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I. INTRODUCTION

The study of transport properties in porous media plays an important role in many applications such as soil mechanics, geohydrology and the storage of nuclear waste. Along with the development of unconventional reservoirs (shale gas) extraction technology, like hydraulic fracturing, more attention has been paid to the transport of gas molecules in carbon pores. As a result, modeling the gas behavior and its interaction with the boundary is of significant interest.

Due to the size of the pore, gaseous molecules, here methane (CH 4 ) and carbon dioxide (CO 2 ) in this study, can travel with few collisions, resulting in high Knudsen number (Kn), a similar situation as the rarefaction effect. It is known that when Kn > 0.01, predictions based on the continuum Navier-Stokes-Fourier (NSF) equations and classical no-slip, no-jump conditions are no longer in agreement with experiences and atomistic simulation results [START_REF] Klinkenberg | Drilling and production practice[END_REF][START_REF] Ziarani | [END_REF]. In order to capture these phenomena, more advanced continuum equations and boundary conditions are necessary [3,[START_REF] Struchtrup | Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory[END_REF].

Unlike liquids where the friction and thermal resistance are characterized by layers of interacting molecules adsorbed at the wall [START_REF] Liao | [END_REF][6][7], the gas molecules collide infrequently and their residence time near the wall can be neglected. The exchange of momentum and energy between the gas and the wall can be understood from ensemble of independent gas-wall collisions. In most cases, the collisions are usually modeled with scattering kernels based on several accommodation coefficients [8][9][START_REF] Cercignani | Rarefied gas dynamics: from basic concepts to actual calculations[END_REF][START_REF] Yamamoto | [END_REF][12][13][14]. Other class of wall models for rough surfaces [15][16][17] were analytically derived from corrugation parameter and potential well depth. Although these parametric models are simple to code, they rely on many oversimplification hypotheses which cannot guarantee the accuracy of the collisions for the whole velocity range. These problems can have consequences on the boundary conditions at the continuum level and simulation results based on these scattering kernels.

The paper presents a systematic study of gas-wall collision models based on Molecular Dynamics (MD) simulations. The systems in consideration are composed of methane CH 4 (considered as monatomic gas) or carbon dioxide CO 2 (rigid linear molecule) interacting with a graphite wall constituted of carbon atoms. By beaming independently gas molecules onto the surface and recording the reflected flux, we can determine the accommodation coefficients. More importantly, we can reconstruct numerically a non-parametric (NP) wall model. Different from parametric models in literature, this scattering kernel is able to capture the reflection process in a more realistic way. Originated from non-parametric statistics, the NP scattering kernel requires no parametrization (i.e accommodation coefficients) and no predefined analytical form. Interestingly, it can be used to directly determine the parameters of any phenomenological boundary conditions, including those for NSF or moment equations. While these equations are valid for a limited range of Kn in the transition regime, the NP wall model can be directly implemented in particle methods like DSMC (Direct Simulation Monte Carlo) or MD to simulate flows at any Kn number. The development of gas-wall boundary conditions for continuum equations from a non-parametric kernel is the major contribution of the present work, which will be detailed in the subsequent sections.

II. STUDY OF GAS-WALL MODELS WITH MOLECULAR DYNAMICS METHOD

A. Scattering kernels

In kinetic theory, the state of monatomic gas at any location x at time t is entirely determined from the local number density n(x, t) and the probability density function f (x, c, t) of velocity c. The evolution of the latter is governed by the Boltzmann equation and the boundary conditions

c z (nf ) + (c) = ∫ Ω - B(c|c ′ )|c ′ z |(nf ) -(c ′ )dc ′ , c ′ ∈ Ω -, c ∈ Ω + . ( 1 
)
In the above expression, we assume that the boundary is normal to the z direction, and time t and space x variables are dropped for simplicity. Eq. ( 1) connects the incoming flux c ′ z (nf ) -(c ′ ) and the outgoing flux c z (nf ) + (c) via the scattering kernel B(c|c ′ ). The two velocities c and c ′ belong to dual half-spaces Ω -and Ω + in R 3 , respectively, defined below

c ′ ∈ Ω -= R 2 × R -, c ∈ Ω + = R 2 × R + .
(

) 2 
For fluid in equilibrium, the distribution of velocity is equal to the Maxwell-Boltzmann distribution

f eq (c) = f M (c) = 1 √ 2πθ 3 exp [ - c 2 2θ ] , θ = k B T /m, ( 3 
)
where k B is the Boltzmann constant, m the atomic mass, and T the temperature. For rigid gas molecules, in addition to translational velocity of the center of mass, we must account for the rotational velocity ω. The scattering kernel must be replaced by B(ω, c|ω ′ , c ′ ) and the probability density by f (ω, c). The two half-spaces Ω -and Ω + are also extended to include the rotational velocity ω, e.g Ω -= R 5 × R -for incident molecules and Ω + = R 5 × R + for reflected molecules. It is possible to include the orientation distribution in the scattering kernel but this will not be considered in the present work. At equilibrium, this density function is given by

f eq (ω, c) = f M (c)f ω M (ω), f ω M (ω) = 1 √ 2πθ ω d exp [ - ω 2 2θ ω ] , θ ω = k B T /I. ( 4 
)
The quantity I represents the moment of inertia and the power d the rotational degree of freedom, d = 2 for linear molecules and d = 3 otherwise. It is noted that for linear molecules, the rotation around its proper axis is not considered. (DM) kernel [18] or anisotropic Cercignani-Lampis (ACL) kernel [14] with three different coefficients associated to the three directions x, y, z.

The MD collision point cloud can be fitted by analytical scattering models and the model parameters can be identified. However, the data can be scattered and there is no truly efficient fitting algorithm, for example, one can use the mean square of the difference between the two probability densities or methods based on accommodation parameters. We note that constant accommodation coefficients are only meaningful for analytical scattering kernel listed previously. For realistic gas surface interaction, those coefficients are usable in approximative sense and can oversimplify the true behavior.

B. Expressions for fluxes, average values and accommodation coefficients

Given molecular quantities Q as function of velocities c, ω, the average value Q and the flux Φ Q across a plane normal to z can be computed as

Q = ∫ Q(c, ω)f dcdω, Φ Q = n ∫ Q(c, ω)c z f dcdω. ( 5 
)
Given the fact that all the physical quantities such as density n, temperature T , stress σ, velocity v, and heat flux q are either average value or flux of molecular quantities, it is possible to investigate their relations at the boundary by examining the gas wall collisions.

With respect to the wall normal to the z direction, we define influx Φ - Q and outflux Φ + Q of atomic quantity Q(c, ω) at the wall via the expressions

Φ - Q = ∫ Ω - |c z |(nf ) -Q(c, ω)dcdω, Φ + Q = ∫ Ω + |c z |(nf ) + Q(c, ω)dcdω. ( 6 
)
From atomistic viewpoint, Φ - Q , Φ + Q can be computed by counting the number of atoms N crossing the control plane in a given time t

Φ - Q = 1 t ∑ incident Q(c, ω) = N t ⟨Q⟩ i = ν⟨Q⟩ i , Φ + Q = ν⟨Q⟩ o , ( 7 
)
where the subscript i stands for input (incident), o for output (reflection), ν collision rate.

Here the notation ⟨Q⟩ is the average of molecular quantities Q that cross the control plane in Molecular Dynamics simulations. By breaking each relation in [START_REF] Liao | [END_REF] into two integrals in half-spaces Ω -and Ω + as follows

nQ = ∫ Ω - Q(c, ω) |c z | |c z |(nf ) -dcdω + ∫ Ω + Q(c, ω) |c z | |c z |(nf ) + dcdω, Φ Q = - ∫ Ω - Q(c, ω)|c z |(nf ) -dcdω + ∫ Ω + Q(c, ω)|c z |(nf ) + dcdω, ( 8 
)
and making use of ( 7) and ( 6), the flux Φ Q and the average value Q at the wall can also be expressed as

nQ = Φ + Q/|cz| + Φ - Q/|cz| = ν⟨Q/|c z |⟩ i+o , Φ Q = Φ + Q -Φ - Q = ν⟨Q⟩ o-i , (9) 
with notation ⟨Q⟩ α±β := ⟨Q⟩ α ± ⟨Q⟩ β . The relation between the average value Q, and fluxes (9) and noting that Q = ⟨Q⟩ i = ⟨Q⟩ o = 1, we have the equalities

Φ + Q/|cz| and Φ - Q/|cz| is useful because it is more convenient to compute Q with MD simulations. Choosing Q = 1 in
ν = n 1 ⟨1/|c z |⟩ i+o , Φ 1 = 0. ( 10 
)
Substituting ν/n from the first expression in [START_REF] Cercignani | Rarefied gas dynamics: from basic concepts to actual calculations[END_REF] back into (9) for the general Q, we can derive that

Q = ⟨Q/|c z |⟩ i+o ⟨1/|c z |⟩ i+o , Φ Q = n⟨Q⟩ o-i ⟨1/|c z |⟩ i+o . ( 11 
)
We remark that the second relation of ( 10) is equivalent to the no atom accumulation condition at the wall, i.e the influx is equal to the outflux. If the leaving atoms are fully thermalized by the wall, the phase density f + should be replaced by the equilibrium distribution f eq (ω, c) at the wall temperature T w . The outgoing flux Φ + Qw associated to this distribution is given by the expression

Φ + Qw = ∫ Ω + |c z |nf eq (ω, c)Qdcdω = ν⟨Q⟩ w , ( 12 
)
where the subscript w is for outgoing flux at the wall temperature T w . Since f eq (ω, c) is known from (4) and ν is estimated by setting Q = 1, we can compute the expected values for thermal wall ⟨Q⟩ w . They are functions of the reduced wall temperature θ w = k B T w /m and given in Tab I. It is noted that for the special case where d = 0, the tabulated values are consistent with previous works for monatomic gas [19].

Component Velocity Energy

Tangential (x, y) As a result, the accommodation coefficient of quantity Q is equivalent to the expression

⟨c x ⟩ w = 0 ⟨c 2 x ⟩ w = θ w Normal (z) ⟨c z ⟩ w = 1 2 √ 2πθ w ⟨c 2 z ⟩ w = 2θ w Total ⟨c⟩ w = 3 4 √ 2πθ w ⟨c 2 + I m ω 2 ⟩ w = (4 + d)θ w
α Q = Φ - Q -Φ + Q Φ - Q -Φ + Qw = ⟨Q⟩ i-o ⟨Q⟩ i-w or ⟨Q⟩ o = (1 -α Q )⟨Q⟩ i + α Q ⟨Q⟩ w . ( 13 
)
The above expression which is independent of the collision rate ν, is useful for the determination of the accommodation coefficients using MD method. Usually, the value for ⟨Q⟩ w is known explicitly (see Tab I) and the coefficient can be computed based on Eq. ( 13). Most analytical wall models in literature are based on constant accommodation coefficients, which are independent of the input data nf -. These assumptions may not be true for a general kernel B(ω, c|ω ′ , c ′ ) and this is the major disadvantage of using accommodation coefficients to model realistic surfaces.

When accommodation coefficients are not properly defined, different methods can be used to compute those coefficients and result differently. For example, in Ref. [19], the authors proposed using the least-squares formula

α Q = 1 - ∑ collision (Q i -⟨Q⟩ i )(Q o -⟨Q⟩ o ) ∑ collision (Q i -⟨Q⟩ i ) 2 , ( 14 
)
from the collision clouds. They found that results are very different from those obtained by Eq. ( 13).

These observations pose some problems on theories based on the existence of the constant accommodation coefficients for general surfaces. However, interface phenomena like slip velocity and temperature jumps do exist. Modeling those effects and identifying the parameters without using accommodation coefficients will be considered in the following.

C. Boundary conditions for Navier Stokes Fourier (NSF) equations

In this subsection, we present a new method to directly determine the macroscopic velocity and temperature jump coefficients via collision simulations. This completely avoids the intermediate modeling and simulations based on scattering kernels. As we know, all available analytical models have limitations. First, they only allow at most three accommodation coefficients. If we choose to model momentum accommodation effect along one direction, we have to sacrifice the energy accommodation along this direction. Accommodation effects for high order moment are also unavailable. Secondly, using constant accommodation coefficients, like most analytical wall models in literature can be a strong assumption. Numerical evidence in the latter section shows that in some cases, the true behavior deviates significantly from that hypothesis.

The approach proposed here is independent of scattering model and can be applied to any surfaces. It can also be extended to deal with general boundary conditions involving higher order moments. In slip regimes, the usual macroscopic boundary conditions for velocities v x , v y and reduced temperature jump θ -θ w are given in the following forms

v k = - 2 -α k α k σ kz nm √ 2θ/π , θ -θ w = - 2 -α e 2α e q z nm √ 2θ/π , k = x, y, ( 15 
)
where σ xz , σ yz are the (minus) shear stress components and q z the normal heat flux at the wall. Constants α k are the tangential accommodation coefficients associated to the tangential translational molecular velocities, and α e is the energy accommodation coefficient associated to its kinetic energy. The above equation where the thermal transpiration is neglected can be derived from the scattering models. In this paper, we propose a more general phenomenological form for the boundary conditions

β 1k v k = - σ kz nm √ 2θ/π , β 2 (θ -θ w ) = - q z 2nm √ 2θ/π , k = x, y, ( 16 
)
where β 1x , β 1y and β 2 are the dimensionless friction and Kapitza coefficients, depending on the gas-wall couple. It is clear that we recover the original equation if the coefficients β 1k

and β 2 are connected to the accommodation coefficients α k and α e via the relation

β 1k = α k 2 -α k , β 2 = α e 2 -α e , k = x, y, (17) 
It is noted that the two expressions in ( 16) can also be used for the cases where the accommodation coefficients are not constant.

Using Eqs. (7)(8)(9)[START_REF] Cercignani | Rarefied gas dynamics: from basic concepts to actual calculations[END_REF][START_REF] Yamamoto | [END_REF], we shall derive schemes to determine β 1k and β 2 from MD simulations.

The velocity defined as v k = c k (i.e Q = c k ) can be computed by the expression

v k = ⟨c k /|c z |⟩ i+o ⟨1/|c z |⟩ i+o . ( 18 
)
The (minus) shear stress σ kz = Φ mC k (i.e Q = mC k ) can also be computed in the following way

-σ kz = mν(⟨C k ⟩ i -⟨C k ⟩ o ) = mn ⟨c k ⟩ i -⟨c k ⟩ o ⟨1/|c z |⟩ i + ⟨1/|c z |⟩ o = mn ⟨c k ⟩ i-o ⟨1/|c z |⟩ i+o , ( 19 
)
where C k = c k -v k is the peculiar velocity. Comparing Eqs. (18,19) with ( 16), we can derive the interface coefficients β ik via the expression

β 1k = ⟨c k ⟩ i-o / √ 2θ/π ⟨c k /|c z |⟩ i+o . ( 20 
)
Next, the reduced temperature θ = C 2 + (I/m)ω 2 /(3+d) and the heat flux q z = Φ (mC 2 +Iω 2 )/2 are given by the equation

θ = ⟨(C 2 + (I/m)ω 2 )/|c z |⟩ i+o (3 + d)⟨1/|c z |⟩ i+o , -q z = mn ⟨(C 2 + (I/m)ω 2 )/2⟩ i-o ⟨1/|c z |⟩ i+o , ( 21 
)
where d is the number of rotation degrees of freedom of gas molecule, d = 2 for CO 2 .

Comparing Eqs. ( 21) with ( 16), we can calculate the Kapitza coefficient

β 2 = (3 + d)⟨(C 2 + (I/m)ω 2 )/2⟩ i-o /(4θ/π) [⟨(C 2 + (I/m)ω 2 )/|c z |⟩ i+o -(3 + d)θ w ⟨1/|c z |⟩ i+o ]/ √ 2θ/π . ( 22 
)
We note that for monatomic gas, it is sufficient to remove the terms Iω 2 and d in the above expression and obtain

β 2 = 3⟨C 2 /2⟩ i-o /(4θ/π) [⟨C 2 /|c z |⟩ i+o -3θ w ⟨1/|c z |⟩ i+o ]/ √ 2θ/π . ( 23 
)
To facilitate the comparison between the numerical results, we normalize stress and heat flux computed by MD method with suitable quantities and rewrite the phenomenological law in the following way

β 1k = -σ kz vk , β 2 = -q z ∆ θ , k = x, y. ( 24 
)
Here, the hat notation is used for the normalized quantities,

σkz = σ kz nmζ 2 , vk = v k ζ , qz = q z 2nmζ 3 , ∆ θ = θ -θ w ζ 2 , ζ = √ 2θ/π. (25) 

D. Extension to 13 moments equations

Without being limited to NSF equations, the method presented previously can be applied to higher order model. Given any macroscopic boundary conditions in terms of moments, the present method can be used to derive the coefficients associated to boundary conditions.

As an example, we consider the boundary conditions of R13 equations written for isotropic surfaces in dimensionless form [3,20] 

β 1 = -σ xz κ1 , β 2 = -q z κ2 , β 3 = -mxxz κ3 , β 4 = mzzz κ4 , β 5 = Rxz κ5 , ( 26 
) with mijl = m ijl nmζ 3 , Rij = R ij nmζ 2 , κ1 = √ 2 πθ ( P v x + 1 2 m xzz + 1 5 q x ) /(nmζ 2 ), κ2 = √ 2 πθ ( 2P (θ -θ w ) - 1 2 P v 2 + 1 2 θσ zz + R 15 + 5 28 R zz ) /(2nmζ 3 ), κ3 = √ 2 πθ ( 1 14 R xx + θσ xx - 1 5 θσ zz + 1 5 P (θ -θ w ) - 4 5 P v 2 x - R 150 ) /(nmζ 3 ), κ4 = √ 2 πθ ( 2 5 P (θ -θ w ) - 1 14 R zz - 3 5 P v 2 - 7 5 θσ zz + R 75 ) /(nmζ 3 ), κ5 = √ 2 πθ ( P θv x - 11 5 θq x - 1 2 θm xzz -P v 2 v x + 6P v x (θ -θ w ) ) /(nmζ 4 ). ( 27 
)
The quantities P, R, R ij and m ijl are defined from the moments

P = nmθ + 1 2 σ zz - 1 120 R θ - 1 28 
R zz θ , R ij = mnC 2 (C i C j -C 2 /3δ ij ) -7θσ ij , R = mn(C 4 -15θ 2 ), m ijl = mnC i C j C l -C 2 (C i δ jl + C j δ il + C l δ ij )/5, k = x, y, i, j, l = x, y, z. ( 28 
)
These original boundary conditions are derived for Maxwell molecules and Maxwell scattering kernel where all the coefficients are identical

β 1 = β 2 = ... = β 5 = α/(2 -α) with α
being the accommodation coefficient. Moments R, R ij and m ijl are connected to stress, heat flux, velocity, temperature and their derivatives via a regularization procedure [3,21,22].

Although the derivation conditions are rather restrictive, we shall assume that they are valid and determine the coefficients β 1 , β 2 , ..., β 5 . We shall base directly on the moment definitions Eqs. (28) which are independent of the regularization methods and also relax the conditions that all coefficients β 1 , β 2 , ..., β 5 must be identical. We note that in Ref. [21],

these authors already consider that β 1 , β 2 , ..., β 5 can be different and take empirical values allowing matching with a more accurate method. In these cases, those coefficients are used to fix the Knudsen layer effect that the R13 equation fails to capture completely. This empirical approach seems to be incompatible with the rigorous mathematical derivation of R13 equations.

E. Generation of pre-collision velocity

Molecular Dynamics simulation requires generating velocities of atoms that cross the control plane and collide with the wall. The (unnormalized) distribution of the latter is For molecular gas

|C z |f -(c, ω) = |C z |f M (C)f ω M (ω).
For monatomic gas

|c z |f -(c) = |c z |f M (C). ( 29 
)
The parameters of the distribution are the mean velocity v and the reduced temperature θ. Using this distribution, we can model equilibrium system where the fluid is stationary v = 0 and the temperature is uniform θ = θ w or non-equilibrium system by assuming that the gas adjacent to the wall is in local equilibrium with temperature and velocity different from the wall, i.e v ̸ = 0, θ ̸ = θ w .

-The Chapman-Enskog (CE) distribution [START_REF] Chapman | The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases[END_REF][START_REF] Grad | Thermodynamik der Gase/Thermodynamics of Gases[END_REF] 

|c z |f -(c) = |C z |f CE (C). (30) 
In addition to temperature θ and mean velocity v, there are also parameters associated to heat flux q k and shear stress σ ik . This distribution is for non-equilibrium monatomic gas.

-The R13 distribution [20,22] 

|c z |f -(c) = |C z |f R13 (C). ( 31 
)
The last two distributions CE and R13 are for monatomic gases with expressions given in Appendix A. The generation of the input velocity is done via the Acceptance-Rejection approach. For example, in Ref. 

III. NUMERICAL SIMULATIONS AND RESULTS

A. Molecular Dynamics model

We study the collision of gas molecules, methane (CH 4 ) and carbon dioxide (CO 2 ) on a graphite wall (C atoms). The system contains two parts: the reservoir and the collision zone. The MD simulation is only done in the collision zone and the pre-collision velocity of gas molecules is generated directly at the stochastic boundary between the reservoir and the collision zone. Two graphite wall models will be considered. The first is a smooth interaction with graphite atoms is governed by the Lennard Jones (LJ) potential

V = 4ϵ [ ( σ r ) 12 - ( σ r ) 6 ] , ( 32 
)
where r is the distance between two atoms under consideration and σ and ϵ the parameters of the LJ model. Regarding the CO 2 molecules, we do not consider the contribution of the internal degrees of freedom (bending/stretching) and use the rigid model [28]. The interaction of each site with the graphite atoms is also of LJ type with parameters taken from

Ref. [START_REF] Liao | [END_REF] (see Table II). After equilibrating the graphite system at the given temperature (10 6 time steps of 1 fs), gas molecules are inserted one by one in the collision zone. Only after one collision event, i.e a molecule interacts with the wall and goes out of the collision zone, another molecule is inserted in the zone from a random position at the stochastic boundary (for CH 4 and CO 2 ) and with a random orientation (for CO 2 ). The residence time is considered negligibly small with respect to the flying time outside this zone and the velocities at the entrance and the outlet are collected (see Fig. 2).

Some comments can be made about the models for CH We implement 3 simulation schemes to study gas-wall models and determine the model coefficients. They are different in terms of the gas state (equilibrium/non-equilibrium) and the associated velocity generator.

-Batch average (BA) scheme: We repeat the same incident velocity (ω ′ , c ′ ) many times and record the reflected velocity (ω, c) which is a distribution. To generate samples, the incident velocity is taken from equilibrium distribution and the reflected velocity is aver-aged. By this way [30], we can examine the accommodation coefficients via their definition (Eq. ( 13)). In Fig. 3, We have plotted the input quantities ⟨Q⟩ i against output quantities ⟨Q⟩ o , where Q = c x , c y , c z or c 2 + Iω 2 /m. In the ideal case, the data population should concentrate along a straight line and its slope corresponds to the constant accommodation coefficient α Q (see section III.B for details).

-Stochastic equilibrium (SE) scheme: The reservoir is considered to be in equilibrium. The pre-collision velocity (ω ′ , c ′ ) for each collision is generated using equilibrium distribution at zero mean velocity and at the same temperature as the graphite wall. By this way, we obtain numerical estimates of the density B(ω, c|ω ′ , c ′ ). The accommodation coefficients can be extracted using ( 14) (see section III.B for details).

-Stochastic non-equilibrium (SN) scheme: The non-equilibrium gas is considered.

Depending on the problems, we use Maxwell-Boltzmann (MB), Chapman Enskog (CE) or R13 distribution as discussed in the previous section. The surface can be modeled atomistically (AM) as described from the beginning of the present section III.A. It can also be modeled statistically using the non-parametric (NP) model B(ω, c|ω ′ , c ′ ). The latter is constructed by the scattering results on the atomic model, which is detailed at the end of section III.B.

The simulation results will be analyzed using the theory we have proposed in the previous section.

B. Determination of accommodation coefficients and construction of non-parametric wall model from collision data

As mentioned previously, the accommodation coefficients are parameters based on Eq.

(13). To verify this assumption, it is sufficient to study incident fluxes of constant velocity.

Using BA scheme for the couples CH 4 /CO 2 -Graphite (smooth and rough surfaces), we set up 100 sampling groups and each group contains 500 collisions with the same incident velocity. These 100 incident velocities are drawn from equilibrium distribution at the same temperature as the wall. Then, we average the reflected values in the group for later anal-ysis. Theoretically, if the ratio between the input and the output values are constant, the collision data will form a straight line. In Fig. 3, we find a strong correlation between the input and the output velocities. For the tangential velocity, despite some slight curvature the relation between the input and output is visibly linear for most of the data. However, the linear regression works less well for the normal velocity and especially for the kinetic energy. These data suggest that Eq. ( 13) is not valid for these cases and linear coefficients obtained by fitting (see Tab. III) are not representative.

Parametric studies based on varying the number of samples per input velocity from 20 to 1000 show that the scattering of energy data is always present. Given the fact that the results for c x and c y are clearly correlated, the energy data merit more detailed investigation to understand the origin of the deviation. We still use the same data and decompose the kinetic energy into tangential and normal components c 2 n , c 2 t . In Fig. 4(a) and (b), we can see that the tangential and normal kinetic energy data ⟨c ′2 t ⟩ vs. ⟨c 2 t ⟩, ⟨c ′2 n ⟩ vs. ⟨c 2 n ⟩ are strongly correlated. However, like the data ⟨c ′

x ⟩ vs. ⟨c x ⟩ and ⟨c ′ z ⟩ vs. ⟨c z ⟩ in Fig. 3, their slopes are different. There is a strong contrast between the tangential reflection c 2 t which is more specular-like (energy mostly conserved after collision) and the normal reflection c 2 n which is more diffusive-like (energy close to the walls' after collision). On the other hand, in Fig. 4(c) and (d), the data ⟨c ′2 t ⟩ vs. ⟨c 2 n ⟩ and ⟨c ′2 n ⟩ vs. ⟨c 2 t ⟩ are scattered and the correlation is weak. It is suggested that the combination of different tangential and normal reflection behaviors can be responsible for the scattering of the total energy data c 2 . As a final remark, the energy data scattering exists in literature models, especially for parametric models like ACL/CL or DM which are not based on a constant energy accommodation coefficient. Indeed, Fig 5 shows that the parametric kernel ACL/CL with suitable parameters has produced the same pattern, i.e energy data scattering, as the MD results.

Next, with the SE scheme, we simulated 10 5 collisions on graphite surfaces. The input velocities are taken from equilibrium distribution and results are presented in Fig. 6. From these figures we can analyze the correlation between incident and reflected velocities on graphite wall then we can compute the accommodation coefficients from Eq. ( 14) issued from [19]. It is noted that due to the equilibrium state, Eq. ( 13) takes the form 0/0 and cannot be used to determine the accommodation coefficients in this case. We find that for smooth graphite surface, the incident and reflected velocity data have significant correlation in x and y directions. Despite its crystalline nature, the surface behavior is isotropic and no visible difference is observed between directions x and y. The accommodation coefficients calculated by the least-squares method [19] in Tab. III also confirm this remark. However, the influence of periodic roughness affects the anisotropy of the surface (second row figures)

and the magnitude of the accommodation coefficients. We can see that the scattering is more diffusive along both directions but more pronounced for x direction. In all cases, the correlation between c z and c ′ z as well as the correlation between c 2 and c ′2 are very weak, and close to the diffusive wall.

We note that all analytical surface models in literature are based on the accommodation coefficients. Thus, we can construct scattering kernels which can serve as boundary conditions for atomistic method like MD or DSMC. The main advantage of these kernels is the simplicity in implementation but theirs drawbacks are their differences from the real surface behavior. This can be explained from the fact that they rely on the existence of the limited number of constant accommodation coefficients. To reconstruct B(ω, c|ω ′ , c ′ ), we do not use any parameter and make no assumption on the distribution form except for the decomposition of each components

B(ω, c|ω ′ , c ′ ) = 3 ∏ i=1 B i (c i |c ′ i )B ω i (ω i |ω ′ i ). ( 33 
)
The above relation reduces the realization of B(ω, c|ω ′ , c ′ ) to the realizations of independent Accommodation coefficients computed by stochastic equilibrium (SE) simulation method using data of Fig. 6 and by batch average (BA) simulation method in Fig. 3: α l coefficient is associated to the velocity c l , α e is the kinetic energy (the angular velocity of CH 4 is zero).

univariate densities

B i (c i |c ′ i ) and B ω i (ω i |ω ′ i ).
We note that, theoretically, the construction of B(ω, c|ω ′ , c ′ ) doesn't depend on the above assumption. However, the usual non-parametric estimates of multivariate density require a very large number of samples to be accurate (the curse of dimensionality) and more advanced learning methods are needed to solve this issue.

Without losing generality, we take the case of translation velocity c i . The probability density function (PDF) of reflective velocity with given incident velocity P (c i |c ′ i ) can be determined by joint PDF of reflective-incident velocity P (c i , c ′ i ) and marginal PDF of incident velocity P (c ′ i ) with relation:

B i (c i |c ′ i ) = P (c i |c ′ i ) = P (c i , c ′ i ) P (c ′ i ) . ( 34 
)
The discrete collision data can be used to estimate the joint probability P (c i , c ′ i ) by histogram or kernel density estimation method. After determining B i (c i |c ′ i ), we can use it to generate the outgoing velocities at any given incident velocities. This can be done via the use of conditional cumulative distribution function (CDF) F (c i |c ′ i ). To illustrate the robustness of the non-parametric model, we take the case of anisotropic surface and plot the probability density of input and output velocities of different kernels together with the MD data in Fig. 7. The considered kernels are Dadzie-Meolans (DM) [12] and anisotropic Cercignani-Lampis (ACL) [START_REF] To | ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting[END_REF], and non-parametric kernel constructed numerically from MD simulations (see Appendix B). The accommodation parameters of ACL kernel (α x associated to c x , α y to c y and α z to c 2 z ) and DM kernels (α x and α y are the same as ACL kernels and α z is associated to c z ) are determined by SE simulations using Eq. ( 14). One can find that the DM kernel that includes mirror-reflected mechanisms is very different from the true collision data, the probability density shows a strong discontinuity.

The ACL kernel performs better but the non-parametric kernel is the most faithful to the MD data. Such differences can have significant influences on the results based on the kernel. FIG. 7. Velocity probability density of MD simulations and from some scattering kernels: Dadzie-Meolans (DM) [12], Anisotropic Cercignani-Lampis (ACL) [START_REF] To | ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting[END_REF] and non-parametric (NP) kernel constructed from MD data. The MD data are from collision simulation of CH 4 (350 K) at anisotropic atomic graphite wall (350 K). Columns (a), (b), (c) represent the velocity (nm/ps) at directions x, y, z, respectively, and column (d) the kinetic energy for CH 4 (the prefactor m/2 is removed for simplicity). The horizontal axis shows the incident values and the vertical axis the reflection values.

C. Direct computation of interface coefficients

The methods of determining the accommodation parameters like SE and BA depend on the existence of these constant coefficients. The BA gas beam experiments show that the postulates are rather restrictive (see e.g. Fig. 3,column d). Deriving those coefficients by fitting may correspond values in average sense without connection to the boundary conditions (16). Nevertheless, the slip and jump phenomena still exist and it is of interest to identify the coefficients associated to these effects. In this situation, one must make use of the non-equilibrium state of the gas near the wall. In principle, the more realistic the gas distribution is, the better interface coefficients we obtain. Before using more sophisticated distribution like Chapman-Enskog or R13 density, we shall examine the workability of a simpler distribution, MB at different temperatures and mean velocities. For β 1x , β 1y associated to the friction coefficients, we use Maxwellian with the same temperature as the wall but non zero mean velocity. The latter is a vector lying in the bisector plane (making angle π/4 with respect to axis x and y) with variable magnitude. For β 2 related to the Kapitza coefficient, we use Maxwellian with zero mean velocity but different temperatures.

Specifically, the temperature ranges from 250 K to 450 K for CH 4 , from 500 K to 700 K for CO 2 and mean velocities range from -0.05nm/ps to 0.05nm/ps for both CH 4 and CO 2 . At this stage, we have two wall models:

-Atomic wall model (AM) -Non-parametric wall model (NP) for comparisons. To examine the connection between the quantities in the boundary models, results for the slip velocities, the temperature jump, stress and heat flux obtained by Eqs. (18)(19)(20)(21)(22)[START_REF] Chapman | The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases[END_REF] are plotted together in Fig. 8.

We see a clear linear relation between -σ kz and vz as well as between -q z and ∆ θ in coefficient of smooth wall is smaller than the rough wall's (about 2 times). These tendencies coincide with reality that rough surface friction and thermal resistance are larger than the smooth surface ones. For comparison with theoretical models where the accommodation coefficients are connected to the interface equations Eqs. (17), the results of CH 4 and of CO 2 are plotted in Tab. IV.

In terms of friction coefficient β 1k , the results of the non-equilibrium method with MB distribution are very close to those obtained with the methods based on equilibrium distribution. This is reasonable since the BA method also shows that the accommodation model works well for this case. For thermal coefficient β 2 , the SN method seems to agree better with the coefficient derived from SE method than the BA method. This observation can be explained from the scattering data in the BA method, meaning that the theoretical definition of the thermal accommodation coefficient is no longer valid. In this case, an effective coefficient which reproduces the thermal jump effect can be determined. 

IV. CONCLUSIONS

It is known that gas flows at high Knudsen number are present in micro-nanopore underground. To accurately obtain macroscopic transport behavior (permeability for example), we must use relevant gas model and boundary conditions at the pore scale. The present paper is devoted to the construction of gas-wall interaction models and to the determination of boundary conditions for continuum equations such as Navier-Stokes-Fourier or R13 equations.

Based on MD simulation of independent collisions of CH 4 and CO 2 rigid molecules on graphite surface, we collect data of pre-and post-collision and numerically recover the scattering kernel for the gas-wall couples. Specifically, it can be used to construct nonparametric models capable of generating a distribution of post-collision velocity, given the pre-collision velocity. The effective accommodation coefficients can also be obtained from the scattering kernel using a different fitting procedure.

In the general case, a method is proposed to directly compute the parameters of any phenomenological boundary conditions without using the concept of accommodation coefficients. The approach relies on the general scattering kernel issued from MD with suitable input gas distribution, which is similar to the theoretical method of Grad [START_REF] Grad | Thermodynamik der Gase/Thermodynamics of Gases[END_REF]. Such an approach is of interest since it can capture more accurately the distribution of reflection velocity. There are still some drawbacks to the current version which will be improved in the future, for example, the use of rigid gas molecule model and the assumptions of independence between the velocity components. Another interesting subject which has not been treated in this work is the Knudsen layer effect. We note that by simulating flows Similarly, the R13 distribution can be calculated from MB distribution by the relation: During the Acceptance-Rejection process, the function Γ( C) can be negative. This velocity is rejected in this case.

f * R13 ( C) = Γ R13 ( C)f * M ( C), Cz < 0, (39) where 

B. Method for generating non-parametric kernel

Different from parametric scattering models, like CL or Maxwell, the non-parametric wall model is not specified a priori but is instead determined from data. Using the discrete incident-reflection velocities data, we can generate the reflective velocities at any given incident velocities. The implementation of Eq. ( 34) is as follows:

1. Discretize the velocity space c ′ i and c i to a series of velocity points with sufficient small interval. Choose a volume ∆c 4. Generate a uniform random number U between 0 to 1, then the reflective velocity is

c i ∼ F -1 (U |c ′ i ).
The procedure is shown in Fig. 10. The reflective rotation velocity can be obtained by the same procedure. 

  The scattering kernel B(ω, c|ω ′ , c ′ ) which is the probability of finding molecules bouncing with velocity (ω, c) with given colliding velocities (ω ′ , c ′ ) can be determined by Molecular Dynamics collision simulation. Gas molecules are beamed at given velocities (ω ′ , c ′ ) onto the surface in consideration and the velocity distribution of reflecting molecules associated to (ω ′ , c ′ ) is recorded. Next the arriving velocities (ω ′ , c ′ ) are also varied to cover the incident velocity space. Generally, if the number of realizations is sufficiently large, we have a large set of discrete points which can represent the true probability density B(ω, c|ω ′ , c ′ ).We are also concerned about the use of the kernel as wall boundary conditions in other simulation methods (for example Molecular Dynamics, Direct Simulation Monte Carlo or Lattice Boltzmann). If we use the discrete form of B(ω, c|ω ′ , c ′ ), output results must be obtained from the interpolation of known points. This method is accurate but less computationally convenient. The scattering kernel can be analytically modeled using some physical parameters for example Tangential Momentum Accommodation Coefficients (TMAC) or Energy Momentum Accommodation Coefficients (EAC), etc... Some notable scattering models are Maxwell-Yamamoto (MY)[START_REF] Yamamoto | [END_REF], Cercignani-Lampis (CL)[9] etc... which can be used for atomistic gas flow simulations and accommodation coefficients can be used to derive velocity slip and temperature jump coefficients for NSF equations. To account for the special reflection mechanism of the anisotropic surface, one can useDadzie-Meolans 

  |c z |f -(c, ω) with c z < 0 as seen in the previous section. In this paper, we use three types of distribution -The Maxwell Boltzmann (MB) distribution

  [START_REF] Garcia | [END_REF], a scheme to generate distributions in the form f (c) = f M (C)Γ(C) where Γ(C) is a polynomial of C, is proposed. The distribution to be treated in this paper is slightly different since we are limited to the half-space c z < 0 and there is a function |c z | standing before f M (C) due to the flux definition (see Appendix A).

  FIG. 1. Simple sketch of the system. The stochastic boundary is indicated by the dashed line and the graphite wall is indicated by the solid line. Snapshots of MD simulations show the local orientation of the smooth (isotropic) and rough (anisotropic) systems.

  [START_REF] Struchtrup | Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory[END_REF] and CO 2 used in the present work. Both rigid molecule models do not account for the vibrational internal degrees of freedom. The bending mode of CO 2 associated with a wavenumber of 667 cm -1[START_REF] Linstrom | NIST Chemistry WebBook[END_REF] is the most concerned by an excitation due to collisions with the solid surface since this mode is the lowest energetic. The CO 2 molecule collides with a surface at 600 K, i.e. k B T = 417 cm -1 . Using Boltzmann statistics, it can be estimated that only 20% of the CO 2 molecules may be concerned by such an excitation. The lowest energetic vibrational mode of CH 4 is the angle deformation mode associated with a wavenumber at 1306 cm -1[START_REF] Linstrom | NIST Chemistry WebBook[END_REF] and this molecule collides a surface at 350 K (k B T = 243 cm -1 ). The Boltzmann statistics indicate that only 5% of the molecules would be excited. From these estimates and for simplification, CO 2 and CH 4 are kept rigid.

FIG. 3 .

 3 FIG.3. Correlation analysis using BA scheme for CH 4 /CO 2 -Graphite. Columns (a), (b), (c) represent the velocity (nm/ps) along x, y, z directions respectively and column (d) the kinetic energy for CH 4 and CO 2 (the prefactor m/2 is removed for simplicity). The horizontal axis shows the incident values and the vertical axis the reflection values. The solid lines represent the fit by least squares linear regression using Eq. (13). The diagonal dashed line and the horizontal dashed line indicate the zero accommodation case (α = 0) and full accommodation case (α = 1), respectively.

FIG. 4 .FIG. 5 .

 45 FIG. 4. Detailed analysis of kinetic energy of CH 4 beamed on the smooth surface. The tangential kinetic energy component c 2 t = c 2 x + c 2 y and the normal kinetic energy component c 2 n = c 2 z are used for analysis. Subfigures (a), (b), (c), (d) show the correlation between incident energy and reflective energy components.

FIG. 6 .

 6 FIG. 6. Collision data of incident and reflected velocities for the CH 4 /CO 2 -Graphite system. Both stochastic reservoir and graphite wall are maintained at 350 K for CH 4 and 600 K for CO 2 . Columns (a), (b), (c) represent the velocity (nm/ps) along directions x, y, z, respectively, and column (d) the kinetic energy for CH 4 and CO 2 (the prefactor m/2 is removed for simplicity). The horizontal axis shows the incident values and the vertical axis the reflection values. The solid lines indicate the linear least square fit of incident and reflected values using Eq. (14). The diagonal dashed line and the horizontal dashed line indicate the zero accommodation case (α = 0) and full accommodation case (α = 1), respectively.

Fig. 8 . 2 -FIG. 8 .

 828 Fig. 8. The slopes of fitted lines represent the value of the dimensionless friction coefficient β 1k (subfigures a and b) and the dimensionless thermal coefficient β 2 (subfigure c). The friction coefficient of the x direction increases 8 times from smooth wall to rough wall, compared with the 3 times increase in the y direction. It's also interesting to see that the β 2

  distribution at the first step n = 1 can be initialized with MB distribution as the previous SN/MB scheme, i.e all fluxes (heat fluxes, stress, etc...) are set zero. The latter quantities become non-zero after the initialization (n ≥ 2) and we can effectively use the CE and R13 generator. Numerical tests show that while the average moments at convergence depend on the initialized values, the value of β coefficients are insensitive to them.

FIG. 9 .

 9 FIG. 9. Convergence test of CE-NP kernel iteration for rough anisotropic surface. Subfigures (a): Friction coefficient β 1x , (b) Gas temperature (c) Gas velocity.

  , l = x, y, z. (41) Since the CE and R13 distributions have analytical PDF expression, we can generate random velocities corresponding to these distributions by the Acceptance-Rejection method. The specific steps are as follows:1. Find B CE = max(|σ ij |, |q i |) for distribution CE, B R13 = max(|σ ij |, |q i |, |m ijk |, |R ij |, |R ij |)for distribution R13 .2. Set amplitude parameterA CE = 1 + 30B CE and A R13 = 1 + 60B R13 .3. Generate a normalized velocity CMB obeying MB distribution (Eq. (35)), and a uniform random number U (0, 1). 4. If Γ CE ( CMB ) ≥ AU , accept CMB as normalized CE distribution velocity CCE , and if Γ R13 ( CMB ) ≥ AU , accept CMB as normalized R13 distribution velocity CR13 ; else reject this velocity and return to step 3; 5. The real velocity is c = √ 2θ CMB + v, v is the mean velocity.

  ′ i and let us call class c ′ i the collisions in the volume centered at c ′ i . 2. Use sliding window method to count the number of collision ∆N in class c ′ i . 3. Calculate discrete CDF of every class c ′ i as F (x|c ′ i ) = ∆N (c i ≤ x) ∆N .

FIG. 10 .

 10 FIG. 10. Generation of velocity using non-parametric kernel derived from MD collision clouds

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

TABLE I .

 I Expected values as functions of the reduced wall temperature θ w = k B T w /m. For CH 4 , the rotation energy is neglected d = 0 and for CO 2 , d = 2.

TABLE II .

 II LJ parameters for the interaction of CH 4 and CO 2 with the graphite surface.

FIG. 2. A collision showing the trajectory of a gas molecule.

TABLE III .

 III 

  [START_REF] Struchtrup | Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory[END_REF] , β 5 correspond to boundary conditions for higher order terms. As the overall remark, all coefficients β are different, showing that the use of Maxwell kernel cannot capture correctly the boundary conditions at the wall. In this case, the present approach can provide an alternative and reliable solution for any surface.

	Surface	Kernel	β 1	β 2	β 3	β 4	β 5
	Test	Maxwell	0.177	0.177	0.160	0.173	0.161
	Graphite	NP	0.097	0.373	0.024	0.028	0.129

  using non-parametric kernel, one can obtain correction coefficients to the microslip obtained by the present paper.

	where					
	Γ CE ( C) = 1+ +2 ( ( qx Cx + qy Cy + qz Cz )( σxy Cx Cy + σxz Cx Cz + σyz Cy Cz ) 2 C2 -1) 5 )
			+σ xx	C2 x + σyy	C2 y + σzz	C2 z ,	(37)
	with					
	σij =	σ ij p	, qi =	q i √ p θ/2	, p = mnθ, i, j = x, y, z.	(38)
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To increase the precision of the slip coefficients for smooth (isotropic) surface, we average values along β 1x and β 1y .

D. Influences of non-equilibrium distributions and discussion

Essentially based on the same procedure as previous subsection, we study the influence of the near wall distribution and the surface models on the interface coefficients. We focus on the monatomic gas CH 4 , NP wall model and the following non-equilibrium distributions:

-Chapman-Enskog distribution -R13 distribution

To generate CE and R13 distributions, we use the Acceptance-Rejection approach described in Appendix A. In addition to temperature and mean velocity, the CE and R13 distributions require input fluxes and moments which are generally unknown. We carry out the following iterations:

•

Step n -Generation of input distribution using CE (or R13) distribution with average moments of the previous steps n -1.

-Compute the output distribution using the kernel B(c|c ′ ).

-Calculate the average moments at the wall from input and output distributions.

-Next step.

The loop stops when all the average moments converge (see e.g Fig. 9). The input

APPENDIX

A. Generation of non-equilibrium distribution

Generating pre-collision velocity of particle requires first the PDF of initial velocity. The Maxwell-Boltzmann distribution is used for a equilibrium dilute gas at temperature T . In order to generate the pre-collision velocity, we rewrite the flux associated to the normalized MB distribution f * M ( C) as: