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Abstract

In this paper, we use Molecular Dynamics (MD) simulation method to study gas-wall boundary

conditions. Discrete scattering information of gas molecules at the wall surface are obtained from

collision simulations. The collision data can be used to identify the accommodation coefficients

for parametric wall models such as Maxwell, Cercignani-Lampis scattering kernels. Since these

scattering kernels are based on a limited number of accommodation coefficients, we adopt non-

parametric statistical methods to construct the kernel to overcome these issues. Different from

parametric kernels, the non-parametric kernels require no parameter (i.e accommodation coeffi-

cients) and no predefined distribution. We also propose approaches to derive directly the Navier

friction and Kapitza thermal resistance coefficients as well as other interface coefficients associated

to moment equations from the non-parametric kernels. The methods are applied successfully to

systems composed of CH4 or CO2 and graphite, which are of interest to the petroleum industry.

PACS numbers:
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I. INTRODUCTION

The study of transport properties in porous media plays an important role in many

applications such as soil mechanics, geohydrology and the storage of nuclear waste. Along

with the development of unconventional reservoirs (shale gas) extraction technology, like

hydraulic fracturing, more attention has been paid to the transport of gas molecules in

carbon pores. As a result, modeling the gas behavior and its interaction with the boundary

is of significant interest.

Due to the size of the pore, gaseous molecules, here methane (CH4) and carbon diox-

ide (CO2) in this study, can travel with few collisions, resulting in high Knudsen number

(Kn), a similar situation as the rarefaction effect. It is known that when Kn > 0.01, predic-

tions based on the continuum Navier-Stokes-Fourier (NSF) equations and classical no-slip,

no-jump conditions are no longer in agreement with experiences and atomistic simulation

results [1, 2]. In order to capture these phenomena, more advanced continuum equations

and boundary conditions are necessary [3, 4].

Unlike liquids where the friction and thermal resistance are characterized by layers of

interacting molecules adsorbed at the wall [5–7], the gas molecules collide infrequently and

their residence time near the wall can be neglected. The exchange of momentum and energy

between the gas and the wall can be understood from ensemble of independent gas-wall

collisions. In most cases, the collisions are usually modeled with scattering kernels based

on several accommodation coefficients [8–14]. Other class of wall models for rough surfaces

[15–17] were analytically derived from corrugation parameter and potential well depth. Al-

though these parametric models are simple to code, they rely on many oversimplification

hypotheses which cannot guarantee the accuracy of the collisions for the whole velocity

range. These problems can have consequences on the boundary conditions at the continuum

level and simulation results based on these scattering kernels.

The paper presents a systematic study of gas-wall collision models based on Molecular

Dynamics (MD) simulations. The systems in consideration are composed of methane CH4

(considered as monatomic gas) or carbon dioxide CO2 (rigid linear molecule) interacting
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with a graphite wall constituted of carbon atoms. By beaming independently gas molecules

onto the surface and recording the reflected flux, we can determine the accommodation

coefficients. More importantly, we can reconstruct numerically a non-parametric (NP) wall

model. Different from parametric models in literature, this scattering kernel is able to cap-

ture the reflection process in a more realistic way. Originated from non-parametric statistics,

the NP scattering kernel requires no parametrization (i.e accommodation coefficients) and no

predefined analytical form. Interestingly, it can be used to directly determine the parameters

of any phenomenological boundary conditions, including those for NSF or moment equa-

tions. While these equations are valid for a limited range of Kn in the transition regime,

the NP wall model can be directly implemented in particle methods like DSMC (Direct

Simulation Monte Carlo) or MD to simulate flows at any Kn number. The development of

gas-wall boundary conditions for continuum equations from a non-parametric kernel is the

major contribution of the present work, which will be detailed in the subsequent sections.

II. STUDY OF GAS-WALL MODELS WITH MOLECULAR DYNAMICS METHOD

A. Scattering kernels

In kinetic theory, the state of monatomic gas at any location x at time t is entirely deter-

mined from the local number density n(x, t) and the probability density function f(x, c, t)

of velocity c. The evolution of the latter is governed by the Boltzmann equation and the

boundary conditions

cz(nf)
+(c) =

∫
Ω−

B(c|c′)|c′z|(nf)−(c′)dc′, c′ ∈ Ω−, c ∈ Ω+. (1)

In the above expression, we assume that the boundary is normal to the z direction, and

time t and space x variables are dropped for simplicity. Eq. (1) connects the incoming flux

c′z(nf)
−(c′) and the outgoing flux cz(nf)

+(c) via the scattering kernel B(c|c′). The two

velocities c and c′ belong to dual half-spaces Ω− and Ω+ in R3, respectively, defined below

c′ ∈ Ω− = R2 × R−, c ∈ Ω+ = R2 × R+. (2)
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For fluid in equilibrium, the distribution of velocity is equal to the Maxwell-Boltzmann

distribution

feq(c) = fM(c) =
1

√
2πθ

3 exp

[
−c2

2θ

]
, θ = kBT/m, (3)

where kB is the Boltzmann constant, m the atomic mass, and T the temperature. For rigid

gas molecules, in addition to translational velocity of the center of mass, we must account for

the rotational velocity ω. The scattering kernel must be replaced by B(ω, c|ω′, c′) and the

probability density by f(ω, c). The two half-spaces Ω− and Ω+ are also extended to include

the rotational velocity ω, e.g Ω− = R5 × R− for incident molecules and Ω+ = R5 × R+ for

reflected molecules. It is possible to include the orientation distribution in the scattering

kernel but this will not be considered in the present work. At equilibrium, this density

function is given by

feq(ω, c) = fM(c)fω
M(ω), fω

M(ω) =
1

√
2πθω

d
exp

[
− ω2

2θω

]
, θω = kBT/I. (4)

The quantity I represents the moment of inertia and the power d the rotational degree

of freedom, d = 2 for linear molecules and d = 3 otherwise. It is noted that for linear

molecules, the rotation around its proper axis is not considered.

The scattering kernel B(ω, c|ω′, c′) which is the probability of finding molecules bouncing

with velocity (ω, c) with given colliding velocities (ω′, c′) can be determined by Molecular

Dynamics collision simulation. Gas molecules are beamed at given velocities (ω′, c′) onto the

surface in consideration and the velocity distribution of reflecting molecules associated to

(ω′, c′) is recorded. Next the arriving velocities (ω′, c′) are also varied to cover the incident

velocity space. Generally, if the number of realizations is sufficiently large, we have a large

set of discrete points which can represent the true probability density B(ω, c|ω′, c′).

We are also concerned about the use of the kernel as wall boundary conditions in other

simulation methods (for example Molecular Dynamics, Direct Simulation Monte Carlo or

Lattice Boltzmann). If we use the discrete form of B(ω, c|ω′, c′), output results must be

obtained from the interpolation of known points. This method is accurate but less computa-

tionally convenient. The scattering kernel can be analytically modeled using some physical
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parameters for example Tangential Momentum Accommodation Coefficients (TMAC) or

Energy Momentum Accommodation Coefficients (EAC), etc... Some notable scattering

models are Maxwell-Yamamoto (MY) [11], Cercignani-Lampis (CL) [9] etc... which can

be used for atomistic gas flow simulations and accommodation coefficients can be used to

derive velocity slip and temperature jump coefficients for NSF equations. To account for

the special reflection mechanism of the anisotropic surface, one can use Dadzie-Meolans

(DM) kernel [18] or anisotropic Cercignani-Lampis (ACL) kernel [14] with three different

coefficients associated to the three directions x, y, z.

The MD collision point cloud can be fitted by analytical scattering models and the model

parameters can be identified. However, the data can be scattered and there is no truly

efficient fitting algorithm, for example, one can use the mean square of the difference be-

tween the two probability densities or methods based on accommodation parameters. We

note that constant accommodation coefficients are only meaningful for analytical scattering

kernel listed previously. For realistic gas surface interaction, those coefficients are usable in

approximative sense and can oversimplify the true behavior.

B. Expressions for fluxes, average values and accommodation coefficients

Given molecular quantities Q as function of velocities c,ω, the average value Q and the

flux ΦQ across a plane normal to z can be computed as

Q =

∫
Q(c,ω)fdcdω, ΦQ = n

∫
Q(c,ω)czfdcdω. (5)

Given the fact that all the physical quantities such as density n, temperature T , stress σ,

velocity v, and heat flux q are either average value or flux of molecular quantities, it is

possible to investigate their relations at the boundary by examining the gas wall collisions.

With respect to the wall normal to the z direction, we define influx Φ−
Q and outflux Φ+

Q of

atomic quantity Q(c,ω) at the wall via the expressions

Φ−
Q =

∫
Ω−

|cz|(nf)−Q(c,ω)dcdω, Φ+
Q =

∫
Ω+

|cz|(nf)+Q(c,ω)dcdω. (6)
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From atomistic viewpoint, Φ−
Q, Φ

+
Q can be computed by counting the number of atoms N

crossing the control plane in a given time t

Φ−
Q =

1

t

∑
incident

Q(c,ω) =
N

t
⟨Q⟩i = ν⟨Q⟩i, Φ+

Q = ν⟨Q⟩o, (7)

where the subscript i stands for input (incident), o for output (reflection), ν collision rate.

Here the notation ⟨Q⟩ is the average of molecular quantities Q that cross the control plane

in Molecular Dynamics simulations. By breaking each relation in (5) into two integrals in

half-spaces Ω− and Ω+ as follows

nQ =

∫
Ω−

Q(c,ω)

|cz|
|cz|(nf)−dcdω +

∫
Ω+

Q(c,ω)

|cz|
|cz|(nf)+dcdω,

ΦQ = −
∫
Ω−

Q(c,ω)|cz|(nf)−dcdω +

∫
Ω+

Q(c,ω)|cz|(nf)+dcdω, (8)

and making use of (7) and (6), the flux ΦQ and the average value Q at the wall can also be

expressed as

nQ = Φ+
Q/|cz | + Φ−

Q/|cz | = ν⟨Q/|cz|⟩i+o, ΦQ = Φ+
Q − Φ−

Q = ν⟨Q⟩o−i, (9)

with notation ⟨Q⟩α±β := ⟨Q⟩α±⟨Q⟩β. The relation between the average value Q, and fluxes

Φ+
Q/|cz | and Φ−

Q/|cz | is useful because it is more convenient to compute Q with MD simulations.

Choosing Q = 1 in (9) and noting that Q = ⟨Q⟩i = ⟨Q⟩o = 1, we have the equalities

ν = n
1

⟨1/|cz|⟩i+o

, Φ1 = 0. (10)

Substituting ν/n from the first expression in (10) back into (9) for the general Q, we can

derive that

Q =
⟨Q/|cz|⟩i+o

⟨1/|cz|⟩i+o

, ΦQ =
n⟨Q⟩o−i

⟨1/|cz|⟩i+o

. (11)

We remark that the second relation of (10) is equivalent to the no atom accumulation con-

dition at the wall, i.e the influx is equal to the outflux. If the leaving atoms are fully

thermalized by the wall, the phase density f+ should be replaced by the equilibrium dis-

tribution feq(ω, c) at the wall temperature Tw. The outgoing flux Φ+
Qw

associated to this
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distribution is given by the expression

Φ+
Qw

=

∫
Ω+

|cz|nfeq(ω, c)Qdcdω = ν⟨Q⟩w, (12)

where the subscript w is for outgoing flux at the wall temperature Tw. Since feq(ω, c) is

known from (4) and ν is estimated by setting Q = 1, we can compute the expected values

for thermal wall ⟨Q⟩w. They are functions of the reduced wall temperature θw = kBTw/m

and given in Tab I. It is noted that for the special case where d = 0, the tabulated values

are consistent with previous works for monatomic gas [19].

Component Velocity Energy

Tangential (x, y) ⟨cx⟩w = 0 ⟨c2x⟩w = θw

Normal (z) ⟨cz⟩w = 1
2

√
2πθw ⟨c2z⟩w = 2θw

Total ⟨c⟩w = 3
4

√
2πθw ⟨c2 + I

m
ω2⟩w = (4 + d)θw

TABLE I. Expected values as functions of the reduced wall temperature θw = kBTw/m. For CH4,

the rotation energy is neglected d = 0 and for CO2, d = 2.

As a result, the accommodation coefficient of quantity Q is equivalent to the expression

αQ =
Φ−

Q − Φ+
Q

Φ−
Q − Φ+

Qw

=
⟨Q⟩i−o

⟨Q⟩i−w

or ⟨Q⟩o = (1− αQ)⟨Q⟩i + αQ⟨Q⟩w. (13)

The above expression which is independent of the collision rate ν, is useful for the determi-

nation of the accommodation coefficients using MD method. Usually, the value for ⟨Q⟩w is

known explicitly (see Tab I) and the coefficient can be computed based on Eq. (13). Most

analytical wall models in literature are based on constant accommodation coefficients, which

are independent of the input data nf−. These assumptions may not be true for a general

kernel B(ω, c|ω′, c′) and this is the major disadvantage of using accommodation coefficients

to model realistic surfaces.

When accommodation coefficients are not properly defined, different methods can be used

to compute those coefficients and result differently. For example, in Ref.[19], the authors
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proposed using the least-squares formula

αQ = 1−
∑

collision(Qi − ⟨Q⟩i)(Qo − ⟨Q⟩o)∑
collision(Qi − ⟨Q⟩i)2

, (14)

from the collision clouds. They found that results are very different from those obtained by

Eq. (13).

These observations pose some problems on theories based on the existence of the con-

stant accommodation coefficients for general surfaces. However, interface phenomena like

slip velocity and temperature jumps do exist. Modeling those effects and identifying the

parameters without using accommodation coefficients will be considered in the following.

C. Boundary conditions for Navier Stokes Fourier (NSF) equations

In this subsection, we present a new method to directly determine the macroscopic veloc-

ity and temperature jump coefficients via collision simulations. This completely avoids the

intermediate modeling and simulations based on scattering kernels. As we know, all avail-

able analytical models have limitations. First, they only allow at most three accommodation

coefficients. If we choose to model momentum accommodation effect along one direction,

we have to sacrifice the energy accommodation along this direction. Accommodation ef-

fects for high order moment are also unavailable. Secondly, using constant accommodation

coefficients, like most analytical wall models in literature can be a strong assumption. Nu-

merical evidence in the latter section shows that in some cases, the true behavior deviates

significantly from that hypothesis.

The approach proposed here is independent of scattering model and can be applied to

any surfaces. It can also be extended to deal with general boundary conditions involving

higher order moments. In slip regimes, the usual macroscopic boundary conditions for

velocities vx, vy and reduced temperature jump θ − θw are given in the following forms

vk = −2− αk

αk

σkz

nm
√
2θ/π

, θ − θw = −2− αe

2αe

qz

nm
√
2θ/π

, k = x, y, (15)
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where σxz, σyz are the (minus) shear stress components and qz the normal heat flux at

the wall. Constants αk are the tangential accommodation coefficients associated to the

tangential translational molecular velocities, and αe is the energy accommodation coefficient

associated to its kinetic energy. The above equation where the thermal transpiration is

neglected can be derived from the scattering models. In this paper, we propose a more

general phenomenological form for the boundary conditions

β1kvk = − σkz

nm
√

2θ/π
, β2(θ − θw) = − qz

2nm
√

2θ/π
, k = x, y, (16)

where β1x, β1y and β2 are the dimensionless friction and Kapitza coefficients, depending on

the gas-wall couple. It is clear that we recover the original equation if the coefficients β1k

and β2 are connected to the accommodation coefficients αk and αe via the relation

β1k =
αk

2− αk

, β2 =
αe

2− αe

, k = x, y, (17)

It is noted that the two expressions in (16) can also be used for the cases where the accom-

modation coefficients are not constant.

Using Eqs. (7-11), we shall derive schemes to determine β1k and β2 from MD simulations.

The velocity defined as vk = ck (i.e Q = ck) can be computed by the expression

vk =
⟨ck/|cz|⟩i+o

⟨1/|cz|⟩i+o

. (18)

The (minus) shear stress σkz = ΦmCk
(i.e Q = mCk) can also be computed in the following

way

−σkz = mν(⟨Ck⟩i − ⟨Ck⟩o) = mn
⟨ck⟩i − ⟨ck⟩o

⟨1/|cz|⟩i + ⟨1/|cz|⟩o
= mn

⟨ck⟩i−o

⟨1/|cz|⟩i+o

, (19)

where Ck = ck−vk is the peculiar velocity. Comparing Eqs. (18,19) with (16), we can derive

the interface coefficients βik via the expression

β1k =
⟨ck⟩i−o/

√
2θ/π

⟨ck/|cz|⟩i+o

. (20)

9

http://dx.doi.org/10.1063/1.5016278


Next, the reduced temperature θ = C2 + (I/m)ω2/(3+d) and the heat flux qz = Φ(mC2+Iω2)/2

are given by the equation

θ =
⟨(C2 + (I/m)ω2)/|cz|⟩i+o

(3 + d)⟨1/|cz|⟩i+o

, −qz = mn
⟨(C2 + (I/m)ω2)/2⟩i−o

⟨1/|cz|⟩i+o

, (21)

where d is the number of rotation degrees of freedom of gas molecule, d = 2 for CO2.

Comparing Eqs. (21) with (16), we can calculate the Kapitza coefficient

β2 =
(3 + d)⟨(C2 + (I/m)ω2)/2⟩i−o/(4θ/π)

[⟨(C2 + (I/m)ω2)/|cz|⟩i+o − (3 + d)θw⟨1/|cz|⟩i+o]/
√
2θ/π

. (22)

We note that for monatomic gas, it is sufficient to remove the terms Iω2 and d in the above

expression and obtain

β2 =
3⟨C2/2⟩i−o/(4θ/π)

[⟨C2/|cz|⟩i+o − 3θw⟨1/|cz|⟩i+o]/
√
2θ/π

. (23)

To facilitate the comparison between the numerical results, we normalize stress and heat

flux computed by MD method with suitable quantities and rewrite the phenomenological

law in the following way

β1k =
−σ̂kz

v̂k
, β2 =

−q̂z

∆θ̂
, k = x, y. (24)

Here, the hat notation is used for the normalized quantities,

σ̂kz =
σkz

nmζ2
, v̂k =

vk
ζ
, q̂z =

qz
2nmζ3

, ∆θ̂ =
θ − θw
ζ2

, ζ =
√

2θ/π. (25)

D. Extension to 13 moments equations

Without being limited to NSF equations, the method presented previously can be applied

to higher order model. Given any macroscopic boundary conditions in terms of moments,

the present method can be used to derive the coefficients associated to boundary conditions.

As an example, we consider the boundary conditions of R13 equations written for isotropic

surfaces in dimensionless form[3, 20]

β1 =
−σ̂xz

κ̂1

, β2 =
−q̂z
κ̂2

, β3 =
−m̂xxz

κ̂3

, β4 =
m̂zzz

κ̂4

, β5 =
R̂xz

κ̂5

, (26)
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with

m̂ijl =
mijl

nmζ3
, R̂ij =

Rij

nmζ2
,

κ̂1 =

√
2

πθ

(
Pvx +

1

2
mxzz +

1

5
qx

)
/(nmζ2),

κ̂2 =

√
2

πθ

(
2P (θ − θw)−

1

2
Pv2 +

1

2
θσzz +

R

15
+

5

28
Rzz

)
/(2nmζ3),

κ̂3 =

√
2

πθ

(
1

14
Rxx + θσxx −

1

5
θσzz +

1

5
P (θ − θw)−

4

5
Pv2x −

R

150

)
/(nmζ3),

κ̂4 =

√
2

πθ

(
2

5
P (θ − θw)−

1

14
Rzz −

3

5
Pv2 − 7

5
θσzz +

R

75

)
/(nmζ3),

κ̂5 =

√
2

πθ

(
Pθvx −

11

5
θqx −

1

2
θmxzz − Pv2vx + 6Pvx(θ − θw)

)
/(nmζ4). (27)

The quantities P,R,Rij and mijl are defined from the moments

P = nmθ +
1

2
σzz −

1

120

R

θ
− 1

28

Rzz

θ
, Rij = mnC2(CiCj − C2/3δij)− 7θσij,

R = mn(C4 − 15θ2), mijl = mnCiCjCl − C2(Ciδjl + Cjδil + Clδij)/5,

k = x, y, i, j, l = x, y, z. (28)

These original boundary conditions are derived for Maxwell molecules and Maxwell scat-

tering kernel where all the coefficients are identical β1 = β2 = ... = β5 = α/(2 − α) with α

being the accommodation coefficient. Moments R,Rij and mijl are connected to stress, heat

flux, velocity, temperature and their derivatives via a regularization procedure [3, 21, 22].

Although the derivation conditions are rather restrictive, we shall assume that they are

valid and determine the coefficients β1, β2, ..., β5. We shall base directly on the moment

definitions Eqs. (28) which are independent of the regularization methods and also relax

the conditions that all coefficients β1, β2, ..., β5 must be identical. We note that in Ref. [21],

these authors already consider that β1, β2, ..., β5 can be different and take empirical values

allowing matching with a more accurate method. In these cases, those coefficients are used

to fix the Knudsen layer effect that the R13 equation fails to capture completely. This

empirical approach seems to be incompatible with the rigorous mathematical derivation of

R13 equations.
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E. Generation of pre-collision velocity

Molecular Dynamics simulation requires generating velocities of atoms that cross the

control plane and collide with the wall. The (unnormalized) distribution of the latter is

|cz|f−(c,ω) with cz < 0 as seen in the previous section. In this paper, we use three types of

distribution

- The Maxwell Boltzmann (MB) distribution

For molecular gas |Cz|f−(c,ω) = |Cz|fM(C)fω
M(ω).

For monatomic gas |cz|f−(c) = |cz|fM(C). (29)

The parameters of the distribution are the mean velocity v and the reduced temperature

θ. Using this distribution, we can model equilibrium system where the fluid is stationary

v = 0 and the temperature is uniform θ = θw or non-equilibrium system by assuming that

the gas adjacent to the wall is in local equilibrium with temperature and velocity different

from the wall, i.e v ̸= 0, θ ̸= θw.

- The Chapman-Enskog (CE) distribution [23, 24]

|cz|f−(c) = |Cz|fCE(C). (30)

In addition to temperature θ and mean velocity v, there are also parameters associated to

heat flux qk and shear stress σik. This distribution is for non-equilibrium monatomic gas.

- The R13 distribution [20, 22]

|cz|f−(c) = |Cz|fR13(C). (31)

The last two distributions CE and R13 are for monatomic gases with expressions given in

Appendix A. The generation of the input velocity is done via the Acceptance-Rejection

approach. For example, in Ref. [25], a scheme to generate distributions in the form f(c) =

fM(C)Γ(C) where Γ(C) is a polynomial of C, is proposed. The distribution to be treated

in this paper is slightly different since we are limited to the half-space cz < 0 and there is a
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function |cz| standing before fM(C) due to the flux definition (see Appendix A).

III. NUMERICAL SIMULATIONS AND RESULTS

A. Molecular Dynamics model

We study the collision of gas molecules, methane (CH4) and carbon dioxide (CO2) on

a graphite wall (C atoms). The system contains two parts: the reservoir and the collision

zone. The MD simulation is only done in the collision zone and the pre-collision velocity

of gas molecules is generated directly at the stochastic boundary between the reservoir and

the collision zone. Two graphite wall models will be considered. The first is a smooth

wall model composed of 3 graphene layers with dimensions 17.04 Å× 17.22 Å (336 carbon

atoms). The second is a rough model where a narrower band of graphene with surface

8.52 Å × 17.22 Å is added on the smooth surface (392 carbon atoms). Due to the surface

geometry and symmetry, the scattering behavior of the smooth model is close to being

isotropic and that of the rough model is anisotropic. We define the x and y directions as

respectively “armchair” and “zigzag” directions, and the z direction as the normal direction

to the graphite plane. During the simulation, the lowest sheet is fixed and the second layer

is maintained at constant temperature (350 K for CH4 model and 600 K for CO2 model) by

Nose-Hoover thermostat with the relaxing temperature parameter equals to 100 time steps.

The two final layers are free to interact with the gas molecules. We use periodic boundary

conditions for x, y directions, and we fix the height of box along z direction. The gas-wall

truncation distance is set to 15 Å from the upper layer, and the stochastic boundary is

located at the truncation distance from the graphite wall. A simple sketch of the system

and snapshots of MD simulations are shown in Fig. 1.

All MD simulations are performed with LAMMPS (Large-scale Atomic/Molecular Mas-

sively Parallel Simulator) package [26]. A typical simulation of 105 collisions takes roughly

50 hours on an architecture of 92 Intel(R) Xeon(R) processors 2-3 GHz. The adaptive

intermolecular reactive bond order (AIREBO) potential [27] is used for the interaction be-

tween the graphite carbon atoms. The CH4 molecule is modeled as a united atom and its
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FIG. 1. Simple sketch of the system. The stochastic boundary is indicated by the dashed line

and the graphite wall is indicated by the solid line. Snapshots of MD simulations show the local

orientation of the smooth (isotropic) and rough (anisotropic) systems.

interaction with graphite atoms is governed by the Lennard Jones (LJ) potential

V = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
, (32)

where r is the distance between two atoms under consideration and σ and ϵ the parameters

of the LJ model. Regarding the CO2 molecules, we do not consider the contribution of the

internal degrees of freedom (bending/stretching) and use the rigid model [28]. The inter-

action of each site with the graphite atoms is also of LJ type with parameters taken from

Ref. [5] (see Table II). After equilibrating the graphite system at the given temperature

(106 time steps of 1 fs), gas molecules are inserted one by one in the collision zone. Only

after one collision event, i.e a molecule interacts with the wall and goes out of the collision

zone, another molecule is inserted in the zone from a random position at the stochastic

boundary (for CH4 and CO2) and with a random orientation (for CO2). The residence

time is considered negligibly small with respect to the flying time outside this zone and the

velocities at the entrance and the outlet are collected (see Fig. 2).

Some comments can be made about the models for CH4 and CO2 used in the present

work. Both rigid molecule models do not account for the vibrational internal degrees of

freedom. The bending mode of CO2 associated with a wavenumber of 667 cm−1 [29] is the

most concerned by an excitation due to collisions with the solid surface since this mode is

the lowest energetic. The CO2 molecule collides with a surface at 600 K, i.e. kBT = 417
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cm−1. Using Boltzmann statistics, it can be estimated that only 20% of the CO2 molecules

may be concerned by such an excitation. The lowest energetic vibrational mode of CH4

is the angle deformation mode associated with a wavenumber at 1306 cm−1 [29] and this

molecule collides a surface at 350 K (kBT = 243 cm−1). The Boltzmann statistics indicate

that only 5% of the molecules would be excited. From these estimates and for simplification,

CO2 and CH4 are kept rigid.

σ[Å] ϵ[meV]
CH4 - C (Graphite) 3.550 5.547

C (CO2) - C (Graphite) 3.059 2.418
O (CO2) - C (Graphite) 3.197 4.091

TABLE II. LJ parameters for the interaction of CH4 and CO2 with the graphite surface.

FIG. 2. A collision showing the trajectory of a gas molecule.

We implement 3 simulation schemes to study gas-wall models and determine the model

coefficients. They are different in terms of the gas state (equilibrium/non-equilibrium) and

the associated velocity generator.

- Batch average (BA) scheme: We repeat the same incident velocity (ω′, c′) many

times and record the reflected velocity (ω, c) which is a distribution. To generate samples,

the incident velocity is taken from equilibrium distribution and the reflected velocity is aver-
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aged. By this way [30], we can examine the accommodation coefficients via their definition

(Eq. (13)). In Fig. 3, We have plotted the input quantities ⟨Q⟩i against output quantities

⟨Q⟩o, where Q = cx, cy, cz or c2 + Iω2/m. In the ideal case, the data population should

concentrate along a straight line and its slope corresponds to the constant accommodation

coefficient αQ (see section III.B for details).

- Stochastic equilibrium (SE) scheme: The reservoir is considered to be in equilib-

rium. The pre-collision velocity (ω′, c′) for each collision is generated using equilibrium

distribution at zero mean velocity and at the same temperature as the graphite wall. By

this way, we obtain numerical estimates of the density B(ω, c|ω′, c′). The accommodation

coefficients can be extracted using (14) (see section III.B for details).

- Stochastic non-equilibrium (SN) scheme: The non-equilibrium gas is considered.

Depending on the problems, we use Maxwell-Boltzmann (MB), Chapman Enskog (CE) or

R13 distribution as discussed in the previous section. The surface can be modeled atom-

istically (AM) as described from the beginning of the present section III.A. It can also be

modeled statistically using the non-parametric (NP) model B(ω, c|ω′, c′). The latter is

constructed by the scattering results on the atomic model, which is detailed at the end of

section III.B.

The simulation results will be analyzed using the theory we have proposed in the pre-

vious section.

B. Determination of accommodation coefficients and construction of non-parametric

wall model from collision data

As mentioned previously, the accommodation coefficients are parameters based on Eq.

(13). To verify this assumption, it is sufficient to study incident fluxes of constant velocity.

Using BA scheme for the couples CH4/CO2-Graphite (smooth and rough surfaces), we set

up 100 sampling groups and each group contains 500 collisions with the same incident

velocity. These 100 incident velocities are drawn from equilibrium distribution at the same

temperature as the wall. Then, we average the reflected values in the group for later anal-
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ysis. Theoretically, if the ratio between the input and the output values are constant, the

collision data will form a straight line. In Fig. 3, we find a strong correlation between the

input and the output velocities. For the tangential velocity, despite some slight curvature

the relation between the input and output is visibly linear for most of the data. However,

the linear regression works less well for the normal velocity and especially for the kinetic

energy. These data suggest that Eq. (13) is not valid for these cases and linear coefficients

obtained by fitting (see Tab. III) are not representative.

Parametric studies based on varying the number of samples per input velocity from 20

to 1000 show that the scattering of energy data is always present. Given the fact that the

results for cx and cy are clearly correlated, the energy data merit more detailed investigation

to understand the origin of the deviation. We still use the same data and decompose the ki-

netic energy into tangential and normal components c2n, c
2
t . In Fig. 4(a) and (b), we can see

that the tangential and normal kinetic energy data ⟨c′2t ⟩ vs. ⟨c2t ⟩, ⟨c′2n ⟩ vs. ⟨c2n⟩ are strongly

correlated. However, like the data ⟨c′x⟩ vs. ⟨cx⟩ and ⟨c′z⟩ vs. ⟨cz⟩ in Fig. 3, their slopes

are different. There is a strong contrast between the tangential reflection c2t which is more

specular-like (energy mostly conserved after collision) and the normal reflection c2n which is

more diffusive-like (energy close to the walls’ after collision). On the other hand, in Fig. 4(c)

and (d), the data ⟨c′2t ⟩ vs. ⟨c2n⟩ and ⟨c′2n ⟩ vs. ⟨c2t ⟩ are scattered and the correlation is weak. It

is suggested that the combination of different tangential and normal reflection behaviors can

be responsible for the scattering of the total energy data c2. As a final remark, the energy

data scattering exists in literature models, especially for parametric models like ACL/CL

or DM which are not based on a constant energy accommodation coefficient. Indeed, Fig 5

shows that the parametric kernel ACL/CL with suitable parameters has produced the same

pattern, i.e energy data scattering, as the MD results.

Next, with the SE scheme, we simulated 105 collisions on graphite surfaces. The input

velocities are taken from equilibrium distribution and results are presented in Fig. 6. From

these figures we can analyze the correlation between incident and reflected velocities on

graphite wall then we can compute the accommodation coefficients from Eq. (14) issued

from [19]. It is noted that due to the equilibrium state, Eq. (13) takes the form 0/0 and

cannot be used to determine the accommodation coefficients in this case. We find that for
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FIG. 3. Correlation analysis using BA scheme for CH4/CO2-Graphite. Columns (a), (b), (c)

represent the velocity (nm/ps) along x, y, z directions respectively and column (d) the kinetic

energy for CH4 and CO2 (the prefactor m/2 is removed for simplicity). The horizontal axis shows

the incident values and the vertical axis the reflection values. The solid lines represent the fit

by least squares linear regression using Eq. (13). The diagonal dashed line and the horizontal

dashed line indicate the zero accommodation case (α = 0) and full accommodation case (α = 1),

respectively.

smooth graphite surface, the incident and reflected velocity data have significant correlation

in x and y directions. Despite its crystalline nature, the surface behavior is isotropic and no

visible difference is observed between directions x and y. The accommodation coefficients

calculated by the least-squares method [19] in Tab. III also confirm this remark. However,

the influence of periodic roughness affects the anisotropy of the surface (second row figures)

and the magnitude of the accommodation coefficients. We can see that the scattering is
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FIG. 4. Detailed analysis of kinetic energy of CH4 beamed on the smooth surface. The tangential

kinetic energy component c2t = c2x + c2y and the normal kinetic energy component c2n = c2z are

used for analysis. Subfigures (a), (b), (c), (d) show the correlation between incident energy and

reflective energy components.

0 2 4
〈c′2〉 (nm2/ps2)

0

2

4

〈c
2
〉
(n
m

2
/p

s2
)

Atomic

(a)

0 2 4
〈c′2〉 (nm2/ps2)

0

2

4

〈c
2
〉
(n
m

2
/p

s2
)

ACL

(b)

FIG. 5. Energy data scattering observed from (a) MD simulations, (b) parametric ACL model

with parameters αx = αy = 0.16 (constant tangential momentum accommodation coefficient) and

αz = 0.915 (constant normal kinetic energy accommodation coefficient)

more diffusive along both directions but more pronounced for x direction. In all cases, the

correlation between cz and c′z as well as the correlation between c2 and c′2 are very weak,

and close to the diffusive wall.

We note that all analytical surface models in literature are based on the accommoda-

tion coefficients. Thus, we can construct scattering kernels which can serve as boundary

conditions for atomistic method like MD or DSMC. The main advantage of these kernels

is the simplicity in implementation but theirs drawbacks are their differences from the real

surface behavior. This can be explained from the fact that they rely on the existence of the

limited number of constant accommodation coefficients. To reconstruct B(ω, c|ω′, c′), we

do not use any parameter and make no assumption on the distribution form except for the
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FIG. 6. Collision data of incident and reflected velocities for the CH4/CO2-Graphite system.

Both stochastic reservoir and graphite wall are maintained at 350 K for CH4 and 600 K for CO2.

Columns (a), (b), (c) represent the velocity (nm/ps) along directions x, y, z, respectively, and

column (d) the kinetic energy for CH4 and CO2 (the prefactor m/2 is removed for simplicity). The

horizontal axis shows the incident values and the vertical axis the reflection values. The solid lines

indicate the linear least square fit of incident and reflected values using Eq. (14). The diagonal

dashed line and the horizontal dashed line indicate the zero accommodation case (α = 0) and full

accommodation case (α = 1), respectively.

decomposition of each components

B(ω, c|ω′, c′) =
3∏

i=1

Bi(ci|c′i)Bω
i (ωi|ω′

i). (33)

The above relation reduces the realization of B(ω, c|ω′, c′) to the realizations of independent
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Gas Surface Scheme αx(cx) αy(cy) αz(cz) αe(c
2 + I

m
ω2)

CH4

Isotropic
SE 0.158 0.160 0.915 0.559
BA 0.162 0.154 0.916 0.691

Anisotropic
SE 0.839 0.440 0.948 0.775
BA 0.857 0.438 0.938 0.787

CO2

Isotropic
SE 0.102 0.104 0.885 0.515
BA 0.105 0.109 0.888 0.521

Anisotropic
SE 0.737 0.196 0.942 0.682
BA 0.755 0.197 0.936 0.709

TABLE III. Accommodation coefficients computed by stochastic equilibrium (SE) simulation

method using data of Fig. 6 and by batch average (BA) simulation method in Fig. 3: αl co-

efficient is associated to the velocity cl, αe is the kinetic energy (the angular velocity of CH4 is

zero).

univariate densities Bi(ci|c′i) and Bω
i (ωi|ω′

i). We note that, theoretically, the construction of

B(ω, c|ω′, c′) doesn’t depend on the above assumption. However, the usual non-parametric

estimates of multivariate density require a very large number of samples to be accurate (the

curse of dimensionality) and more advanced learning methods are needed to solve this issue.

Without losing generality, we take the case of translation velocity ci. The probability

density function (PDF) of reflective velocity with given incident velocity P (ci|c′i) can be de-

termined by joint PDF of reflective-incident velocity P (ci, c
′
i) and marginal PDF of incident

velocity P (c′i) with relation:

Bi(ci|c′i) = P (ci|c′i) =
P (ci, c

′
i)

P (c′i)
. (34)

The discrete collision data can be used to estimate the joint probability P (ci, c
′
i) by his-

togram or kernel density estimation method. After determining Bi(ci|c′i), we can use it to

generate the outgoing velocities at any given incident velocities. This can be done via the

use of conditional cumulative distribution function (CDF) F (ci|c′i).

To illustrate the robustness of the non-parametric model, we take the case of anisotropic

surface and plot the probability density of input and output velocities of different kernels

together with the MD data in Fig. 7. The considered kernels are Dadzie-Meolans (DM)

[12] and anisotropic Cercignani-Lampis (ACL) [31], and non-parametric kernel constructed

numerically from MD simulations (see Appendix B). The accommodation parameters of
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ACL kernel (αx associated to cx, αy to cy and αz to c2z) and DM kernels (αx and αy are the

same as ACL kernels and αz is associated to cz) are determined by SE simulations using Eq.

(14). One can find that the DM kernel that includes mirror-reflected mechanisms is very

different from the true collision data, the probability density shows a strong discontinuity.

The ACL kernel performs better but the non-parametric kernel is the most faithful to the

MD data. Such differences can have significant influences on the results based on the kernel.

FIG. 7. Velocity probability density of MD simulations and from some scattering kernels: Dadzie-

Meolans (DM) [12], Anisotropic Cercignani-Lampis (ACL) [31] and non-parametric (NP) kernel

constructed from MD data. The MD data are from collision simulation of CH4 (350 K) at

anisotropic atomic graphite wall (350 K). Columns (a), (b), (c) represent the velocity (nm/ps)

at directions x, y, z, respectively, and column (d) the kinetic energy for CH4 (the prefactor m/2

is removed for simplicity). The horizontal axis shows the incident values and the vertical axis the

reflection values.
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C. Direct computation of interface coefficients

The methods of determining the accommodation parameters like SE and BA depend on

the existence of these constant coefficients. The BA gas beam experiments show that the

postulates are rather restrictive (see e.g. Fig. 3, column d). Deriving those coefficients by

fitting may correspond values in average sense without connection to the boundary condi-

tions (16). Nevertheless, the slip and jump phenomena still exist and it is of interest to

identify the coefficients associated to these effects. In this situation, one must make use

of the non-equilibrium state of the gas near the wall. In principle, the more realistic the

gas distribution is, the better interface coefficients we obtain. Before using more sophisti-

cated distribution like Chapman-Enskog or R13 density, we shall examine the workability

of a simpler distribution, MB at different temperatures and mean velocities. For β1x, β1y

associated to the friction coefficients, we use Maxwellian with the same temperature as the

wall but non zero mean velocity. The latter is a vector lying in the bisector plane (making

angle π/4 with respect to axis x and y) with variable magnitude. For β2 related to the

Kapitza coefficient, we use Maxwellian with zero mean velocity but different temperatures.

Specifically, the temperature ranges from 250 K to 450 K for CH4, from 500 K to 700 K for

CO2 and mean velocities range from -0.05nm/ps to 0.05nm/ps for both CH4 and CO2. At

this stage, we have two wall models:

- Atomic wall model (AM)

- Non-parametric wall model (NP)

for comparisons. To examine the connection between the quantities in the boundary models,

results for the slip velocities, the temperature jump, stress and heat flux obtained by Eqs.

(18-23) are plotted together in Fig. 8.

We see a clear linear relation between −σ̂kz and v̂z as well as between −q̂z and ∆θ̂ in

Fig. 8. The slopes of fitted lines represent the value of the dimensionless friction coefficient

β1k (subfigures a and b) and the dimensionless thermal coefficient β2 (subfigure c). The

friction coefficient of the x direction increases 8 times from smooth wall to rough wall,

compared with the 3 times increase in the y direction. It’s also interesting to see that the β2
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FIG. 8. Method of computing coefficients βs by non-equilibrium simulation, MB distribution and

atomic wall model (AM). (a) −σ̂kz and v̂k of the isotropic graphite wall. (b) −σ̂kz and v̂k of the

anisotropic graphite wall. (c) −q̂z and ∆θ̂ are calculated by incident and reflective velocities on

isotropic and anisotropic graphite wall.

coefficient of smooth wall is smaller than the rough wall’s (about 2 times). These tendencies

coincide with reality that rough surface friction and thermal resistance are larger than the

smooth surface ones. For comparison with theoretical models where the accommodation

coefficients are connected to the interface equations Eqs. (17), the results of CH4 and of

CO2 are plotted in Tab. IV.

In terms of friction coefficient β1k, the results of the non-equilibrium method with MB distri-

bution are very close to those obtained with the methods based on equilibrium distribution.

This is reasonable since the BA method also shows that the accommodation model works

well for this case. For thermal coefficient β2, the SN method seems to agree better with the

coefficient derived from SE method than the BA method. This observation can be explained

from the scattering data in the BA method, meaning that the theoretical definition of the

thermal accommodation coefficient is no longer valid. In this case, an effective coefficient

which reproduces the thermal jump effect can be determined.
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Surface Method
CH4 CO2

β1x β1y β2 β1x β1y β2

Isotropic

SE (α) 0.087 0.087 0.388 0.054 0.054 0.347
SN (MB-AM) 0.093 0.093 0.361 0.053 0.053 0.488
SN (MB-NP) 0.095 0.095 0.382 0.052 0.052 0.469
SN (CE-NP) 0.094 0.094 0.336 - - -

Anisotropic

SE (α) 0.722 0.282 0.632 0.584 0.108 0.518
SN (MB-AM) 0.709 0.299 0.627 0.444 0.103 0.756
SN (MB-NP) 0.720 0.298 0.644 0.459 0.102 0.728
SN (CE-NP) 0.646 0.280 0.553 - - -

TABLE IV. The β coefficients of CH4 and CO2 computed by SN methods and compared with values

obtained from accommodation coefficients (SE method, Tab. III) via formula β1k = αk/(2− αk),

β2 = αe/(2− αe). MB: Maxwell-Boltzmann distribution, CE: Chapman-Enskog distribution, AM:

atomic model for wall, NP: the wall is modeled by non-parametric scattering kernel B(c|c′), instead
of atomic wall (as in MB-AM method). To increase the precision of the slip coefficients for smooth

(isotropic) surface, we average values along β1x and β1y.

D. Influences of non-equilibrium distributions and discussion

Essentially based on the same procedure as previous subsection, we study the influence

of the near wall distribution and the surface models on the interface coefficients. We focus

on the monatomic gas CH4, NP wall model and the following non-equilibrium distributions:

- Chapman-Enskog distribution

- R13 distribution

To generate CE and R13 distributions, we use the Acceptance-Rejection approach described

in Appendix A. In addition to temperature and mean velocity, the CE and R13 distributions

require input fluxes and moments which are generally unknown. We carry out the following

iterations:

• Step n

- Generation of input distribution using CE (or R13) distribution with average moments

of the previous steps n− 1.

- Compute the output distribution using the kernel B(c|c′).

- Calculate the average moments at the wall from input and output distributions.

- Next step.

The loop stops when all the average moments converge (see e.g Fig. 9). The input
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distribution at the first step n = 1 can be initialized with MB distribution as the previous

SN/MB scheme, i.e all fluxes (heat fluxes, stress, etc...) are set zero. The latter quantities

become non-zero after the initialization (n ≥ 2) and we can effectively use the CE and R13

generator. Numerical tests show that while the average moments at convergence depend on

the initialized values, the value of β coefficients are insensitive to them.
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FIG. 9. Convergence test of CE-NP kernel iteration for rough anisotropic surface. Subfigures (a):

Friction coefficient β1x, (b) Gas temperature (c) Gas velocity.

About 107 collisions with scattering kernel are simulated. In Tab. IV, we find that all the

methods yield results close to each other, especially for isotropic surface. For anisotropic

surface and friction coefficient along x, the method based on CE shows some discrepancies

with the rest (although the coefficient is of the same range of order). The visible differences

can be explained from the influences of heat flux and shear stress at convergence. By exam-

ining in detail the convergence of β1x in Fig. 9, we find the final parameter is different from

the first iteration one. It is suggested that the presence of the roughness perturbs consider-

ably the phase density. Due to the realistic kernel B(c|c′), the output is not necessarily of

the same distribution class as the input. This raise questions on the use of CE distribution

near the wall, especially the component cx along the roughness directions. Another possible

reason is that there may be a considerable coupling between different moments which must

be taken into account in the phenomenological equations. The complete answer can only

be found from flow simulations using the same surface model, but with different input

distributions.

Next we consider another non-equilibrium distribution associated to R13 moment equa-

tions. The boundary conditions are originally derived for Maxwell scattering kernel with

one accommodation coefficient (isotropic surface) and all β coefficients being identical. In

26

http://dx.doi.org/10.1063/1.5016278


order to test the R13 generator, we use first the Maxwell kernel with α = 0.3 and obtain

interface coefficients. From Tab. IV, we find that these coefficients are overall in good agree-

ment with the theory prediction β = α/(2− α) = 0.176. Most of the computed coefficients

are within less than 1% error from the analytical value. This is a good starting point to

proceed with our graphite surface.

We use NP model for our graphite surface. The results show that coefficients β1, β2 agree

with the computed values for NSF equations listed in Tab. V. Coefficients β3, β4, β5 corre-

spond to boundary conditions for higher order terms. As the overall remark, all coefficients

β are different, showing that the use of Maxwell kernel cannot capture correctly the bound-

ary conditions at the wall. In this case, the present approach can provide an alternative and

reliable solution for any surface.

Surface Kernel β1 β2 β3 β4 β5

Test Maxwell 0.177 0.177 0.160 0.173 0.161
Graphite NP 0.097 0.373 0.024 0.028 0.129

TABLE V. β coefficients of R13 equations using Maxwell kernel (α = 0.3) and non-parametric

scattering kernel.

IV. CONCLUSIONS

It is known that gas flows at high Knudsen number are present in micro-nanopore under-

ground. To accurately obtain macroscopic transport behavior (permeability for example),

we must use relevant gas model and boundary conditions at the pore scale. The present

paper is devoted to the construction of gas-wall interaction models and to the determina-

tion of boundary conditions for continuum equations such as Navier-Stokes-Fourier or R13

equations.

Based on MD simulation of independent collisions of CH4 and CO2 rigid molecules on

graphite surface, we collect data of pre- and post-collision and numerically recover the

scattering kernel for the gas-wall couples. Specifically, it can be used to construct non-

parametric models capable of generating a distribution of post-collision velocity, given the

pre-collision velocity. The effective accommodation coefficients can also be obtained from
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the scattering kernel using a different fitting procedure.

In the general case, a method is proposed to directly compute the parameters of any

phenomenological boundary conditions without using the concept of accommodation coeffi-

cients. The approach relies on the general scattering kernel issued from MD with suitable

input gas distribution, which is similar to the theoretical method of Grad [24]. Such an

approach is of interest since it can capture more accurately the distribution of reflection

velocity. There are still some drawbacks to the current version which will be improved

in the future, for example, the use of rigid gas molecule model and the assumptions of

independence between the velocity components. Another interesting subject which has not

been treated in this work is the Knudsen layer effect. We note that by simulating flows

using non-parametric kernel, one can obtain correction coefficients to the microslip obtained

by the present paper.

APPENDIX

A. Generation of non-equilibrium distribution

Generating pre-collision velocity of particle requires first the PDF of initial velocity. The

Maxwell-Boltzmann distribution is used for a equilibrium dilute gas at temperature T . In

order to generate the pre-collision velocity, we rewrite the flux associated to the normalized

MB distribution f ∗
M(C̃) as:

f ∗
M(C̃) = 2

|C̃z|
π

exp
(
−C̃2

)
, C̃z < 0, (35)

where C̃ = C/
√
2θ and θ = kBT/m. This distribution is constituted of three independent

distributions: two normal distributions along x, y and a Rayleigh distribution along z. Then

we can calculate the flux associated to Chapman-Enskog distribution f ∗
CE(C̃) by the relation:

f ∗
CE(C̃) = ΓCE(C̃)f ∗

M(C̃), C̃z < 0, (36)
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where

ΓCE(C̃) = 1+

(
q̃xC̃x + q̃yC̃y + q̃zC̃z)(

2

5
C̃2 − 1)

)
+2
(
σ̃xyC̃xC̃y + σ̃xzC̃xC̃z + σ̃yzC̃yC̃z

)
+σ̃xxC̃

2
x + σ̃yyC̃

2
y + σ̃zzC̃

2
z , (37)

with

σ̃ij =
σij

p
, q̃i =

qi

p
√

θ/2
, p = mnθ, i, j = x, y, z. (38)

Similarly, the R13 distribution can be calculated from MB distribution by the relation:

f ∗
R13(C̃) = ΓR13(C̃)f ∗

M(C̃), C̃z < 0, (39)

where

ΓR13(C̃) = 1 + φ13(C̃) + φR1(C̃) + φR2(C̃),

φ13(C̃) =
(
q̃xC̃x + q̃zC̃z

)(2

5
C̃2 − 1

)
+ 2σ̃xzC̃xC̃z + σ̃xxC̃

2
x + σ̃yyC̃

2
y + σ̃zzC̃

2
z ,

φR1(C̃) =
1

3

(
m̃xxxC̃

3
x + m̃zzzC̃

3
z

)
+ m̃xxzC̃

2
xC̃z + m̃xzzC̃xC̃

2
z + m̃xyyC̃xC̃

2
y + m̃zyyC̃zC̃

2
y ,

φR2(C̃) =
(
R̃xxC̃

2
x + R̃yyC̃

2
y + R̃zzC̃

2
z + 2R̃xyC̃xC̃y

)(C̃2

7
− 1

2

)
+

R̃

30

(
C̃4 − 5C̃2 +

15

4

)
,

(40)

with

m̃ijl =
mijl

p
√

θ/2
, R̃ij =

Rij

pθ
, R̃ =

R

pθ
i, j, l = x, y, z. (41)

Since the CE and R13 distributions have analytical PDF expression, we can generate random

velocities corresponding to these distributions by the Acceptance-Rejection method. The

specific steps are as follows:

1. Find BCE = max(|σij|, |qi|) for distribution CE, BR13 = max(|σij|, |qi|, |mijk|, |Rij|, |Rij|)

for distribution R13 .

2. Set amplitude parameter ACE = 1 + 30BCE and AR13 = 1 + 60BR13.
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3. Generate a normalized velocity C̃MB obeying MB distribution (Eq. (35)), and a uniform

random number U(0, 1).

4. If ΓCE(C̃MB) ≥ AU , accept C̃MB as normalized CE distribution velocity C̃CE, and if

ΓR13(C̃MB) ≥ AU , accept C̃MB as normalized R13 distribution velocity C̃R13; else reject

this velocity and return to step 3;

5. The real velocity is c =
√
2θC̃MB + v, v is the mean velocity.

During the Acceptance-Rejection process, the function Γ(C̃) can be negative. This velocity

is rejected in this case.

B. Method for generating non-parametric kernel

Different from parametric scattering models, like CL or Maxwell, the non-parametric

wall model is not specified a priori but is instead determined from data. Using the discrete

incident-reflection velocities data, we can generate the reflective velocities at any given

incident velocities. The implementation of Eq. (34) is as follows:

1. Discretize the velocity space c′i and ci to a series of velocity points with sufficient small

interval. Choose a volume ∆c′i and let us call class c′i the collisions in the volume centered

at c′i.

2. Use sliding window method to count the number of collision ∆N in class c′i .

3. Calculate discrete CDF of every class c′i as F (x|c′i) =
∆N(ci ≤ x)

∆N
.

4. Generate a uniform random number U between 0 to 1, then the reflective velocity is

ci ∼ F−1(U |c′i).

The procedure is shown in Fig. 10. The reflective rotation velocity can be obtained by the

same procedure.

FIG. 10. Generation of velocity using non-parametric kernel derived from MD collision clouds
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