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Abstract—Heterogeneous multicore platforms are becoming

an attractive choice to deploy mixed criticality systems

demanding diverse computational requirements. One of the

major challenges is to efficiently harness the computational

power of these multicore platforms while deploying mixed

criticality applications with timeliness properties. Energy

efficiency is also one of the desired requirements in the

design phase, and therefore it is often difficult for the

system designer to simultaneously satisfy those sometimes

contradictory requirements. In this paper, we propose a

novel partitioning algorithm for unrelated heterogeneous

multicore platforms to map mixed criticality applications.

The algorithm not only ensures the timeliness in different

modes of execution but also tries to allocate the applications

to their energy-wise favourite cores. We considered a realistic

power model that further increases the relevance of the

proposed approach. We have performed an extensive set of

experiments to evaluate the performance of the proposed

approach, and we show that in the best-case, we achieve a

23.8% gain in the average power dissipation over the state-of-

the-art partitioned algorithm. Our proposed algorithm also

has a better weighted schedulability when compared to the

existing partitioned algorithms.

1. Introduction

Modern real-time (RT) applications are becoming in-
creasingly complex everyday. In particular, these appli-
cations may have different criticality levels. A criticality
level corresponds to a level of assurance against fail-
ure [1]. The highest-criticality functions are vital for the
operations of the system and any violation of temporal
constraint (fault) may lead to disastrous consequences.
However, fault of lower criticality functions are tolerable
and may cause a decrease in the quality of service.

In the past, applications of different criticality were
hosted on separate components. A recent trend in RT and
embedded system domain to integrate the functionalities
belonging to different criticality levels on a single hard-
ware platform has paved a way towards mixed criticality
systems (MCS). Mixed criticality systems are common in
many application domains such as avionics and automo-
tive. For example, an unmanned aerial vehicle may have
functionalities corresponding to flight critical (concerning
the safety of the flight) and mission critical (reconnais-
sance and surveillance) operations [1]. It is vital for the

integrity of the aerial vehicle to ensure the safe operation
of the flight in all conditions, while reconnaissance and
surveillance are secondary functionalities.

In order to increase the level of assurance against
failure for the high criticality functions, pessimistic esti-
mates of the worst-case-execution time (WCET) are deter-
mined using static analysis. However, a mixed criticality
system designed with pessimistic estimates of WCET
for the high criticality functions (tasks) will lead to an
inefficient utilisation of the resources and therefore to
an unnecessary over-provisioning of the system. This is
driven by the fact that high criticality WCET estimates
rarely occur during execution. To efficiently exploit the
available resources Steve Vestal [2] proposed a mixed crit-
icality system model. In that model, tasks have different
estimates of WCET corresponding to different criticality
levels. The system starts in a low criticality mode and
its schedulability is ensured assuming a WCET estimate
corresponding to current low criticality mode. If any task
exceeds its execution budget beyond the WCET estimate
defined for the given criticality mode of operation, the
system transitions to the high criticality mode.

Modern multicore platforms provide sufficient com-
puting capabilities to deploy complex applications on a
single chip [3], [4]. Among different kinds of multicore
architectures, heterogeneous multicore platforms – com-
posed of more than one heterogeneous processing unit
(core) – has gained popularity due to diverse computing
capabilities. The cores with different characteristics on
such platforms are designed to perform specific functions
efficiently with minimal energy consumption. This flex-
ibility allows a system designer to map applications of
different types with minimal resources and reduce the
overall cost. Various components (applications) in a mixed
criticality system have different computing requirements,
which makes heterogeneous multicore platforms an attrac-
tive choice to opt for. However, efficient mapping of ap-
plications with different characteristics on such a diverse
computing platform with an objective of maximising the
resource usage is a non trivial exercise. It leads to a multi
objective optimisation problem. Apart from exploiting the
computational resources, energy efficiency has become an
important resource to optimise due to several reasons such
as thermal issues, weight, size, battery life, etc. Therefore,
it is not only important to feasibly map the applications
onto the processors but also to try to minimise the overall
energy consumption. on the given multicore platform.



The energy consumption of an heterogeneous multi-
core platform can be reduced in two different ways [5].
Firstly, a task should be mapped to a processor where
it dissipates minimum dynamic power (favourite core).
Secondly, energy-aware scheduling mechanisms can be
employed to further reduce the energy consumption on
each core. We propose a novel task-to-core mapping al-
gorithm that can be combined with other energy-aware
scheduling algorithm. In our work, a major concern has
been the provision of a realistic power model. In reality,
the energy consumption of an application is not merely
a function of the execution time but also depends on the
set of instructions that it executes to perform the desired
functionality on the given core. These instructions may
use different parts of the core and exhibit different energy
consumption characteristics. In this work, we consider a
more realistic power model and use partitioned schedul-
ing to map the given set of tasks belonging to different
criticality levels on an heterogeneous multicore platform
such that the available computational capacity of the
hardware platform is efficiently exploited and the energy
consumption is minimised while ensuring the timeliness
requirements of the system. This is an NP-hard problem
in a strong sense as it is a special case of bin packing and
hence, heuristics are the way forward.

This work is an extension of a previously proposed
Improved Least Loss Energy Density (ILLED) allocation
algorithm [6]. The main contribution of this paper is to
extend it to mixed criticality systems.

The rest of the paper is organised as follow. Section 2
presents related work followed by the system model in
Section 3. Our proposed novel approach is detailed in
Section 4 as well as the original ILLED algorithm, and an
evaluation of this approach is presented in Section 5. We
conclude and present future work directions in Section 6.

2. Related work

There are three types of contributions in the state-of-
the-art related to our work on mixed criticality systems.
The first category of contributions performs task-to-core
allocation with an objective of optimising the system util-
isation. The second category of contributions performs the
energy-aware task-to-core allocations. In the last category,
the energy consumption of the individual core is optimised
based on existing energy saving algorithms such as shut-
down or frequency scaling. The three next paragraphs will
present these state-of-the-art contributions.

There has been some efforts in the state-of-the-art to
propose new techniques and evaluate the potential of ex-
isting bin packing heuristics to perform the allocation with
the objective of optimising the utilisation of the system.
Lakshmanan et al. [7] proposed an allocation heuristic
known as compress-on-overload packer for the distributed
mixed criticality systems with an objective of minimising
the deadline misses and the number of processors needed
by the system. They devised a metric called ductility
to characterise the overload behaviour of the mixed-
criticality systems. Tamas-Selicean and Pop [8] consider
applications at different safety-integrity levels (SIL) and
propose a tabu search-based approach to perform the
task-to-core/partition mapping on a platform composed
of heterogeneous processing elements interconnected by a

broadcast bus. The tasks and messages are scheduled using
static cyclic scheduling. The SIL level of an application is
incremented to utilise the slack of higher SIL application.
Though it increases the development cost, it avoids the
hardware upgrades. Kelly et al. [9] analysed the mixed
criticality task-set allocation and priority assignment prob-
lems assuming a fixed priority preemptive scheduling on a
homogeneous multicore platform. They considered first-
fit, best-fit and worst-fit heuristics in combination with
decreasing criticality and decreasing utilisation. The rate-
monotonic and Audsley’s priority assignment algorithms
are used to allocate priorities. It is concluded that decreas-
ing criticality and Audsley’s priority assignment algorithm
perform better than other variants. Paul Rodriguez et
al. [10] also compares different heuristics in the context of
mixed criticality systems on identical processors with an
objective of optimising the utilisation. They considered
several heuristics such as best-fit, worst-fit, first-fit and
task ordering criteria of utilisation, period, deadline and
density both in decreasing and increasing order. Many
allocations heuristics are proposed based on the combina-
tion of above mentioned criterions. They also proposed a
pruning mechanism to select the best allocation heuristics.

The state-of-the-art on the energy minimisation of
mixed criticality systems is very limited and very few
results exists. Broekaet et al. [11] studied the integration
of reliable power-magement policies into a real-time oper-
ating system such as SYSGO PikeOS. They also proposed
an outline of a system level power management approach
that allocates energy budgets to virtual machines. In their
proposal, an overrunning critical virtual machine deducts
its additional energy budget from the energy budget of
low priority virtual machine to be scheduled in future. If
the low criticality virtual machine surpasses its allocated
energy budget, the CPU is either put to sleep mode or the
frequency of the processor is reduced to save the energy
consumption. Finally, for the battery powered devices,
in case of low-level battery signal event, power budget
of less critical virtual machines can be scaled down in
favour of more critical virtual machines. This work is
different from our proposed algorithm as it mostly con-
siders the integration of system level power management
algorithms while we consider the energy-aware task-to-
core allocation. Legout et al. [12] proposed a technique
that ensures the schedulability of high criticality tasks and
provides a trade-off between the energy reduction and
the number of deadline misses of low criticality tasks
on an identical multicore platform. This approach also
relies on the dynamic slack [13] to schedule the low crit-
icality tasks which are allocated beyond the provisioned
execution time. It is assumed that low power states on
different cores can be achieved independently. A linear
programming approach is used to map the tasks in the
hyper-period which is divided into small intervals. Their
approach is different from our proposed approach as it
does not consider the sporadic task-model and unrelated
heterogeneous multicore platforms.

Zhang et al. [14] allocate energy budgets to different
cores and perform allocation through a genetic algorithm
to extend the battery life time of the system. The authors
assume however a naive power model where the energy
consumption of a task is only a function of its execution
time. Huang et al. [15] integrated the dynamic voltage and



frequency scaling (DVFS) with mixed criticality schedul-
ing algorithm EDF-VD. The available slack is utilised to
reduce the energy consumption in normal mode of opera-
tion and the frequency is scaled up to meet the deadlines of
high criticality task in case of an overrun. This approach
can be used in combination with our approach. Marcus
Volp et al. [16] discussed why energy constraint may
become critical in certain scenarios. He advocates deadline
misses of low criticality tasks in favour of executing the
high critical tasks when system is short of energy supply.
Recently, Narayana et al. [17] proposed a DVFS approach
for the mixed criticality systems on a unicore platform and
further reduce the energy consumption by providing an
energy-aware task-to-core mapping on identical multicore
processor. Unlike their approach, this paper considers the
heterogeneous multicore platform, however, their DVFS
approach can be used in combination with our work.

3. System model

This work considers a partitioned unrelated hetero-

geneous multicore platform π
def
= [π1, π2, . . . , πM ] com-

posed of M distinct cores. Cores on an unrelated het-
erogeneous multicore platform have no relation among
each other. They have the highest degree of heterogeneity.
Usually, different cores have different instruction set archi-
tecture. The energy consumption and the WCET of a task
vary substantially on these different cores. For example,
a task τa may have a WCET of 2 and 5 time units on
core πi and core πj , respectively. It is equally possible
that another task τb may have WCET of 10 and 1 time
units on core πi and core πj , respectively.

We adopt a common mixed criticality task model,
initially proposed by Steve Vestal [2] and later extended
by other researchers in the RT research community [18].
We consider a dual criticality system in which a system is
defined to execute in either low criticality mode (L-mode)
or high criticality mode (H-mode) of operation. Each task
(defined below) belongs to either low or high criticality
level (safety assurance level). Each task of high criticality
level has two different estimates of WCET: its WCET
estimate for the L-mode of operation is considered safe
but lack proofs, and its WCET estimate for H-mode of
operation is provable safe and possibility much higher than
the L-mode WCET. We assume a set of n independent

sporadic tasks τ
def
= {τ1, τ2, . . . , τn}. Each task τi

def
=

〈Ti, Di, κi,
→

Ci(H),
→

Ci(L),
→

Ei〉 is characterised by its min-
imum inter-arrival time Ti, relative deadline Di, criticality

level κi, a vector of WCET profile
→

Ci(H) in H-mode of

operation, a vector of WCET profile
→

Ci(L) in L-mode
of operation and, finally, a vector of energy consumption

profile
→

Ei. , i.e., κi ∈ {L,H}. The WCET profiles
→

Ci(H)
def
= (C1

i (H), C2
i (H), . . . , CM

i (H)) and
→

Ci(L)
def
=

(C1
i (L), C

2
m(L), . . . , CM

i (L)) are the WCET estimates in
the H-mode and L-mode of operation, respectively, on
different cores indexed from 1 to M . Similarly, energy

consumption profile
→

Ei
def
= (E1

i , E
2
m, . . . , EM

i ) represents
the energy consumption of task τi on different cores in
L-mode.

It is very common to assume in state-of-the-art that the
energy consumption of a task is a function of its execution
time. However, in reality, the energy consumption on a
certain processor depends also on the set of instructions
it has to execute to perform its desired functionality. Var-
ious instructions use different parts of a core, and hence
may result in a different estimate of energy consump-
tion. Therefore, two different applications with similar
execution time may result in different energy consump-
tion depending on the characteristics of the instructions
used, and on the number of cache misses involved. In
this work, we consider a more realistic power model in
which the energy consumption of a task depends on the
characteristics of the core type and hence, computed on
each individual core type using a well known energy
measurement technique [19]. That technique, proposed by
Snowdon et al. [19], has the ability to incorporate the
effect of other system resource usage, such as memory
subsystem and caches etc, on the energy consumption.

We assume that τ(L)
def
= {τi ∈ τ |κi ∈ L} and

τ(H)
def
= {τi ∈ τ |κi ∈ H} represent the subsets of L-

tasks and H-tasks in τ , respectively. It is assumed that
∀τi ∈ τ(H) ∧ ∀m ∈ [1, 2, . . . ,M ], Cm

i (L) ≤ Cm
i (H)

and ∀τi ∈ τ(L) ∧ ∀m ∈ [1, 2, . . . ,M ], Cm
i (H) = 0.

Tasks are not allowed to migrate after assignment as we
assume partitioned scheduling. The schedulability analysis
proposed by Ekberg and Yi [20] is used to test the
feasibility of the system in both low and high criticality
modes. This analysis shortens the deadlines of τ(H) in
the L-mode to keep the schedule ahead of time, which
allows a safe transition from L to H-mode in an event
of overrun or other activity that causes a mode transition.
They allow having independent scaling factors for dif-
ferent H-tasks and uses a more precise demand bound
function based schedulability test. This analysis shows
substantial gains over the state-of-the approaches. The
utilisation of task τi in low and high criticality modes

on processor πm are represented as Um
i (L)

def
=

Cm
i (L)

Ti

and Um
i (H)

def
=

Cm
i (H)

Ti

, respectively. A subset of the

tasks assigned to a core πm is represented as τ(πm). The
overall utilisation of tasks assigned to core πm in L and

H-modes is defined as Um(L)
def
=

∑

∀τi∈τ(πm)

Cm
i (L) and

Um(H)
def
=

∑

∀τi∈τ(πm)

Cm
i (H), respectively. We assume a

constrained deadline model in our system in which a task
relative deadline is smaller than or equal to its minimum
inter-arrival time, i.e., Di ≤ Ti.

4. Energy-aware allocation heuristic

We divide this section into two parts. Initially, we
define some concepts needed, and then, in Section 4.2,
the proposed heuristic is detailed.

4.1. Preliminaries

4.1.1. Definitions.



Definition 1 (Energy density EDm
i ). The energy density

of a task τi on a core πm is defined as EDm
i

def
=

Em
i

Ti

,

where Em
i corresponds to the energy consumption of a

task in L-mode. This is a measure of the average power
dissipation in L-mode.

Definition 2 (Energy density difference EDDm
i ). The

energy density difference of a task τi on a core πm is

defined as EDDm
i

def
= min{EDh

i : h 6= m ∧ EDh
i ≥

EDm
i }−EDm

i . This value corresponds to the difference
between the next higher energy density of τi on any other
core and the energy density on the current core.

Definition 3 (Low criticality utilisation difference
LUDm

i ). The low criticality utilisation difference of a task

τi on a core πm is defined as LUDm
i

def
= min{Uh

i (L) :
h 6= m ∧ Uh

i (L) ≥ Um
i (L)} − Um

i (L). This value
is the difference between the next higher low criticality
utilisation of τi on any other core and the low criticality
utilisation on the current core.

Definition 4 (High criticality utilisation difference
HUDm

i ). The high criticality utilisation difference of a

task τi ∈ τ(H) on a core πm is defined as HUDm
i

def
=

min{Uh
i (H) : h 6= m ∧ Uh

i (H) ≥ Um
i (H)} − Um

i (H).
This quantity represents the difference of next higher high
criticality utilisation of τi ∈ τ(H) on any other core and
the high criticality utilisation on the current core.

Definition 5 (favourite / least preferred core). The
favourite core of a task with respect to the parameter p is
defined as the core on which the value of the parameter p
of this task is minimal. Similarly, the least preferred core
of a task is defined as the core on which the value of the
parameter p of this task is maximal. This parameter p may
correspond to energy consumption, L-mode utilisation, H-
mode utilisation or energy density etc.

4.1.2. Density difference lists. We compute EDDm
i and

LUDm
i for all tasks, and HUDm

i for high criticality tasks
(i.e., ∀τi ∈ τ(H)) on each core. Afterwards, we generate
the following three lists out of these values.

1) Assume a set LUD such that LUD
def
=

{

LUD
f1
1 , LUD

f2
2 , LUD

f3
3 , . . . , LUD

f|τ|

|τ |

}

, where

LUD
fi
i is the low criticality utilisation difference of task

τi on core πfi and πfi ∈ π corresponds to the favourite
core of a task τi with respect to L-mode utilisation

parameter (i.e., U
fi
i (L) is minimal on core πfi ). SLUD

is a list that contains a sequence of numbers of LUD
sorted in a non-increasing order.

2) Assume a set HT
def
=

{

HUD
f1
j1
, HUD

f2
j2
, . . . , HUD

f|τ(H)|

j|τ(H)|

}

, where HUD
fx
jx

is the high criticality utilisation difference of task
τjx ∈ τ(H) on core πfx and πfx ∈ π corresponds
to the favourite core of a task τjx with respect

to H-mode utilisation parameter (i.e., U
fx
jx
(H) is

minimal on core πfx ). Similarly, assume another set

LT
def
=

{

LUD
f1
k1
, LUD

f2
k2
, . . . , LUD

f|τ(L)|

k|τ(L)|

}

, where

LUD
fx
kx

is the low criticality utilisation difference of

task τkx
∈ τ(L) on core πfx and πfx ∈ π corresponds

to the favourite core of a task τkx
with respect to

L-mode utilisation parameter (i.e., U
fx
kx
(L) is minimal

on core πfx ). Let SHT and SLT represent the sequence
of elements of set HT and LT , respectively, sorted
in a non-increasing order, then, SHUD is a list that

concatenates SHT and SLT , i.e., SHUD def
= SHT ||SLT ,

where || represents the concatenation sign.
3) Assume that EDD is a set defined as

EDD
def
=

{

EDD
f1
1 , EDD

f2
2 , EDD

f3
3 , . . . , EDD

f|τ|

|τ |

}

,

where EDD
fi
i is the energy density difference of a task

τi on core πfi and πfi ∈ π corresponds to the favourite
core of a task τi with respect to energy density parameter

(i.e., ED
fi
i (L) is minimal on core πfi). SEDD is a list

that contains all the elements of EDD sorted in a non-
increasing order.

Algorithm 1 Improved least-loss energy density algorithm
(ILLED)

Input: Sorted list of elements with current density dif-
ference values CDD in a non-increasing order, τ and
π

Output: Assignment corresponding to CDD
1: Allocations = 0
2: while CDD is not empty do
3: Assume DDm

i corresponds to the top most entry
in a list CDD with the highest density difference
value

4: τ(πm) := τ(πm) ∪ {τi}
5: if Ekberg Yi Analysis(τ(πm)) == SUCCESS

then
6: Remove DDm

i from set CDD
7: Allocations := Allocations +1
8: else
9: τ(πm) := τ(πm) \ {τi}

10: DDh
i := min{DDh

i : h 6= m ∧ Dh
i ≥ Dm

i },
where Dm

i is either energy density or utilisation. In
other words, get the density difference value of task
τi on its next preferred core

11: if DDh
i does not exists then

12: break;
13: else
14: Reinsert DDh

i in a list CDD maintaining
its non-increasing order

15: end if
16: end if
17: end while
18: if Allocations == n then
19: return Tasks assignment on the platform
20: else
21: return Task-set cannot be assigned with current

CDD
22: end if

4.1.3. Improved Least-Loss Energy Density Algorithm
(ILLED). The improved least-loss energy density algo-
rithm was originally proposed by Awan et al. [6] for
single criticality systems. This algorithm can be easily
adapted for mixed criticality systems by just changing the
feasibility test. We present the resulting pseudo-code in
Algorithm 1. It takes as an input a sorted list of tasks in
a non-increasing order of their density difference values
on their favourite cores. This list is termed as current



density difference list CDD. The density difference value
is a generic term used to indicate any of the following
quantities, i) low criticality utilisation difference, ii) high
criticality utilisation difference or iii) energy density dif-
ference. The density difference of a task shows how much
a system will lose in terms of a given criteria (utilisation or
energy) if a task is not allocated to its preferred core. This
ranking plays an important role in the allocation process.
The tasks ranked higher have the higher probability of
getting mapped to their preferred core.

In the allocation process (lines 2 to 17), the algorithm
allocates the task corresponding to the highest current
density difference value in CDD to its favourite core
and checks the feasibility on its favourite core using the
Ekberg and Yi [20] analysis. If the allocation is feasible,
it is made permanent and its entry in the CDD list is
removed (lines 5 to 7). Otherwise, the task is removed
from this core (line 9) and its next density difference on
the next preferred core is computed (line 10). This newly
computed density difference values are added again in the
CDD list at the appropriate location maintaining its non-
increasing order (line 14). This process is repeated again
unless, i) all the tasks are allocated and the CDD list is
empty or ii) any task within a given task-set cannot be
allocated even to its least preferred core (lines 11 to 12).

4.2. Proposed Algorithm

Our proposed approach generates a set of feasible
allocations and selects the one that minimises the overall
energy consumption of the system. Each feasible alloca-
tion ensures the schedulability of assigned tasks on each
core both in L-mode and H-mode. To compute a corpus
of feasible allocations, we run several times the ILLED
algorithm (Algorithm 1) on different sorted lists of tasks.
The pseudo-code of the proposed approach is presented
in Algorithm 2. In the rest of this section, we explain
the details of the proposed algorithm and provide the
rational behind the selection of the input-sorted-task-lists.
The ILLED algorithm applied on a given sorted list of
tasks σ is denoted as ILLED(σ).

The first step is to generate SLUD, SHUD and SEDD

density difference lists (line 1).

The first run of the ILLED algorithm is then made
with the list SEDD. The tasks in SEDD are sorted with
respect to energy density difference values and hence, in
case of success, ILLED(SEDD) generates a mapping
that minimises the energy consumption. The algorithm
ends in that case (line 5). However, if ILLED(SEDD)
returns failure, we further search for a feasible task-to-core
mapping ensuring schedulability in both modes.

The second step is then to run ILLED with lists
derived from SLUD. Indeed, in practice, mixed critical-
ity systems mostly stay in the L-mode and occasionally
transition into the H-mode due to an overrun or other
external/internal events. Therefore, it is more beneficial
to optimise the energy efficiency in the L-mode. The
allocation given by ILLED(SLUD) will maximises the
schedulability in the L-mode as it is sorted with respect to
L-mode utilisation. However, there may be a possibility
that it fails because the system is not feasible in the H-
mode. Therefore, we keep applying ILLED(SLUD) but

Algorithm 2 Pseudo-code of the proposed algorithm

Input: τ, π
Output: Assignment

1: Compute SEDD, SLUD and SHUD

2: Assume A[i] represent the ith assignment
3: A[0] := Perform the ILLED allocation (Algorithm 1)

with SEDD

4: if (A[0] is feasible) then
5: return A[0]
6: end if
7: i := 0
8: while (true) do
9: A[i] := Perform the ILLED allocation with SLUD

10: if (A[i] is feasible) then
11: EE[i] := Compute energy efficiency of A[i]

through Equation 1
12: i := i+ 1
13: end if
14: Promote high criticality task’s entry in SLUD

15: if (Promotion fails) then
16: break
17: end if
18: end while
19: A[i] := Perform the ILLED allocation with SHT

followed by SLT ,
20: if (A[i] is feasible) then
21: EE[i] := Compute energy efficiency of A[i]

through Equation 1
22: end if
23: index := Find index that gives min

∀i
(EE[i])

24: return A[index]

with progressive alterations on SLUD to make it tends to-
ward SHUD. Indeed the ordering of SHUD is the one that
will maximise the schedulability in the H-mode. We start
with SLUD and gradually transform it by promoting one
by one the H-tasks. The details of the SLUD reordering
mechanism are explained as follows. We select the H-task
corresponding to the entry on top of the SHUD list and
promote its corresponding entry in SLUD by one position.
If the task corresponding to the top element in SHUD is
also at the same level as in SLUD, we need to select the
task corresponding to the second element of SHUD in
SLUD and promote it by one position in SLUD unless it
reaches the same position as in SHUD.

The following example explains the process of tasks
reordering in the SLUD list. Assume that we have only
three H-tasks τ = {τ1, τ2, τ3} in the system. Also assume
that {τ3, τ2, τ1} and {τ1, τ2, τ3} are the task orderings in
a list SHUD and SLUD, respectively. To find the second
ordered list of tasks in SLUD, we select τ3 in SLUD to
promote (as this is the first task in SHUD) and get an
ordered list of {τ1, τ3, τ2}. The further promotion of τ3
will give us a task ordering of {τ3, τ1, τ2}. At this point,
we cannot further promote τ3, therefore, we promote the
second task τ2 and get a task ordering of {τ3, τ2, τ1}. We
finish the reordering process here as we cannot further
promote any task.

After all these promotions of H-tasks, SLUD will have
the same ordering as given in SHUD. However, SLUD

does not represent the same list as SHUD since H-tasks



TABLE 1. OVERVIEW OF PARAMETERS

Parameters Values

Task set sizes n {8, 10, 12, 16, 24}
Pct. of H-tasks (phct) {20%, 30%, 40%, 50%, 60%}

Number of processors M {2, 3, 4, 5}
Um

i
(H) multiplier k ∈ {2, 3, 4}

Characteristic factor β ∈ {5%, 10%, 15%, 20%, 25%, 30%}
Utilisation helper variable ζ {0.1, 0.15, 0.2, 0.25, . . . , 0.95}

TABLE 2. PROCESSORS POWER MODEL PARAMETERS

πm π1/PD π2 π3 π4 π5

ηm 1.0 0.75 0.6 0.5 0.4
Pm
a 7.5 10 12.1 15 17.5

are ordered with respect to HUDm
i in SHUD. Therefore,

as a final step, we run ILLED(SHUD).
During these three steps, we store each feasible al-

location returned by the successive runs of the ILLED
algorithm. Then we can compute the energy efficiency
of all these allocations. The energy efficiency (EE) of
any allocation on an heterogeneous multicore platform
is computed with a metric called overall average power

dissipation of the system and is defined in Equation 1.

EE
def
=

∑

∀πm∈π

∑

∀τi∈τ(πm)

EDm
i (1)

We can therefore select the allocation that minimises
this metric and return it (lines 23, 24).

Complexity Analysis: The worst-case — in which our
proposed algorithm has to apply the ILLED algorithm on
the maximum number of sorted lists of tasks — occurs
when i) the SEDD list is not feasible, ii) a task-set is
composed of only high criticality tasks and iii) SLUD

is in reverse order when compared to SHUD. In such a
scenario, the high criticality tasks from bottom to the top
in the SLUD list will be shifted by (n− 1), (n− 2), (n−
3), . . . , (n−n+1), (n−n) times, respectively. Hence, there
are maximum of (n−1)+(n−2)+(n−3)+ . . .+(1) =
n2 − n

2
lists due to re-ordering in SLUD plus additional

overhead of SEDD and SHUD. In total, our proposed

algorithm has to check
n2 − n+ 4

2
lists. The ILLED al-

gorithm has a complexity of O(n×M), i.e., this algorithm
performs Ekberg and Yi analysis [20]1 for n×M times.
Therefore, in the worst-case, our proposed algorithm has

to perform
(n3 − n2 + 4n)×M

2
Ekberg and Yi analyses.

In reality, SEDD is feasible for most of the task-sets. We
show the percentage of feasible SEDD instances for the
set of experiments performed in our evaluation section,
next.

5. Evaluation

The performance of the proposed allocation heuristic
is analysed and compared to state-of-the-art in this section.

1. The details on the complexity of Ekberg and Yi analysis are detailed
in their original work [20].

5.1. Experimental setup

We developed a Java tool to implement the proposed
approach and a random task generator. The heterogeneous
multicore platform used in this evaluation is derived from
a Freescale PowerQUICC III integrated communication
processor MPC8536 [21]. The parameters of the derived
cores are presented in Table 2. In that table, Pm

a and
ηm denote the average active power dissipation at max-
imum frequency and the speed-up factor, respectively.
The speed-up factor of core πm is the ratio of the clock
cycle of πm and πD, where πD is the default core. We
can choose any core as the default core πD. In this
experimental setup, we selected π1 as the default core. The
speed-up factors are used to compute the average comput-
ing capacity Ua of the platform. The average computing

capacity is defined as Ua
def
=

1

η1
+

1

η2
+ . . . +

1

ηm
. The

effective utilisation U of a task set is generated with a

helper variable ζ, and U
def
= Ua × ζ. The value of the

helper variable is varied from 0.1 to 0.95 with a step size
of 0.05.

Initially, a task set is generated with a given ef-
fective utilisation U for a default core πD. Afterwards,
the parameters of the individual tasks are computed for
the other cores on the heterogeneous multicore platform.
The following approaches and mechanisms are used to
compute the tasks’ parameters for the default core.

• Task utilisation. We compute the utilisation of each
task using the UUnifast-discard algorithm [22]. This ap-
proach allows unbiased distributions of utilisation values.
A task set is discarded if the utilisation of an individual
task exceeds 1 or the task-set utilisation exceeds the
effective utilisation U .

• Task periods. We use the log-uniform distribution
to generate periods for all tasks. The period of a task is
selected within an interval of 10ms to 100ms.To get a
period with a log-uniform distribution, a random number
x is generated within [log1010, log10100] and raised to the
power of 10, i.e., Ti = 10x : x ∈ [log1010, log10100].

• Task deadline. The approach in this paper can be
applied to constrained deadline model. However, for the
sake of simplicity, we assume an implicit deadline model
in which task deadlines are equal to their periods.

• Distribution of high and low criticality tasks. In
a given task-set size, we assign a constant percentage to
the high criticality tasks. This percentage assignment is
detailed at the end of this section.

• WCET in L-mode. To compute this, we multiply
the period of a task with its generated utilisation.

• WCET in H-mode. This value is computed by
multiplying the WCET in the low criticality mode by a
constant factor k > 1. However, this approach can occa-
sionally lead to a utilisation in the high criticality mode
greater than 1.This issue is solved with a transfer function
which, for small values of UD

i (L), would approximate
multiplication with constant factor, but for greater values
would progressively reduce the gain, so that we never
get UD

i (H) > 1. The details of the transfer function are
provided in Appendix A.

• System resolution. Our tool considers a resolution
in the order of the microsecond.



A task set generated for the default processor πD

is considered valid if the sum of the utilisations of all
tasks in the low criticality mode and/or high critical-
ity mode is less than the effective utilisation U . The
UUnifast-discard algorithm ensures that any task in the
low criticality mode will not have an utilisation greater
than 1. Similarly, our transfer function does not allow
the utilisation of a task in high criticality mode to go
beyond 1. This latter valid criterion is a necessary but
not sufficient condition for the task set to be considered
feasible. In this paper, a task set is deemed valid (VT)

if
∑

∀τi∈τ(H)

UD
i (H) ≤ Ua and

∑

∀τi∈τ

UD
i (L) ≤ Ua. The

parameters of the tasks generated for πD are computed
with the help of a characteristic factor β that models the
fact that tasks behave differently in terms of execution and
energy consumption on different cores. On any core πm,
the WCET of a task in the low and high criticality modes
is computed as Um

i (L) = [ηm(1− β), ηm(1 + β)]UD
i (L)

and Um
i (H) = [ηm(1 − β), ηm(1 + β)]UD

i (H). Sim-
ilarly, the average energy consumption is computed to
be Em

i = [Pm
a (1 − β), Pm

a (1 + β)]Um
i (L). We follow

the mechanism proposed by Raj Jain [23] to reuse the
seed in successive replications and create different objects
of random class (seeded with different odd integers) to
generate random values for periods, utilisations and en-
ergy consumption. Each set of input parameter values is
repeated 100 times.

An overview of the parameters used in our experi-
ments is provided in Table 1. The underlined values are
default values, if not specified in the description of an
individual experiment. An heterogeneous multicore plat-
form is used for variety of complex applications, therefore,
the task-set size is varied from 8 up to 24 tasks. The
percentage of high criticality tasks is varied from 20%
up to 60% of the task-set size. We investigate multicore
platforms with 2 − 5 processors, with different features.
The value of the characteristic factor is varied from 5% up
to 30%. Three different values of the constant parameter
k ∈ 2, 3, 4 are used to compute the WCET in the high
criticality mode.

5.2. Results

We compared the following approaches for the given
set of parameters in our experiments.

• Naive First-fit allocation (NFF). In this approach,
allocation is performed following a first-fit bin packing
heuristic on cores arranged in non-increasing order with
respect to their speedup factor. The schedulability on any
core πm is tested by considering Um

i (H) and Um
i (L) for

high and low criticality tasks, respectively.
• Partitioned Ekberg (PEKB). This approach also

performs allocations using a first-fit bin packing heuristic.
Similar to NFF, cores are arranged in a non-decreasing
order of their speedup factor. The schedulability of each
core is tested with the Ekberg and Yi [20] analysis.

• Random allocation (RA). As the name suggests, in
this approach, we perform random allocations. Initially,
a task is randomly selected from a given task set and
allocated to a randomly selected core. We use the Ekberg
and Yi’s [20] analysis to ensure the schedulability during
allocation.

• Mixed criticality power management allocation
(MCPM). This is our proposed novel approach.

We compare the overall average power dissipation
of the system (energy efficiency) and the schedulability
of all aforementioned algorithms. The overall average
power dissipation (APD) of a given task-set with any
allocation algorithm x on the given platform is computed

to be APDx =
∑

∀πm∈π

∑

∀τi∈τ(πm)

EDm
i (Equation 1). We

consider the PEKB as a baseline algorithm and compare
the gain of the other algorithms over this approach. The
gain2 (in average power dissipation) of any algorithms

x over PEKB is given by
APDPEKB −APDx

APDPEKB

, where

x ∈ {NFF,RA,MCPM}. The weighted schedulability
measure [24] is the second performance metric used to
compare the various algorithms. It is a weighted average,
in which more weight is given to task sets with higher
utilisation. We borrow the notation from [25] and adapt
the metric for effective utilisation on multicore platforms.
Assume that Wy(p) represents the weighted schedulability
measure for schedulability test y as a function of param-
eter p. For each parameter p, this measure combines the
results of the task sets generated for all the utilisations
values mentioned in our Table 1. Let Sy(τ, p) represents
the binary result (0 or 1) for any schedulability test y for
a given task set τ with an input parameter p and U(τ)
is the effective utilisation of a task set τ , then Wp(p) is
given by Equation 2 (this equation is taken from [25]).

Wy(p) =

(

∑

∀τ

U(τ) · Sy(τ, p)

)

∑

∀τ

U(τ)
(2)

In our first experiment, we compare the effect of
variation in Um

i (H) multiplier k on the average power
dissipation of the various approaches. Figures 1, 2 and 3
present the gain of the different approaches (NPP, RA and
MCPM) over the PEKB, for k = 2, 3 and 4, respectively.
It becomes difficult with an increase in effective utilisation
to find the energy efficient solution with MCPM and
hence, there is a decrease in gain with an increase in
the effective system utilisation. RA and NFF are energy
agnostic algorithms and behave similar to PEKB with
slight variations. In the best case, MCPM has a gain of
approximately 9.12% over PEKB in this experiment. In
general, the schedulability of all heuristics reduces with
an increase in effective utilisation and some heuristics
(such as NFF) even fail to schedule any task-set at high
utilisations. This is illustrated in Figure 4 that presents the
schedulability ratio (SR) for k = 3 (or default values given
in Table 1). The increase in k also decreases the schedu-
lability of all algorithms as shown through the weighted
schedulability (WS) metric presented in Figure 5. The
MCPM algorithm though not designed to achieve high
schedulability remains superior when compared to other
algorithms in terms of the schedulability metric.

2. We generate 100 random task sets for each set of input parameters
and it represents a single point in our graphs. In order to compute the
APDx of any algorithm x with hundred runs, we divide the average
power dissipation values of all the feasible allocations over the number
of feasible solutions.
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Figure 1. gain with k = 2
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Figure 2. gain with default values
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Figure 3. gain with k = 4
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Figure 4. SR with default values
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Figure 5. WS of Um

i
(H) multiplier
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Figure 6. gain with n = 8
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Figure 7. gain with n = 16
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Figure 8. gain with n = 24
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Figure 9. WS of taskset size
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Figure 10. gain with phct = 20%

0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7
−2

0

2

4

6

8

10

Effective system utilisation

G
a

in
 o

v
e

r 
P

E
K

B

 

 

NFF
RA
MCPM

Figure 11. gain with phct = 60%
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Figure 12. WS of PHCT

The gains of all algorithms over PEKB for task-
set sizes of 8, 12, 16 and 24 are presented in Fig-
ures 6, 2, 7 and 8, respectively. The gain of MCPM
increases with larger task-set sizes at high utilisations.
There are some oddities in Figure 6: i) NFF shows an
increase of gain at U = 5.1, 5.4, and ii) MCPM has lower
gain when compared to PEKB. The NFF, RA and PEKB
algorithms have fewer feasible solutions (with low average
power dissipation) at high utilisations when compared to
MCPM and this leads to their higher gains over MCPM.
This behaviour is also illustrated in Figure 9 with a

weighted schedulability metric that shows MCPM has
more feasible solutions than the other approaches. Except
NFF, the schedulability of all algorithms improves with
larger task-set sizes. The NFF algorithm is negatively
affected due to an increase in the relative number of high
criticality tasks and a pessimistic schedulability test.

We also varied the percentage of high criticality tasks
(phct) in a given task set and analyzed its effect on all
heuristics. Figures 10, 2 and 11 present the results for
phct = 20%, 40% and 60%, respectively. A larger number
of high criticality tasks leads to high utilisation in H-
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Figure 13. gain with M = 2
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Figure 14. gain with M = 5
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Figure 15. WS of M
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Figure 16. gain with β = 20%
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Figure 17. gain with β = 30%

0.05 0.1 0.15 0.2 0.25 0.3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Characteristic factor

W
e

ig
h

te
d

 S
c
h

e
d

u
la

b
ili

ty

 

 

VT
NFF
 PEKB
RA
MCPM

Figure 18. WS of characteristics factor

mode which makes it harder to find the feasible solution
for an allocation heuristic. As it can be seen in Figure 11,
not even a single task set was schedule at U = 5.7 with
phct = 60% with any heuristic. Therefore, the gain of
MCPM decreases with a higher value of phct at high
utilisations. The weighted schedulability graph given in
Figure 12 confirms this observation.

The gain of MCPM over PEKB increases with an
increase in the number of cores on the given platforms.
Figures 13, 2 and 14 present the gain of allocation heuris-
tics over PEKB for 2, 4 and 5 cores, respectively. Extra
cores provide more flexibility to MCPM to find energy
efficient solutions and hence, increased gain over PEKB.
Figure 15 shows that the weighted schedulability of NFF
improves with an increase in the number of cores. This re-
sults from the extra flexibility that larger platforms provide
to schedule the given task set. The effect of characteristic
factor β (that models the fact that tasks behave differently
on different cores) is also analysed for different heuristics.
Figures 2, 16 and 17 present the gain of different heuristics
over PEKB for β = 10%, 20% and 30%, respectively.
In our experimental setup, cores are arranged in a non-
increasing order of their speedup factor (or increasing
order of power dissipation). This arrangement on average
provides ideal conditions to the NFF and PEKB algo-
rithms to first allocate tasks to slow cores (or energy
efficient cores). The large values of β give more range
to the tasks to choose their energy consumption values
on each core. This increases the ability of low speedup
cores to also come up with energy efficient alternatives.
Hence, the gain of the MCPM algorithm increases with an
increase in the value of β as it has the ability to find energy
efficient allocations. In the best case (β = 30%), MCPM
has a gain of approximately 23.8%. Figure 18 shows that
this metric does not vary much the weighted schedulability
of allocation heuristics given it does not directly affect on
the WCET of the tasks for different parameters.

TABLE 3. SUMMARY OF RESULTS

Metric k M n phct β

E.G. 9.12% 12.01% 8.91% 8.93% 23.8%
S.D. 44% 43% 44% 63% 52%

The results are summarised in Table 3. The Energy
gain (E.G.) metric presents the best-case gain of MCPM
over PEKB corresponding to variation in different param-
eters. The schedulability difference (S.D.) metric shows
the maximum difference between the schedulable task-set
of MCPM and PEKB.

5.3. Complexity Discussion

In the majority of the cases, MCPM finds the energy
efficient mapping with the SEDD list and hence, it does
not need to explore the other lists (SLUD and SHUD).
Among total feasible task-sets, the SEDD list is successful
to provide the feasible solution with a percentage of
88.35%, 89.52%, 88.68%, 86.12% and 88.25% for all set
of experiments performed with different values of k, β,
M , phct and n, respectively.

6. Conclusions and future directions

In this work, we have presented an energy-aware
allocation heuristic to map mixed criticality applications
(task-set) on an unrelated heterogeneous multicore plat-
form. The proposed allocation heuristic considers both
energy efficiency and schedulability constraints in the
optimisation process. We consider a realistic power model
where tasks’ energy consumptions are not a function of
their execution times. The extensive simulations suggest a
substantial gain over the state-of-the-art algorithms both in
terms of energy efficiency and schedulability. We plan to



extend this approach to a multiple criticality level model.
Moreover, it is also interesting to consider the effect of I/O
devices that many applications (tasks) may share among
each other. The main idea of running several times the
ILLED algorithm with different inputs could be adapted in
this case, and more generally to any partitioning problem
where multiple optimisation objectives exist.
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Appendix A.

Transfer function

TABLE 4. CORRESPONDING VALUES OF k AND z AND CLOSED-FORM

EXPRESSION FOR THE TRANSFER FUNCTION f .

k z(k) f(U, k) (from Equation 3)

2 4.92155 f(U, 2) = 1.25500 · (1− 4.92155−U )

3 16.80101 f(U, 3) = 1.06329 · (1− 16.80101−U )

4 50.43525 f(U, 4) = 1.02023 · (1− 50.43525−U )

This transfer function was initially used by Awan et
al. [26] in their work on mixed criticality semi-partitioned
scheduling algorithms. It provides an efficient mechanism
to generate more feasible task-sets. As explained in Sec-
tion 5.1 that to generate Um

i (H) from Um
i (L) we use a

continuous “transfer function” f which, for small values
of Um

i (L) approximates multiplication with k, but for
greater values progressively reduces the gain, so that we
always get Um

i (H) ≤ 1. After some experimentation, we
came up with the form

f(U) =
z

z − 1
· (1− z−U ) (3)

with z chosen such that f ′(0) = k. Using calculus (details
omitted), the corresponding values for z as a function of k,
and the closed form expressions for the transfer function
f(U, k), with k as an additional parameter, are given in
Table 4.


