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Steady distribution of the incremental model for bacteria proliferation

Introduction

In structured population dynamics, finding the structuring variable(s) which best describes a phenomenon is a crucial question. For a population of proliferating cells or bacteria the variables usually considered are age, size (see [START_REF] Webb | Theory of nonlinear age-dependent population dynamics[END_REF][START_REF] Metz | The dynamics of physiologically structured populations[END_REF][START_REF] Perthame | Transport equations in biology[END_REF]) or a combination of both (see [START_REF] Bell | Cell growth and division: I. a mathematical model with applications to cell volume distributions in mammalian suspension cultures[END_REF][START_REF] Sinko | A new model for age-size structure of a population[END_REF][START_REF] Hall | Steady size distributions for cells in one-dimensional plant tissues[END_REF] for modeling and [START_REF] Webb | Dynamics of populations structured by internal variables[END_REF][START_REF] Metz | The dynamics of physiologically structured populations[END_REF][START_REF] Hall | Steady size distributions for cells in one-dimensional plant tissues[END_REF][START_REF] Doumic | Analysis of a Population Model Structured by the Cells Molecular Content[END_REF] for mathematical analysis). Recent experimental work highlighted the limits of these models to describe bacteria, and a new variable to trigger division emerged: the size-increment, namely the size gained since the birth of the cell (see [START_REF] Sauls | Adder and a coarse-grained approach to cell size homeostasis in bacteria[END_REF] and references therein for a review of the genesis of the related model). This so called 'adder principle' ensures homeostasis with no feedback from the bacteria and explains many experimental data. In this model, bacteria are described by two parameters: their size-increment and their size, respectively denoted by a and x in the following (the choice of letter a is reminiscent from the age variable, since as for the age, the size increment is reset to zero after division). This choice of variables is motivated by the main assumption of the model, which is that the control of the cellular reproduction is provided by the division rate B which is supposed to depend only on a, and the growth rate g which is assumed to depend only on x. With the variables we introduced, the model formulated in [START_REF] Taheri-Araghi | Cell-Size Control and Homeostasis in Bacteria[END_REF] reads

    
∂tn(t, a, x) + ∂a(g(x)n(t, a, x)) + ∂x(g(x)n(t, a, x)) + B(a)g(x)n(t, a, x) = 0, t 0, x > a > 0, g(x)n(t, 0, x) = 4g(2x) ∞ 0 B(a)n(t, a, 2x) da, t 0, x > 0.

The function n(t, a, x) represents the number of cells at time t of size x that have grown of an increment a since their birth. The boundary term denotes an equal mitosis, meaning that after division, a mother cell gives birth to two daughters of equal size. However, if this special case of equal mitosis is appropriate to describe the division of some bacterium (e.g. E. Coli), it is inadequate for asymetric division (like yeast for instance) or for a fragmentation involving more than two daughters (as in the original model formulated for plant growth in [START_REF] Hall | Steady size distributions for cells in one-dimensional plant tissues[END_REF]). In the current paper, we propose to consider more general division kernels. We assume that when a cell of size x divides, it gives birth to a daughter of size zx with a certain probability which depends on z ∈ (0, 1) but is independent of x. Such fragmentation process is usually called self-similar. More precisely the number of daughters with a size between zx and (z + dz)x is given by µ([z, z + dz]), where µ is a positive measure on [0, 1]. The model we consider is then formulated as

    
∂tn(t, a, x) + ∂a(g(x)n(t, a, x)) + ∂x(g(x)n(t, a, x)) + B(a)g(x)n(t, a, x) = 0, t 0, x > a > 0,

g(x)n(t, 0, x) = 1 0 g( x z ) ∞ 0 B(a)n(t, a, x z ) da dµ(z) z , t 0, x > 0. (1a) (1b) 
It appears that this model is a particular case of the one proposed in the pioneer work [START_REF] Hall | Steady size distributions for cells in one-dimensional plant tissues[END_REF] for plants growing in a single dimension, mixing age and size control. Indeed, in this paper the authors noticed that in the case of a deterministic and positive growth rate, a size/age model is equivalent to a size/birth-size through the relation a = xs, where s denotes the birth-size (see Figure 1). They preferred working with the size/birth-size description since in this framework the transport term acts only in the x direction. In the case when g is independent of x and B is bounded from above and below by positive constants, it is proved in [START_REF] Webb | Dynamics of populations structured by internal variables[END_REF] for µ a uniform measure on [0, 1], and in [12, Chapter V] for the equal mitosis, that the solutions to Equation (1) converge to a stable distribution as time goes to infinity. In the present paper we propose to study the model [START_REF] Bell | Cell growth and division: I. a mathematical model with applications to cell volume distributions in mammalian suspension cultures[END_REF] in the case of a linear growth rate (see [START_REF] Bell | Cell growth and division: I. a mathematical model with applications to cell volume distributions in mammalian suspension cultures[END_REF] for a discussion on this hypothesis). More precisely we are interested in populations which evolve with a stable size and sizeincrement distribution, i.e. solutions of the form n(t, a, x) = h(t)N (a, x). The existence of such separable solutions when g is linear was already the topic of [START_REF] Hall | Steady size distributions for cells in one-dimensional plant tissues[END_REF], but their proof required the equation to be set on a bounded domain and they had to impose a priori the existence of a maximal size for the population. In our case no maximal size is prescribed and it brings additional difficulties due to a lack of compactness.

To address this problem, we will make the following assumptions. First, we want the sum of the daughters' sizes to be equal to the size of the mother. This rule, called mass conservation, prescribes

1 0 z dµ(z) = 1.
(

) 2 
We also assume that the division does not produce any arbitrarily small daughter by imposing that the support of µ is a compact subset of (0, 1), which ensures that

θ := inf supp µ > 0 and ∃η ∈ (θ, 1), supp µ ⊂ [θ, η]. (3) 
In particular, these assumptions imply that the mean number of daughters µ([0, 1]) is finite. The division rate B is assumed to be a nonnegative and locally integrable function on R+ such that

∃ b 0, supp B = [b, ∞), (4) 
see [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF] for instance. It will be useful in our study to define the associated survivor function Ψ by

Ψ(a) = e -a 0 B(z) dz .
For a given increment a, Ψ(a) represents the probability that a cell did not divide before having grown at least of a since its birth. We assume that the function B is chosen in such a way that Ψ tends to zero at infinity, meaning that all the cells divide at some time. More precisely we make the following quantitative assumption

∃ k0 > 0, Ψ(a) = +∞ O(a -k 0 ). (5) 
This assumption on the decay at infinity of the survivor function enables a wide variety of division rates. For instance, it is satisfied if there exists A > 0 such that

∀ a A, B(a) k0 a .
The function B being locally integrable, the function Ψ belongs to W 1,1 loc (R+) and ( 5) ensures that its derivative belongs to L 1 (R+). We can introduce the useful function Φ defined by

Φ = BΨ = -Ψ ′ (6)
which is the probability distribution that a cell divides at increment a. Recall that, as in [START_REF] Hall | Steady size distributions for cells in one-dimensional plant tissues[END_REF], we consider the special case of a linear growth rate, namely g(x) = x. In this case, multiplying by the size x and integrating, we obtain 

This implies that if we look for a solution with separated variables n(t, a, x) = h(t)N (a, x), necessarily h(t) = h(0)e t . In other words, the Malthus parameter of the population is 1. This motivates the Perron problem which consists in finding N = N (a, x) solution to

                   ∂a(xN (a, x)) + ∂x(xN (a, x)) + (1 + xB(a))N (a, x) = 0, x > a > 0, N (0, x) = 1 0 ∞ 0 B(a)N (a, x z ) da dµ(z) z 2 , x > 0, N (a, x) 0, x a 0, ∞ 0 x 0 N (a, x) da dx = 1. (8a) (8b) (8c) (8d) 
It is convenient to define the set X := {(a, x) ∈ R 2 , 0 a x}, and we are now ready to state the main result of the paper.

Theorem 1. Let µ be a positive measure on [0, 1] satisfying (2) and (3), and B be a nonnegative and locally integrable function on R+ satisfying (4) such that the associated survivor function Ψ satisfies (5).

Then, there exists a unique solution N ∈ L 1 (X, (1 + (xa) 2 ) da dx) to the eigenproblem (8a)-(8d). This solution is expressed as

N : (a, x) ∈ X → Ψ(a) x 2 f (x -a) (9) 
where f is a nonnegative function which satisfies

f ∈ L 1 (R+, x l dx)
for all l < k0, k0 being the positive number given in hypothesis (5), and

supp f = [b θ , ∞)
with b θ = θ 1-θ b, where θ and b are defined in (3) and (4) respectively. The fast decay of the function f near zero is a consequence of the form of the support of the fragmentation kernel µ. Furthermore, this decay is consistent with the decay near zero of the eigenvector for the size equation (see [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF]). Remark that for any nonnegative and appropriately normalized function f ∈ L 1 (R+), the expression given in ( 9) satisfies (8a), (8c), and (8d). The proof of Theorem 1 consists in finding the appropriate function f such that (8b) is also satisfied. This function is obtained as the fixed point of a conservative operator, and this allows us to compute it numerically by using the power iteration (see [START_REF] Richard | Numerical Analysis[END_REF]). We obtain the function on the left on Figure 2. On the right is the related density N (a, x).

Notice also that for the function N given by ( 9), the function s → N (a + s, x + s) is continuous for any a x. It corresponds to the trajectories along the characteristics.

The article is organised as follows. In Section 1 we reduce the Perron eigenvalue problem with two variables to a fixed point problem for an integral operator in dimension one. Section 2 is dedicated to proving the existence and uniqueness of the fixed point by using functional analysis and Laplace transform methods. In Section 3 we go through the usefulness of knowing N to develop entropy methods. Finally in Section 4 we discuss some interesting perspectives. 

Transformation into an integral equation

Our study consists in constructing a solution to the eigenproblem (8a)-(8d) from the solution of a fixed point problem. First, we notice that the size x of a cell and its size increment a grow at the same speed g(x), so the quantity xa remains constant: it corresponds to the birth-size of the cell, denoted by s. To simplify the equation and obtain horizontal straight lines as characteristics (see Figure 3), we give a description of the population with size increment a and birth-size s, namely we set M (a, s) := N (a, a + s). [START_REF] Hall | Steady size distributions for cells in one-dimensional plant tissues[END_REF] Thanks to this relation, it is equivalent to prove the existence of an eigenvector for the increment-size system or for the increment/birth-size system. To determine the equation verified by M , we compute the partial derivatives of xN (a, x) = (a + s)M (a, s), which leads to the equation

∂a((a + s)M (a, s)) + (1 + (a + s)B(a)) M (a, s) = 0.
Writing the non-local boundary condition (8b) with the new variables takes less calculation and a more interpretation. In (8b) the number of cells born at size s resulted of the division of cells at size s z . Then the equivalent of (8b) in the new variables with a linear growth rate is given by

M (0, s) = η θ s z 0 B(a)M (a, s z -a) da dµ(z) z 2
since there is no mass for a s z . With the relation [START_REF] Hall | Steady size distributions for cells in one-dimensional plant tissues[END_REF], it is equivalent to solve (8a)-(8d) and to solve

                     ∂a((a + s)M (a, s)) + (1 + (a + s)B(a))M (a, s) = 0, a, s > 0, M (0, s) = η θ s z 0 B(a)M (a, s z -a) da dµ(z) z 2 , s > 0, M (a, s) 0, a, s 0, R 2 + M (a, s) da ds = 1. (11a) (11b) (11c) (11d) 
Considering the variable s as a parameter in (11a), we see this equation as an ODE in the variable a. A formal solution is given by

M (a, s) = Ψ(a) (a + s) 2 s 2 M (0, s). (0, 0) size x increment a {a x} x 1 a + s = x 1 (0, 0)
increment a size at birth s Having this expression in mind, we note that for any nonnegative function f ∈ L 1 (R+, ds), the function

M f defined on R 2 + by M f : (a, s) → Ψ(a) (a + s) 2 f (s)
is a solution of (11a) and satisfies (11c). Then it remains to choose the appropriate function f and normalize the related function M f to solve the whole system (11a)-(11d). It turns out that this appropriate function f is a fixed point of the operator

T : L 1 (R+) → L 1 (R+) defined by T f (s) = η θ s z 0 Φ( s z -a)f (a) da dµ(z), (12) 
where Φ = BΨ, as stated in the following lemma.

Lemma 2. The function M f satisfies (11b) if and only if f is a fixed point of the operator T .

Proof.

M f satisfies (11b) ⇐⇒ f (s) s 2 = η θ s z 0 B(a) Ψ(a) ( s z ) 2 f ( s z -a) da dµ(z) z 2 ⇐⇒ f (s) = η θ s z 0 Φ(a)f ( s z -a) da dµ(z) ⇐⇒ f (s) = η θ s z 0 Φ( s z -a)f (a) da dµ(z) ⇐⇒ f (s) = T f (s)
The operator T can be seen as some kind of transition operator: it links the laws of birth size of two successive generations. If f is the law of the parents, then T f is the law of the birth size of the newborn cells. Indeed, Equation ( 12) can be understood in words as 'the number of cells born at size s come from the ones that were born at size a ∈ [b θ , s z ] and elongated of s za for all z ∈ [θ, η] and all a before dividing into new cells'. See [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF] for a probabilistic viewpoint on the conservative size equation. It is easy to check that T is a continuous linear operator on L 1 (R+) and that T L(L 1 (R + ))

Φ L 1 (R + ) = 1 using ( 2) and ( 6). The following lemma provides a slightly stronger result. Lemma 3. For all l 0, the operator T maps continuously L 1 (R+, s l ds) into itself. Additionally, if (5) holds true, then T maps continuously L 1 (R+, (s k + s l ) ds) into itself for any l 0 and k ∈ [0, k0).

Proof. We start with L 1 (R+, s l ds) where l 0. For f ∈ L 1 (R+, s l ds) and β > α > 0 one has

β α |T f (s)|s l ds η θ β α s l s z 0 Φ( s z -a)|f (a)| da ds dµ(z) η θ α z 0 |f (a)| β α Φ( s z -a)s l ds da dµ(z) + η θ β z α z |f (a)| β za Φ( s z -a)s l ds da dµ(z) η θ α z 0 |f (a)| β z -a α z -a Φ(σ)(a + σ) l z l+1 dσ da dµ(z) + η θ β z α z |f (a)| β z -a 0 Φ(σ)(a + σ) l z l+1 dσ da dµ(z) η θ z l+1 α z 0 |f (a)|a l da dµ(z) + η θ z l+1 ∞ α z
|f (a)|a l da dµ(z)

θ l f L 1 (R + ,s l ds) ,
which gives the conclusion by passing to the limits α → 0 and β → +∞.

For the second part we begin with the proof that under condition (5), for any k ∈ [0, k0) one has 1+x k is uniformly bounded on R+, there exists of a constant C > 0 such that (a + σ) k C(a k + σ k ) for all a, σ 0, and it allows us to write for any β > 0

∞ 0 Φ(a)a k da < ∞.
β 0 |T f (s)|s k ds η θ β 0 s k s z 0 Φ( s z -a)|f (a)| da ds dµ(z) = η θ β z 0 |f (a)| β z -a 0 Φ(σ)(a + σ) k z k+1 dσ da dµ(z) C η θ z k+1 β z 0 |f (a)|a k β z -a 0 Φ(σ) dσ da dµ(z) + C η θ z k+1 β z 0 |f (a)| β z -a 0 Φ(σ)σ k dσ da dµ(z) Cη k f L 1 (R + ,s k ds) + Φ L 1 (R + ,s k ds) f L 1 (R + ) .

The fixed point problem

In this section we prove the existence of a unique nonnegative and normalized fixed point of the operator T.

Let us first recall some definitions from the Banach lattices theory (for more details, see [START_REF] Du | Order structure and topological methods in nonlinear partial differential equations[END_REF][START_REF] Schaefer | Banach lattices and positive operators[END_REF]). Let Ω be a subset of R+ and ν be a positive measure on Ω. The space L 1 (Ω, ν) is an ordered set with the partial order defined by f 0 if and only if f (s) 0 ν-a.e. on Ω.

Furthermore, endowed with its standard norm, the space L 1 (Ω, ν) is a Banach lattice, i.e. a real Banach space endowed with an ordering compatible with the vector structure such that, if f, g ∈ L 1 (Ω, ν)

and |f | |g|, then f L 1 (Ω,ν) g L 1 (Ω,ν) . A vector subspace I ⊂ L 1 (Ω, ν) is called an ideal if f ∈ I, g ∈ L 1 (Ω, ν) and |g| |f | implies g ∈ I.
For a given operator A defined on L 1 (Ω, ν), a closed ideal I is A-invariant if A(I) ⊂ I, and A is irreducible if the only A-invariant ideals are {0} and L 1 (Ω, ν). To each closed ideal I in the Banach lattice L 1 (Ω, ν) corresponds a subset ω ⊂ Ω such that I = {f ∈ L 1 (Ω, ν), supp f ⊂ ω}. We also define the positive cone

L 1 + (Ω, ν) := {f ∈ L 1 (Ω, ν) | f 0 ν-a.e. on Ω}. An operator A : L 1 (Ω, ν) → L 1 (Ω, ν) is said to be positive if A(L 1 + (Ω, ν)) ⊂ L 1 + (Ω, ν).
To prove the existence of an eigenvector associated to the eigenvalue 1, we will use the following theorem, easily deduced from Krein-Rutman's theorem (see [START_REF] Du | Order structure and topological methods in nonlinear partial differential equations[END_REF] for instance) and De Pagter's [START_REF] De Pagter | Irreducible compact operators[END_REF]. 

TΣf (s) = η θ min( s z ,Σ) b θ Φ( s z -a)f (a) da dµ(z) (13) 
=                      η θ s z b θ Φ( s z -a)f (a) da dµ(z), b θ s < θΣ, s Σ θ Σ b θ Φ( s z -a)f (a) da dµ(z) + η s Σ s z b θ Φ( s z -a)f (a) da dµ(z), θΣ s ηΣ, η θ Σ b θ Φ( s z -a)f (a) da dµ(z), ηΣ < s Σ.
Defining the lower bound of the domain as b θ will ensure the irreducibility of TΣ. We will apply Theorem 4 to the operator TΣ for Σ large enough to prove the existence of a pair (ρΣ, fΣ) such that TΣfΣ = ρΣfΣ.

Then, we will prove that there exists a unique f in a suitable space such that ρΣ → 1 and fΣ → f as Σ → ∞, with f satisfying T f = f. The following lemma ensures that the truncated operator TΣ is well defined.

Lemma 5. If f ∈ L 1 (R+) and supp f ⊂ [b θ , Σ], then (T f ) |[b θ ,Σ] = TΣ(f |[b θ ,Σ] ).
Lemma 5 is a straightforward consequence of the definition of operator TΣ by [START_REF] Michel | General entropy equations for structured population models and scattering[END_REF]. From Lemmas 3 and 5, we deduce that TΣ has the same stability mapping properties as T. To prove the compactness of the operator TΣ for a fixed Σ and later on that the family (TΣ)Σ is also compact, we use a particular case of a corollary of the Riesz-Fréchet-Kolmogorov theorem. First, we define two properties for a bounded subset F of L 1 (Ω, ν) with Ω an open subset of R+, and ν a positive measure, the first on translations and the second on the absence of mass on the boundary of the domain

∀ǫ > 0, ∀ω ⊂⊂ Ω, ∃δ ∈ (0, dist(ω, c Ω)) such that τ h f -f L 1 (ω,ν) < ǫ, ∀h ∈ (-δ, δ), ∀f ∈ F ( 14 
)
∀ǫ > 0, ∃ω ⊂⊂ Ω, such that f L 1 (Ω\ω,ν) < ǫ, ∀f ∈ F ( 15 
)
where c Ω is understood as the complement of this set in R+.

Theorem 6 (from [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF], corollary 4.27). If F is a bounded set of L 1 (Ω, ν) such that (14) and (15) hold true, then F is relatively compact in L 1 (Ω, ν).

Existence of a principal eigenfunction for T Σ

Using Theorem 4, we prove the existence of an eigenpair (ρΣ, fΣ) for the operator TΣ.

Proposition 7. Let l be a nonpositive number. Under the hypotheses (2), ( 3) and (4), there exists a unique normalized eigenvector fΣ ∈ L 1 + (Ω, ν) of the operator TΣ in L 1 ((b θ , Σ), s l ds) associated to the spectral radius ρΣ for every Σ > max( 11-θ b, 1).

Applying Theorem 6, to Ω = (b θ , Σ) and the family

F = {TΣf, f ∈ L 1 ((b θ , Σ), s l ds), f L 1 ((b θ ,Σ),s l ds) 1},
which is bounded in L 1 ((b θ , Σ), s l ds), as already shown in the proof of Lemma 3, we prove the following Lemma.

Lemma 8. Let l be a nonpositive number. Under the hypotheses of Proposition 7, for all since for (A), (C) and (E), TΣf and τ h TΣf have the same expression, the same kind of calculations apply, so we only treat (C), which has the most complicated expression. The integrals (C1) and (C3) are dealt with in the same way, and we have the following estimate

Σ > max( b 1 -θ , 1 
(C) = ηΣ-h θΣ |TΣf (s + h) -TΣf (s)| s l ds ηΣ-h θΣ s+h Σ θ Σ b θ Φ( s + h z -a)f (a) da dµ(z) - s Σ θ Σ b θ Φ( s z -a)f (a) da dµ(z) s l ds + ηΣ-h θΣ η s+h Σ s+h z b θ Φ( s + h z -a)f (a) da dµ(z) - η s Σ s z b θ Φ( s z -a)f (a) da dµ(z) s l ds ηΣ-h θΣ s l s Σ θ Σ b θ Φ( s + h z -a) -Φ( s z -a) |f (a)| da dµ(z) ds =: (C1) + ηΣ-h θΣ s l s+h Σ s Σ Σ b θ Φ( s + h z -a)|f ( 
(C1) = ηΣ-h θΣ s l s Σ θ Σ b θ Φ( s + h z -a) -Φ( s z -a) |f (a)| da dµ(z) ds = η-h Σ θ Σ b θ |f (a)| ηΣ-h zΣ Φ( s + h z -a) -Φ( s z -a) s l ds da dµ(z) = η-h Σ θ z l+1 Σ b θ |f (a)| ηΣ-h z -a Σ-a |τ h z Φ(σ) -Φ(σ)|(a + σ) l dσ da dµ(z) = η-h Σ θ z l+1 Σ b θ |f (a)|a l ηΣ-h z -a Σ-a |τ h z Φ(σ) -Φ(σ)| dσ da dµ(z) θ l sup ε∈[θ,η] τ h ε Φ -Φ L 1 (R + ) .
These integrals are as small as needed when h is small enough, due to the continuity of the translation in L 1 (R+). For (C2) one has

(C2) = ηΣ-h θΣ s l s+h Σ s Σ Σ b θ Φ( s + h z -a)|f (a)| da dµ(z) ds = θ+ h Σ θ Σ b θ |f (a)| zΣ θΣ Φ( s + h z -a)s l ds da dµ(z) + η-h Σ θ+ h Σ Σ b θ |f (a)| zΣ zΣ-h Φ( s + h z -a)s l ds da dµ(z) + η η-h Σ Σ b θ |f (a)| ηΣ-h zΣ-h Φ( s + h z -a)s l ds da dµ(z) η θ Σ b θ |f (a)| zΣ zΣ-h Φ( s + h z -a)s l ds da dµ(z) = η θ z l+1 Σ b θ |f (a)| Σ-a Σ-h z -a Φ(σ + h z )(a + σ) l dσ da dµ(z) η θ z l+1 Σ b θ |f (a)|a l Σ-a Σ-h z -a Φ(σ + h z ) dσ da dµ(z) θ l sup |I|= h θ I Φ(a) da
which is small when h is small since Φ is a probability density. To deal with (C4), we use Fubini's theorem and some changes of variables to obtain

(C4) = ηΣ-h θΣ s l η s+h Σ s+h z s z Φ( s + h z -a)|f (a)| da dµ(z) ds = η θ+ h Σ zΣ-h θΣ s l s+h z s z Φ( s + h z -a)|f (a)| da ds dµ(z) = η θ+ h Σ zΣ-h θΣ s l 0 -h z Φ( h z + a ′ )|f ( s z -a ′ )| da ′ ds dµ(z) = η θ+ h Σ 0 -h z Φ( h z + a ′ ) zΣ-h θΣ |f ( s z -a ′ )|s l ds da ′ dµ(z) = η θ+ h Σ z l+1 0 -h z Φ( h z + a ′ ) Σ-h z -a ′ θΣ z -a ′ |f (σ)|(σ + a ′ ) l dσ da ′ dµ(z) η θ+ h Σ z l+1 0 -h z Φ( h z + a ′ ) da ′ dµ(z) θ l 1 -Ψ( h θ ) ,
and the continuity of Ψ at 0 provides the wanted property. Finally, noticing that (C5) (C2) because the integrand are nonnegative, we obtain the desired control on the integral (C). Now for the integral (B), which is dealt with as would be (D), we write

(B) = θΣ θΣ-h s+h Σ θ Σ b θ Φ( s + h z -a)f (a) da dµ(z) + Φ( s z -a) dµ(z) da, ηΣ < s Σ.
Lemma 9. Let l be a nonpositive number. Under the hypotheses of Proposition 7, for all Σ > 1 1-θ b, the operator TΣ : L 1 ((b θ , Σ), s l ds) → L 1 ((b θ , Σ), s l ds) is irreducible.

Proof. Let J = {0} be a TΣ-invariant ideal in L 1 ((b θ , Σ), s l ds). There exists a subset ω ⊂ (b θ , Σ) such that J = {f ∈ L 1 ((b θ , Σ), s l ds) | supp f ⊂ ω}. Let fω := s -l 1ω and s0 := inf supp fω b θ . Since J = {0} (so s0 < Σ) and θ < η, one can find ζ and ξ both positive such that TΣfω(s)

s 0 +ζ s 0 θ+ξ θ Φ( s z -a) dµ(z)fω(a) da.
For s s0, the functions z → s z -a and a → s z -a are continuous decreasing functions. So, if s is such that Proof of Proposition 7. Lemma 8 shows that the set F is relatively compact in L 1 ((b θ , Σ), s l ds), which is exactly saying that TΣ is a compact operator of L 1 ((b θ , Σ), s l ds). With Lemma 9 in addition, we can apply Theorem 4 to the operator TΣ for Σ > 1 1-θ b to obtain the existence of a nonnegative function fΣ ∈ L 1 ((b θ , Σ), s l ds) which is an eigenvector of TΣ associated to the eigenvalue ρΣ. Since this function is defined on a compact subset of R+, it also belongs to L 1 ((b θ , Σ), (s k + s l ) ds) for k < k0.

Passing to the limit Σ → ∞

We now want to show that up to a subsequence, (fΣ)Σ converges to a fixed point of T . To that end, in the rest of the article we extend the functions defined on (b θ , Σ) to R+ by 0 out of (b θ , Σ). Then we obtain the following proposition Proposition 10. Under hypotheses (2)-( 5) there exists a nonnegative and normalized fixed point

f ∈ L 1 (R+, (s k + s l ) ds)
for all l 0 and k < k0, of the operator T. Additionally, f is unique inL 1 (R+) and its support is [b θ , ∞).

First, we will show that the sequence (ρΣ)Σ converges to 1 as Σ → ∞.

Lemma 11. If (ρΣ, fΣ) is an eigenpair of the operator TΣ, then the following inequality holds true Then notice that for a ∈ (b θ , Σ) and z ∈ (θ, η) one has

1 -Ψ ( 1 η -1)Σ ρΣ 1 -Ψ Σ θ -b θ . (18 
b θ z -a b θ z -b θ = b θ 1 z -1 b θ 1 θ -1 = b,
so as in the computations leading to [START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF],

Ψ( b θ z -a) = 1.
Combining these different expressions, we deduce

ρΣ Σ b θ fΣ(s) ds = Σ b θ fΣ(s) ds - η θ z Σ b θ Ψ( Σ z -a)fΣ(a) da dµ(z). (19) 
Using the fact that the function Ψ is nonincreasing, we obtain the wanted inequality.

Now we show that up to a subsequence, (fΣ)Σ converges to a fixed point of T denoted by f . Thanks to [START_REF] Perthame | Transport equations in biology[END_REF] and the properties of Ψ, we can define

Σ0 := inf Σ > max( 1 1 -θ b, 1) such that ρΣ > 1 2 . 
Lemma 12. Under hypotheses (2), ( 3), ( 4) and (5), the set {fΣ, Σ Σ0, fΣ L 1 (R + ,(s k +s l ) ds) = 1} has a compact closure in L 1 (R+, (s k + s l ) ds), for any l 0 and k < k0, k0 being the real number given in (5).

Proof. Let k 0 and k ∈ [0, k0). Once again, we apply Theorem 6 to show the desired result. First, we show that ( 14) hold true with Ω = (b θ , ∞) and F = {fΣ, fΣ L 1 (R + ,(s k +s l ) ds) = 1}. Let ω be a compact subset of (b θ , ∞) and b θ < α < β such that ω ⊂ [α, β]. We use the following inequality

τ h fΣ -fΣ L 1 (ω,(s k +s l )ds) 2 τ h TΣfΣ -TΣfΣ L 1 (ω,(s k +s l )ds) 2 β k + α l τ h TΣfΣ -TΣfΣ L 1 ([α,β]) 2 β k + α l τ h TΣfΣ -TΣfΣ L 1 ([α,Σ]) .
The last quantity is small when h is small uniformly with respect to Σ since in the proof of Lemma 8, the estimates do not depend on the value of Σ. To prove that (15) holds true, we use the estimate [START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF] twice to write

fΣ L 1 ((b θ ,α),(s k +s l )ds) = 1 ρΣ α b θ TΣfΣ(s)(s k + s l )ds 2 α b θ TΣfΣ(s)s l ds + 2α k α b θ TΣfΣ(s)ds 2θ l 1 -Ψ( α -b θ θ ) + 2α k 1 -Ψ( α -b θ θ ) 2(θ l + α k ) 1 -Ψ( α -b θ θ )
which is again independant of Σ. The estimate [START_REF] Olivier | How does variability in cells aging and growth rates influence the malthus parameter?[END_REF] though depends on Σ, so we write for Σ larger than β 

η θ z 1 -Ψ( β z -a) dµ(z) da β b θ fΣ(a) η θ zΨ( β z -a) dµ(z) da, then 1 -Ψ(( 1 η -r)β) rβ β fΣ(a) da Ψ(( 1 η -1)β),
and finally

rβ β fΣ(a)(a l + a k ) da (β l + (rβ) k ) Ψ(( 1 η -1)β) 1 -Ψ(( 1 η -r)β) 4(rβ) k Ψ(( 1 η -1)β)
for β large enough. We use this estimate to get

∞ β fΣ(s)(s k + s l ) ds = ∞ j=0 r j+1 β r j β fS(s)(s k + s l ) ds 4r k ∞ j=0 r j β k Ψ(( 1 η -1)r j β) 4Cr k ∞ j=0 r j β k ( 1 η -1)r j β -k 0 C k,k 0 ,η,r β k 0 -k
due to hypothesis (5), for β large enough.

We are now ready to prove the existence and uniqueness of a fixed point for the operator T.

Proof of Proposition 10. We have proved in Lemma 12 that the set {fΣ, fΣ L 1 (R + ,(s l +s k ) ds) } has a compact closure in L 1 (R+, (s k + s l ) ds). We deduce the existence of f ∈ L 1 (R+, (s k + s l ) ds) such that, up to a subsequence still denoted by (fΣ)Σ, fΣ → f strongly as Σ → +∞. Now we prove that the function f is a fixed point of the operator T. We use the following inequality

f -T f L 1 (R + ,(s k +s l ) ds) f -fΣ L 1 (R + ,(s k +s l ) ds) + (1 -ρΣ) + TΣfΣ -T f L 1 (R + ,(s k +s l ) ds) .
The first term of the right-hand side tends to zero as Σ tends to ∞ by definition of f, and the second one is smaller than Ψ ( 1 η -1)Σ according to [START_REF] Perthame | Transport equations in biology[END_REF]. For the last one, we write

TΣfΣ -T f L 1 (R + ,(s k +s l ) ds) TΣfΣ -T fΣ L 1 (R + ,(s k +s l ) ds) =0 + T (f -fΣ) L 1 (R + ,(s k +s l ) ds) f -fΣ L 1 (R + ,(s k +s l ) ds)
due to Lemma 5 and to the continuity of T, which is proved in Lemma 3.

To prove uniqueness of the fixed point, we consider f1 another nonnegative fixed point of T in L 1 (R+) satisfying ∞ 0 f1(s) ds = ∞ 0 f (s) ds. Recalling the definition [START_REF] Metz | The dynamics of physiologically structured populations[END_REF] of the operator T , the functions f and f1 satisfy the integral convolution equation

f (s) = η θ Φ * f ( s z ) dµ(z). (20) 
Since f, f1 and Φ are in L 1 (R+), their Laplace transforms exist on R+ and are continuous decreasing functions. Taking the Laplace transform of f -f1 and switching integrals thanks to Fubini's theorem, one has for every y 0

L[f -f1](y) = η θ L[f -f1](zy)L[Φ](zy)z dµ(z). (21) 
The Laplace transform L[f -f1] is continuous on R+ and vanishes at the origin

L[f -f1](0) = ∞ 0 f (s) ds - ∞ 0 f1(s) ds = 0.
We now define the functions

L(y) = sup x∈[0,y] L[f -f1](x) and L(y) = inf x∈[0,y] L[f -f1](x).
By continuity in 0 of L[f -f1] and because L[f -f1](0) = 0, one has ∀y 0, L(y) 0, L(y) 0.

From [START_REF] Rotenberg | Transport theory for growing cell populations[END_REF], we obtain the inequality

L[f -f1](y) L(ηy) η θ L[Φ](zy)z dµ(z) L(ηy),
since Φ is a probability measure. L is a continuous increasing function, so for all x y, one has

L[f -f1](x) L(ηx) L(ηy),
from what we deduce L(y) L(ηy).

Iterating [START_REF] Sauls | Adder and a coarse-grained approach to cell size homeostasis in bacteria[END_REF], we obtain for all y 0 and all positive integer j L(y) L(η j y).

Letting j → ∞ in this inequality and using the continuity of the function L we obtain L(y) = 0 for all nonnegative y. With the same method, we show that L(y) = 0 for all nonnegative y, and finaly L[f -f1] is the null function. By the injectivity of the Laplace transform (Lerch's theorem [START_REF] Lerch | Sur un point de la théorie des fonctions génératrices d'Abel[END_REF]), one has f = f1. It remains to prove that supp f = [b θ , ∞). With the same kind of proof than the one we used for TΣ, we can prove that T is irreducible on L 1 (b θ , ∞), and since f is not the zero function we get the result.

Proof of the main theorem

We are now ready to prove the main theorem of the paper.

Proof of Theorem 1. Combining Lemma 2 and Proposition 10, we construct a solution to (11a)-(11d) using M (a, s) := ψ(a) (a + s) 2 f (s). It remains to prove its uniqueness in the appropriate space. This solution belongs to L 1 (R 2 + , (1+s 2 ) da ds) thanks to the following calculation

∞ b θ ∞ 0 M (a, s)(1 + s 2 ) da ds = ∞ b θ ∞ 0 1 (a + s) 2 f (s)Ψ(a) da ds + ∞ b θ ∞ 0 s 2 (a + s) 2 f (s)Ψ(a) da ds ∞ b θ f (s)s -2 ∞ 0 Ψ(a) da ds + ∞ b θ f (s) ∞ 0 Ψ(a) da ds = f L 1 ((b θ ,∞),(1+s -2 ) ds) < ∞ because f ∈ L 1 ((b θ , ∞), s l ds
) for all nonpositive number l. To prove the uniqueness of the solution M ∈ L 1 (R 2 + , (1 + s 2 ) da ds), consider another solution M1 ∈ L 1 (R 2 + , (1 + s 2 ) da ds). Necessarily, as for M, there exists a measurable function f1 such that for almost all s a 0

M1(a, s) = Ψ(a) (a + s) 2 f1(s). For 0 < α < β < ∞, we can write ∞ 0 f1(s) ds = 1 β -α ∞ 0 β α (a + s) 2 Ψ(a) M1(a, s) da ds 2(β 2 + 1) (β -α)Ψ(β) M1 L 1 (R + ,( 1+s 
2 ) ds) ,
and this ensures that f1 ∈ L 1 (R+). Additionally we easily check as in Lemma 2 that f1 has to be a fixed point of T. Then the uniqueness result in Proposition 10 ensures that f1 = f, and so M1 = M. The existence and uniqueness of a solution to the initial problem (8a)-(8d) follows from the relation (10).

Entropy and long time behaviour

Now that we have solved the eigenvalue problem, we would like to characterize the asymptotic behaviour of a solution n of (1a)-(1b), as in [START_REF] Perthame | Transport equations in biology[END_REF]. The General Relative Entropy principle provides informations about the evolution of the distance in L 1 norm between a solution n(t, •, •) and e t N. To establish such useful inequalities, we use the formalism introduced in [START_REF] Michel | General entropy equations for structured population models and scattering[END_REF] and [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF]. Strictly speaking, to use this method, we should prove some properties on a time-dependent solution n, in particular its existence and uniqueness for any reasonable initial condition. Let us here assume the existence of such a solution, which moreover satisfies the common estimate (see [START_REF] Perthame | Transport equations in biology[END_REF])

|n(t, a, x)| Ce t N (a, x), t, x > 0. (23) 
It is usually ensured by the hypothesis |n 0 (a, x)| CN (a, x) and a maximum principle. For H a function defined on all R, we define, for n ∈ L

1 (R 2 + ) H[n] = ∞ b θ x-b θ 0 xN (a, x)H n(a, x) N (a, x) da dx
which satisfies the following entropy property.

Proposition 13. If n is a solution of (1a)-(1b) satisfying (23), then

d dt H[n(t, •, •)e -t ] = -D[n(t, •, •)e -t ], (24) 
with

D[n] = ∞ b θ x 2 N (0, x) η θ x z -b θ 0 H n(a, x z ) N (a, x z ) dνx(a, z) -H η θ x z -b θ 0 n(a, x z ) N (a, x z ) dνx(a, z) dx where dνx(a, z) = B(a)N(a, x z ) N(0,x)z 2 da dµ(z) is a probability measure. Furthermore if H is convex, then D 0.
Before proving this proposition, we make a remark about the conservative problem (i.e. when only one daughter out of two is kept after division). In this case, the dominant eigenvalue is 0 instead of 1, and xN (a, x) is an eigenvector associated with the eigenvalue 0, since the total mass is preserved. Then we obtain the equation

∂ ∂a (x 2 N ) + ∂ ∂x (x 2 N ) = -x 2 BN, (25) 
which might also be obtained multiplying (8a) by x.

Proof. Easy computations lead to

∂ ∂t ne -t N + x ∂ ∂a ne -t N + x ∂ ∂x ne -t N = 0,
where N (a, x) > 0, i.e. on the domain Ω := {xa > b θ }. From this equality and (25), we deduce

∂ ∂t xN H ne -t N + ∂ ∂a x 2 N H ne -t N + ∂ ∂x x 2 N H ne -t N = -x 2 BN H ne -t N , (26) 
and integrating [START_REF] Webb | Dynamics of populations structured by internal variables[END_REF] over Ω, we obtain

d dt (b θ ,∞)×(0,x-b θ ) xN H ne -t N = ∞ b θ x 2 N (0, x)H n(t, 0, x)e -t N (0, x) dx - ∞ b θ x 2 N (x -b θ , x)H n(t, x -b θ , x)e -t N (x -b θ , x) dx + ∞ 0 (a + b θ ) 2 N (a, a + b θ )H n(t, a, a + b θ )e -t N (a, a + b θ ) da - ∞ b θ x-b θ 0 x 2 BN H ne -t N da dx = ∞ b θ
x 2 N (0, x) H e -t N (0, x) Appropriate choices of the function H in (24) lead to interesting results. With H(x) = x, we recover the conservation law [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF]. Then taking H(x) = |1 -x|, we obtain the decay of Nne -t L 1 (R + ,x dx da) as t tends to infinity. In the case where the fragmentation kernel µ has a density with respect to the Lebesgue measure on [0, 1], we expect that this quantity will vanish, as in [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Perthame | Transport equations in biology[END_REF]. In contrast, in the case of the equal mitosis, there is not hope for this distance to vanish. Indeed, one has an infinite number of eigentriplets (λj, Nj , φj) with j ∈ Z defined by λj = 1 + 2ijπ log 2 , Nj (a, x) = x 1-λ j N (a, x), φj(a, x) = x λ j , so we expect a behavior as in [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF], i.e. the convergence of n(t, a, x)e -t to the periodic solution j∈Z n 0 , φj e where n, φ = n(a, x)φ(a, x) da dx.

Discussion and perspectives

We have proved the existence and uniqueness of a solution of the eigenproblem (8a)-(8d) in the special yet biologically relevant case of linear growth rate with a self-similar fragmentation kernel. Hypotheses on both this kernel and the division rate are fairly general.

As possible future work we can imagine to extend the result to general growth rates. In this case the Perron eigenvalue is not explicit and it has to be determined in the same time as the eigenfunction, as in [START_REF] Webb | Dynamics of populations structured by internal variables[END_REF][START_REF] Metz | The dynamics of physiologically structured populations[END_REF][START_REF] Doumic | Analysis of a Population Model Structured by the Cells Molecular Content[END_REF]]. If we denote by λ the eigenvalue, the equivalent of Equation ( 20 Additionally for nonlinear growth rates, the function (a, x) → x does not provide a conservation law as in [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF], and it has to be replaced by a solution to the dual Perron eigenproblem. Such a dual eigenfunction appears in the definition of the General Relative Entropy [START_REF] Michel | General entropy equations for structured population models and scattering[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF], and for proving its existence one could follow the method in [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF][START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF] for the size-structured model. Another possible generalization of the growth rate is adding variability, in the spirit of [START_REF] Rotenberg | Transport theory for growing cell populations[END_REF][START_REF] Mischler | Stability in a nonlinear population maturation model[END_REF][START_REF] Olivier | How does variability in cells aging and growth rates influence the malthus parameter?[END_REF]. One might also consider a more general fragmentation kernel than in the case of self-similar fragmentation, or/and with a support which is not a compact subset of (0, 1).

The other natural continuation of the present work is the proof of the well-posedness and the long-time behavior of the evolution equation, as in [START_REF] Webb | Dynamics of populations structured by internal variables[END_REF][START_REF] Metz | The dynamics of physiologically structured populations[END_REF]. To do so one can take advantage of the General Relative Entropy as in [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Cáceres | Rate of convergence to an asymptotic profile for the selfsimilar fragmentation and growth-fragmentation equations[END_REF][START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF] or use general spectral methods [START_REF] Webb | An operator-theoretic formulation of asynchronous exponential growth[END_REF][START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF].
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 1 Figure 1: schematic representation of the variables on an E. coli bacterium.

Figure 2 :

 2 Figure 2: Left: simulation of the function f by the power method with B(a) = 2 1+a 1 {1 a} and µ(z) = 2δ 1 2 (z). Right: level set of the density N (a, x) obtained from this function f. Straight line: the set {x = a + 1}.

Figure 3 :

 3 Figure 3: Domain of the model, with respect to the choice of variables to describe the bacterium. Grey: domain where the bacterias densities may be positive. Arrows: transport. Left: size increment/size. Right: size increment/birth size. Dashed: location of cells of size x 1 .

First, recall that ∞ 0 Φ 0 Φ(a)a k da 1 0Φ(a) da + β 1 Φ 1 Ψ

 00111 (a) da = 1 and Φ = -Ψ ′ . Integrating by parts for β 1, one has β (a)a k da 1 + k β (a)a k-1 da and the last integral converges when β → +∞ under Assumption (5) because k < k0. Now let l 0 and k ∈ [0, k0), and let f ∈ L 1 (R+, (s k + s l ) ds). Due to the first part of the proof, we only have to estimate β 0 |T f (s)|s k ds for β > 0. Since the function x → (1+x) k

Theorem 4 .

 4 Let A : L 1 (Ω, ν) → L 1 (Ω, ν) be a non-zero positive compact irreducible operator. Then its spectral radius ρ(A) is a nonnegative eigenvalue associated to a nonzero eigenvector belonging to the positive cone L 1 + (Ω, ν). Due to a lack of compactness of the operator T , which is due to the lack of compactness of R+, we truncate the operator T into a family of operators (TΣ)Σ. Let b θ = θ 1-θ b and for Σ > b θ define the operator TΣ on L 1 ((b θ , Σ)) by

  ), the set F is relatively compact.Proof of Lemma 8. The set F is bounded due to the continuity of T proven in Lemma 3. First, we show that (14) is satisfied. Any compact set in (b θ , Σ) is included in a segment [α, β]. Without loss of generality, we take b θ < α < θΣ, ηΣ < β < Σ. It is sufficient to treat the case h positive, so let 0 h < min(θΣα, Σβ, Σ(ηθ)). Since TΣf is piecewise defined, we have to separate the integral on [α, β] into several parts, depending on the interval s and s + h belong to, and we obtainβ α |TΣf (s + h) -TΣf (s)| s l ds θΣ-h α |TΣf (s + h) -TΣf (s)| s l ds =: (A) + θΣ θΣ-h |TΣf (s + h) -TΣf (s)| s l ds =: (B) + ηΣ-h θΣ |TΣf (s + h) -TΣf (s)| s l ds =: (C) + ηΣ ηΣ-h |TΣf (s + h) -TΣf (s)| s l ds =: (D) + β ηΣ |TΣf (s + h) -TΣf (s)| s l ds =: (E).

  a)| da dµ(z) ds =: z a)|f (a)| da dµ(z) ds =: (C5)

sθ

  -s0 > b, then one can choose ζ and ξ such that for all (s, a) ∈ [s0, s0 + ζ] × [θ, θ + ξ], s za ∈ supp Φ. Additionally, for each ζ > 0, the integral s 0 +ζ s 0 fω(a) da is positive. We deduce that [θ(b + s0), Σ] ⊂ supp TΣfω ⊂ [s0, Σ], so s0 θ(b + s0), which is equivalent to s0 b θ . Finally b θ = s0, so J = [b θ , Σ] and TΣ is irreducible.

)

  Proof. Integrating the equality ρΣfΣ = TΣfΣ over (b θ , Σ), one has ρΣ f (a) da dµ(z) ds =: (A) f (a) da dµ(z) ds =: (B) (a) Ψ(Σa) -Ψ( ηΣ z a) da dµ(z)

  ρΣ Σ β fΣ(a) da = θΣ β TΣfΣ(a) da + ηΣ θΣ TΣfΣ(a) da + Σ ηΣ TΣfΣ(a) da.

z 1 -

 1 Ψ( β z a) dµ(z) da + (1 -ρΣ) dµ(z) da Since 0 < θ < η < 1, we can choose β > η 1-η b b θ . In that case, 1 η -b β > 1, and we can pick r ∈]1, 1 η -b β [ such that 1 ηr β > b. Noticing that 1 -Ψ( β za) and 1 -ρΣ are nonnegative, we obtain rβ β fΣ(a)

  , a, x z )e -t N (a, x z ) dνx(a, z) dx, since for x ∈ [zb θ , b θ ] and z ∈ [θ, η],x zb θ b, and we conclude using Jensen's inequality.

2ijπt log 2

 2 Nj (a, x),

  ) M (0, s) and the equivalent of the solution given in (9) isN : (a, x) → Ψ) P λ (xa).
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