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Abstract

Linear-quadratic (LQ) filters for detection and estimation are widely used in the real case. We

investigate their extension in the complex case, which introduces various new questions. In particular, we

calculate the optimum LQ array receiver in a non-Gaussian environment by using the deflection criterion

and evaluate some of its performance.

S

I. INTRODUCTION

Linear-quadratic (LQ) systems are widely used in many areas of signal processing and especially

in detection problems. As an example, the optimum receiver for the detection of a normal signal in a
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noma1 noise is an LQ system. Most of the results known for LQ systems are established in the real

case. However, these assumptions are too restrictive for various problems and especially in narrowband

array processing. Even if the physical signals received by the sensors are real, there is a great advantage

in the narrowband case to work with the complex representation, for example, by using the analytic

signal (see [l, p. 2291). This especially allows definition of the complex steering vector characterizing

the geometrical structure of the problem.

The most general form of a complex LQ filter calculating an output y in terms of a vector input x is

y(x) = c+ xHh1 + xTh2 + xTM1x + xHM2x
∗ + xTM3x, (1)

where

c is a constant;

h1 is a complex vector;

h2 is a complex vector;

Mi are three complex matrices.

In this equation, xH means transposition and complex conjugation. Note that because of the symmetry

of the last two quadratic terms, there is no loss of generality in assuming that the matrices M2 and M3

are symmetric. The introduction of complex signals and systems yields significant changes in statistical

signal processing problems. The main purpose of this correspondence is to calculate the vectors and

matrices appearing (1) in such a way that y satisfies some optimality criterion introduced in the next

section.

II. STATEMENT OF THE PROBLEM

The basic detection problem consists of deciding between two simple hypotheses H0 and H1 from an

observation vector x. When the probability distributions of x underH0 and H1 are known, the optimum

procedure consists in comparing the likelihood ratio (LR) to a threshold. Our basic assumption is that

we are not in this situation and that our knowledge concerning the statistical properties of x is much

lower. If, for instance, this knowledge is limited to second-order properties of x under H0 and H1, which

means that only the mean values and the covariance matrices are known, it is possible to calculate the

linear filter that maximizes the output signal to noise ratio, and, in the case of nonrandom signals, this

leads to the famous matched filter used in many areas of statistical signal processing (see [l, p. 5551]).

The output signal-to-noise ratio is also called the deflection and can be defined for any filter y(x) by the

expression

D(y)
4
=
|E1(y)− E0(y)|2

V0(y)
, (2)
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where E0 and E1 are expectations under H0 and H1, respectively, and V0 is the variance under H0. This

deflection was introduced long time ago and has been used under various assumptions, especially in the

context of array processing [2]-[5]. Even if it has been essentially used in the linear case, there is no

reason to limit its use to linear systems. Therefore, if the moments up to the order 4 are known, it is

possible to calculate the deflection of (1) and to find the system giving its maximum value. This work

extends to the complex case results obtained in [6] for the real case.

We shall outline only the principles of the method used in order to maximize the deflection of systems

like (1). The first point is to note that the deflection is invariant under affine transformation, and then it is

appropriate to use this property to work with LQ systems having an output with zero mean value under

Ho. This is realized by subtracting the mean value. By assuming that the input vector x is zero-mean

valued urtder H0, the filter (1) takes the form

y(x) = xHh1 + xTh2 + xHM1x + xHM2x
∗ + xTM1x−

−Tr[M1R + M2C
∗ + M3C], (3)

where Tr means the trace, R
4
= E0(xxH) is the covariance matrix of x, an C

4
= E0(xxT ). These

matrices define the second-order moments of x under H0. They are obviously equal in the real case.

The matrix C is often zero, and this especially appears under the assumption of circularity [7]. In all

the following, we shall only consider LQ systems written as in (3). The same procedure of subtraction

of the mean value can be applied to the likelihood ratio L(x) associated with our problem. As its mean

value under H0 is obviously 1, we can introduce the displaced likelihood ratio (DLR) Ld(x) defined by

Ld(x)
4
= L(x)−1. Looking at (3), we note that the set of all the systems defined by this equation belong

to a vector space. This space becomes a Hilbert space denoted HLQ if a scalar product is introduced,

and this scalar product of two filters u(x) and v(x) is defined by (u, v)
4
= E0[u

∗(x)u(x)]. It can then be

shown that the maximum value of the deflection of systems like (3) is obtained with the projection of

Ld(x) onto the Hilbert subspace HLQ. It is then charactenized by the orthogonality principle (see [I, p.

3981) saying that E0[g
∗x)yopt(x)] = E0[g

∗x)Ld(x)] for any g[x) belonging to HLQ. However, it results

from the definition of the DLR that E0[g
∗x)Ld(x)] = E1g

∗x), and the orthogonality relation takes the

form

E0[g
∗(x)yopt(x)] = E1[g

∗(x)] ∀g(x) ∈ HLQ , (4)

which allows us to calculate yopt(x). Furthermore, the maximum value of the deflection is Dmax =

E0[|yopt(x)|2] Note at this step that even if the DLR has been used in the calculation, it disappears in the

orthogonality equation (4). In fact, as g(x) and yopt(x) belong HLQ all the momenis appearing in (4)
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are of an order smaller or equal to 4. As a consequence, a statistical knowledge up to the fourth order

is sufficient to obtain the optimum filter in terms of deflection.

To conclude this sectiion, it is worth discussing the uniqueness of the solution. From classical results

of Hilbert spaces properties, it is clear that the projection yopt(x) defined by (4) is unique. However,

as the deflection is invariant under affine transformations, all the filters such that ayopt(x) + b, a 6= 0,

give the same deflection and then are also optimal. For simplicity, we shall only consider yopt(x) in the

following. There are some technical details regarding the structure of (1) or of (3) that must be addressed.

Consider in these expressions only the quadratic terms. It is clear that two different matrices M′ and

M′′ can give the same value for the quadratic form xHMx∗. This is also valid for the last term of (1),

and then, the optimum system yopt(x) can take different forms. In order to ensure the uniqueness of the

representation of yopt(x), it is sufficient to assume, as indicated above, that M2 and M3 are symmetric,

and this assumption is introduced in all of the following. The problem is then to calculate the parameters

[h1, h2, M1, M2, M3] introduced in (3) and satisfying (4) for any g(x) written as in (3). Applying (4)

successively with

g(x) = xHg, g(x) = xTg, g(x) = xHNx− Tr[NR]

g(x) = xHNx∗ − Tr[NC∗, g(x) = xTNx− Tr[NC]

where the vector g and the matrix N are arbitrary, we obtain five equations defining the optimal system.

These equations are linear with respect to the unknown parameters, which, under classical general

conditions, ensures the uniqueness of the solution.

III. APPLICATION TO NARROWBAND ARRAY PROCESS

Consider a narrowband array processor such that the N components of the observation vector x are

constructed from the complex envelope of the signals processed by the N sensors of the array. Under

H0, (noise only) x = b, vector describing the noise received by the sensors. Under H1 (signal plus

noise), we have x = ms+b, where s is the complex steering vector of the signal, and m is its complex

amplitude. The first- and second-order moments of x are assumed to be known. Under H0 , x has a

zero mean value, and its second-order properties are defined by the matrices R and C introduced above.

Under H1, we have

m1 = µs, R1−0
4
= E1(xxH)− E0(xxH) = πsss

H ,

C1−0
4
= E1(xxT )− E0(xxT ) = γsss

H , (5)
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where µ
4
= E[m], πs

4
= E[|m|2], and γs

4
= E[m2] In particular, if the signal is random and with a zero

mean value, µ = 0 and πs is proportional to the input power. For the nonrandom signal, the expectations

appearing in the previous relations are simply canceled. Under these assumptions, the problem is to find

the optimal second-order LQ filter that maximizes the deflection.

As the components xi of x are under H0 related to the complex envelopes of a stationary narrowband

signal, it is shown in [7] that if the indices ik. are integers taken in [l.2, ..., N ], then E0[xi1 , xi2 , ..., xim ] =

0 and E0[x
∗
i1
, xi2 , ..., xin ] = 0 for any m and n. As a result, we deduce that C and the third-order moment

of x under H0 are zero. Inserting this result into the five equations indicated at the end of the previous

section and defining thc optimal complex LQ filter, we find the quantities h1, h2, M1, M2, and M3

defining the optimal second-order LQ array receiver. After some algebra, which is presented more in

detail in [9], we obtain that the vectors defining the linear part of (1) satisfy h1 = h2 = µR−1s and then

are equal to zero if the signal is random with zero mean value (µ = 0) but are proportional to the spatial

matched filter xR−1s and its conjugate for nonrandom signals. Similarly, it is easy to deduce from the

assumptions introduced that the optimal matrix M1 is Hermitian. Finally, it appears that M2 = M∗
3. In

particular, for the stationary narrowband random signal case, we find that γs = 0, and then, the optimal

symmetric matrices M2 and M3 are zero. Thus, for the random signal case, the optimal second-order

LQ array receiver is purely quadratic and can be written as yopt = xHM1x − Tr[RM1], whereas it

remains a widely linear part [8] for nonrandom signals. Applying the expression previously given for the

maximum value of the deflection to LQ systems yields

Dmax = 2|µ|2sHR−1s + πss
HM1s + γss

TM3s + γ∗ss
HM∗

3s
∗ (6)

The first term of the right-hand side of this expression, which is equal to zero for the random signal case,

is a result of the widely linear part of the LQ array receiver, whereas the other terms, which are noted

dq, are a result of the purely quadratic pait. It is easy to see that dq > 0, and we deduce that in order to

detect a given nonrandom signal in a given environment and for a given number of sensors, it is always

better, in terms of deflection maximization, to use a LQ array receiver than a widely linear one.

Let us now introduce the assumption of fourth-order Gaussian noise, which means that that all the

moments up to the order 4 are those of a Gaussian noise, but no assumption is introduced for the other

moments that are completely unknown. By applying the formula giving the fourth-order moment of

circular complex Gaussian random variables [l], we obtain, after some simple algebra

M1
4
= MG

1 = πsR
−1ssHR

4
= πshsh

H
s (7)

M2
4
= MG

2 = (1/2)γsR
−1ssTR−T = (1/2)γshsh

T
s . (8)

March 23, 2018 DRAFT



6 IEEE TRANSACTIONS ON SIGNAL PROCESSING ,

and M3
4
= MG

3 = MG∗
3 . All these results show that the optimal LQ array receiver in a complex circular

fourth-order Gaussian noise can be directly deduced from the spatial matched filter hs defined in (8) both

for the random and nonrandom signal. The fact that the linear matched filter can appear in a quadratic

structure was already shown by a completely different approach in [2].

Finally, the corresponding maximum deflection is then given by

DG = 2|µ|2sHR−1s + (π2s + |γs|2)(sHR−1s)2. (9)

IV. OPTIMAL PERFORMANCE IN A

SPATIALLY FOURTH-ORDER WHITE NOISE

To evaluate more in detail the effect of the non-Gaussian character of the noise on the structure and

the performance of the optimal second-order LQ array receiver, we now apply the results of the previous

section to the particular case of a stationary narrowband spatially fourth-order white noise.

In most of the papers dealing with array processing, it is assumed that in a quiescent environment, the

noise is spatially white. This means that the components xi of the observation vector x arc under H0

independent and identically distributed (i.i.d.) complex random variables.

In the stationary case, the only nonzero moments up to the fourth order are

E[x∗ixj = η2δ(i, j)

E[x∗ix
∗
jxkxl] = (η4 − 2η22)δ(i, j, k, l) + η22[δ(i, k)δ(j, l) + δ(i, l)δ(j, k)], (10)

where the symbols δ(.) are extensions of the Kronecker Delta symbols and are equal to one if all the

indices are equal and to zero in the other cases. We shall say that a noise is a complex fourth-order white

noise if its first moments are given by (lo), and no particular assumption is introduced on the higher

order moments. It is, in some sense, an extension of the concept of complex second-order white noise,

where only the first equation of (10) is introduced.

By using our previous results, we can find the optimal second-order LQ array receiver for the detection

of a signal defined by µ, πs, γs, s in a stationary narrowband complex spatially fourthorder white noise

defined by η2 and η4. For the liner part, we obtain h1 = h∗2 = (µ/η2)s. On the other hand, the quadratic

part is characterized by the matrices

M1 = MG
1 −

πs
η22

β − 2

β − 1
Λm

M2 = MG
2 −

γs
2η22

β − 2

β
Λp. (11)
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In these equations, the quantity β defined by η4/η
2
2 is the kurtosis of the noise and is equal to 2 for

complex circular Gaussian noise. Furthermore, the matrices Λ are deduced from the components si of s

by

Λm
4
= diag[|s1|2, |s2|2, ..., |sN |2]

Λp
4
= diag[s21, s

2
2, ..., s

2
N ]. (12)

Finally, the optimal matrices in the fourth-order Gaussian case are MG
1 = (πs/η

2
2)ss

H , and MG
2 =

(2πs/η
2
2)ss

T These expressions show that the nondiagonal elements of M1 and M2 are the same as in

the fourth-order Gaussian case (β = 2). In other words, the moment η4 only appears for the computation

of the diagonal elements of M1 and M2 which are the only ones that are affected by the non-Gaussian

character of the noise. Furthermore, we see that when the noise is not Gaussian, the optimal matrices

M1 and M2 are not dyadic, and the optimal second-order LQ array receiver cannot be implemented

with the output of a linear processor alone as in the fourth-order Gaussian case. Finally, remember that

M3 = M∗
2

The performance of the optimal array receiver is characterized by the value of its maximum deflection,

which is defined by (6). Introducing the assumption |s1|2 = 1 (omnidirectional sensors), we deduce from

the previous expressions that

Dmax(β) = DG −
N

η22
(β − 2)

[
π2s
β − 1

+
|γs|2

β

]
, (13)

where DG, corresponding to (9), is the maximum deflection in the fourth-order Gaussian case (β = 2),

given by

DG =
2N |µ|2

η2
+

(
N

η2

)2

(π2s + |γs|2). (14)

Note that for the random signal case, the expression (13) becomes

Dmax(β) = DG

[
1− β − 2

N(β − 1)

]
(15)

Let us now discuss these last expressions. Note that the term DG of (13) is a function of the signal input

power and the number of sensors and only depends on the second-order moment η2 of the noise. The last

term of (13) is, in reality, the most interesting. It not only depends on the previously mentioned parameters,

but it is also the only term where the fourth-order moments of the noise appear. We deduce from the

Schwarz inequality that β ≥ 1, and it is clear that the last term of (13) is equal to zero in the fourth-order

Gaussian case, whereas it can be quite large when β tends to 1. The case ofβ = 1 corresponds to a

situation of singular detection, which has been discussed in [6] and [10] for real processes. Furthermore,

we can easily verify that Dmax > DG for β < 2 (lower-Gaussian case) and Dmax < DG for β > 2
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(upper-Gaussian case). Furthermore, it results from (13) and (14) that Dmax is a decreasing function of

β. As β increases, i.e., as the noise becomes strongly upper-Gaussian, Dmax monotonically decreases

from infinity obtained for β = 1 to the value

Dmax(∞) = DG −
N

η22
(π2s + |γs|2) (16)

obtained when β becomes infinite. Note from (13) and (14) that for large values of the number N of

the sensors, the asymptotic value given by (16) is approximately equal to DG, which means that Dmax

becomes almost independent of β. Finally, note that Dmax is an increasing function of N and of the

input signal-to-noise ratio πs/η2.

V. CONCLUSION

The problem of optimum detection using a complex LQ filter has been investigated in the non-Gaussian

case using a deflection criterion. This optimal filter is the solution of a linear system of equations, and

its calculation requires the statistical knowledge of the noise up to the fourth order. It has been computed

both for random and nonrandom signals. The performance has been analyzed in the presence of spatially

fourth-order white noise. In the non-Gaussian case, the optimal LQ array receiver cannot be implemented

with only the output of a linear array receiver. Moreover, the gain in deflection due to the adaptation of

the LQ array receiver to the fourth-order statistics of the noise has been computed for the particular case

of a random signal and a spatial fourth-order white noise. It has been shown that this gain may become

very large for strongly lower or upper Gaussian noise.
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