⎟x

x
( )

1
2 [ ]

e ex x x p x
2

1/4
1/4( / ) i2

(13)

where Δ =α ω
ℏx

2 c
corresponds to the width, and the wave

packet is centered initially at α α⟨ ⟩ = + *α ω
ℏx ( )

2 c
in the x-

spatial grid and with an initial momentum given by

α α⟨ ⟩ = − − *α
ωℏp i ( )
2

c . α = |α|eiψ is a complex number

that characterizes the coherent state in the complex phase space
and it is related to the average number of photons in the cavity
through n ̅ = |α|2. Here we have chosen ψ = π/4 and also
selected different values for the average number of photons,
namely, n ̅ = 4, 9, and 16. Now the initial total wave packet is the
direct product χv=0

g (R) × ψα(x). Then the choice for n ̅ and the
cavity mode frequency ωc determine the initial location and

Figure 6. (Left panels) Time-dependent population corresponding to the adiabatic ground state 1 1Σ for the molecule LiF initially fully excited in
the 2 1Σ and coupled with the radiation present in a cavity in the form of a coherent state |α⟩, with different average number of photons n ̅ = |α|2 = 4
(blue dashed line), 9 (green dotted-dashed line), and 16 (black dotted line). Probabilities are included for two different cavity mode frequencies ωc =
2.47 eV (a) and ωc = 1.24 eV (c), with χ = 0.05. The probabilities for the undressed dynamics (gray thick line) and for the photodynamics with a
Fock vacuum state (red solid line) are also included as a reference. (Right panels) Total dissociation probability (represented by the flux escaping
asymptotically above the dissociation threshold of the ground state 1 1Σ), for the cavity mode frequencies ωc = 2.17 eV (b) and ωc = 1.24 eV (d),
associated with the probabilities in (a) and (c), respectively.
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momentum of the coherent state, which is readily represented
in our radiation grid with x ∈ [−50, 50] au. The larger the
value for n ̅ , the larger the average energy, E̅ =
∑n=0Pn(n ̅) En(ωc), and the longer the oscillation amplitude in
the HO potential.
In Figure 6 we include the time-dependent g-state

populations and the dissociation yields with radiation
represented as a coherent state, and we choose two cavity
mode frequencies ωc = 1.24 and 2.47 eV, both with three
different average number of photons (n ̅ = 4, 9 and 16). For n ̅ =
4, according to Pn, the main Fock components in the coherent
state extend from n = 0 to n = 9 with a maximum in n = 4. This
means that the coherent state initially moves within the HO
potential with an average total energy higher to that of the

vacuum Fock state. For ωc = 2.47 eV and n ̅ = 4 the behavior of
the g-population with n̅ = 4 is similar to that of the Fock
vacuum state. Actually, the coherent state is a displaced vacuum
state, |α⟩ = D(α)|0⟩, with the same width. Nonetheless, we find
some differences. At the short time range 20−50 fs the g-
population develops a hump not present in the HO Fock case
(Figure 6) that increases further for n ̅ = 9 and 16. This g-
population enhancement is caused by the larger effective dipole
transition in the HO mode along x. The coherent state is not a
stationary state and it oscillates (preserving its shape) with a
large amplitude between the turning points of the upper HO
potential at the average energy E̅(n ̅). This oscillation has a
period T = 2π/ωc, and its amplitude is larger for increasing n ̅.
These long excursions of the coherent state to large values of x

Figure 7. Snapshots of the time-dependent evolution for the probability density of the entangled radiation-molecule wave packet moving in the

potential energy surface ω χω μ+ + ℏE R x R x( ) 2 ( )g
1
2 c

2
c gg (eq 4) of LiF. The plot corresponds to a cavity mode frequency ωc = 2.47 eV,

interaction factor χ = 0.05 and the radiation is set up initially as a coherent state |α⟩ with an average number of photons n̅ = 4 and angular phase ψ =
π/4. The times ti for the snapshots are connected with different features present in the population of the g − 1 1Σ state (upper panel). Arrows
indicate the direction of motion of the wave packet and its size is related to the magnitude of its momentum. Vertical lines within the snapshots
indicate the internuclear distance R = 6.5 au for the location of light-induced crossing (LIC) and the internuclear distance R = 13.1 au for the
nonadiabatic crossing (NAC).

Figure 8. Same as Figure 7 but for the population and time-dependent probability density of the e − 2 1 Σ state (initially populated at t = 0 with the

radiation state as a coherent state) moving within the potential energy surface given by ω χω μ+ + ℏE R x R x( ) 2 ( )e
1
2 c

2
c ee . Snapshots are taken at

the same times as in Figure 7 for comparison.
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makes the effective dipole matrix elements between the moving
coherent state and the HO Fock states of the g-state be more
effective than they are between Fock states. This is reflected in
the higher population transfer, even in the off-resonant region 0
< R < RLIC and also at RLIC. This higher population transfer
must be appreciated in the g-wave packet density (more intense
than in the Fock state case), for instance, in the case ωc = 2.47
eV and n ̅ = 4; see the first snapshot at time t = 24 fs included in
Figure 7. This piece of g-wave packet has no nodal structure,
given that the coherent state is a superposition of Fock states
and this tends to wash out any sharp node corresponding to
particular HO transitions.
It must be noted that densities for ωc = 2.47 eV in Figures 7

and 8 are frames at a fixed time, but these densities move
upward−downward in the x direction, with a period T = 1.67 fs.
For n ̅ = 4 the coherent state is initially centered at x ∼ 6 au and
with a positive momentum ⟨p⟩α; then it reaches the right
turning point where the dipole is maximum. There are no less
than 20 oscillation cycles of the coherent state to reinforce the
dipole transitions before the e-wave packet reaches the LIC.
Also, at t = 44 fs (Figure 8) a weak signal appears traveling in
opposite direction to the e-wave packet moving across the LIC.
It comes through the off-resonant cavity dipole transition, from
the population of the g-state already trapped in 0 < R < RLIC (t
= 44 fs in Figure 8). This piece of e-wave packet moves in the
upper e-PES with a different momentum than the g-wave
packet moving in 0 < R < RLIC at t = 44−80 fs. At t = 80 fs the
traveling piece of the g-wave packet within the interval 0 < R <
RLIC partially transfers to the e-state, thus producing two fringes
of delayed e-wave packets with slightly different momentum
that eventually will interfere. The LIC is so effective with
coherent states that the e-wave packet is almost emptied in the
region R < R < RNAC and little density survives to arrive at the
NAC (t = 80 fs in Figure 8). This is why the dissociation yield
in Figure 6b for any coherent state is much reduced with
respect to the Fock case. Also, a large portion of the g-density
confined in RLIC < R < RNAC is transferred back to the e-state

between 144 and 240 fs. Finally at t = 240 fs the e-wave packet,
partially reconstructed with large interference structures,
restarts the whole mechanism.
For n ̅ = 16 the dynamical oscillatory pattern for the

populations in Figure 6 changes abruptly with a series a
periodic structures separated by τ ∼ 70 fs. In this case (not
shown in the figures), it takes ∼34 fs for the e-wave packet to
reach the LIC, time at which the g-state population shows its
first maximum peak. However, in this case, the e-wave packet
does not cross the LIC but is reflected back for R < RLIC. Due
to the large enhancement of the dipole moment for the
coherent states and even more for large n ̅, the g-population is
exchanged with the e-state until the latter reaches the inner
turning point where μeg ∼ 0 (Figure 1). When the upper e-wave
packet arrives at the equilibrium distance Re, a new cycle
repeats. Consequently, the sequence of peaks in Figure 6
indicates the periodical arrival of the e-wave packet to the LIC
from Re, and the full dynamics is confined in 0 < R < RLIC, with
the NAC playing no role. This mechanism is confirmed by
changing the cavity mode frequency to ωc = 1.24 (Figure 6c, a
case for which the LIC is located at RLIC = 8.5 au). In this case,
the period for the confined motion in 0 < R < RLIC is longer, τ =
180 fs, with the maximum humps indicating that the e-wave
packet approaches the LIC, makes the transition, and is
reflected back.

Photodynamics with a Squeezed-Coherent State. The
squeezed coherent state in the position representation is given
by24
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π
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Figure 9. (Left panels) Time-dependent population corresponding to the adiabatic ground state g − 1 1Σ for the molecule LiF initially fully excited
in the e − 2 1Σ and coupled with the radiation present in a cavity in the form of an squeezed coherent state |α, ξ⟩, with two different values of |α|2 = 4
(blue dashed line) and |α|2 = 9 (green dotted-dashed line), squeezing parameter r = 2, and angular phase angle ψ − θ/2 = 2π/5, are included for two
different cavity mode frequencies ωc = 2.47 eV (a) and ωc = 1.24 eV (c). The probabilities for the undressed dynamics (gray thick line) and for the
photodynamics with an initial Fock vacuum state (red solid line) are also included as a reference. (Right Panels) Total dissociation probability
(represented by the flux escaping asymptotically above the dissociation threshold of the ground state 1 1Σ), for the cavity mode frequencies ωc = 2.47
eV (b) and ωc = 1.24 eV (d), associated with the probabilities in (a) and (c), respectively.
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with the width given by Δ =α ω
ℏ +

−

θ

θ( )x r r
r r2

cosh e sinh
cosh e sinh

1/2

c

i

i and

the initial position α α⟨ ⟩ = + *α ω
ℏx ( )

2 c
and momentum

α α⟨ ⟩ = − − *α
ωℏp i ( )
2

c , with α = |α|eiψ. The squeezed state is

characterized by the complex variable ξ = reiθ, where r is the
squeezing parameter and eiθ the squeezing phase. We have fixed
the angular difference ψ − θ/2 = 2π/5. The coherent states
have the property that the variances of the position X̂1 = (a ̂ +
a ̂†)/2 and momentum X̂2 = (a ̂ − a†̂)/2i quadratures are equal,
i.e., ⟨(ΔX̂1)

2⟩ = ⟨(ΔX̂1)
2⟩ = 1/4 so that they minimize the

position−momentum uncertainty product. At variance, with a
squeezed coherent state, one of the two variances can be

chosen to be below 1/4 at the cost of increasing the other. A
consequence of this property is that the spatial wave packet
associated with the squeezed coherent state breathes (it
narrows when ΔX1 < 1/4 but it widens when ΔX1 > 1/4).
This effect is appreciated if the state in eq 14 is propagated in
time (see Figure 2 for an illustrative picture). At the time of
maximum expansion, the spatial allocation of the squeezed state
may require the use of large grids x ∈ [−70: 70] au, especially
for large n̅. The average number of photons for a squeezed
coherent state is given by n ̅ = |α|2 + sinh2 r. In our computations
we have chosen r = 2 as the squeezing parameter and |α|2 = 4
and 9. In these cases, the squeezing character dominates over
the coherent one in the contribution to n ̅.

Figure 10. Snapshots of the time-dependent evolution for the probability density of the entangled radiation-molecule wave packet moving in the

potential energy surface ω χω μ+ + ℏE R x R x( ) 2 ( )g
1
2 c

2
c gg (eq 4) of LiF. The plot corresponds to a cavity mode frequency ωc = 2.47 eV,

interaction factor χ = 0.05, and the radiation is set up initially as a squeezed coherent state |α, ξ⟩ (with an average number of photons n ̅ = 4 and
coherent and squeezing phase ψ = θ = 0, and squeezing parameter r = 2. The times ti for the snapshots are connected with different features present
in the population of the 1 1Σ state (upper panel). Arrows indicate the direction of motion of the wave packet and its size is related to the magnitude
of its momentum. Vertical lines within the snapshots indicate the internuclear distance R = 6.5 au for the location of light-induced crossing (LIC)
and the internuclear distance R = 13.1 au for the nonadiabatic crossing (NAC).

Figure 11. Same as Figure 10 but for the population and time-dependent probability density of the 2 1Σ state (initially populated at t = 0 with the

radiation state as a squeeze coherent state) moving within the potential energy surface given by ω χω μ+ + ℏE R x R x( ) 2 ( )e
1
2 c

2
c ee . Snapshots are

taken at the same times as in Figure 10 for comparison.
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In Figure 9 we include the time evolution of the g-
populations and dissociation probabilities for two cavity mode
frequencies, ωc = 2.47 and 1.24 eV. The pattern of oscillations
in the g-populations for both |α|2 = 4 and |α|2 = 9 are similar
between them but also comparable to the g-populations for a
coherent state with the largest value n̅ = |α|2 = 16. We learn
from the coherent radiation case that the increase of the dipole
moment as n̅ increases is responsible for these rapid oscillations
with a short period of 70 fs. The same situation appears with
squeezed coherent states but with smaller values of |α|2. The
cause is that the transition dipole moments for the squeezed
state are larger than for the coherent state. The squeezed
coherent state for ωc = 2.47 eV, |α|2 = 4, and r = 2 breathes
twice the coherent oscillatory period T = 1.67 fs. If one
calculates the time-dependent dipole moment D(t) =
∫ dx ψn″=1

g (x)xψα,ξ(x,t) between the Fock state |1⟩ and the
evolving squeezed coherent state |α, ξ⟩, one finds a maximum
magnitude of 2.45 au, whereas the same calculation for a
moving coherent state provides 1.70 au. Consequently, it
means that the squeezing introduces large effective dipole
couplings even with smaller values of |α|. Thus, the cavity
couples the two states mainly in the internuclear region 0 < R <
RLIC and the LIC is again more crucial than the NAC in the
dynamics. The off-resonant cavity interaction in Re < R < RLIC
and the LIC itself depopulates the e-state (Figures 10 and 11
for t = 5−43 fs). The e-wave packet is almost no longer present
in the region RLIC < R < RNAC, and thus there is little
dissociation. It transfers its population at the LIC to the g-state
at t ∼ 43 fs and the latter remains mostly confined in that
region. However, the density in the region 0 < R < RLIC is also
confined but it is continuously exchanged between the g- and
the e-state, which results in oscillating populations, with a
period corresponding to one cycle of vibration of the g-wave
packet in this inner zone. It must be also noted that the
oscillatory (with breathing) motion along the cavity mode
coordinate x provokes a larger spreading and self-interferences
in the wave packets. This spreading along x (similar to the
coherent state), which is not present in the Fock case, makes
that g/e-wave packets sample a more extensive landscape of the
PES. As mentioned above, both PES are not symmetric with
respect to parity (x → −x) due to the presence of diagonal
dipole moments. Its effect is appreciated in the Fock case (t =
144 fs in Figure 4 where the g-wave packet in RLIC < R < RNAC
is biased toward positive x) in the coherent case (t = 144 fs in
Figure 7) and in the squeezed state (t = 80 fs in Figure 10).

■ CONCLUSIONS AND PERSPECTIVES
Strong coupling in the light−matter interaction can be
produced by confining a molecule within an optical cavity, so
that the molecule interacts with the cavity quantum modes of
light. In this work we have studied the photodynamics of LiF
immersed within an optical cavity. We have conceived three
scenarios for the quantum radiation states: Fock states,
coherent states, and squeezed coherent states as different
expressions of quantum light. In other very recent studies it has
been pointed out that there are no real radiation quantum
effects when Fock states are used14,15 and that any special effect
in the population dynamics or dissociation yields can be fully
reproduced by using a semiclassical approach for the radiation−
matter interaction, only just by fitting the correct intensity of
the classical pulse to the constants of the interaction terms in
the cavity-matter interaction. We believe that this is not a
general case and that the conditions under which a quantum

field could be replaced by his counterpart classical field are still
an open problem. With this work we hope to contribute to the
understanding of the dynamics of a simple polar diatomic
molecule when subject to cavity quantum radiation. We have
shown that the response of the system can be drastically
different when different forms of quantum states are used for
the cavity. For that purpose we have performed full ab initio
calculations for both the structure and photodynamics of the
molecule, using state of the art tools to calculate the temporal
evolution of the entangled (matter plus radiation) wave packet.
Strictly speaking, the molecular populations should be
calculated from the reduced density operator ρ̂mol for the
molecule (computed by tracing over the total density operator
corresponding to the entangled total wave packet). In this
respect along this work we have always shown populations for
the light-dressed system (light plus molecule), but we judged
them sufficient to illustrate our purposes.
In LiF photodynamics three regions along the internuclear

distance are clearly identified: (i) the inner region 0 < R < RLIC,
(ii) the middle region RLIC < R < RNAC, and (iii) the outer
region R > RNAC. We have compared the different dynamics of
the three quantum states by fixing the same interaction strength
χ for all of them. When the radiation state is prepared as a Fock
vacuum state, both LIC and NAC play fundamental roles. In
the Fock case we have analyzed vibronic transitions among
Fock states between different electronic states or within the
same (ground) electronic state. The latter effect arises only if
diagonal dipole moments are introduced in the dynamics. The
onset of the LIC is generated (in our formalism) by the
dynamical interaction and its position RLIC in the MCTDH
simulations coincides with that expected from dressed state
simple calculations. The portion of e-wave packet transferred at
RLIC to the g-state in the middle region RLIC < R < RNAC
remains confined but partially helps to reconstruct the initial e-
wave packet because of successive transfers across the LIC in
the reverse direction.
The confinement of the density within the inner region 0 < R

< RLIC is a paramount effect of the interaction with the cavity.
The density of this confinement is larger for coherent and
squeezed states of light due to the enhancement of the effective
dipole moment along the x direction together with a non-
negligible μeg(R) molecular dipole moment in the inner region.
In coherent and squeezed states the effects of cavity radiative
couplings in 0 < R < RLIC dominate over the effect produced by
the NAC. This strongly modifies the LiF photodynamics and
cavity Rabi oscillations in the inner region dominate the whole
dynamics, with dissociation mostly suppressed. When the cavity
is in a vacuum Fock state, we expect LiF to deliver a train of
dissociative matter wave packets separated by a controllable
delay between them. As a future perspective, the cavity mode
frequency ωc and the type of quantum state of radiation
prepared in the cavity can be set up as usable factors that can
modify and control the dynamics of simple polar diatomic
molecules, which in the undressed case is only dominated by a
single NAC.
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