
HAL Id: hal-01742078
https://hal.science/hal-01742078v1

Submitted on 23 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Selective Real-Time Data Emission in Mobile Intelligent
Transport Systems

Laurent George, Damien Masson, Vincent Nélis

To cite this version:
Laurent George, Damien Masson, Vincent Nélis. Selective Real-Time Data Emission in Mobile Intel-
ligent Transport Systems. 5th International Workshop on Mixed Criticality Systems, Dec 2017, Paris,
France. �hal-01742078�

https://hal.science/hal-01742078v1
https://hal.archives-ouvertes.fr


Selective Real-Time Data Emission in Mobile Intelligent Transport Systems

Laurent George and Damien Masson
Université Paris-Est, LIGM (UMR 8049),

CNRS, ENPC, ESIEE Paris, UPEM, F-93162,
Noisy-le-Grand, France

Email: laurent.george@esiee.fr

Vincent Nelis
CISTER/INESC-TEC, ISEP,

Polytechnic Institute of Porto,
Portugal

Email: nelis@isep.ipp.pt

Abstract—Intelligent Transport Systems (ITS) gather infor-
mation from their fleet vehicles to improve on their safety
and quality of service. Information is sent through a wireless
connection (e.g., 3G link) to a central unit responsible for
controlling the activity of the vehicles. These data may in-
clude for instance the location of the vehicles, their speed, the
time spent at each stop, an estimated number of passengers,
the state of the doors (opened/closed), etc. In locations where
the quality of the network is poor (low data rate), vehicles do
not succeed in transmitting all the collected information and
mechanisms must be implemented to select which informa-
tion the network can afford to send. Assuming that the data
has been labeled and classified beforehand according to its
criticality, this paper identifies the exact minimum network
speed to successfully send each (set of) data, defining a set
of speed thresholds for each level of criticality. We assume
that messages are sent according to a non-preemptive fixed
priority scheduling. Based on the results of this paper, we
expect to later develop algorithms to optimally send the data
for arbitrary priority assignments and maximize the utility
when choosing which data is discarded due to insufficient
network bandwidth.

1. Introduction

In Intelligent Transport Systems (ITS) [1] for public
transports, vehicles like buses, tramways and trains are
equipped with tracking devices that periodically send
operational information to a central server. The server
processes this information and sends feedback to the fleet
of vehicles to eventually improve the security, safety, or
the quality of the service in general. The tracking devices
installed in each vehicle record, sample, and send a broad
set of information such as the location of the vehicle
(GPS coordinates), the time spent at each stop and station,
the time between every two stops, the state of the doors
(open/closed), the estimated number of passengers, the
temperature in each car (in case of a train for example),
fire-detectors information, consumption information, den-
sity of the traffic, watchdogs information or even the driver
heartbeat in some cases. Note that the amount of data to
be sent can be large if images must be forwarded to the
central unit (from the in-vehicle security cameras or from
the advanced driver-assistance systems for instance). The
data is categorized according to its importance or critical-
ity to the project objectives. For example, GPS coordinates
can be seen as more important than an estimation of the

Figure 1. Example of network coverage in a city.

air quality in the cars. Information is thus clustered and
broken into categories and each category is labeled by a
measure of its criticality.

Every vehicle in the fleet sends its data periodically
to the base central server over the city’s 3G/4G network.
However, many cities do not yet provide a full network
coverage, and even when they do, there are always re-
gions in which the signal strength drops and becomes
insufficient to provide the network bandwidth required to
send all the data at the desired frequency, as illustrated
by Figure 1. In such regions, the system embedded in the
vehicles has three options:

1) It can lower the emission rate by decreasing the
frequency at which some of the information is
sent. Note that, depending on the application
constraints, this is not always feasible as some
features are strongly time-dependent and become
meaningless if the data is not processed at a
specific rate, e.g. fire-detectors information or
watchdogs information.

2) It can reduce the amount of data sent to match the
capacity of the network that is currently available.
That is, when the signal is too weak, the less
critical data are no longer sent, which grants
more bandwidth to the data that cannot alter their
emission rate.

3) It can combine the first two approaches. That is,
it can stop sending some of the (less critical)
information and lowers the emission rate of some
others.

The third option is most likely the most efficient tech-
nique as it combines the strengths of the first two options.



In this work though, we focus only on the second option in
which the system temporarily stops sending data that are
less critical to save bandwidth for the more critical ones.
This difference of criticality between the data justifies
the use of a fixed-priority scheduler for sending out the
information. Due to the unpredictable nature of signal
strength that can strongly affect the transmission time
of the messages (up to the point where the transmission
fails), it is arguably more appropriate to give a higher
priority to the information of high criticality so that they
are always sent before the less critical information. The
transmission of data being a non-preemptible operation,
it may happen that a data of low criticality is being sent
while an information of high criticality becomes “ready-
to-be-sent”. This is the only case of priority inversion
where the transmission of the higher critical data gets
blocked by a lower critical data and this scenario can
be easily factored in the schedulability analysis for non-
preemptive fixed-priority arbitration.

The remainder of the paper is organized as follow.
We present the model and notations in Section 2. Then
the problem is formalized in Section 3. Section 4 recapit-
ulates basics from the state of the art required to present
our solution in Section 5 and to follow the proof of its
correctness given in Section 6. Section 7 review existing
related works and we conclude the paper in Section 8 with
a discussion on future work directions.

2. Model of computation

The application is composed of a set τ of n periodic
tasks denoted τ = {τ1, τ2, . . . , τn}. Every task models
the process of periodically sending one information from
the bus to the central station, such as the location of the
vehicle (GPS coordinates) or the time spent at the last
stop. Every task τi is activated periodically every Ti time
units. We call each activation of a task a “job” and we
say that the task “releases” a job when it gets activated.
We denote the jobs by τi,j , where j ∈ N0 is the job
index. The time of the first activation of each task is not
known. That is, once the first job τi,0 is released (at any
time t > 0), its subsequent jobs τi,j , ∀j > 0, are released
exactly Ti time units apart, starting from time t, i.e. τi,j
is released at time t+ jTi, ∀j.

Every job of a same task sends a unique message of
fixed length over the network. The transmission time of
each message depends on the network’s bandwidth avail-
able at the time of sending the message and the strength
of the signal varies with the location of the vehicle. In
some neighborhoods, the poor network coverage results
in low-speed transmissions whereas at some other loca-
tions, the signal is strong and offers high-speed flawless
communications. We denote by Ci the length of every
message (in Megabits) to be delivered by the jobs of τi.
At a given reference network speed of 1 Mbit/s (Megabit
per second), it takes exactly Ci seconds to deliver each
message of τi. From there, it trivially holds that at any
speed of x Mbit/s, it takes exactly Ci

x seconds to transfer
each message of τi. The transmission time of every job
τi,j of τi is thus linear in the network speed. A poor signal
strength yields a long transmission time and inversely, a
strong signal allows for faster transmissions.

It is important to note here that what we call band-
width is the available bandwidth for the application, tak-
ing into account all optimizations made by the network
protocols, the congestion on the network and so on. It is
not in the scope of the paper to discuss how the available
bandwidth is estimated, however, amongst other solutions,
one could imagine that an acknowledgement is received
after each transmissions to the central station, and that
the bandwidth is computed from the measured delay to
receive the acknowledgement.

Every task τi is assigned a relative temporal deadline
denoted by Di (relative to its activation time), with the
interpretation that each of its jobs τi,j must have sent its
message entirely before or at its absolute deadline set Di

time units after its release. We consider the constrained-
deadline task model in which Di ≤ Ti,∀i, meaning that
every job must have entirely sent its message before the
next job (from the same task) is released. Every τi is also
assigned a criticality χi that qualifies the “importance” of
the information that it sends to the central station. For ex-
ample, χ1 could represent very important messages, while
χ2 could be used for moderately important messages,
χ3 for non crucial information, etc. For convenience,
we denote by τ(k) the set of tasks of criticality χk
and we assume that k ∈ [1, x], where x is the number
of different criticality in the system (criticality 1 is the
highest criticality level, then 2, 3, and so on till x, the
least critical one).

All the messages are transmitted sequentially over the
network in a non-preemptive way. This means that once a
job has started to send its message, it cannot be interrupted
or paused and continues emitting until its message is
entirely transmitted. Since there may be several jobs in the
system that are ready to send their message at the same
time, the system uses a scheduling algorithm to define the
order in which the jobs access the network. The scheduler
works based on fixed task-level priorities. That is, every
task τi is assigned a constant priority that is passed on
to all its jobs. We denote by hp(τi) (resp., lp(τi)) the
set of tasks of higher (resp., lower) priority than τi and
by hep(τi) (resp., lep(τi)) the set hp(τi) ∪ {τi} (resp.,
lp(τi) ∪ {τi}).

The scheduler is designed so that at any point in time,
if two jobs are ready to send their message and compete
for the access to the network, it is the job coming from
the task with the highest priority that will be granted
the access first (since the task priorities are passed on to
the jobs). This implicitly assumes that all the tasks have
distinct priorities and there is at most one job per task that
is ready to send its message at any point in time. The latter
is guaranteed by the model itself since Di ≤ Ti for all τi
and thus if two jobs of the same task ever compete for the
access to the network at the same time, then one of them
has failed to meet its deadline, which is not acceptable.

The relation between the priority of the tasks and their
criticality is simple. As explained earlier, the tasks of a
same criticality (say χk) are grouped together in τ(k). All
the tasks in the system have a different priority, the only
constraint imposed on the system is that all the tasks of a
same group τ(k) have a higher priority than all the tasks
of all the groups τ(j) for j > k. We believe that this
is a reasonable assumption in a real-world scenario: even
if important tasks may have longer deadlines and periods



than less important messages – and thus, in theory, the
system could potentially serve the less important tasks
first – by giving a higher priority to the more important
tasks we force them to be served before the less important
ones. This is highly recommended as the network speed
can change at any moment and we do not want to delay the
transmission of important messages (and take the risk of
not being able to send them on time) to benefit less critical
ones. Note that we do not impose any further restriction
on the priority assignment, meaning that any fixed-priority
assignment can be used to define the priority of the tasks
within each group.

From this point onwards, we shall assume that every
task in the system has been assigned a priority such that
the above restriction is respected and the entire system is
schedulable (i.e. all the deadline are met) at a network
speed of 1 Mbit/s. To make sure that the second assump-
tion is always verified, the data rate unit (here, Mbit/s) can
be assumed to be Gbit/s or even Tbit/s provided that all
the messages lengths Ci, ∀i, are converted and expressed
in that new data rate. In the remainder of the paper, we
shall assume Mbits/s to be the reference network speed
and the unit in which the Ci values are expressed.

3. Problem statement

While vehicles move from one part of the city to
another, the network speed naturally varies along with the
strength of the network signal. As the signal gets weaker, it
may become infeasible to send all the information and still
verify the timing requirement of every task. To make sure
that the critical information is still sent on time, we define
x thresholds {sp1, sp2, . . . , spx} within the speed domain
such that, each time the current speed drops below one of
these thresholds, say spk, all the tasks from the criticality
groups τ(j), with j > k, are immediately suspended.
They will no longer send messages until the network speed
raises again above the threshold spk. If one of these tasks
with a lower criticality than χk was sending a message
when the network speed crossed the threshold, then it
cannot be stopped (since sending is not preemptible) and it
must continue until its entire message has been sent. After
that, the task is suspended together with all the tasks of its
criticality level and lower levels. The problem is thus to
find the minimum speeds spk, for all k ∈ [1, x], such that
the groups of tasks τ(1), τ(2), . . ., τ(k) is schedulable
(i.e. meets all the deadlines). These minimum speeds will
then be used as the thresholds described above.

4. Prerequisite

First, let us introduce some extra notations, properties,
and basic concepts that we shall use in the computation
of our solution and the proof of its optimiality. For a
complete state of the art on the non preemptive scheduling
problem, the interested reader can refer to [2], [3], [4],
[5] amongst many other publications. We just recapitulate
here the main results we need.

In the analysis of the optimality of our solution, the
time windows of interest are the so-called level-i busy
windows. When considering the scheduling of n tasks
τ1, . . . , τn indexed by decreasing order of priority, the

level-i busy window (with i ∈ [1, n]) is the longest time
window in which (1) only the jobs from tasks τ1, . . . , τi
send their messages (except the first job as we will discuss
later) and (2), there is not a single instant at which no
message is being sent (the network is never idle within
that window). It has been proven in Lemma 6 of [4]
(Section 4.3) that the job-release scenario that leads to
the longest level-i busy window is the one at which all
the tasks τ1, τ2, . . . , τi release a job at a same time (say,
t) and the task τk ∈ lp(τi) with the longest Ck releases
a job at time t − ε. Assuming that no job is sending a
message at time t − ε, that job from τk starts to send
his immediately upon its release. That is, the level-i busy
window begins at time t with the sending of the longest
lower-priority message (here, that of τk). This contribution
of a lower priority task to the level-i busy window is called
the “blocking term” Bi and is calculated as

Bi = max
k∈lp(τi)

{Ck − ε} (1)

The ε time units subtracted from the Ck’s account for
the ε time units during which τk is already sending its
message before the beginning of the busy window (i.e.,
between the instants t− ε and t). Starting with an initial
length Li = Bi, the length of the level-i busy window can
be computed by iteratively adding to Li the contribution
of τi and all the higher priority tasks that release jobs
during these Li time units. Formally, it has been proven
in Theorem 15 of [4] that the length Li of the level-i busy
window, for i ∈ [1, n], is the first fixed-point solution of
the equation

Li = Bi +
∑

j∈hep(τi)

(
1 +

⌊
Li
Tj

⌋)
× Cj (2)

It is also demonstrated in the same article that the maxi-
mum response time1 of the jobs of τi is always observed
within the level-i busy window. It is thus sufficient to
verify that all the deadlines are met for the jobs of τi
within that time window to conclude on the schedulability
of τi. We also know that the number ni of jobs of τi
released in the level-i busy window is given by

ni = 1 +

⌊
Li
Ti

⌋
(3)

If we re-index the ni jobs of τi that are released in the
level-i busy window from 0 to ni−1, then the latest time
at which job τi,j with j ∈ [0, ni − 1] starts sending its
message is given by

wi,j = Bi + j × Ci +
∑

k∈hp(τi)

(
1 +

⌊
wi,j
Tk

⌋)
× Ck (4)

Finally, for each such job τi,j , with j ∈ [0, ni − 1],
released in the level-i busy window, we denote by Si,j
the set of all the time-instants between its release at time
jTi and its deadline at time jTi + Di , at which the
higher priority tasks release a job. Formally, for given task

1. The response time of a job is the time between its release and its
completion.



and job indexes i and j (j ∈ [0, ni − 1]), the set Si,j is
computed as

Si,j =
⋃

k∈hp(τi)

{
rTk | r ∈ N+ and jTi < rTk < jTi +Di

}
⋃ {

jTi, jTi +Di

}
(5)

It is important to note that the time-instants jTi and jTi+
Di corresponding to the release and deadline of τi,j are
also included in the set Si,j (in the second line of the
equation).

5. Our solution

With the notations introduced in the previous sec-
tion, we shall prove that for any set of n periodic tasks
τ1, . . . , τn (indexed in decreasing order of priority), the
minimum speed sp that allows for all the deadlines to be
met is given by

sp =

max
i∈[1,n]

(
max

j∈[0,ni−1]

(
min
t∈Si,j

(
max

(
wi,j
t− ε

,
wi,j + Ci
jTi +Di

))))
(6)

The rational behind that equation is that the minimum
speed is, for each job, either constrained by its nececity
to start on time (wi,jt−ε ) or to finish before its deadline
(wi,j+CijTi+Di

). The more constrained job has to be search
amongst all the jobs in the set described in the previous
section, for all higher priority tasks, and the process must
be iterate for each task. A formal proof is given in the
next section (see Lemma 1).

A solution to the problem described in Section 3 can
easily be derived from Equ. 6. Given a set of n tasks
τ1, τ2, . . . , τn grouped in x groups {τ(1), τ(2), . . . , τ(x)}
such that

1) every task of the group τ(`), ` ∈ [1, x], has
criticality χ`

2) every task of the group τ(`), ` ∈ [1, x − 1], has
a higher priority than all the tasks of τ(`+ 1)

the minimum speed spk, k ∈ [1, x], such that all the
groups τ(1), τ(2), . . ., τ(k) meet their deadlines is given
by the speed sp computed by Equ. 6, where the n
tasks considered in the computation are the tasks in all
the groups τ(1), τ(2), . . . , τ(k). In the next section we
demonstrate the correctness and optimality of Equ. 6.

6. Proof of optimality

We now show how to compute the exact minimum
speed satisfying the deadlines of a given task set in the
case of non-preemptive fixed priority scheduling. This
computation was proposed in the state of the art by
dichotomy (see section 7), we here explicit the exact
formula.

Lemma 1. For any set τ of n periodic tasks τ1, . . . , τn
(indexed in decreasing order of priority), the exact mini-
mum speed that allows for all the deadlines to be met is
given by sp as defined in Equ. 6.

Proof. In this proof, not only we demonstrate that all the
deadlines are met when running all the n tasks at speed
sp as defined by Equ. 6, but also that any slower speed
splow < sp does not allow to meet all the deadlines.

Let p be any value of i ∈ [1, n] that maximizes
the outermost “max” operator of Equ. 6. Likewise, let q
denote any value of j that maximizes the second outermost
“max” operator. That is, Equ. 6 is maximized for i = p
and j = q and we can rewrite it as

sp = min
t∈Sp,q

(
max

(
wp,q
t− ε

,
wp,q + Cp
qTp +Dp

))
(7)

Let t1, t2, . . . , tx denote all the time-instants of Sp,q sorted
in increasing order, i.e., t1 < t2 < . . . < tx. We know
from Equ. 5 that x ≥ 2 as Sp,q contains at least the two
time-instants t1 = qTp and tx = qTp + Dp. Now, let
tr be any of the time-instants ∈ Sp,q that minimizes the
outermost “min” operator of Equ. 7, we can then further
simplify it as

sp = max

(
wp,q
tr − ε

,
wp,q + Cp
qTp +Dp

)
(8)

From this simplified equation, two cases must be studied.

Case 1:
wp,q
tr − ε

≥ wp,q + Cp
qTp +Dp

In this case, we get sp =
wp,q
tr−ε and at that speed, the

qth job τp,q of task τp in the level-p busy window starts
sending its message at time wp,q

sp =
wp,q
wp,q
tr−ε

= tr−ε and thus
slightly before time tr. At this time, τp,q starts to send its
message in a non-preemptive manner until it finishes and
since sp ≥ wp,q+Cp

tx
(from the case), we know that it will

finish before its deadline at time tx. Note that by Equ. 6,
we know from the first two maximum operators that sp
is higher than (or equal to) the minimum speed required
to execute every job from every other task on time.

Now, we show that in this case, any speed spmin

lower than sp does not allow all the deadlines to be
met. By contradiction, suppose that spmin < sp does
allow to meet all the deadlines. Since by assumption
spmin < sp =

wp,q
tr−ε , it holds that at speed spmin the

job τp,q starts to send its message later than time
tr − ε but before tx (because we assumed that all the
deadlines are met at speed spmin). Let tu−1 and tu
be the two consecutive time-instants in Sp,q such that
tr ≤ tu−1 ≤ wp,q

spmin
< tu. We know that those two

instants exist since in the worst-case scenario, we have
tu = tx and we know that wp,q

spmin
<

wp,q+Cp
spmin

< tx
(because we assumed that spmin allows to meet all the
deadlines). Let spu be the speed calculated by Equ. 7
when considering t = tu ∈ Sp,q in the “min” operator, i.e.
spu = max

(
wp,q
tu−ε ,

wp,q+Cp
tx

)
. Because of that minimum,

we know that the speed sp computed previously at time
tr is ≤ spu and again, two cases may arise for spu.

Case 1.1:
wp,q
tu − ε

≥ wp,q + Cp
tx

From the case, it holds that spu =
wp,q
tu−ε and thus

at that speed, the job τp,q starts to send its message at
time tu − ε. Therefore, since spmin < sp ≤ spu, τp,q
finishes after time tu if processed at speed spmin. This



contradicts our definition of tu that imposes wp,q
spmin

< tu.

Case 1.2:
wp,q
tu − ε

<
wp,q + Cp

tx
Here, spmin < spu =

wp,q+Cp
tx

. If spmin ≤
wp,q
tu−ε

then we obtain the same contradiction as in Case 1.1.
Therefore, it must hold that wp,q

tu−ε < spmin <
wp,q+Cp

tx
,

which also leads to a contradiction because at that speed,
(1) the job τp,q starts sending its message after time
tu − ε and (2), wp,q+Cptx

is the lowest speed at which τp,q
can possibly send its message before time tx. Therefore,
all the deadlines cannot be met at speed spmin <

wp,q+Cp
tx

.

Case 2:
wp,q
tr − ε

<
wp,q + Cp
qTp +Dp

In this case, we have wp,q
tr−ε < sp =

wp,q+Cp
qTp+Dp

. Let
us first show that that speed sp allows to meet all the
deadlines. At that speed, the job τp,q starts sending its
message before time tr−ε (since sp >

wp,q
tr−ε ). Then, since

sp =
wp,q+Cp

tx
(from the case), we know it finishes sending

its message before its deadline at time tx. Note that by
Equ. 6, we know from the two outermost “max” operators
that sp is higher than (or equal to) the minimum speed
required to execute every job from every other task on
time.

Now, let us show that similarly to case 1, any speed
spmin lower than sp does not allow all the deadlines
to be met. By contradiction, suppose that there exists
spmin < sp that does allow to meet all the deadlines.
Two cases may arise:

Case 2.1:
wp,q
tr − ε

≤ spmin < sp =
wp,q + Cp

tx
In this case, spmin ≥

wp,q
tr−ε and thus at speed spmin

the job τp,q starts sending its message at time tr − ε.
Since spmin <

wp,q+Cp
tx

(from the case), it cannot finish
sending the message by its deadline at time tx.

Case 2.2: spmin ≤
wp,q
tr − ε

< sp =
wp,q + Cp

tx
At that speed spmin , the job wp,q starts to send its

message after time tr − ε (say at time t∗ > tr − ε).
At that time t∗, all the higher priority jobs that have
arrived at every time-instant tu ∈ Sp,q, with tr ≤ tu ≤
t∗, will have priority over τp,q. However, knowing that
spmin <

wp,q+Cp
tx

, even without these extra jobs arrived
within [tr, t

∗] the speed spmin is already to slow for τp,q
to finish sending its message by the deadline at time tx.

The proof has successfully covered all possible cases
and showed for each one that the speed sp as defined
by Equ. 6 is the lowest speed at which the n tasks
τ1, τ2, . . . , τn can meet their deadlines.

7. Related Work

A common performance measurement tool for
scheduling algorithms is the so called speedup factor.
This speedup factor represents the minimum factor by
which the processor speed should be increased in order
for a given algorithm α to schedule any task-set which is
schedulable by an optimal algorithm. In that sense, it gives
a metric to measure the gap between α and an optimal

algorithm. In order to compute the value, or bounds, of
this speedup factor, one has also to compute the critical
scaling factor (the maximal factor by which each tasks
cost can be increase in order to keep the task-set feasible),
but not for any kind of task-set, only for special-case
task-sets which model the limit cases. This concept is so
not directly linked to our present work, but the interested
reader can refer to [6].

Previous works have investigated on the maximal
slowdown factor of a processor, particularly in the context
of energy-aware scheduling or in the critical scaling factor,
in the context of sensitivity analysis. These problems are
similar: slowdown the processor is equivalent to increase
the tasks length. However, this problem is mainly studied
in the context of preemptive tasks. For example, Lehoczky
et al. give a threshold value to compute the critical scaling
factor under Rate Monotonic analysis in [7]. For non
preemptive tasksets, the slowdown factor can be compute
for EDF as explained in [8], but to the best of our
knowledge, works addressing this issue for fixed priority
non preemptive task-sets use binary search methods to
approximate the slowdown/critical-scaling factor, as in [9].

In the case of a system where tasks can experience
different execution durations, Mixed Criticality (MC) was
introduced to arbitrate between critical and non critical
tasks when the schedulability cannot be satisfied if both
critical and non critical tasks experience their maximum
WCET.

Mixed Criticality (MC) was first introduced by Vestal
in [10] for periodic tasks and dual criticality systems HI
and LO on a uniprocessor system.

A task can be of HI or LO criticality and is character-
ized by: a minimum inter-arrival time T (period), a relative
deadline denoted D and a Worst Case Execution Time
(WCET) denoted C(LO) (respectively C(HI)) associated
to LO (respectively HI) mode representing the budget of
time given to a task for its execution. In the classical MC
model, C(HI) ≥ C(LO) for HI tasks and the system
starts in LO mode where both HI and LO tasks can execute
and then can switch to HI mode as soon as any HI job
executes for its C(LO) without completing. In HI mode,
only HI tasks can be executed, LO tasks are suspended
with no more guarantee. The condition that triggers a
mode change was only based on a WCET overrun w.r.t.
the current criticality level [10]. Several approaches have
been considered for constrained deadline tasks: EDF-VD
[11], AMC [12].

This classical model has been extended to other ones:

• With two Fixed Priorities for a LO-crit task in LO
and HI modes. The idea is to reduce the priority of
LO-crit tasks in HI mode such that LO-crit tasks
do not interfere with HI-crit tasks in HI mode [13].

• By reducing the budget of some of the LO-crit
tasks in HI mode [13].

• By increasing the period of LO-crit tasks in HI
mode. This approach has been investigated with
the elastic model [14] applied to EDF scheduled
tasks in the context of MC [15]. The aim of the
elastic model was to adapt the Quality–of–Service
of a system or handle overloaded situations by
modifying the periods of the tasks during the
execution of the system. The period of a LO task



is higher when the system criticality is HI than in
LO mode.

In this paper, we consider the case were the criticality
of a task is such that any task τi of arbitrary criticality has
a higher priority than any task of lower criticality than τi.

8. Conclusion and Future work

In this paper, we considered the problem of sending
information from a mobile ITS vehicle to a central entity
according their importance. We supposed a wireless link
whose quality may vary according to the location of
the vehicle. We characterized the exact speed at which
all messages of the same or higher importance can
be sent. This leads to define a set of speed thresholds
where the transmisison of less important messages
should be stopped. We assumed a non-preemptive fixed
priority scheduling where less important messages all
have a lower priority than any higher priority messages.
Messages of the same importance can have distinct
priorities. The speed thresholds we obtain are optimal in
that context.

As a further work, we will explore optimal fixed prior-
ity assignement strategies when no restriction is imposed
on the priority of messages. In [4], it is showed that Aus-
ley’s priority assignment is optimal for non-preemptive
fixed priority scheduling. We would like to explore a
robust priority assignement minimizing the speed of the
thresholds at which less important messages should be
stopped. We then would like to propose an algorithm min-
imizing the number of speed thresholds while satisfying
the deadlines of messages.

References

[1] EU, “on the framework for the deployment of intelligent transport
systems in the field of road transport and for interfaces with other
modes of transport,” Official Journal of the European Union, Jul.
2010. [Online]. Available: https://goo.gl/XwoFHX

[2] K. W. Tindell, H. Hansson, and A. J. Wellings, “Analysing real-
time communications: controller area network (can),” in 1994
Proceedings Real-Time Systems Symposium, Dec 1994, pp. 259–
263.

[3] K. Tindell, A. Burns, and A. Wellings, “Analysis of hard real-time
communications,” Real-Time Systems, vol. 9, pp. 147–171, 1994.

[4] L. George, N. Rivierre, and M. Spuri, “Preemptive and
Non-Preemptive Real-Time UniProcessor Scheduling,” INRIA,
Research Report RR-2966, 1996, projet REFLECS. [Online].
Available: https://hal.inria.fr/inria-00073732

[5] R. J. Bril, J. J. Lukkien, and W. F. Verhaegh, “Worst-
case response time analysis of real-time tasks under fixed-
priority scheduling with deferred preemption,” Real-Time Syst.,
vol. 42, no. 1-3, pp. 63–119, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.1007/s11241-009-9071-z

[6] R. I. Davis, A. Burns, S. Baruah, T. Rothvoß, L. George,
and O. Gettings, “Exact comparison of fixed priority and
edf scheduling based on speedup factors for both pre-
emptive and non-pre-emptive paradigms,” Real-Time Systems,
vol. 51, no. 5, pp. 566–601, Sep 2015. [Online]. Available:
https://doi.org/10.1007/s11241-015-9233-0

[7] J. Lehoczky, L. Sha, and Y. Ding, Rate monotonic scheduling al-
gorithm: Exact characterization and average case behavior. Publ
by IEEE, 1989, pp. 166–171.

[8] R. Jejurikar and R. Gupta, “Energy aware non-preemptive schedul-
ing for hard real-time systems,” in 17th Euromicro Conference on
Real-Time Systems (ECRTS’05), July 2005, pp. 21–30.

[9] S. Punnekkat, R. Davis, and A. Burns, Sensitivity analysis of real-
time task sets. Berlin, Heidelberg: Springer Berlin Heidelberg,
1997, pp. 72–82.

[10] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium, Dec 2007, pp. 239–243.

[11] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-
Spaccamela, S. van der Ster, and L. Stougie, “The preemptive
uniprocessor scheduling of mixed-criticality implicit-deadline spo-
radic task systems,” in Euromicro Conference on Real-Time Sys-
tems, July 2012, pp. 145–154.

[12] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis
for mixed criticality systems,” in Real-Time Systems Symposium,
Nov 2011, pp. 34–43.

[13] A. Burns and S. Baruah, “Towards a more practical model for
mixed criticality systems,” in Workshop on Mixed Criticality Sys-
tems, Real-Time Systems Symposium, december 2013, pp. 1–6.

[14] G. C. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for
adaptive rate control,” in Real-Time Systems Symposium, Dec 1998,
pp. 286–295.

[15] H. Su and D. Zhu, “An elastic mixed-criticality task model and its
scheduling algorithm,” in Conference on Design, Automation Test
in Europe, March 2013, pp. 147–152.


