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FRANCE

Abstract: We describe some geometric aspects of wavelet sys-
tems leading to time-frequency representations of signals. These
aspects are illustrated by the use of wavelets for local frequencies
characterization in signals.

I. INTRODUCTION

Since the early days of wavelet analysis, the concept of “wavelet analysis” has progres-
sively changed. The original wavelets 1] were functions ψ(b,a)(x) generated from a single one
ψ(x) (the so-called mother wavelet) by dilations and translations.

ψ(b,a)(x) =
1√
a
ψ

(
x− b

a

)
. (I.1)

The mother wavelet was then a function of vanishing integral, such that

0 < cψ =

∫ ∞

0

|ψ̂(ξ)|2dξ
ξ

< ∞ , (I.2)

having moreover good localization properties in both the direct space and the Fourier space.
To any function f(x) ∈ H2(IR) is associated its wavelet transform Tf (b, a) defined as

Tf (b, a) =< f, ψ(b,a) >=
1√
a

∫

R

f(x)ψ

(
x− b

a

)∗

dx , (I.3)

from which f(x) can be recovered thanks to the reconstruction formula

f(x) =
1

cψ

∫
Tf (b, a)ψ(b,a)(x)

db

a

da

a
. (I.4)

The term wavelet has now to be understood in a more general sense. The goal of wavelet
analysis is mainly to provide different representations of functions (or signals), as superpo-
sitions of elementary functions. The corresponding representation is then used for different
purposes, such as for instance data compression, feature extraction or pattern recognition.
To this effect, it becomes necessary to be able to adapt the representation to the chosen
application.

As an example, continuous wavelet decompositions can be directly generalized to the n-
dimensional case as a space-scale representation , by using simply scaled and shifted copies of a



mother wavelet, as in (I.1). This was very useful in a mathematical context, for the analysis of
singularities for example. Another approach involves the introduction of n different wavelets,
one for each direction, as done in 2] in an image processing context. One may also introduce
an more precise idea of direction into the analysis, by introducing rotation degrees of freedom
3], as follows. If ψ(x) ∈ L1(IRn) is such that

0 < cψ = K

∫

IRn

|ψ̂(ξ)|2 dξ

||ξ||n < ∞ , (I.5)

where K is a finite constant 3]. Any function f(x) ∈ L2(IRn) can then be decomposed as

f(x) =
1

cψ

∫
Tf (b, a, r)ψ(b,a,r)(x)

db

an
da

a
dµ(r) (I.6)

where

ψ(b,a,r)(x) = a−n/2ψ

(
r−1 · x− b

a

)
(I.7)

with b ∈ IRn, a ∈ IR∗
+ and r ∈ SO(n), the group of all rotation matrices of IRn, and

Tf (b, a, r) =< f, ψ(b,a,r) > . (I.8)

We describe here two aspects of continuous wavelet decompositions, directly related to
time-frequency analysis and its generalisations to dimensions greater than one. The first
aspect concerns the use of wavelets for the problem of characterizing local frequencies in one
and two dimensional signals. The second part of this paper describes some variations around
the standard construction of wavelets, leading to different time-frequency decompositions.

II. WAVELETS AND ONE-DIMENSIONAL TIME-FREQUENCY SIGNAL

ANALYSIS

Wavelet analysis has been shown in a signal analysis context to provide a very precise
local version of Fourier analysis. Indeed, by Plancherel’s formula, one has

Tf (b, a) =

√
a

2π

∫

R

f̂(ξ)eiξ.bψ̂(aξ)∗ dξ . (II.1)

Then, assuming that ψ(x) is “well localized” around x = 0, and that ψ̂(ξ) is “well localized”
around ξ = ω0 6= 0 (because of the admissibility condition), Tf (b, a) measures a position-
frequency content of f(x) in a neighborhood of the point (b, ω0/a) in the position frequency
plane. Moreover, because of the isometry property of the wavelet transform

1

cψ

∫

IR×IR∗
+

|Tf (b, a)|2
db

a

da

a
= ||f ||2 , (II.2)

the squared modulus |Tf (b, a)|2 of the wavelet transform can be interpreted as an energy
density in the half plane.

In the context of one-dimensional signal analysis, the signals to be analyzed are in general
real-valued functions, and are then completely determined by their positive frequency content.



It is then sufficient to work in theH2(IR)-context, and then quite convenient to use progressive

(or analytic) wavelets, i.e. wavelets ψ(x) such that ψ̂(ξ) = 0 for negative values of ξ.
Let us illustrate the time-frequency aspects of wavelet analysis with the following simple

examples. The wavelet transform of

f(x) = cos(ωx)

is obviously given by

Tf (b, a) =

√
a

2

[
eiωbψ̂(aω)∗ + e−iωbψ̂(−aω)∗

]
.

If the wavelet ψ(x) is such that ψ̂(ξ) 6= 0 for negative ξs, |Tf (b, a)| is an oscillatory function,
which does not yield a satisfactory description of the time-frequency energy distribution of
f(x). Such a phenomenon disappears if ψ(x) is a progressive wavelet. The main consequence
of the progressivity is the absence of beats, which gives a perfect localization of the energy
in the position-scale half-plane, around the horizontal line a = ω0/ω.

In the more realistic situation where the amplitude of the plane wave depends on time,
it is possible to characterize such a dependence under suitable assumptions. Indeed, let now

f(x) = A(x) cos(ωx) (II.3)

and let ψ(x) be a progressive wavelet. Then it follows directly from Taylor’s formula that

Tf (b, a) =

√
a

2
A(b)eiωb ψ̂(aω)∗ + r(b, a) , (II.4)

where r(b, a) is bounded as

|r(b, a)| ≤ K.a−1.Sup {|A′(x)|}

for some constant K (to get such an estimate, the wavelet ψ(x) must decay enough at infinity
so that

∫
|x||ψ(x)| dx < ∞). Clearly if a|A′/A| << 1, the remainder can be neglected and

A(x) and ω can be directly obtained from Tf (b, a). The continuous wavelet transform thus
yields a direct access to the frequency and local amplitude of the signal. This is the simplest
example of the use of wavelet analysis as a local Fourier analysis.

A little bit more complex is the case where the frequency of the analyzed signal is
allowed to change with x. Before entering the subject, we first need to describe the notion of
instantaneous frequency. To analyze a signal in terms of local amplitude and frequency, it is
convenient to write it in the form

f(x) = a(x) cos(ϕ(x)) (II.5)

and to define an instantaneous frequency νi(x) by νi(x) = ϕ′(x)/2π. Such a presentation is
far from unique, but this problem can be solved by the introduction of the so-called analytic
signal Zf (x) of f(x), defined by its Fourier transform as Ẑf (ξ) = 2H(ξ)f̂(ξ) where H(ξ) is
the Heaviside step function. Zf (x) can clearly be written in a unique way as

Zf (x) = A(x)eiφ(x) , (II.6)



where A(x) is a positive real-valued function, and φ(x) takes values in say [0, 2π[. (A, φ) is
called the canonical pair of f(x), and the expression

f(x) = A(x) cos(φ(x)) (II.7)

is the canonical presentation of f(x). It is easily checked that the instantaneous frequency
coincides with the usual frequency in the case of plane waves.

How to use wavelet analysis for the characterization of the canonical pair (A(x), φ(x))
of a signal f(x)? To carry on such an analysis, it is necessary to make the same assumptions
as before, namely to assume that A(x) is slowly varying compared with the oscillatory term
cos(φ(x)). Then, assuming that ψ(x) = Aψ(x) exp(iφψ(x)) is progressive and also satisfies
the same conditions, the wavelet coefficient Tf (b, a) takes the form of an oscillatory integral.
Using classical approximation techniques for such integrals, it can be shown 4] that Tf (b, a)
is locally maximum around a curve R in the (b, a) half-plane, called the ridge of the wavelet
transform, of equation

a = ar(b) =
φ′ψ(0)

φ′(b)
(II.8)

Moreover, the restriction of the wavelet transform to its ridge (the so-called skeleton of the

transform) has a very simple expression:

Tf (b, ar(b)) = Corr(b)Zf (b) + r(b) (II.9)

where Corr(b) is a corrective factor, completely determined by the wavelet ψ(x) and the ridge
ar(b), and r(b) is some remainder, whose size can be estimated by standard techniques. Then
the knowledge of the ridge of the wavelet transform is a sufficient information to characterize
A(x) and νi(x). It turns out that a fast algorithm can be built to numerically extract the
ridge from the wavelet transform . The main idea of the algorithm is that the ridge is the
place in the time-scale half plane where the local frequency of the wavelet transform (i.e.
some derivative of the argument of Tf (b, a) with respect to b, up to a factor 2π) coincides
with the instantaneous frequency of the wavelet ψ(b,a)(x). It can then be reached for instance

by a fixed-point algorithm 4].
Of course, when the analyzed function is simply of the form (II.5), the use of wavelet

analysis is not necessary. One can directly compute the analytic signal Zf (x) and then
deduce the canonical pair (A(x), φ(x)). However, if the signal to be analyzed is now a linear
combination of components of the form (II.5), one is clearly interested in the individual
canonical pairs of the components, and the global analytic signal cannot give such an answer.
Now, since wavelet transform is a linear transform, the wavelet transform of the composite
signal is the sum of the wavelet transforms of the components, that possess their own ridges.
Then, if the ridges are not too close from each other in the (b, a) half-plane (in which case
the approximation of oscillatory integrals fails), one can associate a skeleton to every ridge,
and then compute the canonical pairs of all components. We refer to 4] and 5] for a more
detailed presentation of that method, and for numerical illustrations.



III. WAVELETS AND TWO-DIMENSIONAL SPACE-FREQUENCY SIGNAL

ANALYSIS

Wavelets are in general used in the context of two-dimensional signal analysis as a
position-scale tool. Indeed, they are often used to detect abrupt changes and singularities
in images 2]. It turns out that the method of ”ridge and skeleton” previously described can
be generalized to the two-dimensional setting, giving rise to a method for the detection and
characterization of local frequencies in two-dimensional signals and images.

The starting point of the method is the same as before, except that there is no standard
notion of analytic signal available in more than one dimension (a possible definition is pro-
posed in 6]). We then assume that the (real-valued) two-dimensional signal can be locally
modeled as

f(x) = A(x) cos(φ(x)) , (III.1)

where the local amplitude and phase are such that

∣∣∣∣
1

A(x)
∇xA(x)

∣∣∣∣ << ∇xφ(x) . (III.2)

Let ψ(x) ∈ L2(IR2) be an admissible wavelet. Set Z±
f (x) = A(x) exp[±iφ(x)]. Then the

two-dimensional wavelet transform (with rotations) of f(x)

Tf (b, a, θ) =
1

a

∫

IR2

f(x) ψ

(
r
−θ

· x− b

a

)∗

dx (III.3)

can be approximated as

Tf (b, a, θ) =
Z+
f (x

+
0 )ψ

(
r
−θ

· x
+

0
−b

a

)∗

Corr+(b, a, θ)
+
Z−
f (x

−
0 )ψ

(
r
−θ

· x
−

0
−b

a

)∗

Corr−(b, a, θ)
+ r(b, a, θ) (III.4)

where x±0 = x±0 (b, a, θ)are the solutions (assumed to be unique for simplicity) of the station-
arity equations

∇xφ(x±0 ) = ±1

a
r
θ
· ∇xφψ

(
r
−θ

· x
±
0 − b

a

)
(III.5)

Corr±(b, a, θ) are corrective factors whose expression are completely explicit, and r(b, a, θ) is
a remainder whose size depends on the derivatives of A(x) and Φ(x) (see 7] for more details).

Assume now that the wavelet ψ(x) is ”concentrated” around the origin in the direct space,
and around some frequency k0 in the Fourier space. Then ψ(b,a,θ)(x) is concentrated around
the point (b, r

θ
· k0/a) in the phase space. Due to such localization properties, Tf (b, a, θ) is

locally maximum around the sets (the ridges of the transform)

R± =
{
(b, a, θ) ∈ IR2 × IR∗

+ × [0, 2π[ / x±0 (b, a, θ) = b
}

(III.6)

corresponding to the two components of the signal Z±
f (x). Otherwise stated

(
∇xφ(x±0 )

)
x±

0
=b

= ± 1

a
r
θ

(
∇x φψ

(
r
−θ

· x
±
0 − b

a

))
x±

0
=b

= ±1

a
r
θ
∇x φψ(0)

(III.7)



For simplicity, we will focus only on the values of a and θ corresponding to a given ridge, say
R+. The ridge then appears as a 2-dimensional surface {ar(b), θr(b)} in the four-dimensional
parameter space. (k0/ar(b), θr(b)) are the polar coordinates of a wavevector located at the
point b, i.e. a local wavevector. But due to the existence of two components, implying the
existence of two ridges, there is still an undeterminacy of π in the angular coordinate, i.e.
one only has a local wavedirector (unoriented wavevector).

Like in the one-dimensional case, it can be shown that the ridges are the places where
the local wavevector of the wavelet transform (i.e. the gradient of the phase of Tf (b, a, θ))
coincides with that of the wavelet ψ(b,a,θ)(x). It is then possible to specify a fixed-point
algorithm that follows continuously a given ridge.

Again, the restriction of the wavelet transform to the associated ridge possesses a re-
markable property: it gives direct access to the signal itself. Indeed, we have the following
two-dimensional skeleton:

Tf (b, ar(b), θr(b)) = Corr(b)Zf (b) + r(b) (III.8)

where Corr(b) is a corrective factor, completely determined by the wavelet ψ(x) and the
ridge {ar(b), θr(b)}, and r(b) is some remainder, whose size can be estimated by standard
techniques.

To illustrate the method, we have chosen a simple example, namely f(x) = e−||x||2 cos(k1·
x) + cos(k2 · x), with k1 ⊥ k2 (see fig. 1). The two corresponding ridges are represented as
local directors in fig. 2. From each ridge it is possible to reconstruct the corresponding
component from the associated skeleton, as shown in fig. 3.

Fig. 1: Analyzed image Fig. 2: Ridge of the wavelet transform

Fig. 3a: First component Fig. 3b: Second component



IV. WAVELETS AND PHASE SPACE

Let us now turn to the geometric description of continuous wavelet systems built on the
phase space, focusing on two simple examples. In the two examples described above, the key
point was to use a wavelet transform mapping the L2 space of the considered space (IR or
IR2) into the L2 space of the associated space-frequency space (or phase space). This is not
the case of all wavelet transforms.

Consider for example R. Murenzi’s construction of n-dimensional wavelets 3], as described
in (I.5−8). The associated wavelet transform maps L2(IRn) into L2(IRn×IR∗

+×SO(n)), i.e.
the L2 space of a space of dimension n+1+n(n−1)/2 = n(n+1)/2+1, bigger than the phase
space for n ≥ 2. This means that all the parameters are not necessary for a space-frequency
analysis.

Consider as an example the simplest case, namely the case n = 3. It is well known that
the rotations of IR3 can be parametrized by 3 Euler angles φ, θ and ρ, as (see e.g. 8])

r = r
12
(φ) · r

23
(θ) · r

12
(ρ) (IV.1)

(where r
ij
(φ) is the rotation matrix

(
cosφ − sinφ
sinφ cosφ

)
in the Oij plane). Assuming that the

wavelet ψ̂(ξ) is ”concentrated” around some frequency k0 in the Fourier space, ̂ψ(b,a,r)(ξ) is

concentrated around r · k0/a. If the coordinate system is chosen in such a way that k0 is

parallel to the third axis and then invariant by r
12
(ρ), then ̂ψ(b,a,r)(ξ) is concentrated around

ξ =
1

a
r
12
(φ) · r

23
(θ) · k0 =

1

a
r
0
(θ, φ) · k0 . (IV.2)

In other words, (k0/a, φ, θ) are the spherical coordinates of a local wavevector naturally
associated with ψ(b,a,r)(x). Given a signal f(x) ∈ L2(IR3) to analyse, Tf (b, a, r) can then be

interpreted as measuring the phase space content of f(x) in the neighborhood of the point
(b; k0/a, φ, θ). This shows that a reduced wavelet transform is sufficient for space-frequency
analysis. From such a reduced wavelet transform, one can then derive a 3-dimensional ”ridge
and skeleton” method.

The next question is the completeness of such a reduced wavelet representation. A
simple calculation shows that the wavelet coefficients Tf (b, a, r0(θ, φ)) represent a sufficient
information to characterize a three-dimensional signal f(x). The corresponding reconstruc-
tion formula reads

f(x) =
1

kψ

∫
Tf (b, a, r0(θ, φ)ψ(b,a,r

0
(θ,φ))(x)

db

an
da

a
sin θ dθ dφ , (IV.3)

where

kψ =

∫

IRn

|ψ̂(ξ)|2
dξ

||ξ||n . (IV.4)

This can be generalized to arbitrary dimensions, using the n-dimensional Euler angles. Let
ψ(x) ∈ L1(IRn) be such that ψ̂(ξ) is ”concentrated” around some frequency k0 in the Fourier
space. Any n-dimensional rotation matrix is characterized by n(n − 1)/2 Euler angles, and
can be expressed as a product

r = r
0
· s , (IV.5)



where s ∈ SO(n − 1), the group of all rotation matrices that leave k0 invariant, and r
0
is

a product of n(n − 1)/2 − (n − 1)(n − 2)/2 = n − 1 rotation matrices r
ij
(θ), characterized

by n − 1 Euler angles (see 8], 3] for more details). It follows from the same arguments as
above that the frequency localization of ψ(b,a,r)(x) is completely determined by a and r

0
. The

corresponding reduced wavelet transform is sufficient to characterize the phase space content
of n-dimensional signals. Moreover, like in the three-dimensional case, it is also sufficient to
characterize functions of n variables, in the sense that a reconstruction formula is available.

The last example we consider is also motivated by signal analysis problems. Let us focus
for simplicity on the one-dimensional case. For some problems (in speech processing or vision
for example) it is useful to enlarge the class of analysis functions under consideration. Indeed
the usual wavelets, as described in (I.1−4), are functions of constant relative bandwidth (i.e.

the width of the Fourier transform ψ̂(b,a) is proportional to the corresponding frequency ω0/a

where ψ(b,a) is centered). As shown in 9] in a speech analysis context, such a description of
the frequency space is not always optimal, in the sense that it is not adapted to the structure
of speech signal. To vary the relative bandwidth as a function of the frequency (and/or the
time), one can introduce an additional set of transformations, namely modulations 9], 10].
In other words, one can try to combine wavelet analysis and windowed Fourier analysis, by
considering the following family of functions

ψ(b,ω,a)(x) =
1√
a
eiω(x−b)ψ

(
x− b

a

)
. (IV.6)

If ψ̂(ξ) is localized around the origin in the Fourier space for instance, and has a bandwidth B,

then ̂ψ(b,ω,a)(ξ) is localized around ξ = ω and has a bandwidth equal to B/a. However, such a
family of functions cannot be directly used to provide a simple analysis-reconstruction scheme
as before, because the corresponding admissibility constant cψ would in general diverge. This
is due to the fact that the set of parameters (b, ω, a) is bigger than the phase space of IR, the
extra dimension being noncompact and then of infinite volume. Nevertheless, this problem
can be avoided by introducing a relation between a and ω for example. Setting

a = β(ω) (IV.7)

(β is called the scale function) reduces the parameter space to a two-dimensional one. It can
then be shown in particular that the choice

βσ,τ (ω) =
1

σω + τ
τ 6= 0 (IV.8)

directly leads to a simple analysis-reconstruction scheme 10], in the sense that as soon as
ψ ∈ L1(IR) ∩ L2(IR), any f ∈ L2(IR) can be decomposed as

f(x) =
1

2π||ψ||2
∫
< f, ψ(b,ω,βσ,τ(ω)) > ψ(b,ω,βσ,τ (ω))(x) db dω . (IV.9)

Such a family of β functions is actually not rich enough to include functions of practical
interest; nevertheless, the construction can be slightly modified to allow more general scale
functions (see 11]). A similar analysis has been carried out in the n-dimensional case in 12].

Again in the second example, one obtains a wavelet-type representation by restricting the
parameter set to the phase space associated with the original space. This is not a coincidence,



and the explanation of this fact comes from the group theoretical interpretation of wavelets
derived in 13]. Indeed, in all the cases we have been considering since the beginning of this
paper, the wavelets are constructed from the action of a group G on L2(IRn) (the affine
group in one dimension, the affine group extended by rotations, the affine group extended by
modulations, ...):

π : G→ U(L2(IRn)) (IV.10)

where U(L2(IRn)) stands for the unitary operators on L2(IRn) In all these cases, it can be
shown (see 12] for instance) that there is a quotient space G/H of G (i.e. a set of equivalence
classes of elements of G) naturally associated with the action of G on L2(IRn). For example, in
the case of Murenzi’s wavelets, the H subgroup is the group of (n− 1)-dimensional rotation
matrices. This quotient space, known as the phase space by the specialists of geometric
quantization, is of dimension 2n, and is exactly the parameter space used for the wavelet
transform or the reduced wavelet transform we described. This shows that for all such groups,
there is a naturally associated wavelet transform well suited for space-frequency analysis:

T : L2(IRn) → L2(G/H) . (IV.11)

The wavelet systems associated with quotients of groups was also described in 14]. This
language also allows to clarify the role played by the group G. The group fixes the geometry
of the phase space that is associated with the considered wavelet analysis. It is also the
symmetry (or covariance) group of the wavelet representation. Indeed, there is also a natural
action λ of G on L2(G/H), coming from the group multiplication law of G.

λ : G→ U(L2(G/H)) . (IV.12)

The covariance is thus expressed as follows (for simplicity we restrict to the case where
the phase space is the group G itself, like in the case of one-dimensional wavelets. In general,
the full covariance is lost, and there only remains a twisted covariance, i.e. a covariance
modulo the action of H 12]).

λ ◦ T = T ◦ π . (IV.13)

In other words: the space-frequency wavelet transform of π(g) · .f of a L2(IRn) function f(x)
acted on by an element g of the covariance group G is equal to λ(g) · T · f , the wavelet
transform Tf of f(x), acted on by g. For example, considering the case of image analysis by
two-dimensional Murenzi’s wavelets, one would say that the wavelet transform of a rotated,
scaled and shifted copy of an image is equal to a rotated, scaled and shifted copy of the
wavelet transform of the original image. This would not be the case of the windowed Fourier
transform of the image, since there is no natural action of rotations on the underlying group,
the two-dimensional Weyl-Heisenberg group (generated by space and frequency translations).

CONCLUSIONS:

We have described in this paper two aspects of space-frequency wavelet analysis, namely
two examples of application to the problem of local frequencies estimation, and some un-
derlying geometrical description. We have in particular seen that given a wavelet transform
taking its values in the L2 space of the phase space, it can be used for instance to build ”ridge
and skeleton” algorithms for characterizing amplitude and frequency modulated components
in signals, under some special assumptions on the modulation laws.



Nevertheless, a given space-frequency representation may be particularly accurate for a
given class of signals, and less accurate for other classes. This opens the problem of selecting
the most accurate representation for a given signal and a given problem. Such a criterion was
proposed in the context of orthonormal bases of wavelet packets (see e.g. 15] for a review),
for signal compression problems. However, it is very unlikely that the same criterion can
be used for different problems (such as for example modeling signals as superpositions of
amplitude and frequency modulated components). We now have a large number of available
space-frequency representations of signals, and being able to select the best one for a given
signal remains a very appealing difficult problem to solve.
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