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Abstract

This work deals with the challenges brought by nonlinear heat sources when upscal-
ing heat transfer in porous media. These difficulties are exemplified through applying
the volume averaging method to a simple convective heat transfer problem in a porous
medium featuring a nonlinear heterogeneous heat source. The most general solution
proposed requires the availability of an estimated value of the heat source in the aver-
aging volume, which can be obtained through a multiscale approach making use of a
downscaling methodology. The downscaling methodology yields pore-scale govern-
ing equations in a sub-domain of the porous medium allowing to deal with the lack
of information about the thermal behavior of the sub-domain’s vicinity. Solving the
downscaled equations allows to reconstruct the temperature field and the heat source
in the sub-domain with a good accuracy. This approximated reconstruction of the
temperature field in sub-domain makes it possible to compute accurate estimates of the
macroscopic heat source. In practice, the computational cost of the multiscale approach
can be reduced by storing the results of the downscaling procedure in a table which
takes as entries the limited number of macro-scale dependencies of the downscaled
problem’s solution. In an example, the resulting heat source table is used as an input in
a heuristic macro-scale transport model and compared to classic approaches. The use
of the heat source reconstructed by downscaling results in a significant improvement of
the accuracy of the macro-scale solution when the temperature driving the heat source
significantly deviates from the macro-scale temperature.

Keywords: Heat transfer • Porous medium • Nonlinearity
Downscaling • Upscaling • Volume averaging

∗dominique.bernard@icmcb-bordeaux.cnrs.fr

1



List of symbols

Roman symbols
A Fluid-solid interface and the associated surface area [m2]
A ∗ Fluid-solid interface in the sub-domain and the associated surface area [m2]
A Specific surface area [m−1]
a Thermal diffusivity [m2 s−1]
b Closure variable [m]
cp Heat capacity [Jkg−1 K−1]
K Effective conductivity tensor [Wm−1 K−1]
Kxx Effective conductivity (xx tensor coefficient) [Wm−1 K−1]
k Fluid thermal conductivity [Wm−1 K−1]
L Typical macroscopic size of the porous medium [m]
L Length scale associated with the macro-scale variations of quantities [m]
` Typical pore size [m]
l Length scale associated with the pore-scale variations of quantities [m]
li Lattice vector defining periodicity conditions [m]
n Normal unit vector pointing outwards the fluid phase
p Effective source term transport vector
p Pressure [Pa]
R Reactive interface and the associated surface area [m2]
R∗ Reactive interface in the sub-domain and the associated surface area [m2]
R∗ Effective reactive specific surface area [m−1]
R Reactive specific surface area [m−1]
r Position vector [m]
r0 Sub-domain size [m]
rc Cylinder radius [m]
r Closure variable [Km2 W−1]
S Heterogeneous heat source [Wm−2]
T Temperature [K]
V Porous domain and the associated volume [m3]
Vf Fluid domain and the associated volume [m3]
V ∗ Porous sub-domain and the associated volume [m3]
V ∗f Fluid sub-domain and the associated volume [m3]
v Velocity vector [ms−1]
v Velocity intensity [ms−1]
x Position vector and sub-volume centroid [m]
y Position vector relative to the sub-volume centroid [m]
Greek symbols
α Mapping variable for the heterogeneous source term
ε Porous medium porosity
µ Fluid dynamic viscosity [Pas]
ν Kinematic viscosity [m2 s−1]
ρ Fluid density [kgm−3]
Special notations
〈·〉 Superficial volume averaging operator
〈·〉f Intrinsic volume averaging operator (fluid phase)
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〈·〉R Surface averaging operator (reactive interface)
·̃ Deviation field
· Macro-scale variable

1 Introduction

Heat transfer in porous media has a key role in many applications. A lot of them involve
phenomena associated with highly nonlinear physics (e.g. combustion, radiation transfer,
pyrolysis, catalysis, etc.) and are a constant source of questioning when applying upscaling
techniques. In most cases, approximations have to be used, and the resulting macro-scale
transport model is always a compromise between complexity and accuracy. Many studies
have dealt with nonlinear heat transfer problems in porous media and have come to various
conclusions and solutions, some of which are summarized by Quintard (2014).

Even when the usual length-scale constraints are satisfied, i.e. in the absence of “shocks”
in macroscopic quantities (e.g. combustion fronts, thermal contact, interfaces, etc.), homoge-
neous and heterogeneous source term nonlinearity remains a challenge in many applications.
It is often handled through partial decoupling of pore-scale physics (Whitaker, 1998; Quin-
tard and Whitaker, 2000). However, in some situations, pore-scale physics coupling remains
important and finer estimates of source terms would be a significant improvement. A pore-
scale approximate of the temperature field in a volume representative of the medium could
be used to compute a better estimate of source terms. Nevertheless, as repeatedly men-
tioned in the upscaling literature, performing direct numerical simulation (DNS) in the entire
porous medium is impossible due to computational costs, and doing it in a sub-volume of
the macroscopic system is non-trivial due to missing information about the vicinity of the
sample.

Angeli et al. (2013) proved that a downscaling procedure can yield an approximate of
velocity and temperature fields in a sub-volume of the system with good accuracy in the
case of an incompressible, anisothermal flow with a constant heterogeneous heat source.
This approach compensates for the lack of information about the sub-volume’s vicinity
by using macroscopic field variations and periodic boundary conditions. In this work, the
methodology is extended to cases with heterogeneous source terms nonlinearly depending
on temperature. If the resulting approximate temperature field is accurate enough, it can be
used to retrieve an estimate of the average heterogeneous source term in the sub-volume.
Downscaled equations have clearly identified macroscopic dependencies and their solutions
can therefore be easily tabulated against a reduced number of macroscopic variables. The
resulting table can then be used to compute macroscopic source terms. Such a methodology
could represent a significant improvement in the computation of macroscopic source terms.

In Sect. 2, we highlight major issues brought by nonlinearity when applying the volume
averaging method (Whitaker, 1999) to a simple incompressible, anisothermal flow problem
with a heterogeneous source term featuring an unspecified dependency against temperature.
We propose an original solution to these issues implying the computation of an estimate
of the macro-scale source term using a downscaling technique. In Sect. 3, we present the
downscaling procedure used to construct an approximate temperature field in a sub-volume of
the system. The resulting pore-scale solution is compared to a reference solution obtained by
direct numerical simulation and the accuracy of the methodology is assessed. In Sect. 4, we
apply the multiscale methodology proposed in Sect. 2 to an example and use the downscaling
methodology to compute the macro-scale source term in a heuristic macro-scale heat transfer
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model. The results are compared with the solution obtained when using a simpler macro-scale
heat source model.

2 Upscaling of a nonlinear heat transfer problem

In this section, difficulties brought by nonlinearity of heterogeneous source terms when
performing volume averaging are highlighted using a simple example. The volume averaging
method applied to heat transfer problems was covered in-depth for a variety of configurations
(Quintard and Whitaker, 1993; Moyne, 1997; Quintard et al., 1997; Whitaker, 1998). The
present section follows the ideas presented by Carbonell and Whitaker (1983) and Quintard
and Whitaker (2000). The example which, despite its physically unrealistic nature, includes
all the features necessary for the analysis while remaining as simple as possible for clarity.

It should be noted that for best consistency with the averaging procedure used in Sect. 3.2,
the averaging filter should be defined using weighting functions and a convolution product
(Marle, 1967; Quintard and Whitaker, 1993). However, for clarity, the classic approach will
be used in these developments; this corresponds to the use of a top-hat weighting function.

2.1 Governing equations

We consider the steady-state, incompressible, anisothermal flow of a fluid in a spatially
homogeneous porous medium (see Fig. 1). The volume of the system is denoted V and the
volume occupied by the fluid phase is denoted Vf. The fluid-solid interface is denoted A
and the surface normal unit vector pointing outwards the fluid phase is denoted n. In the
following, r will be a point in the medium. The pore-scale flow governing equations and
boundary conditions are:

∇ ·v = 0 in Vf (1a)

∇ · (ρvv) = µ∇2v−∇p in Vf (1b)

v = 0 at A (1c)

where v and p are respectively the velocity and pressure fields in the fluid phase, and µ and
ρ are respectively the dynamic viscosity and density of the fluid phase. Boundary conditions
at ∂Vf\A , although mathematically required for the problem to be well-posed, are not
specified because they will not be used in this section.

The pore-scale governing energy equation and boundary conditions are:

∇ · (ρcpvT ) = ∇ · (k∇T ) in Vf (2a)

n · k∇T = S (T ) at R (2b)

n · k∇T = 0 at A \R (2c)

where T is the temperature field in the fluid phase and cp and k are respectively the heat
capacity and thermal conductivity of the fluid phase. S (T ) is a heterogeneous source term,
arbitrarily varying as a function of temperature. R is the part of A designated as the reactive
interface.

It should be noted that in practical cases, the solid phase is more likely to be closer to the
infinite conductivity limit than to the null conductivity one. However, despite its unrealistic
nature, this set of governing equations highlights the challenges of nonlinear source terms
while remaining simple. Moreover, it shares many similarities with quasi-steady reactive
mass transport problems.
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2.2 Volume averaging

The volume averaging operator is applied to the governing equations, using, as the averaging
volume, a sub-domain V ∗(x) centered at x. V ∗f (x) is the part of V ∗(x) occupied by the fluid
phase. Similarly, A ∗(x) is A ∩V ∗(x). For simplicity, a sub-domain (resp. sub-surface) and
its volume (resp. surface area) will be identified in the following. The characteristic size of
V ∗ is denoted r0. Following the usual volume averaging practices, we define the superficial
and intrinsic averages, related by the porosity ε , as

〈Ψ〉(x) = 1
V ∗(x)

∫

V ∗f (x)
Ψ(r)dV (r) (3)

〈Ψ〉f (x) = 1
V ∗f (x)

∫

V ∗f (x)
Ψ(r)dV (r) = ε 〈Ψ〉(x) (4)

where Ψ is a physical field (scalar or vector), x the centroid of V ∗(x) and r a current point in
the averaging volume. In the following, spatial dependencies will be omitted for conciseness
when unambiguous. Use will be made of the spatial decomposition (Gray, 1975):

Ψ(r) = 〈Ψ〉f (r)+ Ψ̃(r) (5)

and the spatial averaging theorems:

〈∇ ·Ψ〉= ∇ · 〈Ψ〉+ 1
V ∗

∫

A ∗
n ·ΨdA (6)

〈∇Ψ〉= ∇〈Ψ〉+ 1
V ∗

∫

A ∗
nΨdA (7)

The length-scale constraints and order of magnitude estimates implied by the procedure are
extensively discussed in the volume averaging method literature (see Appendix A). They can,
in many common cases, be ensured by if scale separation is valid (Whitaker, 1969), i.e. if

l� r0� L (8)

In Eq. (8), l is the largest length scale associated with the variation of pore-scale quantities,
and L is the smallest length scale associated with the variations of macro-scale quantities. l
and L are usually consistent with the quantities ` and L defined in Fig. 1. The application of
the averaging procedure to flow equations has been covered in-depth (Whitaker, 1986, 1996)
and will consequently not be repeated here.

L

`

r0

V ∗
V

A ∗ R∗

Figure 1: Porous medium and length scales; the fluid phase is represented in white.
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When applying the averaging operator to Eq. (2a), we get:

ρcp∇ ·
(

ε 〈v〉f 〈T 〉f
)

= ∇ ·
(

εk∇〈T 〉f
)
+∇ ·

(
k

V ∗

∫

A ∗
nT̃ dA

)
+

1
V ∗

∫

A ∗
n · k∇T̃ dA (9)

The following operations are then performed:

• subtract Eq. (9) from Eq. (2a) multiplied by ε and use order of magnitude estimates to
get a governing equation for the deviation field T̃ ;

• insert the spatial decomposition into boundary condition (2b);

• apply periodic boundary conditions on V ∗, which means that V ∗ is assumed to be
representative of the medium;

• apply the null average constraint for the deviation field.

This allows us to write the deviation problem:

ρcp

(
∇ ·
(

ṽT̃
)
+∇ ·

(
v〈T 〉f

))
= ∇ ·

(
k∇T̃

)
− 1

V ∗f

∫

A ∗
n · k∇T̃ dA in V ∗f (10a)

n · k∇T̃ =−n · k∇〈T 〉f +S(T ) at R∗ (10b)

n · k∇T̃ =−n · k∇〈T 〉f at A ∗\R∗ (10c)

T̃ (r+ li) = T̃ (r) i ∈ J1,3K (10d)

〈T 〉= 0 (10e)

where the li are lattice vectors defining periodicity conditions. It is worth noticing that in
Eqs. (10), the macro-scale quantities are evaluated at the centroid x of V ∗, which requires
length-scale constraints to be satisfied and ensures compliance with the periodicity conditions.
At this stage, S(T ) is not explicitly written in terms of dependencies versus 〈T 〉f and T̃ . It
however has to be a periodic function of r to be compatible with the periodicity conditions.

In order to proceed with the analysis, writing S as a function of macro-scale dependencies
is essential. Two strategies are possible:

1. A first approach consists in writing an explicit dependency versus 〈T 〉f. In that case,
in order to keep periodicity, the estimate for S(T ) has to be periodic. Therefore, we
will write:

S(T )' S
(
〈T 〉f (x)+ T̃

)
(11)

This approximation is valid under specific length-scale constraints, which are deter-
mined through a Taylor series development of S around 〈T 〉f (x)+ T̃ and an order of
magnitude analysis. This is very similar to the procedure leading to the downscaled
boundary condition in Sect. 3.1 (see also Appendix B). We then use another Taylor
series development of the source term around 〈T 〉f (x):

S
(
〈T 〉f (x)+ T̃

)

= S
(
〈T 〉f (x)

)
+ T̃

dS
dT

(
〈T 〉f (x)

)
+

1
2

T̃ 2 d2S
dT 2

(
〈T 〉f (x)

)
+ . . . (12)
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A zeroth-order truncation is common practice (Quintard and Whitaker, 2005) and
is appropriate if the temperature at R∗ does not significantly deviate from 〈T 〉f (x).
Stopping at the first order (Whitaker, 1998; Guo et al., 2015), it is then possible to
account for T deviating from 〈T 〉f (x), at the cost of additional complexity in both
the macroscopic problem and the closure process. Moreover, it can be inaccurate
if S has a highly nonlinear behavior around 〈T 〉f (x). Finally, going up to an order
higher than the first introduces T̃ 2, which is impractical given the linear nature of
the closure relations used. Therefore, in cases where S is strongly nonlinear and the
interface temperature strongly deviates from the average temperature, the Taylor series
expansion strategy falls short.

2. Another possible decomposition would be

S = 〈S〉R + S̃ (13)

where
〈Ψ〉R =

1
R∗

∫

R∗
Ψ dA (14)

In that case, the average value 〈S〉R is the average heterogeneous source term at the
interface. This decomposition is relevant since 〈S〉R naturally emerges when writing
the closed-form averaged equations. The challenge in estimating S̃ often leads authors
to neglect this deviation component (Quintard et al., 2000). However, the analysis can
be continued by writing S in the form

S' 〈S〉R (1+α) (15)

where α is a periodic function estimated from S̃/〈S〉R . Leroy et al. (2013) applied
this strategy and concluded that an iterative procedure is required to solve the resulting
closure problems. This is true if α is supposed unknown when solving the closure
problems.

When following the second approach, the deviation problem (10) becomes:

ρcp

(
∇ ·
(

ṽT̃
)
+∇ ·

(
v〈T 〉f

))
= ∇ ·

(
k∇T̃

)
− 1

V ∗f

∫

A ∗
n · k∇T̃ dA in V ∗f (16a)

n · k∇T̃ =−n · k∇〈T 〉f + 〈S〉R (1+α) at R∗ (16b)

n · k∇T̃ =−n · k∇〈T 〉f at A ∗\R∗ (16c)

T̃ (r+ li) = T̃ (r) i ∈ J1,3K (16d)

〈T 〉= 0 (16e)

Macroscopic source terms are then identified and the following closure relation is proposed:

T̃ = b ·∇〈T 〉f + r 〈S〉R (17)

Closure problems resulting from this relation are presented in Appendix C.
Use of closure (17) in Eq. (9) yields the macroscopic closed equation

ρcp∇ ·
(

ε 〈v〉f 〈T 〉f
)
= ∇ ·

(
K ·∇〈T 〉f

)
+R∗ 〈S〉R +∇ ·

(
p〈S〉R

)
(18)
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where R∗ is the effective reactive specific surface area, given by

R∗ =
1

V ∗

∫

R∗
(1+α)dA (19)

K is the effective conductivity tensor, given by

K = εkI+
k

V ∗

∫

A ∗
nbdA −ρcp 〈ṽb〉 (20)

and p is a dimensionless vector given by

p =
k

V ∗

∫

A ∗
nr dA −ρcp 〈ṽr〉 (21)

While providing a general interpretation of p in terms of macroscopic physics is difficult due
to the generic form chosen for S, it is interesting to note that this effective property shares
many similarities with the non-traditional velocity introduced by Guo et al. (2015), from
its expression to the closure problem which allows its computation. Since the values of R∗

and p depend on α , itself depending on the expression of S and the macroscopic context
(i.e. the thermal behavior of the macroscopic system), estimating these quantities requires a
dedicated study, beyond the scope of this work.

It then becomes obvious that neglecting S̃ is equivalent to neglecting α , i.e. considering
that the flux at R∗ deviates from its average in a negligible way.

From this brief overview of the upscaling procedure, we can see that source term
nonlinearity introduces challenges. Even when using the α = 0 approximation, an estimate
of 〈S〉R remains necessary to perform macroscopic heat transfer predictions (see Eq. (18)).
When the interface temperature is close to 〈T 〉f, using

〈S〉R ' S
(
〈T 〉f

)
(22)

is sensible (Quintard and Whitaker, 2005) (and equivalent to the zeroth-order Taylor series
expansion strategy); however, when the interface temperature significantly deviates from
〈T 〉f, estimating 〈S〉R becomes more challenging, because it requires an estimate of the
interface temperature at the pore scale.

Running direct numerical simulation with governing equations in V to extract the
resulting temperature field in V ∗ is unfeasible due to the excessive amount of computational
resources required: 〈S〉R should therefore be estimated only for the volume V ∗. The major
difficulty is that the boundary conditions at ∂V ∗f \A ∗ are unspecified and impossible to
determine due to the lack of information about the vicinity of V ∗ (it is also the reason why
periodic boundary conditions had to be used in Sect. 2.2). However, macro-scale fields
(e.g. 〈T 〉f) contain a large amount of information which can be used to model the pore-scale
behavior of the temperature field in V ∗. For that purpose, a downscaling methodology can
be used.

2.3 Multiscale methodology

Before discussing the downscaling procedure, it is important to see how it can be used in
the framework of a multiscale algorithm. The macro-scale governing equation (18) results
from an upscaling procedure, which models the influence of pore-scale phenomena at the
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macroscopic scale. From the final developments in Sect. 2.2, we can conclude that the
macroscopic scale has an influence on the pore scale, and that this can be modeled with
a downscaling methodology. The macro-scale and pore-scale (downscaled) models can
therefore be coupled to yield a multiscale model, which will account for multiscale coupling
effects with improved accuracy.

In a multiscale approach, some terms in the macro-scale governing equations (e.g. 〈S〉R
in Eq. (18)) depend on the results of a downscaled model. On the other side, the results of the
downscaled model depend on the macro-scale behavior of the system: both must therefore
be solved in a coupled way. A possible coupling strategy relies on an iterative approach:

1. A solution to the macro-scale governing equation (18) is computed using an estimate
of 〈S〉R .

2. The resulting macro-scale information is used as the input of a downscaled model to
compute a better estimate for 〈S〉R at a reasonable computational cost.

3. The new estimate for 〈S〉R is used to solve Eq. (18) again.

4. Steps 2 and 3 are repeated until the macro-scale solution has converged.

This strategy is further discussed, refined and applied to an example in Sect. 4.
Various multiscale approaches have been developed for the simulation of transport in

porous media, notably in the reservoir simulation community (Arbogast et al., 2007; Chen
et al., 2003; Fredrik and Tveito, 1998; Gautier et al., 1999; Hou and Wu, 1997; Jenny
et al., 2005; Juanes, 2005). However, these methods start from an already homogenized
description of the medium at the finer scale and mainly aim at dealing with difficulties caused
by strong, short-scale variations of homogenized transport properties, such as permeability.
The methodology applied in this work, based on volume averaging and the work of Angeli
et al. (2013), is based on a non-homogenized (discrete) pore-scale description of the medium
and serves a different purpose.

3 Downscaling procedure

Downscaling is a class of modeling techniques aiming at inferring the micro-scale behavior
of a system from only macro-scale information. This macro-scale information can originate
from experimental data, or it can be obtained from macro-scale transport models, built using
phenomenological upscaling approaches, solved analytically or numerically. Downscaling
is extensively used for climate modeling and meteorology (Von Storch et al., 1993; Wilby
et al., 1998; Maraun et al., 2010), and has been mentioned as part of multiscale strategies for
reservoir simulation (Babaei and King, 2012). Angeli et al. (2013) developed a downscaling
procedure based on the volume averaging method. In the following, we apply the method to
the problem presented in Sect. 2.

Starting from a reference problem, whose solution is a reference field Ψ (where Ψ is
v or T ) defined in V , we build a cell problem, whose solution is an approximate Ψ∗ of Ψ,
defined in V ∗. Ψ∗ is required to satisfy governing equations as close as possible to those
governing Ψ. It is assumed that if there are small enough differences between the problems
from which Ψ and Ψ∗ are respectively solutions, then Ψ and Ψ∗ will be close.

The cell problem is developed under several assumptions, which will allow to compensate
for the information deficit about the sub-volumes neighboring V ∗, and it uses macro-scale
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data as an input. In the present case, the reference problem is described in Sect. 2.1 with
sufficient thoroughness to perform downscaling. The validation of the downscaling method-
ology is performed using the approach of Angeli et al. (2013): a reference solution (which
will require the specification of the geometry of the medium and the boundary conditions at
∂Vf\A ) is compared to a downscaled solution.

3.1 Cell problem

In the following, it will be assumed that the porous medium is homogeneous in the vicinity
of V ∗, i.e. that

∇ε (r) = 0 for r ∈ V ∗ (x) (23)

The development of the cell problem is based on the use of decomposition (5) in reference
governing equations. The macroscopic field 〈T 〉f is assumed to be known in V ∗. Following
the common practice in volume averaging, we will compensate the lack of information about
the neighboring sub-volumes by assuming that the deviation component of our approximated
field is periodic. Therefore, the reconstructed field Ψ∗ will be approximated by

Ψ∗ (r) = 〈Ψ〉f (r)+ Ψ̃∗ (r) (24)

where Ψ̃∗ is periodic over V ∗:
Ψ̃∗ (r+ li) = Ψ̃∗ (r) (25)

The relevance of periodic boundary conditions can be discussed as in the case of upscaling.
When performing the upscaling process, it can be shown that the Ψ̃ fields have to comply

with the null average constraint: 〈
Ψ̃
〉
(x) = 0 (26)

We will therefore impose 〈
Ψ̃∗
〉
(x) = 0 (27)

It should be kept in mind that both the periodic boundary conditions and the null-average
constraint are associated with length-scale constraints (see comments in Appendix A).

Lastly, use is made of the Taylor series expansion of the average field from the centroid
of V ∗:

〈Ψ〉f (r) = 〈Ψ〉f (x)+y ·∇〈Ψ〉f (x)+ 1
2

yy : ∇∇〈Ψ〉f (x)+ . . . (28)

where r = x+y, yielding

Ψ∗ (r) = 〈Ψ〉f (x)+y ·∇〈Ψ〉f (x)+ 1
2

yy : ∇∇〈Ψ〉f (x)+ . . .+ Ψ̃∗ (29)

The following developments require several order of magnitude estimates and compar-
isons. The complete developments will not be detailed for brevity, as they do not deviate
significantly from the analysis performed for upscaling. The resulting length-scale constraints
are commented in Appendix A.
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3.1.1 Flow problem

Whitaker (1986) proves that

∇ · 〈v〉f =−∇ε

ε
· 〈v〉f (30)

Eq. (23) then allows to write:
∇ · 〈v〉f = 0 (31)

Accounting for this fact and inserting the spatial decomposition into the mass balance
equation (1a) yields

∇ · ṽ∗ = 0 (32)

By substituting the decomposition (29) in Eq. (1b) and performing order of magnitude
estimates, the momentum equation for ṽ∗ becomes

ρ

(
∇ · (ṽ∗ṽ∗)+∇ ·

(
ṽ∗ 〈v〉f (x)

)
+∇ ·

(
〈v〉f (x) ṽ∗

)
+
(
〈v〉f (x)+ ṽ∗

)
·∇〈v〉f (x)

)

= µ∇2ṽ∗−∇ p̃∗+µ∇2 〈v〉f (x)−∇〈p〉f (x) (33)

It should be noted that such a development does not require the periodicity of the medium;
however, it assumes periodicity of the problem for the deviation fields, as in the case of
volume averaging, and this assumption drives the way the cell problem is developed, forcing
the elimination of non-periodic terms. An order of magnitude analysis, not detailed here for
conciseness, allows to determine the length-scale constraints ensuring the negligibility of the
non-periodic terms. The length-scale constraints resulting from the analysis are identical to
those implied by the upscaling procedure (see Appendix A for comments on this matter).
These length-scale constraints can be summarized by the more conservative Eq. (8).

The processing of the no-slip boundary condition follows similar principles, and we get
the complete cell problem for the flow:

∇ · ṽ∗ = 0 in V ∗f (34a)

ρ

[
∇ · (ṽ∗ṽ∗)+∇ ·

(
ṽ∗ 〈v〉f (x)

)

+∇ ·
(
〈v〉f (x) ṽ∗

)

+
(
〈v〉f (x)+ ṽ∗

)
·∇〈v〉f (x)

]

= µ∇2ṽ∗−∇ p̃∗+µ∇2 〈v〉f (x)−∇〈p〉f (x) in V ∗f (34b)

ṽ∗ =−〈v〉f (x) at A ∗ (34c)

ṽ∗ (r+ li) = ṽ∗ (r) (34d)

〈ṽ∗〉(x) = 0 (34e)

p̃∗ (r+ li) = p̃∗ (r) (34f)

〈p̃∗〉(x) = 0 (34g)

The solution of this problem depends on 〈v〉f (x), ∇〈v〉f (x), ∇2 〈v〉f (x) and ∇〈p〉f (x). Since
the macroscopic flow is incompressible, ∇〈p〉f (x) and 〈v〉f (x) are not independent. There-
fore, when solving this problem using a penalty method (see Sect. 3.2), only the velocity
will be used as a source. The reconstruction of the velocity and pressure fields is done
using decomposition (29), where the Taylor series may be truncated at an order ensuring a
satisfactory accuracy for the average field.
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〈T 〉f (x)〈v〉f (x)∇〈p〉f (x) ∇〈T 〉f (x) ∇2 〈T 〉f (x)

Cell problem

ṽ∗(r) T̃ ∗(r)

Reconstruction〈v〉f (r) 〈T 〉f (r)

v∗(r) T ∗(r)

Figure 2: Overview of the dependencies between the fields used in the cell problem and
the reconstruction process. For the reconstruction process, 〈v〉f (r) and 〈T 〉f (r) can be
approximated by stopping the Taylor series expansion (see Eq. (29)) at a given order.

3.1.2 Energy problem

Following the same methodology, we develop the cell problem for energy. For conciseness,
no detail is given here. Appendix B contains developments for the boundary condition at
A ∗. The cell problem for the energy equation is:

ρcp

[
∇ ·
((
〈v〉f (x)+ ṽ∗

)
T̃ ∗
)

+
(
〈v〉f (x)+ ṽ∗

)
·∇〈T 〉f (x)

]

= ∇ ·
(

k∇T̃ ∗
)
+ k∇2 〈T 〉f (x) in V ∗f (35a)

n · k∇T̃ ∗ =−n · k∇〈T 〉f (x) at A ∗\R∗ (35b)

n · k∇T̃ ∗ =−n · k∇〈T 〉f (x)+S
(
〈T 〉f (x)+ T̃ ∗

)
at R∗ (35c)

T̃ ∗ (r+ li) = T̃ ∗ (r) (35d)
〈

T̃ ∗
〉
(x) = 0 (35e)

The dependencies of the solution of this problem are those of the flow cell problem (i.e.
〈v〉f (x) and ∇〈p〉f (x)), as well as 〈T 〉f (x), ∇〈T 〉f (x) and ∇2 〈T 〉f (x). Fig. 2 highlights the
dependencies between the fields involved in the cell problem and the field reconstruction
process.

The derivation of Eqs. (35) required to force periodicity, which a fundamental difference
with the reference problem. However, the cell problem retains the nonlinearity of the source
term through Eq. (35c) and contain macro-scale information through the macroscopic source
terms. Then, the reconstruction process (see Eq. (29)) allows to use additional macro-scale
information to build an estimate T ∗ of the T field. It is then T ∗ which is used to compute an
estimate of 〈S〉R (see Sect. 4).

It should be noted that in practice, the macroscopic information can originate from either

1. an upscaled macroscopic transport model,

2. a phenomenological macroscopic transport model,

3. or from experimental data.
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Reference problem
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Reconstruction
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Figure 3: Principle of the validation procedure.

Cases 1 and 2 can apply in the multiscale approach mentioned in Sect. 2.3. Case 3 enables to
retrieve pore-scale information from the combination of macro-scale experimental results
and knowledge of the pore-scale geometry and physics of the system.

3.2 Validation

The validation process of this methodology consists in comparing the results obtained with
the downscaled model (Eqs. (34) and (35)) with a reference solution obtained by solving
Eqs. (1) and (2). The source terms for the cell problem are computed from the reference
solution to ensure consistency between the reference and downscaled solutions. Fig. 3
summarizes the methodology.

3.2.1 Problem specification

The chosen reference geometry is an array of 10×7 cylinders of radius rc (Fig. 4a). The size
of the unit cell is denoted r0. The reactive interface covers half of A and is located in the
axial direction of the flow (Fig. 4b). The geometrical and thermophysical quantities involved
are arbitrarily chosen for convenience (see Tab. 1).

The boundary conditions are chosen as follows:
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Figure 4: (a) Reference geometry (the (m,n) couples identify each cell); (b) unit cell.
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• x =−0.5r0: fixed inlet velocity vinex, fixed temperature T in;

• x = 9.5r0: fixed pressure pout, ex ·∇v = 0, ex ·∇T = 0;

• y =−0.5r0 and y = 6.5r0: v = 0, ey ·∇T = 0.

The heterogeneous source term expression is

S(T ) = f (T )g(Pein) (36)

with

f (T ) =
{

10−3T
(
1.333−4.444×10−4T

)
if T ∈ [0K,3000K]

0 otherwise

g(Pein) = 10
(
1+Pein)

where Pein is the inlet Péclet number, defined as

Pein =
vinl
a

with l =
1
A

(37)

Similarly, an inlet Reynolds number Rein can be defined. The expression chosen for S is
strongly nonlinear and allows coverage of most of the [0K,3000K] range over the entire
geometry for values of Pein ranging from 0.01 to 100.

3.2.2 Results

All computations are made using the OpenFOAM software package (Jasak et al., 2007). The
reference problem is solved using the SIMPLE algorithm for the flow part, and a pseudo-time
stepping approach for the energy part. The mesh used is unstructured, made of approximately
230000 triangular elements. The covered number range for the inlet Péclet is [0.01,100],
the upper limit (which corresponds to Rein = 100) being set by the transition to an unsteady
flow regime.

Source terms are computed from the reference solution using a second-order filter of the
recursively-defined family presented by Angeli et al. (2013) and denoted m2 in the following.
This ensures continuity of the second-order derivatives of the filtered fields. Filtering yields
fields continuously defined over the entire domain V . Since the size of the filter is 3r0
(Angeli et al., 2013), the average only makes sense at points distant from ∂V from at least
1.5r0. The filter is applied by considering volume centroids arranged in a 100×70 grid. The
average fields and their derivatives are then evaluated at the centroids of the cells to compute
the macroscopic source terms. Average fields inherit the axial symmetry of the reference
fields. The average velocity is nearly uniform in the cells not adjacent to ∂V . Fig. 5 shows
an example of reference and average temperature fields.

The cell problem is solved for cells (m,n) ∈ J2,9K× J4,6K (see Fig. 4) using the penalty
method of Angeli et al. (2013). The momentum problem is solved using a modified SIMPLE
algorithm. Relaxation coefficients have to be adjusted with the Reynolds number to ensure
numerical stability. The energy problem is solved using a pseudo-time stepping approach.
The mesh used has the same element density as that used to solve the reference problem
(i.e. about 3300 cells). The Taylor series used for the reconstruction of the velocity and
temperature fields is truncated at the first order.
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Figure 5: Example of (a) reference and (b) average temperature fields (Pein = 10). Maximum
and minimum field values are specified. Filtered data is unusable in the faded zone due to
the effective size of the recursive filter.
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Figure 6: Reference and reconstructed temperature fields in cell (6,4) for (a) Pein = 0.1 and
(b) Pein = 10. Maximum and minimum field values are specified.

Qualitative agreement is good for cells far from the system boundaries ∂V (Fig. 6): the
minimum and maximum values are correctly reproduced. Fig. 6a displays distorted iso-T ∗

lines. This is possibly due to the first-order truncation of the Taylor series. Cell (6,4) is
located on the system symmetry line, where d〈T 〉f

dy = 0: the shape of the 〈T 〉f profile in the
y = constant plane is therefore dominated by the second-order term of the Taylor series in
this cell. Since Fig. 6a corresponds to a low Péclet regime, the local temperature profile
is dominated by the variations of 〈T 〉f, thus explaining the discrepancies. On the contrary,
in the high Péclet number regime (Fig. 6b), the local temperature profile is dominated by
deviations from the average, ensuring an excellent accuracy.

Cells closer to ∂V display higher errors and physically irrelevant behavior due to the
irrelevance of periodic boundary conditions in such areas (Fig. 7). This is consistent with
the results of Angeli et al. (2013). Fig. 8 displays the temperature at A ∗ and supports these
conclusions.

We define the average relative error at A ∗ as

S2 =

√
1

A ∗

∫

A ∗

(
T ∗−T

T

)2

dA (38)

This indicator remains below 2 % in all cells for Pein ≤ 1 (Fig. 9a to c), which proves the
relevance of downscaling for surface temperature reconstruction. For higher values of the
Péclet number (Fig. 9d and e), the accuracy is significantly degraded in near-entry cells;
however, the accuracy remains good for cells located far from the inflow boundary. Accuracy
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Figure 7: Reference and reconstructed temperature fields in cell (2,6) for (a) Pein = 0.1 and
(b) Pein = 10. Maximum and minimum field values are specified.
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Figure 8: Reference ( T ) and reconstructed ( T ∗) temperature at the interface A ∗ for (a)
Pein = 0.1 and (b) Pein = 10 in cells (left) (6,4) and (right) (2,6).

18



is expectedly lower when pore-scale variations of T ∗ increase (see Eq. (55)). It should be
noted that since some phenomena involve high temperature sensitivity in specific ranges (e.g.
phase change), the required accuracy might be lower than 1 % in practical cases.

4 Macroscopic model correction

In the conditions where the downscaling methodology is relevant, the accuracy of the
solution yielded by the downscaling procedure is sufficient to allow the computation of a
good estimate of a macroscopic source term. In this section, we present a multiscale approach
in which downscaling is successfully used to compute a nonlinear source term.

A reference problem is described and solved. The resulting solution is averaged and
compared with two macroscopic models, one using a straightforward expression for the
macro-scale source term, and another one taking advantage of downscaling to apply a
multiscale correction to the source term.

4.1 Reference problem

The considered reference geometry is a 20-column array of cylinders (Fig. 10). The governing
equations are Eqs. (1) and (2). Boundary conditions are:

• x =−0.5r0: fixed inlet velocity vinex, fixed temperature T in;

• x = 19.5r0: fixed pressure pout, ex ·∇v = 0, ex ·∇T = 0;

• y =−0.5r0 and y = 0.5r0: periodic boundary conditions.

The expression of the heterogeneous source term is given by Eq. (36) with

f (T ) =
{

10−3T
(
1.333−4.444×10−4T

)
if T ∈ [0K,3000K]

0 otherwise

g(Pein) = 7.5
(
0.01+Pein)

with Pein defined by Eq. (37). Values for geometrical quantities are taken from Tab. 2
while thermophysical properties are taken from Tab. 1. The reference problem is solved for
Pein ∈ {0.1,1,10}. An average reference solution field 〈T 〉fref is obtained for x ∈ [r0,18r0]
by applying the m2 filter used in Sect. 3.2.

Since the flow is incompressible, the average velocity 〈v〉fref is uniform in the range
x ∈ [r0,18r0]. Its value will be used as the macroscopic velocity.

4.2 Macroscopic problem

The macroscopic geometry is one-dimensional, corresponding to the x ∈ [r0,18r0] range in
the reference geometry (Fig. 10). The flow being incompressible, the macroscopic velocity
has consequently a uniform value v, obtained from the reference solution:

v = 〈v〉fref (x = 10r0) = vex (39)

It is therefore unnecessary to solve a macroscopic flow equation: v can be imposed.
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Figure 9: Average relative error S2 (see Eq. (38)) for Pein = (a) 0.01, (b) 0.1, (c) 1, (d) 10
and (e) 100. Only cells above or on the symmetry line are represented.
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Figure 10: Reference geometry and macroscopic simulation domain (in red).

The energy balance is heuristically modeled by using Eq. (18), setting α = 0 and
neglecting the last term. This yields the following energy equation:

ρcpεv
dT
dx

= Kxx
d2T
dx2 +RS (40a)

where Kxx is the xx component of the effective conductivity tensor and S is an approximate of
〈S〉R to be defined in the following. Kxx is obtained from the work of Quintard et al. (1997)
(see Appendix C).

To minimize potential inaccuracy, boundary conditions are obtained from the reference
solution:

T (x = r0) = 〈T 〉fref (x = r0) (40b)

dT
dx

(x = 18r0) =
d〈T 〉fref

dx
(x = 18r0) (40c)

4.3 Principle of multiscale source term correction

As previously mentioned, the macroscopic heat transfer model is obtained by combining
conclusions from upscaling using the volume averaging method and a heuristic approach.
In Eq. (40a), the way S is evaluated still remains unspecified, because, as mentioned in
Sect. 2, the volume averaging method applied to a heat transfer problem in the presence of
a nonlinear heterogeneous source term does not yield an expression for the macroscopic
source term 〈S〉R as a function of macroscopic variables.

Sect. 3 showed that downscaling yields a cell problem whose solution is a function of
macro-scale variables and features reasonable accuracy in a variety of cases. Therefore, it is
possible to get an approximate of 〈S〉R defined as

〈S〉R ' 1
R∗

∫

R∗
S (T ∗)dA (41)

A multiscale approach (see Fig. 11a) can therefore be used to solve a macroscopic-scale
problem:

1. Solve problem (40) a first time using a zeroth-order Taylor series truncation to compute
the source term (see Eq. (22)):

S = S0 = S(T ) (42)

This solution will be referred to as the baseline solution.

2. Use T to generate source terms for cell problems at a set {xi}i∈J2,19K of locations,
where xi is the centroid of cell i (see Fig. 10).
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(a)

Baseline S = S0 Macroscopic problem T0

Correction S = Sd Macroscopic problem Td

Cell problem

(b)
S = Sd Macroscopic problem Td

Table

Figure 11: Principle of the source term correction with (a) a multiscale approach and
(b) a table-based approach. The baseline iteration loop is formal and is not necessarily
implemented using an iterative algorithm.

3. Solve the cell problems to retrieve a downscaling-based estimate for S:

S(xi) = Sd(xi) =
1

R∗

∫

R∗
S (T ∗)dA (43)

The values for the S field outside the {xi} set are obtained by interpolation.

4. Use the corrected S field to recompute the solution of problem (40).

5. Repeat steps 2 to 5 until convergence is achieved.

4.4 Source term tabulation

While the multiscale approach for source term correction is conceptually interesting, imple-
menting it on a large scale may be problematic due to the high computational cost of the
correction loop. As mentioned in Sect. 3.1, the dependencies of the cell problem are limited.
It is therefore possible to replace the correction loop with a table for Sd, whose dimensionality
is determined by the dependencies of the solution of the cell problem (see Sect. 3 and Fig. 2).
This then removes the need to compute the baseline solution (see Fig. 11b).

The reference solution allows the definition of the range of macroscopic dependencies
that should be covered by the Sd table. Since v is uniform, the flow part of the cell problem
only depends on v, i.e. on the Péclet number. The downscaled source term therefore depends
on Pein, T , dT

dx and d2T
dx2 .

In the case considered, the variability of Sd remains below 0.01 % for d2T
dx2 ∈

[
0Km−2,1000Km−2

]

over the entire covered range for T ([300K,900K]) and dT
dx (
[
100Km−1,300Km−1

]
). There-

fore, only the dependency versus dT
dx and T will be considered in the final table (Fig. 12).

The dependency versus dT
dx is non-negligible only for Pein = 10, where variability reaches

10 % over the covered range.

4.5 Results

Fig. 13 compares the macroscopic temperature profiles obtained using S0 and Sd with the
reference solution. At Pein = 0.1, using Sd does not result in an accuracy improvement over
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Figure 12: Sd versus T and dT
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Figure 13: T compared to 〈T 〉fref using S0 and Sd for Pein = (a) 0.1, (b) 1 and (c) 10.
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S0. This is due to the uniformity of the temperature field at the pore scale: in such diffusive
regime, the temperature deviation field has low values compared to the average, resulting in
an interface temperature close to the average temperature in the cell. The residual error on
the temperature profile might be due to the strong influence of boundary conditions, or to the
approximations made to build Eq. (40a) from the volume-averaged formulation.

At Pein = 1, where conduction and convection have comparable influences, the change
of value for S is noticeable, although the variation in the outlet temperature is lower than the
error visible for Pein = 0.1.

At Pein = 10, where convection is the dominating transfer mode, Sd yields significantly
better results than S0. It is consistent with the fact that, in this regime, the temperature at R
noticeably deviates from the average temperature: therefore, the heterogeneous source term
is much better estimated by Sd than S0.

5 Conclusion

The challenges brought by nonlinearity of heterogeneous source terms when performing up-
scaling using the volume averaging method were highlighted with a simple case. Estimating
the fluid-solid temperature is critical, even when using a simple model with a reduced number
of dependencies. Use of a downscaling methodology allows to estimate the temperature field
in the averaging volume, provided that proper length-scale constraints are satisfied.

The downscaling methodology developed by Angeli et al. (2013) was extended to include
nonlinear heterogeneous source terms and the results were validated against the reference
temperature field for an inlet Péclet number ranging from 0.01 to 100. The accuracy of the
reconstructed interface temperature field is excellent in the bulk of the medium for every
Péclet number, and it is expectedly questionable near the medium boundaries.

The results of the downscaling procedure were used to tabulate the effective macroscopic
heterogeneous source term against the inlet Péclet number, the macroscopic temperature and
its gradient. Use of this estimate significantly improves the results of a macroscopic model
compared to the simple uniform temperature approximation when the interface temperature
significantly deviates from the fluid phase average temperature. This approach represents a
good compromise between accuracy and accounting for multiscale effects. In the presence
of steep macroscopic physical field variations, however, specific approaches have to be used,
e.g. direct modeling of the front (Debenest et al., 2005). It should be noted that downscaling
can be used in such cases to provide boundary conditions (Angeli, 2011).

For the purpose of macro-scale source term tabulation, a downscaling analysis has the
advantage of allowing an unambiguous determination of the dependencies of the resulting
macroscopic source term. While this approach was developed for a physically unrealistic
case for simplicity, it can be readily extended to more general heat (Quintard and Whitaker,
2000; Quintard et al., 2000; Leroy et al., 2013) and mass (Guo et al., 2015) transfer problems.
Downscaling also provides a way to determine the α mapping coefficient in closure problem
II (see Appendix C), therefore removing the need for an iterative resolution procedure of
closure problems.
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A Comments on length-scale constraints

This study, being based on the volume averaging method, requires the analysis of terms in
local equations at multiple stages of development. Terms in equations are estimated and
compared with the others to decide on which ones are dominant. The estimation of terms
is based on the analysis of their order of magnitude. This is a very common practice in the
volume averaging literature.

It is important to firstly distinguish the purpose of estimates. When performing upscaling
with the volume averaging method for macroscopically uniform media, simplifications are
done at both the pore scale and the macroscopic scale:

• at the macroscopic scale, it is important to ensure that insignificant terms are not kept,
as they would introduce unnecessary complexity;

• at the pore scale, the goal is to ensure that all the fields involved are either constant or
periodic over the averaging volume (or can be forcibly considered so), in order to set
ground for the usage of periodic boundary conditions.

The principles of this analysis are presented by Whitaker (1999), and thorough details are
given by Quintard and Whitaker (1994a,b,c,d,e).

The length scale analysis required to perform the upscaling of the problem presented
in Sect. 2 is performed in the more general case presented by Whitaker (1998) and can be
summarized by:

• the deviation equation can be written in a local form if

lT0

r0
� 1 (44a)

r2
0

LεLT,1
� 1 (44b)

• the average of deviations can be neglected and the average of a quantity can be
considered constant over the averaging volume if

lT0

LT,0
� 1 (44c)

r2
0

LT,0LT,1
� 1 (44d)

In Eqs. (44), lT,0 is the typical variation length scale of T , r0 is the size of the averaging
volume, Lε is the typical variation length scale of porosity and LT,n is the typical variation
length scale for the n-th derivative of 〈T 〉f (e.g. LT,1 is the typical variation length scale of
∇〈T 〉f). It is worth mentioning that to our knowledge, terms with an order higher than 2 in
the Taylor series developments used for length scale analysis is always omitted; repeating
the analysis for orders higher than 2 yields constraints of the form of Eq. (54). In the case
considered, to the classic set of constraints (44) must be added constraint (55), which ensures
that a local approximation of the source term is appropriate.

The derivation process for the downscaled equations presented in Sect. (3.1) requires
calculus close to that performed for the upscaling procedure, also requiring to provide a
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local form for the cell problem (i.e. approximating the macro-scale varying quantities with
constant values). This leads to length-scale constraints identical to those appearing during the
volume averaging process. It follows that the length scale constraints of both methodologies
are compatible: that using the downscaling methodology is relevant in the same conditions
as using the upscaling methodology.

B Development of the flux boundary condition for the energy
cell problem

This appendix contains the developments leading to Eqs. (35b) and (35c). We first insert
decomposition (24) into Eq. (2c) and get:

n · k∇T̃ ∗ =−n · k∇
(
〈T 〉f (x)+y ·∇〈T 〉f (x)+ 1

2
yy : ∇∇〈T 〉f (x)+ . . .

)
at A ∗\R∗

(45)
where r = x+y.

n · k∇
(
〈T 〉f (x)

)
is equal to zero, and we trivially show that

n · k∇
(

y ·∇〈T 〉f (x)
)
= n · k∇〈T 〉f (x) (46)

The remaining terms are non-periodic and can be neglected if

∀n ∈ J1,+∞J,
r0

LT,n
� 1 (47)

where LT,n is the typical variation length scale of the n-th order derivative of 〈T 〉f (e.g. LT,1

is the typical variation length scale of ∇〈T 〉f). We therefore write:

n · k∇T̃ ∗ =−n · k∇〈T 〉f (x) at A ∗\R∗ (48)

Following a similar process, we insert decomposition (24) into Eq. (2b):

n · k∇T̃ ∗ =−n · k∇
(
〈T 〉f (x)+y ·∇〈T 〉f (x)+ 1

2
yy : ∇∇〈T 〉f (x)+ . . .

)

+S
(
〈T 〉f (x)+y ·∇〈T 〉f (x)+ 1

2
yy : ∇∇〈T 〉f (x)+ . . .+ T̃ ∗

)
at R∗ (49)

The gradient term is expanded and processed as before. To process the source term, we
define the non-periodic part of T ∗

Θ∗ = T ∗−
(
〈T 〉f (x)+ T̃ ∗

)

= y ·∇〈T 〉f (x)+ 1
2

yy : ∇∇〈T 〉f (x)+ . . . (50)

The heterogeneous source term has a non-periodic part due to the presence of Θ∗. We will
establish the negligibility condition for the non-periodic terms. We first use a Taylor series
expansion to write

S (T ∗) = S
(
〈T 〉f (x)+ T̃ ∗

)

︸ ︷︷ ︸
periodic

+Θ∗
dS
dT

(
〈T 〉f (x)+ T̃ ∗

)
+

Θ∗2

2
d2S
dT 2

(
〈T 〉f (x)+ T̃ ∗

)
+ . . .

︸ ︷︷ ︸
non-periodic

(51)

27



The first term in the non-periodic part can be expanded:

Θ∗
dS
dT

(
〈T 〉f (x)+ T̃ ∗

)
=

(
y ·∇〈T 〉f (x)+ 1

2
yy : ∇∇〈T 〉f (x)+ . . .

)
dS
dT

(
〈T 〉f (x)+ T̃ ∗

)

(52)
The first term is estimated

y ·∇〈T 〉f (x) dS
dT

(
〈T 〉f (x)+ T̃ ∗

)
= O

(
r0 〈T 〉f (x)

LT,0

dS
dT

(
〈T 〉f (x)+ T̃ ∗

))
(53)

and can be neglected compared to the periodic part if the following constraint is valid:

r0

LT,0
〈T 〉f (x) dS

dT

(
〈T 〉f (x)+ T̃ ∗

)
� S

(
〈T 〉f (x)+ T̃ ∗

)
(54)

Similar estimates can be calculated for all terms of Eq. (51), leading to the following
constraints:

∀n ∈ J1,+∞J,
r0

n

∏n−1
k=0 LT,k

〈T 〉f (x)
dS
dT

(
〈T 〉f (x)+ T̃ ∗

)

S
(
〈T 〉f (x)+ T̃ ∗

) � 1 (55)

Finally, the heterogeneous source boundary condition becomes:

n · k∇T̃ =−n · k∇〈T 〉f (x)+S
(
〈T 〉f (x)+ T̃ ∗

)
at R∗ (56)

Appendix A contains comments on length scale constraints.

C Closure problems for the volume averaging procedure

The closure problems are derived by inserting Eq. (17) into Eq. (16). This results in two
independent closure problems whose solutions depend on the cell Péclet number. The
formulations below include the substitution of boundary conditions in the integral terms and
take into account the medium homogeneity hypothesis.

Problem I

ρcpṽ ·∇b+ρcpv = ∇ · (k∇b) in V ∗f (57a)

n · k∇b =−nk at A ∗ (57b)

b(r+ li) = b(r) (57c)

〈b〉= 0 (57d)

Problem II

ρcpṽ ·∇r = ∇ · (k∇r)− R∗

ε
in V ∗f (58a)

n · k∇r = 1+α at R∗ (58b)

n · k∇r = 0 at A ∗\R∗ (58c)

r (r+ li) = r (r) (58d)

〈r〉= 0 (58e)
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Figure 14: Effective conductivity used in Sect. 4 (versus Pecell = v/(aA)).

Solving the closure problems is beyond the scope of this study. However, the computa-
tions performed in Sect. 4 require values for the Kxx conductivity tensor coefficient. Quintard
et al. (1997) provide suitable information and Fig. 14 plots the values used.
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Table 1: Numerical values for the reference problem
Quantity Symbol Value Unit
Cell size r0 0.1 m

Cylinder radius rc 0.04 m
Porosity ε 0.497 –

Specific surface area A 25.1 m−1

Dynamic viscosity µ 1×10−5 Pas
Density ρ 1 kgm−3

Heat capacity cp 1×103 Jkg−1 m−3

Heat conductivity k 1×10−2 Wm−1 K−1

Kinematic viscosity ν 1×10−5 m2 s−1

Heat diffusivity a 1×10−5 m2 s−1

Prantl number Pr 1 –

Table 2: Numerical values for the reference problem
Quantity Symbol Value Unit
Cell size r0 0.1 m

Cylinder radius rc 0.0445 m
Porosity ε 0.377 –

Specific surface area A 28.0 m−1
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