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In this paper, we use Molecular Dynamics (MD) simulation method to study gas-wall boundary

Abstract

conditions. Discrete scattering information of gas meleeules at the wall surface are obtained from
collision simulations. The collision data can he used, tofidentify the accommodation coefficients
for parametric wall models such as Maxvvel@h&gn~ i-Lampis scattering kernels. Since these
scattering kernels are based on a limited%&d accommodation coefficients, we adopt non-
parametric statistical methods to cons t& ernel to overcome these issues. Different from
parametric kernels, the non—paramg\' kerpels require no parameter (i.e accommodation coeffi-
cients) and no predefined distri ﬁm.\VVe also propose approaches to derive directly the Navier

friction and Kapitza thermal resistancewcoefficients as well as other interface coeflicients associated

to moment equations fromethe non-parametric kernels. The methods are applied successfully to

systems composed Hyfor COy and graphite, which are of interest to the petroleum industry.
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Publishihg INTRODUCTION

The study of transport properties in porous media plays an important role in many
applications such as soil mechanics, geohydrology and the storage of nuclear waste. Along
with the development of unconventional reservoirs (shale gas) Ctlon technology, like
hydraulic fracturing, more attention has been paid to the trans rt ofigas molecules in
carbon pores. As a result, modeling the gas behavior and 1t 10n with the boundary

is of significant interest.

Due to the size of the pore, gaseous molecules, hexe me ane (CH4) and carbon diox-
ide (CO,) in this study, can travel with few co 1Slons resultlng in high Knudsen number

(Kn), a similar situation as the rarefaction eﬂ&ﬁlt own that when Kn > 0.01, predic-

tions based on the continuum Navier-Sto es\—W

no-jump conditions are no longer in a ewlth experiences and atomistic simulation

NSF) equations and classical no-slip,

results [1, 2]. In order to capture e p omena, more advanced continuum equations

and boundary conditions are net\s& ’ a‘

Unlike liquids where the frlctlo and thermal resistance are characterized by layers of
interacting molecules adSorbed at the wall [5-7], the gas molecules collide infrequently and

their residence time q I can be neglected. The exchange of momentum and energy

between the gas And wéll can be understood from ensemble of independent gas-wall
collisions. st cages, the collisions are usually modeled with scattering kernels based
on several ac odation coefficients [8-14]. Other class of wall models for rough surfaces
[15-17] were dnalytically derived from corrugation parameter and potential well depth. Al-
though these parametric models are simple to code, they rely on many oversimplification
hypatheses which cannot guarantee the accuracy of the collisions for the whole velocity

Tyese problems can have consequences on the boundary conditions at the continuum

1 and simulation results based on these scattering kernels.

The paper presents a systematic study of gas-wall collision models based on Molecular
Dynamics (MD) simulations. The systems in consideration are composed of methane CHy

(considered as monatomic gas) or carbon dioxide CO, (rigid linear molecule) interacting

2


http://dx.doi.org/10.1063/1.5016278

! I P | This manuscript was accepted by Phys. Fluids. Click here to see the version of record. |

Publishiwg@h a graphite wall constituted of carbon atoms. By beaming independently gas molecules
onto the surface and recording the reflected flux, we can determine the accommodation
coefficients. More importantly, we can reconstruct numerically a non-parametric (NP) wall
model. Different from parametric models in literature, this scattering kernel is able to cap-

ture the reflection process in a more realistic way. Originated from nOn-parametric statistics,

the NP scattering kernel requires no parametrization (i.e accom tioigoefficients) and no

SF or moment equa-

predefined analytical form. Interestingly, it can be used to directlydetermine the parameters
of any phenomenological boundary conditions, includin M

ﬂj)jﬁ'ﬁ-.in the transition regime,
ethods like DSMC (Direct

tions. While these equations are valid for a limited ran
the NP wall model can be directly implemented in ;‘;tic
Simulation Monte Carlo) or MD to simulate ﬂo s at_an’ number. The development of
gas-wall boundary conditions for continuum € h%ns‘aom a non-parametric kernel is the

major contribution of the present work, th e detailed in the subsequent sections.

II. STUDY OF GAS-WAL M\ WITH MOLECULAR DYNAMICS METHOD
A. Scattering ker el\

In kinetic theo qta of monatomic gas at any location @ at time ¢ is entirely deter-

mined from t oca wmber density n(x,t) and the probability density function f(x, ¢, 1)

of velocity evolutlon of the latter is governed by the Boltzmann equation and the

§elnf) (@ = [ Bl (@)ad, ¢ e, ecar 0

-

In “the above expression, we assume that the boundary is normal to the z direction, and

heﬂ;and space x variables are dropped for simplicity. Eq. (1) connects the incoming flux
f)~(¢) and the outgoing flux c,(nf)"(c) via the scattering kernel B(c|c). The two

velocities ¢ and ¢ belong to dual half-spaces Q= and QT in R3, respectively, defined below

e =R*xR, cec=R*xR". (2)


http://dx.doi.org/10.1063/1.5016278

! I P | This manuscript was accepted by Phys. Fluids. Click here to see the version of record. |

Publishi.‘ﬁ(gr fluid in equilibrium, the distribution of velocity is equal to the Maxwell-Boltzmann

distribution

feg(€) = fule) =

ex p[ 26] 0 = ke T/m. 3)

1
ms
where kp is the Boltzmann constant, m the atomic mass, and T’ té\ﬂpera‘cme. For rigid
gas molecules, in addition to translational velocity of the centerof @ss, we' must account for
the rotational velocity w. The scattering kernel must be rep&d\ B(w, c|w', ') and the
probability density by f(w,¢). The two half-spaces 2~ db* ﬁzlr‘e Iso extended to include
the rotational velocity w, e.g Q= = R x R~ for incidentt molecules and QF = R®> x R* for
reflected molecules. It is possible to include the orie atlob distribution in the scattering

-

kernel but this will not be considered in the p sent‘s}ork At equilibrium, this density

function is given by \\L..
Jea(w, €) = fule I \76)@ {

The quantity I represents the r@fﬁnerﬂa and the power d the rotational degree
ol ‘

. ew}’ 0 = ksT/I.  (4)

of freedom, d = 2 for linear an d d = 3 otherwise. It is noted that for linear

molecules, the rotation around \pbper axis is not considered.

The scattering kerneld B( b, c’) which is the probability of finding molecules bouncing

with velocity ( {) i 1{ gi)gen colliding velocities (w’, ¢') can be determined by Molecular
Dynamics collision simulation. Gas molecules are beamed at given velocities (w’, ¢’) onto the

‘i@fation and the velocity distribution of reflecting molecules associated to

surface in
(W', ¢) is{recorded  Next the arriving velocities (w', ¢') are also varied to cover the incident
velocify“spac Génerally, if the number of realizations is sufficiently large, we have a large

"‘cretb points which can represent the true probability density B(w, c|w’, ).

Iso concerned about the use of the kernel as wall boundary conditions in other
S uEtion methods (for example Molecular Dynamics, Direct Simulation Monte Carlo or
Lattice Boltzmann). If we use the discrete form of B(w, c|w’, '), output results must be
obtained from the interpolation of known points. This method is accurate but less computa-

tionally convenient. The scattering kernel can be analytically modeled using some physical
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Publiship;g“ umeters for example Tangential Momentum Accommodation Coefficients (TMAC) or
Energy Momentum Accommodation Coefficients (EAC), etc... Some notable scattering
models are Maxwell-Yamamoto (MY) [11], Cercignani-Lampis (CL) [9] etc... which can
be used for atomistic gas flow simulations and accommodation coefficients can be used to
derive velocity slip and temperature jump coefficients for NSF e?{ations. To account for
the special reflection mechanism of the anisotropic surface, o an use Dadzie-Meolans
(DM) kernel [18] or anisotropic Cercignani-Lampis (ACL) ernaw?lél] with three different
coefficients associated to the three directions z, vy, 2. —;\

—

_—

The MD collision point cloud can be fitted by analytical sostt ring models and the model

parameters can be identified. However, the da@an cattered and there is no truly
efficient fitting algorithm, for example, one cﬁ-ﬁ@ mean square of the difference be-
s ba

tween the two probability densities or metébxD d on accommodation parameters. We
note that constant accommodation coe c@ nly meaningful for analytical scattering

kernel listed previously. For realistiggas stface interaction, those coefficients are usable in
approximative sense and can oveRim ify the true behavior.

B. Expressions % average values and accommodation coefficients
{ ¢
Given molec&é\qx;' les Q as function of velocities ¢, w, the average value Q and the
flux ®¢ acrogs alane rmal to z can be computed as
/ $9= Qc,w)fdedw, Po=n [ Q(c,w)c,fdedw. (5)

-ﬁ
G'Vﬁﬁ&b@ that all the physical quantities such as density n, temperature T', stress o,

Vi oci‘cyy7 and heat flux g are either average value or flux of molecular quantities, it is

h@ﬁsib e to investigate their relations at the boundary by examining the gas wall collisions.
=
ith respect to the wall normal to the z direction, we define influx ¢, and outflux @5 of

atomic quantity (¢, w) at the wall via the expressions

P, = /Q le:|(nf)”Q(c, w)dedw, @f = /m e (nf)Q(e, w)dedw. ©)

5
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Publishiigm atomistic viewpoint, @, @5 can be computed by counting the number of atoms N

crossing the control plane in a given time ¢

Bo=1 Y Qew)= T{Qu=r@h ¥ =r(Q), (7

incident

where the subscript i stands for input (incident), o for output reﬁéc ion), v collision rate.

Here the notation (@) is the average of molecular quantities @ cross the control plane

in Molecular Dynamics simulations. By breaking each relatio into two integrals in

half-spaces 2~ and Q" as follows

nQ = Qle, )| | (nf) dcdw—i—/(ﬁ |(nf)*dedw,
o- e

/ Ole, w)|e.|(nf)d “Ole,w)le.|(nf)* dedw, (8)
(9.

and making use of (7) and (6), the flux @QMaverage value @ at the wall can also be

expressed as \\

_ B o
nQ = q)g/|cz| + (I)Q/k\x/kzbi—i-m Qg = CI) cI)Q = V<Q>o—i7 (9)
with notation (@Q)a+p : ot “The relation between the average value @, and fluxes

Q Jle| and <I>Q Jles] is use ﬁk&ilje it is more convenient to compute @ with MD simulations.
Choosing () = 1 in an oting that Q = (Q); = (Q), = 1, we have the equalities

1/|cz\>z+o T1=0. (10)

Substituting v from the first expression in (10) back into (9) for the general @), we can
derive tha /

)
) g Qe g _ @0
B ¢ (L/lez)io” ba (1/lezl)iro (11)

% remark that the second relation of (10) is equivalent to the no atom accumulation con-
ifion at the wall, i.e the influx is equal to the outflux. If the leaving atoms are fully
thermalized by the wall, the phase density f* should be replaced by the equilibrium dis-

tribution f.,(w,c) at the wall temperature 7,,. The outgoing flux <I>5w associated to this
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Publishidigiribution is given by the expression

5, = /Q e, €)Qeds = v{Q)a. (12)

where the subscript w is for outgoing flux at the wall temperaturf/‘ Tw. Since fe(w,c) is

known from (4) and v is estimated by setting Q = 1, we can co

mxhelexpected values
for thermal wall (@Q),. They are functions of the reduced Wa@zmt e 0, = kT, /m
d

and given in Tab I. It is noted that for the special case Whé\

are consistent with previous works for monatomic gas | ‘)

. the tabulated values

—~—
-~

- )
Component Velocity ( ~ Energy

i |
Tangential (z,y) (Cp)w =0 - () = 0,
Normal (z) (C)w l\ﬂw () =20,
Total (=S V20 (4 Lw?), =4+ d)b,

7
TABLE I. Expected values as funcm e reduced wall temperature 6,, = kpT,,/m. For CHy,

the rotation energy is neglecte% or COq, d = 2.

As a result, the acco ;ﬁ) coefficient of quantity () is equivalent to the expression

b

The above expresSion which is independent of the collision rate v, is useful for the determi-

= 25 o (Q)e = (1 - ag)(Q)i + (@) (13)

/ccommodation coefficients using MD method. Usually, the value for (Q),, is

o
known explici

apalyti

a indeﬁendent of the input data nf~. These assumptions may not be true for a general

(see Tab I) and the coefficient can be computed based on Eq. (13). Most

wadl models in literature are based on constant accommodation coefficients, which

‘R’egli (w, e|w’, ¢/) and this is the major disadvantage of using accommodation coefficients

toumodel realistic surfaces.

When accommodation coefficients are not properly defined, different methods can be used

to compute those coefficients and result differently. For example, in Ref.[19], the authors

7
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Zcollision(Qi - <Q>1)(QO - <Q>o) (14>
Zcollision(Qi - <Q>Z)2 ’

from the collision clouds. They found that results are very differer:yrom those obtained by

Eq. (13).

These observations pose some problems on theories base ch\existence of the con-

stant accommodation coefficients for general surfaces. ov‘@/er, terface phenomena like

—
slip velocity and temperature jumps do exist. Modgling thegse effects and identifying the

CYQ::[—

v,

parameters without using accommodation coefficients'yill bb considered in the following.
{ -

C. Boundary conditions for NankQFourier (NSF) equations

In this subsection, we present a ne thed to directly determine the macroscopic veloc-
ity and temperature jump co fﬁc;e\%\ga collision simulations. This completely avoids the

intermediate modeling and sim

Qﬁﬁcations. First, they only allow at most three accommodation

t1 based on scattering kernels. As we know, all avail-

able analytical models

coefficients. If we ¢ del momentum accommodation effect along one direction,
we have to sacr?te e en?rgy accommodation along this direction. Accommodation ef-
fects for high order mome

are also unavailable. Secondly, using constant accommodation

coefficients e}ost analytical wall models in literature can be a strong assumption. Nu-

merical effidence M«the latter section shows that in some cases, the true behavior deviates
significantly n{ that hypothesis.
)
e appsoach proposed here is independent of scattering model and can be applied to
m.s s\ ces. It can also be extended to deal with general boundary conditions involving
igher order moments. In slip regimes, the usual macroscopic boundary conditions for

velocities v, v, and reduced temperature jump ¢ — 6,, are given in the following forms

2 — oy Ok 2 —a, P

o nmy/20/7 20 nmn/20/7

— Uy =

Vi = k= x,Yy, (15)
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Publishiwficre o,.,0,. are the (minus) shear stress components and ¢, the normal heat flux at
the wall. Constants oy are the tangential accommodation coefficients associated to the
tangential translational molecular velocities, and . is the energy accommodation coefficient
associated to its kinetic energy. The above equation where the thermal transpiration is

neglected can be derived from the scattering models. In this p?{er, we propose a more

general phenomenological form for the boundary conditions 5
Okz q-
V= ———, 0—0,) =— , =x,v, 16
Prs nm\/m Aal ) 2n 0/ Y (16)
TS
where 1., f1, and B2 are the dimensionless friction a coefficients, depending on

the gas-wall couple. It is clear that we recover inal Saquatlon if the coefficients [y
éme

and 5 are connected to the accommodation coe oy, and a, via the relation

(6773

Bk = =,9, (17)

2 — ozk
It is noted that the two expressions jn N also be used for the cases where the accom-
modation coefficients are not COI@ ~

Using Eqgs. (7-11), we shall de \ebemes to determine S and Sy from MD simulations.
The velocity defined as k&qS(l . Q = ¢) can be computed by the expression

Ck/|cz|>2+o
(18)
1/|Cz|>z+o
The (minus) ke = e, (e @ = mCYy) can also be computed in the following
way
()i — (er)o (Ch)i-o
. my ((Cr)i — (Ck)o) = mn = mn-————, (19)
k (1/]ezl)i + (1/]ez])o (1/]ez])i+o
ﬁ
ere Cg = ¢ — vy, is the peculiar velocity. Comparing Eqgs. (18,19) with (16), we can derive

,S ace coefficients f;, via the expression
S

Bk = {€h)io/ QQ/W (20)

{ex/lezlito
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PublishiNg:t, the reduced temperature § = C? + (I/m)w?/(3+d) and the heat flux ¢, = ® (021 102) /2

are given by the equation

_ (@ a/me)leivo __(CP 4 I/ m)w?)/2)iy
b= Brd1/c)m = T : (21)

<1/r?i+o
where d is the number of rotation degrees of freedom of gas ks%d = 2 for COs,.
Comparing Eqgs. (21) with (16), we can calculate the Kapitza oe@ien’c

P (3+d){(C? + (I/m>w2>/z>i7o@w | (22)
((C2+ (T/m)w?)/[e:])iso — (3 + )OS/ Wshiol//20/ 7

We note that for monatomic gas, it is sufficient to re@ terms Jw? and d in the above
expression and obtain ( a

By = 3(C?/2); s/ (4047 . (23)
(C2/ e )iso g I/ )ivol v/ 20

To facilitate the comparison between the ntmerical results, we normalize stress and heat

flux computed by MD method with Wt& uantities and rewrite the phenomenological

law in the following way \\

, =—, k=ux. 24
B2 Ad Yy ( )

is mr the normalized quantities,

Here, the hat notati

Sﬁm ¢’
D. e sioy o 13 moments equations

—
\Aﬁt&q&&ing limited to NSF equations, the method presented previously can be applied
t highes order model. Given any macroscopic boundary conditions in terms of moments,
‘L-hs;i nt method can be used to derive the coefficients associated to boundary conditions.
an example, we consider the boundary conditions of R13 equations written for isotropic

surfaces in dimensionless form|[3, 20]

s —g m m R
51 ~ wz’ 62 - = Z; 63 - ~ xa:z7 B4 = Azzza 65 = sz7 (26>
K1 Ko K3 4 5
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A i1 Ao R;;
nmc3’ Y nm(?’

. ]2 1 1 2
R1 = ﬁ (va + §ma:zz + ng> /(”mC )7 /
N 1, 1 R 5 N

o[22 /1 1 S SR ,
=2 (2P0 —6.) - iR - §P02 . T ()
4 — 7T9 5 w 14 2z 5 0%z )

i = 1| = Pov. — Zog, — Som,.. — %, + 3(0—9) /(nm¢?) (27)
5 — 7_‘_0 x 5 qx 92 Trz2 T x w .

The quantities P, R, R;; and m;;; are defin fm\e moments

1

P = nmb + 1UZZ — — — = mnC?(C;C; — C?/36;;) — T80,

2 120 6’
R = mn(C 1592 m,ﬂ C 5]1 + C 0q +C Z])/5
k:xayv Z.]Jl_xya . \ (28)

These original boundary condltlo are derived for Maxwell molecules and Maxwell scat-

tering kernel where all $lie coefficients are identical ) = f = ... = 5 = a/(2 — ) with «
being the accommo atio,n coefficient. Moments R, ;; and m;j; are connected to stress, heat

flux, velocity, te@ 6{1(1 their derivatives via a regularization procedure [3, 21, 22].

Although the ivation conditions are rather restrictive, we shall assume that they are
valid and érrryne the coefficients Sy, (s, ..., 85. We shall base directly on the moment
deﬁm(mns (28) which are independent of the regularization methods and also relax
s that all coefficients (1, (s, ..., 5 must be identical. We note that in Ref. [21],

ors already consider that (i, 5, ..., 85 can be different and take empirical values

wa.ug matchlng with a more accurate method. In these cases, those coefficients are used
tofix the Knudsen layer effect that the R13 equation fails to capture completely. This
empirical approach seems to be incompatible with the rigorous mathematical derivation of

R13 equations.

11
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Molecular Dynamics simulation requires generating velocities of atoms that cross the
control plane and collide with the wall. The (unnormalized) distribution of the latter is

lc.|f~(e,w) with ¢, < 0 as seen in the previous section. In this payr, we use three types of
distribution 5\

- The Maxwell Boltzmann (MB) distribution

For molecular gas |C,|f™( =CH Q) fry(w).
For monatomic gas |c,|f™ (¢) =]c. (& (29)

The parameters of the distribution are the méxe ty v and the reduced temperature

0. Using this distribution, we can model \K

v = 0 and the temperature is uniform ‘Q,\Inon equilibrium system by assuming that

1 system where the fluid is stationary

the gas adjacent to the wall is in lo #%111 ium with temperature and velocity different
o

from the wall, i.e v # 0, 6 # 6,,. \

- The Chapman-Enskog (CE) dlS ibution [23, 24]

Q 1" (e) = |C.lfex(C) (30)

In addition to t ‘g&ati 0 and mean velocity v, there are also parameters associated to
e

heat flux ¢, dnd ar stress ;. This distribution is for non-equilibrium monatomic gas.

- The trlb(ltlon 20, 22|

ez f7 () = [C:| frs(C). (31)

las two distributions CE and R13 are for monatomic gases with expressions given in
endlx A. The generation of the input velocity is done via the Acceptance-Rejection
approach. For example, in Ref. [25], a scheme to generate distributions in the form f(c) =
fu(C)I(C) where I'(C) is a polynomial of C, is proposed. The distribution to be treated

in this paper is slightly different since we are limited to the half-space ¢, < 0 and there is a

12
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III. NUMERICAL SIMULATIONS AND RESULTS

A. Molecular Dynamics model 3\

We study the collision of gas molecules, methane (C [}j}\qrbon dioxide (COg) on
a graphite wall (C atoms). The system contains twoparts: the Teservoir and the collision
zone. The MD simulation is only done in the collisign zon§ and the pre-collision velocity
of gas molecules is generated directly at the sto astlc boundary between the reservoir and
the collision zone. Two graphite wall mode\xbb considered. The first is a smooth
wall model composed of 3 graphene layer dimensions 17.04 A x 17.22 A (336 carbon

atoms). The second is a rough mod a narrower band of graphene with surface
8.52 A x 17.22 A is added on the s t f

geometry and symmetry, the scétteri b\hawor of the smooth model is close to being
isotropic and that of the rou h anisotropic. We define the z and y directions as

respectively “armchair” and * %ﬁ{ irections, and the z direction as the normal direction

ace (392 carbon atoms). Due to the surface

urin he simulation, the lowest sheet is fixed and the second layer

rature (350 K for CHy model and 600 K for CO2 model) by

to the graphite plane.

is maintained at congtant t

Nose-Hoover the w igh the relaxing temperature parameter equals to 100 time steps.
The two final ree to interact with the gas molecules. We use periodic boundary
conditions fo dlrectlons and we fix the height of box along z direction. The gas-wall

truncati dlétanc is set to 15 A from the upper layer, and the stochastic boundary is
locatdd at he uncatlon distance from the graphite wall. A simple sketch of the system
andasn of MD simulations are shown in Fig. 1.

3

simulations are performed with LAMMPS (Large-scale Atomic/Molecular Mas-

7&1-} Y

N
sively Parallel Simulator) package [26]. A typical simulation of 10° collisions takes roughly
50 hours on an architecture of 92 Intel(R) Xeon(R) processors 2-3 GHz. The adaptive

intermolecular reactive bond order (AIREBO) potential [27] is used for the interaction be-

tween the graphite carbon atoms. The CH, molecule is modeled as a united atom and its

13
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P u b I |S h | n g Stochastic reservoir ( ® )
® o @
e
/ ‘\ z
Y
%
\. X Isotropic Anisotroni
/' Y(zigzag) o\

MD simulation
N X(armchair) )

FIG. 1. Simple sketch of the system. The stochastic b u_I}‘d is indicated by the dashed line
shots S\f D simulations show the local

and the graphite wall is indicated by the solid line. Sn

orientation of the smooth (isotropic) and rough (anisotropig) systems.

-
interaction with graphite atoms is governe }E\kennard Jones (LJ) potential
X\ (

v 4% %)6] (32)
\

where 7 is the distance between #fvo atbifls under consideration and o and € the parameters
of the LLJ model. Regarding C\QQI cules, we do not consider the contribution of the
internal degrees of freedom (bzmﬁtretching) and use the rigid model [28]. The inter-

action of each site wit th&xiphite atoms is also of LJ type with parameters taken from

Ref. [5] (see Table M). After équilibrating the graphite system at the given temperature
(10° time steps ??’ 1 cagfmolecules are inserted one by one in the collision zone. Only

after one colli iojev t. i.e a molecule interacts with the wall and goes out of the collision
zone, anotherwmdlecule is inserted in the zone from a random position at the stochastic
boundarg(fof CHivand COz) and with a random orientation (for CO,). The residence

time i

consi d negligibly small with respect to the flying time outside this zone and the

)

30?16\ comments can be made about the models for CH; and CO, used in the present

at_the entrance and the outlet are collected (see Fig. 2).

velogiti

k. Both rigid molecule models do not account for the vibrational internal degrees of
freedom. The bending mode of CO, associated with a wavenumber of 667 cm™! [29] is the
most concerned by an excitation due to collisions with the solid surface since this mode is

the lowest energetic. The CO, molecule collides with a surface at 600 K, i.e. kgT = 417

14
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Publishing' 1 Using Boltzmann statistics, it can be estimated that only 20% of the CO5 molecules

may be concerned by such an excitation. The lowest energetic vibrational mode of CHy
is the angle deformation mode associated with a wavenumber at 1306 cm™' [29] and this
molecule collides a surface at 350 K (kgT = 243 cm™!). The Boltzmann statistics indicate

that only 5% of the molecules would be excited. From these estima?és and for simplification,

COy and CHy4 are kept rigid. Q\

ya a‘ﬁh}\ - €[meV]

CH, - C (Graphite) 773650  5.547
C (COg) - C (Graphite) o 059  2.418
O (CO,) - C (Graphite) § 3197 4.091

.~

TABLE II. LJ parameters for the interaction O%Q éH4 CO» with the graphite surface.
! -

5\ ° Y (nm)

X (nm)

£ ;I . 2. A collision showing the trajectory of a gas molecule.
—

We lekxent 3 simulation schemes to study gas-wall models and determine the model

c fﬁcierﬁys. They are different in terms of the gas state (equilibrium/non-equilibrium) and

Kﬁaisociated velocity generator.

- Batch average (BA) scheme: We repeat the same incident velocity (w’,¢’) many
times and record the reflected velocity (w, ¢) which is a distribution. To generate samples,

the incident velocity is taken from equilibrium distribution and the reflected velocity is aver-

15
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Publishiaged. By this way [30], we can examine the accommodation coefficients via their definition
(Eq. (13)). In Fig. 3, We have plotted the input quantities (Q)); against output quantities
(Q)o, where Q = ¢;, ¢y, ¢, or ¢ + Iw?*/m. In the ideal case, the data population should

concentrate along a straight line and its slope corresponds to the constant accommodation

VN

- Stochastic equilibrium (SE) scheme: The reservoir js ¢ Qdered to be in equilib-

coeflicient ay (see section II1.B for details).

PR

rium. The pre-collision velocity (w’, ') for each collisiofivig gemerated using equilibrium
distribution at zero mean velocity and at the same tempegdture«as the graphite wall. By

this way, we obtain numerical estimates of the densi

—
[ B(wsc ', c'). The accommodation

coefficients can be extracted using (14) (see sectjon III. details).

N

-
- Stochastic non-equilibrium (SN) SC%M non-equilibrium gas is considered.
0

Depending on the problems, we use Maxwe ann (MB), Chapman Enskog (CE) or
R13 distribution as discussed in the previeus section. The surface can be modeled atom-
istically (AM) as described fromgthe %nh‘mg of the present section II[.A. It can also be
modeled statistically using the I%Qpa{a etric (NP) model B(w,c|w’,¢). The latter is
constructed by the scattering r\’c%*en the atomic model, which is detailed at the end of

section III.B.

The simulation ?s%l/be analyzed using the theory we have proposed in the pre-
vious section. \

B. D {mipation of accommodation coefficients and construction of non-parametric
ﬂ
wall model Sro collision data

-

S m§ntioned previously, the accommodation coefficients are parameters based on Eq.

Xﬂz).\ o verify this assumption, it is sufficient to study incident fluxes of constant velocity.
in

g BA scheme for the couples CH,/COo-Graphite (smooth and rough surfaces), we set
up 100 sampling groups and each group contains 500 collisions with the same incident
velocity. These 100 incident velocities are drawn from equilibrium distribution at the same

temperature as the wall. Then, we average the reflected values in the group for later anal-

16
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Publishipgs. Theoretically, if the ratio between the input and the output values are constant, the
collision data will form a straight line. In Fig. 3, we find a strong correlation between the
input and the output velocities. For the tangential velocity, despite some slight curvature
the relation between the input and output is visibly linear for most of the data. However,
the linear regression works less well for the normal velocity and gSpecially for the kinetic

energy. These data suggest that Eq. (13) is not valid for these asss and_linear coefficients

obtained by fitting (see Tab. III) are not representative. \

‘Qs"per input velocity from 20

Parametric studies based on varying the number of sa
—

to 1000 show that the scattering of energy data is always ptesént. Given the fact that the

results for ¢, and ¢, are clearly correlated, the en¢rgy da erit more detailed investigation

to understand the origin of the deviation. We $till us@ same data and decompose the ki-
netic energy into tangential and normal COI&&Q 2, c2. In Fig. 4(a) and (b), we can see
da

that the tangential and normal kinetic ener (Y vs. (c?), (d?) vs. (c?) are strongly
correlated. However, like the data m& and (c,) vs. (c.) in Fig. 3, their slopes

are different. There is a strong c ntra%c#ﬂﬁreen the tangential reflection ¢ which is more

L
specular-like (energy mostly consetyediafter collision) and the normal reflection ¢? which is
more diffusive-like (energy close\tfmx/alls’ after collision). On the other hand, in Fig. 4(c)

and (d), the data (c}?) vsf (E%Snd (c?) vs. (c?) are scattered and the correlation is weak. It

is suggested that the dombinatign of different tangential and normal reflection behaviors can

be responsible f?th {attying of the total energy data c®>. As a final remark, the energy
data scattering exists in

erature models, especially for parametric models like ACL/CL
or DM whi ralot based on a constant energy accommodation coefficient. Indeed, Fig 5
shows thal the parametric kernel ACL/CL with suitable parameters has produced the same

patterfi, e e é data scattering, as the MD results.
)

xt, Wiih the SE scheme, we simulated 10° collisions on graphite surfaces. The input

we%)c are taken from equilibrium distribution and results are presented in Fig. 6. From
t ese}gures we can analyze the correlation between incident and reflected velocities on
graphite wall then we can compute the accommodation coefficients from Eq. (14) issued
from [19]. It is noted that due to the equilibrium state, Eq. (13) takes the form 0/0 and

cannot be used to determine the accommodation coeflicients in this case. We find that for

17
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{ex) (nm/ps)

{ey) (

nm/ps)

(c;) (nm/ps)

(16)

(¢ + ) (i [ps)

-2 0 2 0 1 2/ 0 2 4

Q>
N~ X

COy — Iso.

2 4

.

L7 5

COy — Ani.

)

[0 samping
-2 0 2 0 1 2 0 2 4

NN

-2 0
FIG. 3. Correlat{'{n anlysisf using BA scheme for CHy/COg-Graphite. Columns (a), (b), (c)
represent the velocitys(nm/ps) along z, y, z directions respectively and column (d) the kinetic
z@ COy (the prefactor m/2 is removed for simplicity). The horizontal axis shows

S and the vertical axis the reflection values. The solid lines represent the fit

by least squares linear regression using Eq. (13). The diagonal dashed line and the horizontal
dashedeline 1 ica)é the zero accommodation case (o = 0) and full accommodation case (a = 1),
respectively. 3

ﬁ

smpoth é}aphite surface, the incident and reflected velocity data have significant correlation

w &L Y directions. Despite its crystalline nature, the surface behavior is isotropic and no

visible difference is observed between directions  and y. The accommodation coefficients
calculated by the least-squares method [19] in Tab. III also confirm this remark. However,
the influence of periodic roughness affects the anisotropy of the surface (second row figures)

and the magnitude of the accommodation coefficients. We can see that the scattering is

18
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FIG. 4. Detailed analysis of kinetic energy of CHy4 beamed on the oo surface. The tangential
2 2

kinetic energy component ¢? = c2 + c and the normal kineti ergy,component c; = c; are
used for analysis. Subfigures (a), (b), (c), (d) show the corr on tween incident energy and

reflective energy components.

Atomic

/ps
FIG. 5. Energy data scatterin \\&om MD simulations, (b) parametric ACL model

with parameters a; = o, = 0.16 t tangentlal momentum accommodation coefficient) and
a, = 0.915 (constant nor inetic entergy accommodation coefficient)
more dlffuswe rectlons but more pronounced for x direction. In all cases, the

correlation b W nc, 1d . as well as the correlation between ¢? and ¢ are very weak,
and close #0 th 1ffu81ve wall.
L/
—

We hqte alat all analytical surface models in literature are based on the accommoda-
ti coe@cients. Thus, we can construct scattering kernels which can serve as boundary
hyadi\tlons for atomistic method like MD or DSMC. The main advantage of these kernels
is\the simplicity in implementation but theirs drawbacks are their differences from the real
surface behavior. This can be explained from the fact that they rely on the existence of the
limited number of constant accommodation coefficients. To reconstruct B(w, c|w’, '), we

do not use any parameter and make no assumption on the distribution form except for the
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COy — Iso.

COy — Ani.

1.2 -1.2% 0" 0"
42 0 12413 o 120 06 12 0 09 18

FIG. 6. Collisiog%lata ingident and reflected velocities for the CH,/COy-Graphite system.
Both stochastic_r SND graphite wall are maintained at 350 K for CH4 and 600 K for COx.
Columns (a), b‘)-)c) represent the velocity (nm/ps) along directions x, y, z, respectively, and
column (d) igetic energy for CHy and COg (the prefactor m/2 is removed for simplicity). The
horizontaliaxisésho
indicate.the 1 eaﬂeast square fit of incident and reflected values using Eq. (14). The diagonal
dashed line and

the incident values and the vertical axis the reflection values. The solid lines

e horizontal dashed line indicate the zero accommodation case (o = 0) and full
aceomniedation case (o = 1), respectively.

Thﬁom sition of each components
~
3

B(w, clw',c) = [ [ Bileilc) By (wilu)). (33)

i=1
The above relation reduces the realization of B(w, ¢|w’, ¢') to the realizations of independent
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Publishings Surface Scheme az(cr) ay(cy) a.(c,) ae( + Lw?)
Isotropic SE 0.158 0.160 0.915 0.559
oH BA 0.162 0.154 0.916 0.691
4 Amisotrobic SE 0.839 0.440 0.948 0.775
P BA 0.857 0.438 0.938 0.787
Isotropic SE 0.102 0.104 0.885 0.515
o, BA 0.105 0.109 883 0.521
Anisotronic SE 0.737 0.196 04 0.632
P BA 0.755 0.197 (% 0.709

TABLE TIII. Accommodation coefficients computed by stoc astlc\\\uiﬁbrlum (SE) simulation

method using data of Fig. 6 and by batch average (BA)
efficient is associated to the velocity ¢;, a. is the kineti ener

zZ€ero).
)

univariate densities B;(¢;|c;) and B (w;|w!). We Igs(ae t}‘@t, theoretically, the construction of

A .
B(w, c|w', ') doesn’t depend on the above dgsumption. However, the usual non-parametric
estimates of multivariate density require aN

mul tlon ethod in Fig. 3: o co-
%angular velocity of CHy is

number of samples to be accurate (the

curse of dimensionality) and more advanc %ﬁng methods are needed to solve this issue.

<

Without losing generality, we ta hecase of translation velocity ¢;. The probability

density function (PDF) of ref%‘loaty with given incident velocity P(¢;|c;) can be de-

termined by JOlnt PDF o mﬁlve— cident velocity P(¢;, ¢;) and marginal PDF of incident

velocity P(c;) with relat

P(c;, c))
P(q)

/ Bi(cs|d) = P(ei]c) = (34)

The disctete £ollision data can be used to estimate the joint probability P(c;,c;) by his-
tografil or kerhiel density estimation method. After determining B;(c;|c}), we can use it to

gernerat the%utgomg velocities at any given incident velocities. This can be done via the

of conditional cumulative distribution function (CDF) F'(¢;|c}).

‘"Fb)ill\us rate the robustness of the non-parametric model, we take the case of anisotropic
sutface and plot the probability density of input and output velocities of different kernels
together with the MD data in Fig. 7. The considered kernels are Dadzie-Meolans (DM)
[12] and anisotropic Cercignani-Lampis (ACL) [31], and non-parametric kernel constructed

numerically from MD simulations (see Appendix B). The accommodation parameters of
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PublishiAg@L kernel (a, associated to c,, a, to ¢, and a; to ¢?) and DM kernels (o, and «, are the
same as ACL kernels and «, is associated to c¢,) are determined by SE simulations using Eq.
(14). Onme can find that the DM kernel that includes mirror-reflected mechanisms is very
different from the true collision data, the probability density shows a strong discontinuity.

The ACL kernel performs better but the non-parametric kernel isdthe most faithful to the

MD data. Such differences can have significant influences on the Its Baged on the kernel.
¢ (nm/ps) ¢, (nm/ps) nm/ nmz/ps )
1204, 1.2 (1b)y 12

Atomic
o
o

1.8

1.8

FIG, 7. %locity probability density of MD simulations and from some scattering kernels: Dadzie-
lans (DM) [12], Anisotropic Cercignani-Lampis (ACL) [31] and non-parametric (NP) kernel
striicted from MD data. The MD data are from collision simulation of CH4 (350 K) at

anisotropic atomic graphite wall (350 K). Columns (a), (b), (¢) represent the velocity (nm/ps)

at directions x, y, z, respectively, and column (d) the kinetic energy for CHy (the prefactor m/2

is removed for simplicity). The horizontal axis shows the incident values and the vertical axis the

reflection values.
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C. Direct computation of interface coefficients

The methods of determining the accommodation parameters li E and BA depend on

the existence of these constant coefficients. The BA gas bea; eil)erim ts show that the

postulates are rather restrictive (see e.g. Fig. 3, column d)4Deriing those coefficients by
fitting may correspond values in average sense without n?ﬁcti to the boundary condi-
tions (16). Nevertheless, the slip and jump phenomena sti exist and it is of interest to
identify the coefficients associated to these effects. Tu thisSsituation, one must make use
of the non-equilibrium state of the gas near th walle Tn principle, the more realistic the
gas distribution is, the better interface Coefﬁ(:W& tain. Before using more sophisti-
cated distribution like Chapman-Enskog Qr\h3 density, we shall examine the workability

of a simpler distribution, MB at diffetxigt\\peratures and mean velocities. For (i, 81,
associated to the friction coefficients, swe uselMaxwellian with the same temperature as the
wall but non zero mean velocity. &eﬁs a vector lying in the bisector plane (making
angle 7/4 with respect to axis QS\ with variable magnitude. For [, related to the
Kapitza coefficient, we use Mm with zero mean velocity but different temperatures.
Specifically, the temper, tu?e\Dnges from 250 K to 450 K for CHy, from 500 K to 700 K for

CO3 and mean velogities r from -0.05nm/ps to 0.05nm/ps for both CHy and CO,y. At
this stage, we haye twogvalldmodels:

£
- Atomic wall M/[)

etricfwall model (NP)

examine the connection between the quantities in the boundary models,

result@ile ip velocities, the temperature jump, stress and heat flux obtained by Egs.

(Q) e p)otted together in Fig. 8.

\ﬁs ge a clear linear relation between —&;, and v, as well as between —¢, and Af in

. 8. The slopes of fitted lines represent the value of the dimensionless friction coefficient
P (subfigures @ and b) and the dimensionless thermal coefficient Sy (subfigure ¢). The
friction coefficient of the x direction increases 8 times from smooth wall to rough wall,

compared with the 3 times increase in the y direction. It’s also interesting to see that the (3,
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FIG. 8. Method of computing coefficients ﬁs b\qulhbrlum simulation, MB distribution and
atomic wall model (AM). ( —0k, and vk \f theiso tropic graphite wall. (b) —d, and 0y of the
anisotropic graphite wall. (¢) —g, an Aﬁjare
isotropic and anisotropic graphite wall.

N

coeflicient of smoot all 1‘\”61' than the rough wall’s (about 2 times). These tendencies

Iculated by incident and reflective velocities on
.

coincide with re ty t rp{lgh surface friction and thermal resistance are larger than the

smooth surfa nes For comparison with theoretical models where the accommodation

coefficientssa

CO; are plotted in Tab. IV.

C nnected to the interface equations Eqs. (17), the results of CHy and of

In terfns of frickion coefficient By, the results of the non-equilibrium method with MB distri-

bution ve)y close to those obtained with the methods based on equilibrium distribution.

is is ryasonable since the BA method also shows that the accommodation model works
W f\or his case. For thermal coefficient (5, the SN method seems to agree better with the
coefficient derived from SE method than the BA method. This observation can be explained
from the scattering data in the BA method, meaning that the theoretical definition of the
thermal accommodation coefficient is no longer valid. In this case, an effective coefficient

which reproduces the thermal jump effect can be determined.
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Publishing CH, CO,

Surface Method P Pu B Pu Py P
SE (o) 0.087 0.087 0.388 0.054 0.054 0.347

Isotropic SN (MB-AM) 0.093 0.093 0.361 0.053 0.053  0.488
SN (MB-NP)  0.095 0.095 0.382 0.052 0.052  0.469
SN (CE-NP) 0.094 0.094 0.336 - 4 - -
SE (o) 0.722 0.282 0.632 0. 0.108 0.518

Anisotropic SN (MB-AM) 0.709  0.299  0.627 .%103 0.756
SN (MB-NP)  0.720 0.298 0.644 £0.4 1102 0.728
SN (CE-NP) 0.646  0.280  0.5534_ - -

N
meathodssand compared with values

viadormula Bi; = o /(2 — ax),
an-Enskog distribution, AM:
1etric Scattering kernel B(c|c’), instead

TABLE IV. The 8 coefficients of CH4 and CO5 computed by
obtained from accommodation coefficients (SE method, a‘l_)_;
B2 = e/ (2 — a). MB: Maxwell-Boltzmann distribution,[CE: Cha
atomic model for wall, NP: the wall is modeled by non-par x
of atomic wall (as in MB-AM method). To increase e precisi

of the slip coefficients for smooth

(isotropic) surface, we average values along 31, and Sty-
L

D. Influences of non-equilibrium di M s and discussion

ey

\
Essentially based on the same p Q%ll" as previous subsection, we study the influence
s

ace models on the interface coeflicients. We focus

of the near wall distribution and{the
on the monatomic gas CHy, v&\s@ | and the following non-equilibrium distributions:
- Chapman-Enskog distribut&

- R13 distribution }J

To generate CE and R13 distributions, we use the Acceptance-Rejection approach described
in Appendix A. Infaddi i)n 10 temperature and mean velocity, the CE and R13 distributions
require input u.ses moments which are generally unknown. We carry out the following

iterations:

£
i~ 4
e diep n
—.the@iln of input distribution using CE (or R13) distribution with average moments
of\the p%vious steps n — 1.

w \ompute the output distribution using the kernel B(c|c').

Calculate the average moments at the wall from input and output distributions.

- Next step.

The loop stops when all the average moments converge (see e.g Fig. 9). The input
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Publishi'ﬂjg1 ribution at the first step n = 1 can be initialized with MB distribution as the previous

SN/MB scheme, i.e all fluxes (heat fluxes, stress, etc...) are set zero. The latter quantities
become non-zero after the initialization (n > 2) and we can effectively use the CE and R13
generator. Numerical tests show that while the average moments at convergence depend on

the initialized values, the value of 5 coefficients are insensitive to F{em

0.8 Prz 405
(a)
075 400
o7) T b

395
0.65

06 — 390

—CE r——-C
0.55 385 .
5 10 15 20 5 10 1 20 3 5 10 15 20

Iteration

Friction coefficient (15, (b) Gas temperature ( lolbi'ty.

Iteration Iteratj 72_.\‘
FIG. 9. Convergence test of CE-NP kernel iteratk&%roal anisotropic surface. Subfigures (a):
Gas

apecially for isotropic surface. For anisotropic

\
About 107 collisions with scattering%fle e simulated. In Tab. IV, we find that all the
other,

methods yield results close to eath
surface and friction coefficie k\x, he method based on CE shows some discrepancies
with the rest (although the (:b\a'gnt s of the same range of order). The visible differences
can be explained from eTr?Fhinces of heat flux and shear stress at convergence. By exam-
ining in detail the ¢ ve;ge 0 0f 61, in Fig. 9, we find the final parameter is different from
the first iteration/One. "It is giggested that the presence of the roughness perturbs consider-

;Br%\Due to the realistic kernel B(c|c), the output is not necessarily of

ion class as the input. This raise questions on the use of CE distribution

near the walldespecially the component ¢, along the roughness directions. Another possible
reaso is that there may be a considerable coupling between different moments which must
betake inté account in the phenomenological equations. The complete answer can only

b foun@ from flow simulations using the same surface model, but with different input

K‘gribu 0n8.
-

Next we consider another non-equilibrium distribution associated to R13 moment equa-
tions. The boundary conditions are originally derived for Maxwell scattering kernel with

one accommodation coefficient (isotropic surface) and all § coefficients being identical. In
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Publishinrgl r to test the R13 generator, we use first the Maxwell kernel with o = 0.3 and obtain
interface coefficients. From Tab. IV, we find that these coefficients are overall in good agree-
ment with the theory prediction f = «/(2 — a) = 0.176. Most of the computed coefficients
are within less than 1% error from the analytical value. This is a good starting point to

proceed with our graphite surface. /

We use NP model for our graphite surface. The results show t ?coefﬁcients B, B2 agree
e

x ients (s, B4, B5 corre-
¢ overall remark, all coefficients

with the computed values for NSF equations listed in Ta

spond to boundary conditions for higher order terms. As
—

[ are different, showing that the use of Maxwell kerngl canngt capture correctly the bound-

ary conditions at the wall. In this case, the prese@ppr can provide an alternative and

reliable solution for any surface. \ ‘)
& L -
Surface  Kernel AN D b B, Bs

Test Maxwell 0477 Q.177 0.160 0.173  0.161
Graphite NP L().()‘9&‘(7‘.‘5}73 0.024 0.028  0.129

N
TABLE V. § coefficients of R13 eﬁti)uﬁﬁg Maxwell kernel (a = 0.3) and non-parametric

scattering kernel.
IVv. CONCLUSIO \

It is known that gasflowgfat high Knudsen number are present in micro-nanopore under-
ground. To a r%wbtain macroscopic transport behavior (permeability for example),
we must uge Jgamt gas model and boundary conditions at the pore scale. The present
paper is devofed to'the construction of gas-wall interaction models and to the determina-
tion ({b‘is conditions for continuum equations such as Navier-Stokes-Fourier or R13

ons.

[§] 1

)

%ﬁi on MD simulation of independent collisions of CH; and CO, rigid molecules on
g

hite surface, we collect data of pre- and post-collision and numerically recover the
scattering kernel for the gas-wall couples. Specifically, it can be used to construct non-
parametric models capable of generating a distribution of post-collision velocity, given the

pre-collision velocity. The effective accommodation coefficients can also be obtained from
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Publishi‘ri‘g scattering kernel using a different fitting procedure.

In the general case, a method is proposed to directly compute the parameters of any
phenomenological boundary conditions without using the concept of accommodation coeffi-
cients. The approach relies on the general scattering kernel issued/from MD with suitable

f ;ad [24]. Such an

input gas distribution, which is similar to the theoretical me

velocity. There are still some drawbacks to the curren which will be improved

approach is of interest since it can capture more accuratel 1str1but10n of reflection
s1

in the future, for example, the use of rigid gas molecu c'i'd'el. and the assumptions of

—
independence between the velocity components. Another interesting subject which has not
been treated in this work is the Knudsen layer(eﬁ‘ect. note that by simulating flows

using non-parametric kernel, one can obtain cd&)n‘c)efﬁcients to the microslip obtained

by the present paper. .
S

N~

AN

A. Generation of/mo ‘bbrlum distribution

APPENDIX

Maxwell-Bol n distribution is used for a equilibrium dilute gas at temperature 7. In

GreneratmgQ 1810 velomty of particle requires first the PDF of initial velocity. The

order to generate the pre-collision velocity, we rewrite the flux associated to the normalized

bu

5 Fi,(C) = 2% exp (—02>, . <0, (35)

\.)'ére\é = C/v260 and 0 = kgT/m. This distribution is constituted of three independent
distributions: two normal distributions along z,y and a Rayleigh distribution along z. Then

we can calculate the flux associated to Chapman-Enskog distribution f&,(C) by the relation:

fep(C) =Ter(C)fi(C), C. <0, (36)
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o o~ NN
Lep(C) =1+ (qux + q,Cy + qZC’Z)(gC’2 — 1))

12 (620G, + 602CuCe 4 5,0, C. )

+65.C2 + 6,,C2 +6..C2, /\ (37)

with

(39)

~ ~ ~ 2 - ~ o~ ~ ~ ~
9013(0) = (gxox + Cjoz (_02 xxa-moaccz + 5mC§ + 5yyO§ + 522022,

1/ = e
(€)= (M Ci+ mE\* e C2C + 1112 CC2 1y Oy C2 1y CLC2,

~ ~ - S c? o1 R [~ ~ 15
C - }sz 2 2 X T ) - a5 on 4 - 2 —
¢r2(C) )= C2 4 2Ry CCy ) | = 5 | 55 ( C1=5C+ )
(40)
with
. R . R
Ri': ZJ7 R=— .7 '7l: y Iy~ 41
- j= g R=tg idi=a (41)
Sifice:th and R13 distributions have analytical PDF expression, we can generate random

ve citie; corresponding to these distributions by the Acceptance-Rejection method. The

M steps are as follows:

1.\Find Bep = max(|oy;, |¢;|) for distribution CE, Briz = max(|oy;|, g, |mijkl, | Risl, | Rijl)
for distribution R13 .
2. Set amplitude parameter Acg =1+ 30B¢cg and Agi3 = 1 + 60BRg13.
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PublishiBgGenerate a normalized velocity Cy;p obeying MB distribution (Eq. (35)), and a uniform
random number U (0, 1).
4. If FCE(C'MB) > AU, accept Cu s as normalized CE distribution velocity C'CE, and if
Fng(C’MB) > AU, accept C’MB as normalized R13 distribution velocity C‘ng; else reject
this velocity and return to step 3; /
5. The real velocity is ¢ = \/%GMB + v, v is the mean velocity! \
During the Acceptance-Rejection process, the function F(é’ can'hé negative. This velocity

is rejected in this case.

B. Method for generating non-parametric kerlb

Different from parametric scattering models, @4 or Maxwell, the non-parametric
wall model is not specified a priori but is i ead téf‘?nmed from data. Using the discrete
incident-reflection velocities data, we an ne the reflective velocities at any given
incident velocities. The implementation ) is as follows:

1. Discretize the velocity space ¢ an Ste\a series of velocity points with sufficient small

interval. Choose a volume Ac an u call class ¢ the collisions in the volume centered

at c;.

2. Use sliding window d to count the number of collision AN in class ¢ .

3. Calculate discrete .&‘f}:r}f class ¢, as F(z|c}) = %

4. Generate a u Qﬁ om number U between 0 to 1, then the reflective velocity is
; LU|d).

The procedute 1 h wnin Fig. 10. The reflective rotation velocity can be obtained by the

same pro edye

-~ (D(cx,ch P(ex|ex)

-
O .

\I<

Given: cx' Generating: cx

FIG. 10. Generation of velocity using non-parametric kernel derived from MD collision clouds
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