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Steady distribution of the incremental model for bacteria
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Pierre Gabriel ∗ Hugo Martin †
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Abstract

We study the mathematical properties of a model of cell division structured by two variables – the
size and the size increment – in the case of a linear growth rate and a self-similar fragmentation kernel.
We first show that one can construct a solution to the related two dimensional eigenproblem associated
to the eigenvalue 1 from a solution of a certain one dimensional fixed point problem. Then we prove the
existence and uniqueness of this fixed point in the appropriate L1 weighted space under general hypotheses
on the division rate. Knowing such an eigenfunction proves useful as a first step in studying the long
time asymptotic behaviour of the Cauchy problem.

Keywords Structured populations, cell division, transport equation, eigenproblem, long-time asmptotics,
integral equation

AMS Class. No. Primary: 35Q92, 35P05, 45K05, 45P05, 92D25; Secondary: 35A22, 35B40, 35B65

Introduction

In structured population dynamics, finding the structuring variable(s) which best describes a phenomenon
is a crucial question. For a population of proliferating cells or bacteria the variables usually considered
are age, size (see [27, 12, 18]) or a combination of both (see [1, 24, 10] for modeling and [26, 12, 10, 6]
for mathematical analysis). Recent experimental work highlighted the limits of these models to describe
bacteria, and a new variable to trigger division emerged: the size-increment, namely the size gained since
the birth of the cell (see [22] and references therein for a review of the genesis of the related model). This
so called ‘adder principle’ ensures homeostasis with no feedback from the bacteria and explains many
experimental data. In this model, bacteria are described by two parameters: their size-increment and
their size, respectively denoted by a and x in the following (the choice of letter a is reminiscent from the
age variable, since as for the age, the size increment is reset to zero after division). This choice of variables
is motivated by the main assumption of the model, which is that the control of the cellular reproduction
is provided by the division rate B which is supposed to depend only on a, and the growth rate g which
is assumed to depend only on x. With the variables we introduced, the model formulated in [25] reads







∂tn(t, a, x) + ∂a(g(x)n(t, a, x)) + ∂x(g(x)n(t, a, x)) +B(a)g(x)n(t, a, x) = 0, t > 0, x > a > 0,

g(x)n(t, 0, x) = 4g(2x)

∫ ∞

0

B(a)n(t, a, 2x) da, t > 0, x > 0.

The function n(t, a, x) represents the number of cells at time t of size x that have grown of an increment
a since their birth. The boundary term denotes an equal mitosis, meaning that after division, a mother
cell gives birth to two daughters of equal size. However, if this special case of equal mitosis is appropriate
to describe the division of some bacterium (e.g. E. Coli), it is inadequate for asymetric division (like
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Figure 1: schematic representation of the variables on an E. coli bacterium.

yeast for instance) or for a fragmentation involving more than two daughters (as in the original model
formulated for plant growth in [10]). In the current paper, we propose to consider more general division
kernels. We assume that when a cell of size x divides, it gives birth to a daughter of size zx with a certain
probability which depends on z ∈ (0, 1) but is independent of x. Such fragmentation process is usually
called self-similar. More precisely the number of daughters with a size between zx and (z+dz)x is given
by µ([z, z + dz]), where µ is a positive measure on [0, 1]. The model we consider is then formulated as







∂tn(t, a, x) + ∂a(g(x)n(t, a, x)) + ∂x(g(x)n(t, a, x)) +B(a)g(x)n(t, a, x) = 0, t > 0, x > a > 0,

g(x)n(t, 0, x) =

∫ 1

0

g(
x

z
)

∫ ∞

0

B(a)n(t, a,
x

z
) da

dµ(z)

z
, t > 0, x > 0.

(1a)

(1b)

It appears that this model is a particular case of the one proposed in the pioneer work [10] for plants
growing in a single dimension, mixing age and size control. Indeed, in this paper the authors noticed that
in the case of a deterministic and positive growth rate, a size/age model is equivalent to a size/birth-size
through the relation a = x−s, where s denotes the birth-size (see Figure 1). They preferred working with
the size/birth-size description since in this framework the transport term acts only in the x direction. In
the case when g is independent of x and B is bounded from above and below by positive constants, it is
proved in [26] for µ a uniform measure on [0, 1], and in [12, Chapter V] for the equal mitosis, that the
solutions to Equation (1) converge to a stable distribution as time goes to infinity. In the present paper
we propose to study the model (1) in the case of a linear growth rate (see [1] for a discussion on this
hypothesis). More precisely we are interested in populations which evolve with a stable size and size-
increment distribution, i.e. solutions of the form n(t, a, x) = h(t)N(a, x). The existence of such separable
solutions when g is linear was already the topic of [10], but their proof required the equation to be set on
a bounded domain and they had to impose a priori the existence of a maximal size for the population. In
our case no maximal size is prescribed and it brings additional difficulties due to a lack of compactness.
To address this problem, we will make the following assumptions.

First, we want the sum of the daughters’ sizes to be equal to the size of the mother. This rule, called
mass conservation, prescribes

∫ 1

0

z dµ(z) = 1. (2)

We also assume that the division does not produce any arbitrarily small daughter by imposing that the
support of µ is a compact subset of (0, 1), which ensures that

θ := inf suppµ > 0 and ∃η ∈ (θ, 1), suppµ ⊂ [θ, η]. (3)

In particular, these assumptions imply that the mean number of daughters µ([0, 1]) is finite. The division
rate B is assumed to be a nonnegative and locally integrable function on R+ such that

∃ b > 0, suppB = [b,∞), (4)

see [8] for instance. It will be useful in our study to define the associated survivor function Ψ by

Ψ(a) = e−
∫ a
0 B(z) dz

.

For a given increment a, Ψ(a) represents the probability that a cell did not divide before having grown at
least of a since its birth. We assume that the function B is chosen in such a way that Ψ tends to zero at
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infinity, meaning that all the cells divide at some time. More precisely we make the following quantitative
assumption

∃ k0 > 0, Ψ(a) =
+∞

O(a−k0). (5)

This assumption on the decay at infinity of the survivor function enables a wide variety of division rates.
For instance, it is satisfied if there exists A > 0 such that

∀ a > A, B(a) >
k0

a
.

The function B being locally integrable, the function Ψ belongs to W
1,1
loc (R+) and (5) ensures that its

derivative belongs to L1(R+). We can introduce the useful function Φ defined by

Φ = BΨ = −Ψ′ (6)

which is the probability distribution that a cell divides at increment a. Recall that, as in [10], we consider
the special case of a linear growth rate, namely g(x) = x. In this case, multiplying by the size x and
integrating, we obtain d

dt

∫∫
xn(t, a, x) dadx =

∫∫
xn(t, a, x) dadx, and so

∫∫

xn(t, a, x) dadx = et
∫∫

xn
0(a, x) dadx. (7)

This implies that if we look for a solution with separated variables n(t, a, x) = h(t)N(a, x), necessarily
h(t) = h(0)et. In other words, the Malthus parameter of the population is 1. This motivates the Perron
problem which consists in finding N = N(a, x) solution to







∂a(xN(a, x)) + ∂x(xN(a, x)) + (1 + xB(a))N(a,x) = 0, x > a > 0,

N(0, x) =

∫ 1

0

∫ ∞

0

B(a)N(a,
x

z
) da

dµ(z)

z2
, x > 0,

N(a, x) > 0, x > a > 0,
∫ ∞

0

∫ x

0

N(a, x) dadx = 1.

(8a)

(8b)

(8c)

(8d)

It is convenient to define the set X := {(a, x) ∈ R
2, 0 6 a 6 x}, and we are now ready to state the main

result of the paper.

Theorem 1. Let µ be a positive measure on [0, 1] satisfying (2) and (3), and B be a nonnegative and
locally integrable function on R+ satisfying (4) such that the associated survivor function Ψ satisfies (5).
Then, there exists a unique solution N ∈ L1(X, (1 + (x− a)2) dadx) to the eigenproblem (8a)–(8d). This
solution is expressed as

N : (a, x) ∈ X 7→
Ψ(a)

x2
f(x− a) (9)

where f is a nonnegative function which satisfies

f ∈ L1(R+, x
l dx)

for all l < k0, k0 being the positive number given in hypothesis (5), and

supp f = [bθ ,∞)

with bθ = θ
1−θ

b, where θ and b are defined in (3) and (4) respectively.

The fast decay of the function f near zero is a consequence of the form of the support of the frag-
mentation kernel µ. Furthermore, this decay is consistent with the decay near zero of the eigenvector
for the size equation (see [8]). Remark that for any nonnegative and appropriately normalized function
f ∈ L1(R+), the expression given in (9) satisfies (8a), (8c), and (8d). The proof of Theorem 1 consists
in finding the appropriate function f such that (8b) is also satisfied. This function is obtained as the
fixed point of a conservative operator, and this allows us to compute it numerically by using the power
iteration (see [20]). We obtain the function on the left on Figure 2. On the right is the related density
N(a, x).

Notice also that for the function N given by (9), the function s 7→ N(a + s, x + s) is continuous for
any a 6 x. It corresponds to the trajectories along the characteristics.

The article is organised as follows. In Section 1 we reduce the Perron eigenvalue problem with two
variables to a fixed point problem for an integral operator in dimension one. Section 2 is dedicated to
proving the existence and uniqueness of the fixed point by using functional analysis and Laplace transform
methods. In Section 3 we go through the usefulness of knowing N to develop entropy methods. Finally
in Section 4 we discuss some interesting perspectives.
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Figure 2: Left: simulation of the function f by the power method with B(a) = 2

1+a
1{16a} and µ(z) = 2δ 1

2
(z).

Right: level set of the density N(a, x) obtained from this function f. Straight line: the set {x = a+ 1}.

1 Transformation into an integral equation

Our study consists in constructing a solution to the eigenproblem (8a)–(8d) from the solution of a fixed
point problem. First, we notice that the size x of a cell and its size increment a grow at the same speed
g(x), so the quantity x − a remains constant: it corresponds to the birth-size of the cell, denoted by s.
To simplify the equation and obtain horizontal straight lines as characteristics (see Figure 3), we give a
description of the population with size increment a and birth-size s, namely we set

M(a, s) := N(a, a+ s). (10)

Thanks to this relation, it is equivalent to prove the existence of an eigenvector for the increment-size
system or for the increment/birth-size system. To determine the equation verified by M , we compute the
partial derivatives of xN(a, x) = (a+ s)M(a, s), which leads to the equation

∂a((a+ s)M(a, s)) + (1 + (a+ s)B(a))M(a, s) = 0.

Writing the non-local boundary condition (8b) with the new variables takes less calculation and a more
interpretation. In (8b) the number of cells born at size s resulted of the division of cells at size s

z
. Then

the equivalent of (8b) in the new variables with a linear growth rate is given by

M(0, s) =

∫ η

θ

∫ s
z

0

B(a)M(a,
s

z
− a) da

dµ(z)

z2

since there is no mass for a >
s
z
. With the relation (10), it is equivalent to solve (8a)–(8d) and to solve







∂a((a+ s)M(a, s)) + (1 + (a+ s)B(a))M(a, s) = 0, a, s > 0,

M(0, s) =

∫ η

θ

∫ s
z

0

B(a)M(a,
s

z
− a) da

dµ(z)

z2
, s > 0,

M(a, s) > 0, a, s > 0,
∫

R2
+

M(a, s) da ds = 1.

(11a)

(11b)

(11c)

(11d)

Considering the variable s as a parameter in (11a), we see this equation as an ODE in the variable a. A
formal solution is given by

M(a, s) =
Ψ(a)

(a+ s)2
s
2
M(0, s).
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Figure 3: Domain of the model, with respect to the choice of variables to describe the bacterium. Grey:
domain where the bacterias densities may be positive. Arrows: transport. Left: size increment/size. Right:
size increment/birth size. Dashed: location of cells of size x1.

Having this expression in mind, we note that for any nonnegative function f ∈ L1(R+, ds), the function
Mf defined on R

2
+ by

Mf : (a, s) 7→
Ψ(a)

(a+ s)2
f(s)

is a solution of (11a) and satisfies (11c). Then it remains to choose the appropriate function f and nor-
malize the related function Mf to solve the whole system (11a)–(11d). It turns out that this appropriate
function f is a fixed point of the operator T : L1(R+) → L1(R+) defined by

Tf(s) =

∫ η

θ

∫ s
z

0

Φ(
s

z
− a)f(a) dadµ(z), (12)

where Φ = BΨ, as stated in the following lemma.

Lemma 2. The function Mf satisfies (11b) if and only if f is a fixed point of the operator T .

Proof.

Mf satisfies (11b) ⇐⇒
f(s)

s2
=

∫ η

θ

∫ s
z

0

B(a)
Ψ(a)

( s
z
)2
f(
s

z
− a) da

dµ(z)

z2

⇐⇒ f(s) =

∫ η

θ

∫ s
z

0

Φ(a)f(
s

z
− a) da dµ(z)

⇐⇒ f(s) =

∫ η

θ

∫ s
z

0

Φ(
s

z
− a)f(a) da dµ(z)

⇐⇒ f(s) = Tf(s)

The operator T can be seen as some kind of transition operator : it links the laws of birth size of two
successive generations. If f is the law of the parents, then Tf is the law of the birth size of the newborn
cells. Indeed, Equation (12) can be understood in words as ‘the number of cells born at size s come from
the ones that were born at size a ∈ [bθ,

s
z
] and elongated of s

z
−a for all z ∈ [θ, η] and all a before dividing

into new cells’. See [7] for a probabilistic viewpoint on the conservative size equation. It is easy to check
that T is a continuous linear operator on L1(R+) and that ‖T‖L(L1(R+)) 6 ‖Φ‖L1(R+) = 1 using (2) and
(6). The following lemma provides a slightly stronger result.

Lemma 3. For all l 6 0, the operator T maps continuously L1(R+, s
l ds) into itself. Additionally, if (5)

holds true, then T maps continuously L1(R+, (s
k + sl) ds) into itself for any l 6 0 and k ∈ [0, k0).
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Proof. We start with L1(R+, s
l ds) where l 6 0. For f ∈ L1(R+, s

l ds) and β > α > 0 one has

∫ β

α

|Tf(s)|sl ds 6

∫ η

θ

∫ β

α

s
l

∫ s
z

0

Φ(
s

z
− a)|f(a)|dadsdµ(z)

6

∫ η

θ

∫ α
z

0

|f(a)|

∫ β

α

Φ(
s

z
− a)sl ds dadµ(z)

+

∫ η

θ

∫ β
z

α
z

|f(a)|

∫ β

za

Φ(
s

z
− a)sl dsda dµ(z)

6

∫ η

θ

∫ α
z

0

|f(a)|

∫ β
z
−a

α
z
−a

Φ(σ)(a+ σ)lzl+1 dσ dadµ(z)

+

∫ η

θ

∫ β
z

α
z

|f(a)|

∫ β
z
−a

0

Φ(σ)(a+ σ)lzl+1 dσ dadµ(z)

6

∫ η

θ

z
l+1

∫ α
z

0

|f(a)|al dadµ(z) +

∫ η

θ

z
l+1

∫ ∞

α
z

|f(a)|al dadµ(z)

6 θ
l‖f‖L1(R+,sl ds),

which gives the conclusion by passing to the limits α→ 0 and β → +∞.

For the second part we begin with the proof that under condition (5), for any k ∈ [0, k0) one has
∫ ∞

0

Φ(a)ak da <∞.

First, recall that
∫∞

0
Φ(a) da = 1 and Φ = −Ψ′. Integrating by parts for β > 1, one has

∫ β

0

Φ(a)ak da 6

∫ 1

0

Φ(a) da+

∫ β

1

Φ(a)ak da 6 1 + k

∫ β

1

Ψ(a)ak−1 da

and the last integral converges when β → +∞ under Assumption (5) because k < k0. Now let l 6 0 and
k ∈ [0, k0), and let f ∈ L1(R+, (s

k + sl) ds). Due to the first part of the proof, we only have to estimate
∫ β

0
|Tf(s)|sk ds for β > 0. Since the function x 7→ (1+x)k

1+xk is uniformly bounded on R+, there exists of a

constant C > 0 such that (a+ σ)k 6 C(ak + σk) for all a, σ > 0, and it allows us to write for any β > 0

∫ β

0

|Tf(s)|sk ds 6

∫ η

θ

∫ β

0

s
k

∫ s
z

0

Φ(
s

z
− a)|f(a)|dadsdµ(z)

=

∫ η

θ

∫ β
z

0

|f(a)|

∫ β
z
−a

0

Φ(σ)(a+ σ)kzk+1 dσ dadµ(z)

6 C

∫ η

θ

z
k+1

∫ β
z

0

|f(a)|ak
∫ β

z
−a

0

Φ(σ) dσ dadµ(z)

+C

∫ η

θ

z
k+1

∫ β
z

0

|f(a)|

∫ β
z
−a

0

Φ(σ)σk dσ dadµ(z)

6 Cη
k
(

‖f‖L1(R+,sk ds) + ‖Φ‖L1(R+,sk ds)‖f‖L1(R+)

)

.

2 The fixed point problem

In this section we prove the existence of a unique nonnegative and normalized fixed point of the operator T.

Let us first recall some definitions from the Banach lattices theory (for more details, see [9, 23]). Let
Ω be a subset of R+ and ν be a positive measure on Ω. The space L1(Ω, ν) is an ordered set with the
partial order defined by

f > 0 if and only if f(s) > 0 ν-a.e. on Ω.

Furthermore, endowed with its standard norm, the space L1(Ω, ν) is a Banach lattice, i.e. a real Banach
space endowed with an ordering > compatible with the vector structure such that, if f, g ∈ L1(Ω, ν)
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and |f | > |g|, then ‖f‖L1(Ω,ν) > ‖g‖L1(Ω,ν). A vector subspace I ⊂ L1(Ω, ν) is called an ideal if f ∈

I, g ∈ L1(Ω, ν) and |g| 6 |f | implies g ∈ I. For a given operator A defined on L1(Ω, ν), a closed ideal
I is A-invariant if A(I) ⊂ I, and A is irreducible if the only A-invariant ideals are {0} and L1(Ω, ν).
To each closed ideal I in the Banach lattice L1(Ω, ν) corresponds a subset ω ⊂ Ω such that I = {f ∈
L1(Ω, ν), supp f ⊂ ω}. We also define the positive cone L1

+(Ω, ν) := {f ∈ L1(Ω, ν) | f > 0 ν-a.e. on Ω}.
An operator A : L1(Ω, ν) → L1(Ω, ν) is said to be positive if A(L1

+(Ω, ν)) ⊂ L1
+(Ω, ν). To prove the

existence of an eigenvector associated to the eigenvalue 1, we will use the following theorem, easily
deduced from Krein-Rutman’s theorem (see [9] for instance) and De Pagter’s [5].

Theorem 4. Let A : L1(Ω, ν) → L1(Ω, ν) be a non-zero positive compact irreducible operator. Then
its spectral radius ρ(A) is a nonnegative eigenvalue associated to a nonzero eigenvector belonging to the
positive cone L1

+(Ω, ν).

Due to a lack of compactness of the operator T , which is due to the lack of compactness of R+, we
truncate the operator T into a family of operators (TΣ)Σ. Let bθ = θ

1−θ
b and for Σ > bθ define the

operator TΣ on L1((bθ,Σ)) by

TΣf(s) =

∫ η

θ

∫ min( s
z
,Σ)

bθ

Φ(
s

z
− a)f(a) dadµ(z) (13)

=







∫ η

θ

∫ s
z

bθ

Φ(
s

z
− a)f(a) dadµ(z), bθ 6 s < θΣ,

∫ s
Σ

θ

∫ Σ

bθ

Φ(
s

z
− a)f(a) dadµ(z) +

∫ η

s
Σ

∫ s
z

bθ

Φ(
s

z
− a)f(a) dadµ(z), θΣ 6 s 6 ηΣ,

∫ η

θ

∫ Σ

bθ

Φ(
s

z
− a)f(a) dadµ(z), ηΣ < s 6 Σ.

Defining the lower bound of the domain as bθ will ensure the irreducibility of TΣ. We will apply Theorem 4
to the operator TΣ for Σ large enough to prove the existence of a pair (ρΣ, fΣ) such that TΣfΣ = ρΣfΣ.

Then, we will prove that there exists a unique f in a suitable space such that ρΣ → 1 and fΣ → f as
Σ → ∞, with f satisfying Tf = f. The following lemma ensures that the truncated operator TΣ is well
defined.

Lemma 5. If f ∈ L1(R+) and supp f ⊂ [bθ,Σ], then

(Tf)|[bθ,Σ] = TΣ(f|[bθ ,Σ]).

Lemma 5 is a straightforward consequence of the definition of operator TΣ by (13). From Lemmas 3
and 5, we deduce that TΣ has the same stability mapping properties as T. To prove the compactness of
the operator TΣ for a fixed Σ and later on that the family (TΣ)Σ is also compact, we use a particular case
of a corollary of the Riesz-Fréchet-Kolmogorov theorem. First, we define two properties for a bounded
subset F of L1(Ω, ν) with Ω an open subset of R+, and ν a positive measure, the first on translations and
the second on the absence of mass on the boundary of the domain

{
∀ǫ > 0, ∀ω ⊂⊂ Ω, ∃δ ∈ (0,dist(ω,cΩ)) such that
‖τhf − f‖L1(ω,ν) < ǫ, ∀h ∈ (−δ, δ), ∀f ∈ F

(14)

{
∀ǫ > 0, ∃ω ⊂⊂ Ω, such that
‖f‖L1(Ω\ω,ν) < ǫ, ∀f ∈ F

(15)

where cΩ is understood as the complement of this set in R+.

Theorem 6 (from [3], corollary 4.27). If F is a bounded set of L1(Ω, ν) such that (14) and (15) hold
true, then F is relatively compact in L1(Ω, ν).

2.1 Existence of a principal eigenfunction for TΣ

Using Theorem 4, we prove the existence of an eigenpair (ρΣ, fΣ) for the operator TΣ.

Proposition 7. Let l be a nonpositive number. Under the hypotheses (2), (3) and (4), there exists a
unique normalized eigenvector fΣ ∈ L1

+(Ω, ν) of the operator TΣ in L1((bθ,Σ), s
l ds) associated to the

spectral radius ρΣ for every Σ > max( 1
1−θ

b, 1).

7



Applying Theorem 6, to Ω = (bθ,Σ) and the family

F = {TΣf, f ∈ L1((bθ,Σ), s
l ds), ‖f‖L1((bθ ,Σ),sl ds) 6 1},

which is bounded in L1((bθ,Σ), s
l ds), as already shown in the proof of Lemma 3, we prove the following

Lemma.

Lemma 8. Let l be a nonpositive number. Under the hypotheses of Proposition 7, for all

Σ > max(
b

1− θ
, 1),

the set F is relatively compact.

Proof of Lemma 8. The set F is bounded due to the continuity of T proven in Lemma 3. First, we
show that (14) is satisfied. Any compact set in (bθ,Σ) is included in a segment [α, β]. Without loss
of generality, we take bθ < α < θΣ, ηΣ < β < Σ. It is sufficient to treat the case h positive, so let
0 6 h < min(θΣ−α,Σ− β,Σ(η− θ)). Since TΣf is piecewise defined, we have to separate the integral on
[α, β] into several parts, depending on the interval s and s+ h belong to, and we obtain

∫ β

α

|TΣf(s+ h)− TΣf(s)| s
l ds

6

∫ θΣ−h

α

|TΣf(s + h) − TΣf(s)| s
l ds =: (A)

+

∫ θΣ

θΣ−h

|TΣf(s+ h)− TΣf(s)| s
l ds =: (B)

+

∫ ηΣ−h

θΣ

|TΣf(s+ h)− TΣf(s)| s
l ds =: (C)

+

∫ ηΣ

ηΣ−h

|TΣf(s+ h) − TΣf(s)| s
l ds =: (D)

+

∫ β

ηΣ

|TΣf(s+ h)− TΣf(s)| s
l ds =: (E).

since for (A), (C) and (E), TΣf and τhTΣf have the same expression, the same kind of calculations apply,
so we only treat (C), which has the most complicated expression.

(C) =

∫ ηΣ−h

θΣ

|TΣf(s+ h)− TΣf(s)| s
l ds

6

∫ ηΣ−h

θΣ

∣
∣
∣
∣
∣

∫ s+h
Σ

θ

∫ Σ

bθ

Φ(
s+ h

z
− a)f(a) dadµ(z)−

∫ s
Σ

θ

∫ Σ

bθ

Φ(
s

z
− a)f(a) dadµ(z)

∣
∣
∣
∣
∣
s
l ds

+

∫ ηΣ−h

θΣ

∣
∣
∣
∣
∣

∫ η

s+h
Σ

∫ s+h
z

bθ

Φ(
s+ h

z
− a)f(a) dadµ(z)−

∫ η

s
Σ

∫ s
z

bθ

Φ(
s

z
− a)f(a) dadµ(z)

∣
∣
∣
∣
∣
s
l ds

6

∫ ηΣ−h

θΣ

s
l

∫ s
Σ

θ

∫ Σ

bθ

∣
∣
∣
∣
Φ(
s+ h

z
− a)− Φ(

s

z
− a)

∣
∣
∣
∣
|f(a)|da dµ(z) ds =: (C1)

+

∫ ηΣ−h

θΣ

s
l

∫ s+h
Σ

s
Σ

∫ Σ

bθ

Φ(
s+ h

z
− a)|f(a)|dadµ(z) ds =: (C2)

+

∫ ηΣ−h

θΣ

s
l

∫ η

s+h
Σ

∫ s
z

bθ

∣
∣
∣
∣
Φ(
s+ h

z
− a)−Φ(

s

z
− a)

∣
∣
∣
∣
|f(a)| dadµ(z) ds =: (C3)

+

∫ ηΣ−h

θΣ

s
l

∫ η

s+h
Σ

∫ s+h
z

s
z

Φ(
s+ h

z
− a)|f(a)|dadµ(z) ds =: (C4)

+

∫ ηΣ−h

θΣ

s
l

∫ s+h
Σ

s
Σ

∫ s
z

bθ

Φ(
s+ h

z
− a)|f(a)|dadµ(z) ds =: (C5)

The integrals (C1) and (C3) are dealt with in the same way, and we have the following estimate
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(C1) =

∫ ηΣ−h

θΣ

s
l

∫ s
Σ

θ

∫ Σ

bθ

∣
∣
∣
∣
Φ(
s+ h

z
− a)− Φ(

s

z
− a)

∣
∣
∣
∣
|f(a)|dadµ(z) ds

=

∫ η− h
Σ

θ

∫ Σ

bθ

|f(a)|

∫ ηΣ−h

zΣ

∣
∣
∣
∣
Φ(
s+ h

z
− a)−Φ(

s

z
− a)

∣
∣
∣
∣
s
l dsda dµ(z)

=

∫ η− h
Σ

θ

z
l+1

∫ Σ

bθ

|f(a)|

∫ ηΣ−h
z

−a

Σ−a

|τh
z
Φ(σ)− Φ(σ)|(a+ σ)l dσ dadµ(z)

=

∫ η− h
Σ

θ

z
l+1

∫ Σ

bθ

|f(a)|al
∫ ηΣ−h

z
−a

Σ−a

|τh
z
Φ(σ)− Φ(σ)|dσ dadµ(z)

6 θ
l sup
ε∈[θ,η]

‖τh
ε
Φ−Φ‖L1(R+).

These integrals are as small as needed when h is small enough, due to the continuity of the translation
in L1(R+). For (C2) one has

(C2) =

∫ ηΣ−h

θΣ

s
l

∫ s+h
Σ

s
Σ

∫ Σ

bθ

Φ(
s+ h

z
− a)|f(a)|dadµ(z) ds

=

∫ θ+ h
Σ

θ

∫ Σ

bθ

|f(a)|

∫ zΣ

θΣ

Φ(
s+ h

z
− a)sl dsda dµ(z)

+

∫ η− h
Σ

θ+ h
Σ

∫ Σ

bθ

|f(a)|

∫ zΣ

zΣ−h

Φ(
s + h

z
− a)sl dsdadµ(z)

+

∫ η

η− h
Σ

∫ Σ

bθ

|f(a)|

∫ ηΣ−h

zΣ−h

Φ(
s + h

z
− a)sl dsdadµ(z)

6

∫ η

θ

∫ Σ

bθ

|f(a)|

∫ zΣ

zΣ−h

Φ(
s+ h

z
− a)sl dsda dµ(z)

=

∫ η

θ

z
l+1

∫ Σ

bθ

|f(a)|

∫ Σ−a

Σ− h
z
−a

Φ(σ +
h

z
)(a+ σ)l dσ dadµ(z)

6

∫ η

θ

z
l+1

∫ Σ

bθ

|f(a)|al
∫ Σ−a

Σ−h
z
−a

Φ(σ +
h

z
) dσ da dµ(z)

6 θ
l sup
|I|= h

θ

∫

I

Φ(a) da

which is small when h is small since Φ is a probability density. To deal with (C4), we use Fubini’s theorem
and some changes of variables to obtain

(C4) =

∫ ηΣ−h

θΣ

s
l

∫ η

s+h
Σ

∫ s+h
z

s
z

Φ(
s+ h

z
− a)|f(a)|da dµ(z) ds

=

∫ η

θ+ h
Σ

∫ zΣ−h

θΣ

s
l

∫ s+h
z

s
z

Φ(
s+ h

z
− a)|f(a)|dadsdµ(z)

=

∫ η

θ+ h
Σ

∫ zΣ−h

θΣ

s
l

∫ 0

−h
z

Φ(
h

z
+ a

′)|f(
s

z
− a

′)|da′ ds dµ(z)

=

∫ η

θ+ h
Σ

∫ 0

−h
z

Φ(
h

z
+ a

′)

∫ zΣ−h

θΣ

|f(
s

z
− a

′)|sl dsda′ dµ(z)

=

∫ η

θ+ h
Σ

z
l+1

∫ 0

−h
z

Φ(
h

z
+ a

′)

∫ Σ− h
z
−a′

θΣ
z

−a′

|f(σ)|(σ + a
′)l dσ da′ dµ(z)

6

∫ η

θ+ h
Σ

z
l+1

∫ 0

−h
z

Φ(
h

z
+ a

′) da′ dµ(z)

6 θ
l

(

1−Ψ(
h

θ
)

)

,
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and the continuity of Ψ at 0 provides the wanted property. Finally, noticing that (C5) 6 (C2) because
the integrand are nonnegative, we obtain the desired control on the integral (C). Now for the integral
(B), which is dealt with as would be (D), we write

(B) =

∫ θΣ

θΣ−h

∣
∣
∣
∣
∣

∫ s+h
Σ

θ

∫ Σ

bθ

Φ(
s+ h

z
− a)f(a) dadµ(z) +

∫ η

s+h
Σ

∫ s+h
z

bθ

Φ(
s+ h

z
− a)f(a) dadµ(z)

−

∫ η

θ

∫ s
z

bθ

Φ(
s

z
− a)f(a) da dµ(z)

∣
∣
∣
∣
∣
s
l ds

6

∫ η

θ

∫ Σ

bθ

|f(a)|

∫ θΣ

θΣ−h

[

Φ(
s+ h

z
− a) + Φ(

s

z
− a)

]

s
l dsda dµ(z)

6

∫ η

θ

z
l+1

∫ Σ

bθ

|f(a)|al
∫ θΣ

z
−a

θΣ−h
z

−a

[

Φ(σ +
h

z
) + Φ(σ)

]

dσ dadµ(z)

6 2 θl sup
|I|=h

θ

∫

I

Φ(a) da

and again the last term vanishes as h vanishes. We now show that there is no mass accumulation at the
boundary of the domain (bθ,Σ), i.e. that (15) holds true. For Σ > 1

1−θ
b, we haves bθ < θΣ and we can

choose α < θΣ, so that for all s ∈ (bθ, α),
s
Σ
< θ. With the expression of TΣf(s), we have

∫ α

bθ

|TΣf(s)|s
l ds

6

∫ α

bθ

s
l

∫ η

θ

∫ s
z

bθ

Φ(
s

z
− a)|f(a)|dadµ(z) ds

6

∫ η

θ

∫ bθ
z

bθ

|f(a)|

∫ α

bθ

Φ(
s

z
− a)sl dsdadµ(z) +

∫ η

θ

∫ α
z

bθ
z

|f(a)|

∫ α

za

Φ(
s

z
− a)sl dsdadµ(z)

6

∫ η

θ

z
l+1

∫ bθ
z

bθ

(

Ψ(
bθ

z
− a)−Ψ(

α

z
− a)

)

|f(a)|al daz dµ(z) +

∫ η

θ

∫ α
z

bθ
z

(

1−Ψ(
α

z
− a)

)

|f(a)|al daz dµ(z)

6 θ
l

(

1−Ψ(
α− bθ

θ
)

)

, (16)

since for bθ < s 6
bθ
z

we have bθ
z

− a 6 b and so Ψ( bθ
z

− a) = 1. Taking α as closed to bθ as needed, we
obtain the first estimate of (15).

As done before, we choose a β to obtain a simpler expression of TΣ, namely β > ηΣ. Then, one has
∫ Σ

β

|TΣf(s)|s
l ds 6

∫ η

θ

∫ Σ

bθ

|f(a)|

∫ Σ

β

Φ(
s

z
− a)sl ds dadµ(z)

6

∫ η

θ

z
l+1

∫ Σ

bθ

|f(a)|al
∫ Σ

z
−a

β
z
−a

Φ(σ) dσ dadµ(z)

6 θ
l sup
|I|=Σ−β

θ

∫

I

Φ(a) da, (17)

which is small when Σ− β is small.

We have checked the assumptions of Theorem 6 for the family F , so it is relatively compact.

To prove the irreducibility of the operator TΣ, it is useful to notice that TΣ can be expressed differently
after switching the two integrals. One has

TΣf(s) =







∫ s
η

bθ

f(a)

∫ η

θ

Φ(
s

z
− a) dµ(z) da+

∫ s
θ

s
η

f(a)

∫ s
a

θ

Φ(
s

z
− a) dµ(z) da, bθ 6 s < θΣ,

∫ s
η

bθ

f(a)

∫ η

θ

Φ(
s

z
− a) dµ(z) da+

∫ Σ

s
η

f(a)

∫ s
a

θ

Φ(
s

z
− a) dµ(z) da, θΣ 6 s 6 ηΣ,

∫ Σ

bθ

f(a)

∫ η

θ

Φ(
s

z
− a) dµ(z) da, ηΣ < s 6 Σ.
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Lemma 9. Let l be a nonpositive number. Under the hypotheses of Proposition 7, for all Σ > 1
1−θ

b, the

operator TΣ : L1((bθ,Σ), s
l ds) → L1((bθ,Σ), s

l ds) is irreducible.

Proof. Let J 6= {0} be a TΣ-invariant ideal in L1((bθ,Σ), s
l ds). There exists a subset ω ⊂ (bθ,Σ) such

that J = {f ∈ L1((bθ,Σ), s
l ds) | supp f ⊂ ω}. Let fω := s−l

1ω and s0 := inf supp fω > bθ. Since J 6= {0}
(so s0 < Σ) and θ < η, one can find ζ and ξ both positive such that

TΣfω(s) >

∫ s0+ζ

s0

∫ θ+ξ

θ

Φ(
s

z
− a) dµ(z)fω(a) da.

For s > s0, the functions z 7→ s
z
−a and a 7→ s

z
−a are continuous decreasing functions. So, if s is such that

s
θ
− s0 > b, then one can choose ζ and ξ such that for all (s, a) ∈ [s0, s0 + ζ]× [θ, θ + ξ], s

z
− a ∈ suppΦ.

Additionally, for each ζ > 0, the integral
∫ s0+ζ

s0
fω(a) da is positive. We deduce that [θ(b + s0),Σ] ⊂

suppTΣfω ⊂ [s0,Σ], so s0 6 θ(b+ s0), which is equivalent to s0 6 bθ. Finally bθ = s0, so J = [bθ,Σ] and
TΣ is irreducible.

Proof of Proposition 7. Lemma 8 shows that the set F is relatively compact in L1((bθ,Σ), s
l ds), which

is exactly saying that TΣ is a compact operator of L1((bθ,Σ), s
l ds). With Lemma 9 in addition, we can

apply Theorem 4 to the operator TΣ for Σ > 1
1−θ

b to obtain the existence of a nonnegative function

fΣ ∈ L1((bθ,Σ), s
l ds) which is an eigenvector of TΣ associated to the eigenvalue ρΣ. Since this function

is defined on a compact subset of R+, it also belongs to L1((bθ,Σ), (s
k + sl) ds) for k < k0.

2.2 Passing to the limit Σ → ∞

We now want to show that up to a subsequence, (fΣ)Σ converges to a fixed point of T . To that end,
in the rest of the article we extend the functions defined on (bθ,Σ) to R+ by 0 out of (bθ,Σ). Then we
obtain the following proposition

Proposition 10. Under hypotheses (2)-(5) there exists a nonnegative and normalized fixed point

f ∈ L1(R+, (s
k + s

l) ds)

for all l 6 0 and k < k0, of the operator T. Additionally, f is unique inL1(R+) and its support is [bθ ,∞).

First, we will show that the sequence (ρΣ)Σ converges to 1 as Σ → ∞.

Lemma 11. If (ρΣ, fΣ) is an eigenpair of the operator TΣ, then the following inequality holds true

1−Ψ

(

(
1

η
− 1)Σ

)

6 ρΣ 6 1−Ψ

(
Σ

θ
− bθ

)

. (18)

Proof. Integrating the equality ρΣfΣ = TΣfΣ over (bθ,Σ), one has

ρΣ

∫ Σ

bθ

fΣ(s) ds =

∫ θΣ

bθ

∫ η

θ

∫ s
z

bθ

Φ(
s

z
− a)f(a) dadµ(z) ds =: (A)

+

∫ ηΣ

θΣ

∫ s
Σ

θ

∫ Σ

bθ

Φ(
s

z
− a)f(a) dadµ(z) ds =: (B)

+

∫ ηΣ

θΣ

∫ η

s
Σ

∫ s
z

bθ

Φ(
s

z
− a)f(a) dadµ(z) ds =: (C)

+

∫ Σ

ηΣ

∫ η

θ

∫ Σ

bθ

Φ(
s

z
− a)f(a) da dµ(z) ds =: (D)

(A) =

∫ η

θ

∫ bθ
z

bθ

fΣ(a)

∫ θΣ

bθ
z

Φ(
s

z
− a) dsdadµ(z) +

∫ η

θ

∫ θΣ
z

bθ
z

fΣ(a)

∫ θΣ

za

Φ(
s

z
− a) dsdadµ(z)

=

∫ η

θ

z

∫ bθ
z

bθ

fΣ(a)

[

Ψ(
bθ

z
− a)−Ψ(

θΣ

z
− a)

]

dadµ(z) +

∫ η

θ

z

∫ θΣ
z

bθ
z

fΣ(a)

[

1−Ψ(
θΣ

z
− a)

]

da dµ(z)

(B) =

∫ η

θ

fΣ(a)

∫ Σ

bθ

∫ ηΣ

zΣ

Φ(
s

z
− a) dsda dµ(z)

=

∫ η

θ

z

∫ Σ

bθ

fΣ(a)

[

Ψ(Σ− a)−Ψ(
ηΣ

z
− a)

]

dadµ(z)
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(C) =

∫ η

θ

∫ θΣ
z

bθ

fΣ(a)

∫ zΣ

θΣ

Φ(
s

z
− a) dsdadµ(z) +

∫ η

θ

∫ Σ

θΣ
z

fΣ(a)

∫ zΣ

za

Φ(
s

z
− a) ds dadµ(z)

=

∫ η

θ

z

∫ θΣ
z

bθ

fΣ(a)

[

Ψ(
θΣ

z
− a)−Ψ(Σ− a)

]

dadµ(z) +

∫ η

θ

z

∫ Σ

θΣ
z

fΣ(a) [1−Ψ(Σ− a)] dadµ(z)

(D) =

∫ η

θ

∫ Σ

bθ

fΣ(a)

∫ Σ

ηΣ

Φ(
s

z
− a) ds dadµ(z)

=

∫ η

θ

z

∫ Σ

bθ

fΣ(a)

[

Ψ(
ηΣ

z
− a)−Ψ(

Σ

z
− a)

]

dadµ(z)

Then notice that for a ∈ (bθ,Σ) and z ∈ (θ, η) one has

bθ

z
− a 6

bθ

z
− bθ = bθ

(
1

z
− 1

)

6 bθ

(
1

θ
− 1

)

= b,

so as in the computations leading to (16), Ψ( bθ
z

− a) = 1. Combining these different expressions, we
deduce

ρΣ

∫ Σ

bθ

fΣ(s) ds =

∫ Σ

bθ

fΣ(s) ds−

∫ η

θ

z

∫ Σ

bθ

Ψ(
Σ

z
− a)fΣ(a) dadµ(z). (19)

Using the fact that the function Ψ is nonincreasing, we obtain the wanted inequality.

Now we show that up to a subsequence, (fΣ)Σ converges to a fixed point of T denoted by f . Thanks
to (18) and the properties of Ψ, we can define

Σ0 := inf

{

Σ > max(
1

1− θ
b, 1) such that ρΣ >

1

2

}

.

Lemma 12. Under hypotheses (2), (3), (4) and (5), the set {fΣ,Σ > Σ0, ‖fΣ‖L1(R+,(sk+sl) ds) = 1} has

a compact closure in L1(R+, (s
k+sl) ds), for any l 6 0 and k < k0, k0 being the real number given in (5).

Proof. Let k 6 0 and k ∈ [0, k0). Once again, we apply Theorem 6 to show the desired result. First, we
show that (14) hold true with Ω = (bθ,∞) and F = {fΣ, ‖fΣ‖L1(R+,(sk+sl) ds) = 1}. Let ω be a compact
subset of (bθ,∞) and bθ < α < β such that ω ⊂ [α, β]. We use the following inequality

‖τhfΣ − fΣ‖L1(ω,(sk+sl)ds) 6 2‖τhTΣfΣ − TΣfΣ‖L1(ω,(sk+sl)ds)

6 2
(

β
k + α

l
)

‖τhTΣfΣ − TΣfΣ‖L1([α,β])

6 2
(

β
k + α

l
)

‖τhTΣfΣ − TΣfΣ‖L1([α,Σ]).

The last quantity is small when h is small uniformly with respect to Σ since in the proof of Lemma 8,
the estimates do not depend on the value of Σ. To prove that (15) holds true, we use the estimate (16)
twice to write

‖fΣ‖L1((bθ ,α),(sk+sl)ds) =
1

ρΣ

∫ α

bθ

TΣfΣ(s)(s
k + s

l)ds

6 2

∫ α

bθ

TΣfΣ(s)s
l
ds+ 2αk

∫ α

bθ

TΣfΣ(s)ds

6 2θl
(

1−Ψ(
α− bθ

θ
)

)

+ 2αk

(

1−Ψ(
α− bθ

θ
)

)

6 2(θl + α
k)

(

1−Ψ(
α− bθ

θ
)

)

which is again independant of Σ. The estimate (17) though depends on Σ, so we write for Σ larger than β

ρΣ

∫ Σ

β

fΣ(a) da =

∫ θΣ

β

TΣfΣ(a) da+

∫ ηΣ

θΣ

TΣfΣ(a) da+

∫ Σ

ηΣ

TΣfΣ(a) da.
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For the first integral, we compute
∫ θΣ

β

TΣfΣ(a) da

=

∫ η

θ

z

∫ β
z

bθ

[

Ψ(
β

z
− a)−Ψ(

θΣ

z
− a)

]

fΣ(a) dadµ(z) +

∫ η

θ

z

∫ θΣ
z

β
z

[

1−Ψ(
θΣ

z
− a)

]

fΣ(a) dadµ(z).

The two other integrals correspond to the integrals (B), (C) and (D) from the previous proof. Combining
the integrals, we obtain

ρΣ

∫ Σ

β

fΣ(a) da

=

∫ η

θ

z

∫ β
z

bθ

Ψ(
β

z
− a)fΣ(a) da dµ(z) +

∫ η

θ

z

∫ Σ

β
z

fΣ(a) da dµ(z)−

∫ η

θ

z

∫ Σ

bθ

Ψ(
Σ

z
− a)fΣ(a) dadµ(z).

We deal with the last integral using (19) and obtain after interverting integrals

ρΣ

∫ Σ

β

fΣ(a) da =

∫ β
η

bθ

fΣ(a)

∫ η

θ

zΨ(
β

z
− a) dµ(z) da+

∫ β
θ

β
η

fΣ(a)

∫ β
a

θ

zΨ(
β

z
− a) dµ(z) da

+

∫ β
θ

β
η

fΣ(a)

∫ η

β
a

z dµ(z) da+

∫ Σ

β
θ

fΣ(a) da+ ρΣ

∫ Σ

bθ

fΣ(a) da−

∫ Σ

bθ

fΣ(a) da

⇐⇒

∫ β
η

bθ

fΣ(a) da =

∫ β
η

bθ

fΣ(a)

∫ η

θ

zΨ(
β

z
− a) dµ(z) da+

∫ β
θ

β
η

fΣ(a)

∫ β
a

θ

zΨ(
β

z
− a) dµ(z) da

+ ρΣ

∫ β

bθ

fΣ(a) da−

∫ β
θ

β
η

fΣ(a)

∫ β
a

θ

z dµ(z) da

⇐⇒

∫ β
η

β

fΣ(a)

∫ η

θ

z

[

1−Ψ(
β

z
− a)

]

dµ(z) da+ (1− ρΣ)

∫ β

bθ

fΣ(a) da

+

∫ β
θ

β
η

fΣ(a)

∫ β
a

θ

z

[

1−Ψ(
β

z
− a)

]

dµ(z) da =

∫ β

bθ

fΣ(a)

∫ η

θ

zΨ(
β

z
− a) dµ(z) da

Since 0 < θ < η < 1, we can choose β > η

1−η
b > bθ. In that case, 1

η
− b

β
> 1, and we can pick r ∈]1, 1

η
− b

β
[

such that
(

1
η
− r
)

β > b. Noticing that 1−Ψ(β
z
− a) and 1− ρΣ are nonnegative, we obtain

∫ rβ

β

fΣ(a)

∫ η

θ

z

[

1−Ψ(
β

z
− a)

]

dµ(z) da 6

∫ β

bθ

fΣ(a)

∫ η

θ

zΨ(
β

z
− a) dµ(z) da,

then (

1−Ψ((
1

η
− r)β)

)∫ rβ

β

fΣ(a) da 6 Ψ((
1

η
− 1)β),

and finally
∫ rβ

β

fΣ(a)(a
l + a

k) da 6 (βl + (rβ)k)
Ψ(( 1

η
− 1)β)

(

1−Ψ(( 1
η
− r)β)

) 6 4(rβ)kΨ((
1

η
− 1)β)

for β large enough. We use this estimate to get

∫ ∞

β

fΣ(s)(s
k + s

l) ds =
∞∑

j=0

∫ rj+1β

rjβ

fS(s)(s
k + s

l) ds

6 4rk
∞∑

j=0

(

r
j
β
)k

Ψ((
1

η
− 1)rjβ)

6 4Crk
∞∑

j=0

(

r
j
β
)k (

(
1

η
− 1)rjβ

)−k0

6
Ck,k0,η,r

βk0−k

13



due to hypothesis (5), for β large enough.

We are now ready to prove the existence and uniqueness of a fixed point for the operator T.

Proof of Proposition 10. We have proved in Lemma 12 that the set {fΣ, ‖fΣ‖L1(R+,(sl+sk) ds)} has a

compact closure in L1(R+, (s
k + sl) ds). We deduce the existence of f ∈ L1(R+, (s

k+ sl) ds) such that, up
to a subsequence still denoted by (fΣ)Σ, fΣ → f strongly as Σ → +∞. Now we prove that the function
f is a fixed point of the operator T. We use the following inequality

‖f − Tf‖L1(R+,(sk+sl) ds) 6 ‖f − fΣ‖L1(R+,(sk+sl) ds) + (1− ρΣ) + ‖TΣfΣ − Tf‖L1(R+,(sk+sl) ds).

The first term of the right-hand side tends to zero as Σ tends to ∞ by definition of f, and the second one
is smaller than Ψ

(
( 1
η
− 1)Σ

)
according to (18). For the last one, we write

‖TΣfΣ − Tf‖L1(R+,(sk+sl) ds)

6 ‖TΣfΣ − TfΣ‖L1(R+,(sk+sl) ds)
︸ ︷︷ ︸

=0

+‖T (f − fΣ)‖L1(R+,(sk+sl) ds)

6 ‖f − fΣ‖L1(R+,(sk+sl) ds)

due to Lemma 5 and to the continuity of T, which is proved in Lemma 3.
To prove uniqueness of the fixed point, we consider f1 another nonnegative fixed point of T in L1(R+)

satisfying
∫∞

0
f1(s) ds =

∫∞

0
f(s) ds. Recalling the definition (12) of the operator T , the functions f and

f1 satisfy the integral convolution equation

f(s) =

∫ η

θ

Φ ∗ f(
s

z
) dµ(z). (20)

Since f, f1 and Φ are in L1(R+), their Laplace transforms exist on R+ and are continuous decreasing
functions. Taking the Laplace transform of f − f1 and switching integrals thanks to Fubini’s theorem,
one has for every y > 0

L[f − f1](y) =

∫ η

θ

L[f − f1](zy)L[Φ](zy)z dµ(z). (21)

The Laplace transform L[f − f1] is continuous on R+ and vanishes at the origin

L[f − f1](0) =

∫ ∞

0

f(s) ds−

∫ ∞

0

f1(s) ds = 0.

We now define the functions

L(y) = sup
x∈[0,y]

L[f − f1](x) and L(y) = inf
x∈[0,y]

L[f − f1](x).

By continuity in 0 of L[f − f1] and because L[f − f1](0) = 0, one has

∀y > 0, L(y) > 0, L(y) 6 0.

From (21), we obtain the inequality

L[f − f1](y) 6 L(ηy)

∫ η

θ

L[Φ](zy)z dµ(z) 6 L(ηy),

since Φ is a probability measure. L is a continuous increasing function, so for all x 6 y, one has

L[f − f1](x) 6 L(ηx) 6 L(ηy),

from what we deduce
L(y) 6 L(ηy). (22)

Iterating (22), we obtain for all y > 0 and all positive integer j

L(y) 6 L(ηjy).

Letting j → ∞ in this inequality and using the continuity of the function L we obtain L(y) = 0 for all
nonnegative y. With the same method, we show that L(y) = 0 for all nonnegative y, and finaly L[f − f1]
is the null function. By the injectivity of the Laplace transform (Lerch’s theorem [11]), one has f = f1.

It remains to prove that supp f = [bθ ,∞). With the same kind of proof than the one we used for TΣ,
we can prove that T is irreducible on L1(bθ,∞), and since f is not the zero function we get the result.

14



2.3 Proof of the main theorem

We are now ready to prove the main theorem of the paper.

Proof of Theorem 1. Combining Lemma 2 and Proposition 10, we construct a solution to (11a)–(11d)
using

M(a, s) :=
ψ(a)

(a+ s)2
f(s).

It remains to prove its uniqueness in the appropriate space. This solution belongs to L1(R2
+, (1+s

2) da ds)
thanks to the following calculation

∫ ∞

bθ

∫ ∞

0

M(a, s)(1 + s
2) da ds

=

∫ ∞

bθ

∫ ∞

0

1

(a+ s)2
f(s)Ψ(a) dads+

∫ ∞

bθ

∫ ∞

0

s2

(a+ s)2
f(s)Ψ(a) dads

6

∫ ∞

bθ

f(s)s−2

∫ ∞

0

Ψ(a) dads+

∫ ∞

bθ

f(s)

∫ ∞

0

Ψ(a) dads

= ‖f‖L1((bθ ,∞),(1+s−2) ds) <∞

because f ∈ L1((bθ,∞), sl ds) for all nonpositive number l. To prove the uniqueness of the solution
M ∈ L1(R2

+, (1+ s2) da ds), consider another solution M1 ∈ L1(R2
+, (1+ s2) da ds). Necessarily, as for M,

there exists a measurable function f1 such that for almost all s > a > 0

M1(a, s) =
Ψ(a)

(a+ s)2
f1(s).

For 0 < α < β <∞, we can write
∫ ∞

0

f1(s) ds =
1

β − α

∫ ∞

0

∫ β

α

(a+ s)2

Ψ(a)
M1(a, s) dads 6

2(β2 + 1)

(β − α)Ψ(β)
‖M1‖L1(R+,(1+s2) ds),

and this ensures that f1 ∈ L1(R+). Additionally we easily check as in Lemma 2 that f1 has to be a fixed
point of T. Then the uniqueness result in Proposition 10 ensures that f1 = f, and so M1 = M. The
existence and uniqueness of a solution to the initial problem (8a)–(8d) follows from the relation (10).

3 Entropy and long time behaviour

Now that we have solved the eigenvalue problem, we would like to characterize the asymptotic behaviour
of a solution n of (1a)–(1b), as in [18]. The General Relative Entropy principle provides informations
about the evolution of the distance in L1 norm between a solution n(t, ·, ·) and etN. To establish such
useful inequalities, we use the formalism introduced in [13] and [14]. Strictly speaking, to use this method,
we should prove some properties on a time-dependent solution n, in particular its existence and uniqueness
for any reasonable initial condition. Let us here assume the existence of such a solution, which moreover
satisfies the common estimate (see [18])

|n(t, a, x)| 6 Ce
t
N(a, x), t, x > 0. (23)

It is usually ensured by the hypothesis |n0(a, x)| 6 CN(a, x) and a maximum principle. For H a function
defined on all R, we define, for n ∈ L1(R2

+)

H[n] =

∫ ∞

bθ

∫ x−bθ

0

xN(a, x)H

(
n(a, x)

N(a, x)

)

dadx

which satisfies the following entropy property.

Proposition 13. If n is a solution of (1a)–(1b) satisfying (23), then

d

dt
H[n(t, ·, ·)e−t] = −D[n(t, ·, ·)e−t], (24)

with

D[n] =

∫ ∞

bθ

x
2
N(0, x)

[
∫ η

θ

∫ x
z
−bθ

0

H

(
n(a, x

z
)

N(a, x
z
)

)

dνx(a, z)−H

(
∫ η

θ

∫ x
z
−bθ

0

n(a, x
z
)

N(a, x
z
)
dνx(a, z)

)]

dx

where dνx(a, z) =
B(a)N(a, x

z
)

N(0,x)z2
dadµ(z) is a probability measure. Furthermore if H is convex, then D > 0.
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Before proving this proposition, we make a remark about the conservative problem (i.e. when only
one daughter out of two is kept after division). In this case, the dominant eigenvalue is 0 instead of 1,
and xN(a, x) is an eigenvector associated with the eigenvalue 0, since the total mass is preserved. Then
we obtain the equation

∂

∂a
(x2

N) +
∂

∂x
(x2

N) = −x2
BN, (25)

which might also be obtained multiplying (8a) by x.

Proof. Easy computations lead to

∂

∂t

ne−t

N
+ x

∂

∂a

ne−t

N
+ x

∂

∂x

ne−t

N
= 0,

where N(a, x) > 0, i.e. on the domain Ω := {x− a > bθ}. From this equality and (25), we deduce

∂

∂t

(

xNH

(
ne−t

N

))

+
∂

∂a

(

x
2
NH

(
ne−t

N

))

+
∂

∂x

(

x
2
NH

(
ne−t

N

))

= −x2
BNH

(
ne−t

N

)

, (26)

and integrating (26) over Ω, we obtain

d

dt

∫∫

(bθ ,∞)×(0,x−bθ)

xNH

(
ne−t

N

)

=

∫ ∞

bθ

x
2
N(0, x)H

(
n(t, 0, x)e−t

N(0, x)

)

dx−

∫ ∞

bθ

x
2
N(x− bθ, x)H

(
n(t, x− bθ, x)e

−t

N(x− bθ, x)

)

dx

+

∫ ∞

0

(a+ bθ)
2
N(a, a+ bθ)H

(
n(t, a, a+ bθ)e

−t

N(a, a+ bθ)

)

da−

∫ ∞

bθ

∫ x−bθ

0

x
2
BNH

(
ne−t

N

)

dadx

=

∫ ∞

bθ

x
2
N (0, x)H

(

e−t

N(0, x)

∫ η

θ

∫ x
z
−bθ

0

B(a)n(t, a,
x

z
) da

dµ(z)

z2

)

dx

− 2

∫ η

θ

∫ ∞

bθ

∫ x−bθ

0

x
2
BNH

(
ne−t

N

)

dadxz dµ(z)

=

∫ ∞

bθ

x
2
N (0, x)H

(
∫ η

θ

∫ x
z
−bθ

0

n(t, a, x
z
)e−t

N(a, x
z
)

dνx(a, z)

)

dx

− 2

∫ η

θ

∫ bθ

zbθ

∫ x
z
−bθ

0

x
2
B(a)N(a,

x

z
)H

(

n(t, a, x
z
)e−t

N(a, x
z
)

)

da dx
dµ(z)

z2

− 2

∫ η

θ

∫ ∞

bθ

∫ x
z
−bθ

0

x
2
B(a)N(a,

x

z
)H

(

n(t, a, x
z
)e−t

N(a, x
z
)

)

dadx
dµ(z)

z2

=

∫ ∞

bθ

x
2
N(0, x)

[

H

(
∫ η

θ

∫ x
z
−bθ

0

n(t, a, x
z
)e−t

N(a, x
z
)

dνx(a, z)

)

−

∫ η

θ

∫ x
z
−bθ

0

H

(

n(t, a, x
z
)e−t

N(a, x
z
)

)

dνx(a, z)

]

dx,

since for x ∈ [zbθ, bθ] and z ∈ [θ, η], x
z
− bθ 6 b, and we conclude using Jensen’s inequality.

Appropriate choices of the function H in (24) lead to interesting results. With H(x) = x, we recover
the conservation law (7). Then taking H(x) = |1 − x|, we obtain the decay of ‖N − ne−t‖L1(R+,x dx da)

as t tends to infinity. In the case where the fragmentation kernel µ has a density with respect to the
Lebesgue measure on [0, 1], we expect that this quantity will vanish, as in [14, 18]. In contrast, in the
case of the equal mitosis, there is not hope for this distance to vanish. Indeed, one has an infinite number
of eigentriplets (λj , Nj , φj) with j ∈ Z defined by

λj = 1 +
2ijπ

log 2
, Nj(a, x) = x

1−λjN(a, x), φj(a, x) = x
λj ,

so we expect a behavior as in [2], i.e. the convergence of n(t, a, x)e−t to the periodic solution

∑

j∈Z

〈n0
, φj〉 e

2ijπt
log 2 Nj(a, x),

where 〈n, φ〉 =
∫ ∫

n(a, x)φ(a, x) da dx.
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4 Discussion and perspectives

We have proved the existence and uniqueness of a solution of the eigenproblem (8a)–(8d) in the special
yet biologically relevant case of linear growth rate with a self-similar fragmentation kernel. Hypotheses
on both this kernel and the division rate are fairly general.

As possible future work we can imagine to extend the result to general growth rates. In this case the
Perron eigenvalue is not explicit and it has to be determined in the same time as the eigenfunction, as
in [26, 12, 6]. If we denote by λ the eigenvalue, the equivalent of Equation (20) is

Pλ(s) =

∫ 1

0

e
−λ

∫ s
z

s
du

g(u) (Φ ∗ Pλ)(
s

z
)
dµ(z)

z

with Pλ(y) = e
λ
∫ s
1

du
g(u)M(0, s) and the equivalent of the solution given in (9) is

N : (a, x) 7→
Ψ(a)

g(x)
e
−λ

∫ x
0

dα
g(α)Pλ(x− a).

Additionally for nonlinear growth rates, the function (a, x) 7→ x does not provide a conservation law as
in (7), and it has to be replaced by a solution to the dual Perron eigenproblem. Such a dual eigenfunction
appears in the definition of the General Relative Entropy [13, 14], and for proving its existence one
could follow the method in [19, 8] for the size-structured model. Another possible generalization of the
growth rate is adding variability, in the spirit of [21, 15, 17]. One might also consider a more general
fragmentation kernel than in the case of self-similar fragmentation, or/and with a support which is not a
compact subset of (0, 1).

The other natural continuation of the present work is the proof of the well-posedness and the long-time
behavior of the evolution equation, as in [26, 12]. To do so one can take advantage of the General Relative
Entropy as in [14, 4, 2] or use general spectral methods [28, 16].
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