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Introduction

Phenotypic variation observed within populations arises from various and interacting ecological and evolutionary forces [START_REF] Antonovics | Ontoecogenophyloconstraints? The chaos of constraint terminology[END_REF][START_REF] Kingsolver | Patterns and power of phenotypic selection in nature[END_REF][START_REF] Mcgill | Rebuilding community ecology from functional traits[END_REF][START_REF] Weiher | Advances, challenges and a developing synthesis of ecological community assembly theory[END_REF][START_REF] Enquist | Scaling from traits to ecosystems: developing a general Trait Driver Theory via integrating trait-based and metabolic scaling theories[END_REF]. Since wild populations are not isolated, biotic interactions between species, including competitive and trophic interactions, have long been recognized as a major source of phenotypic adaptation and diversification (e.g., [START_REF] Roughgarden | Evolution of niche width[END_REF]. Surprisingly though, the studies focusing on biotic factors have been interested by simple bipartite interactions, notably when examining the phenomenon of character displacement (Pfenning & Pfenning, 2009). The ecological community represents a study unit of choice to improve our
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. understanding of phenotypic variation (e.g., community-wide character displacement - [START_REF] Dayan | Ecological and community-wide character displacement: the next generation[END_REF] because it results from both abiotic and biotic factors.

Environmental filtering theory states that regional environmental conditions should induce phenotypic convergence at the community level, i.e. by reducing the range of trait values among coexisting individuals [START_REF] Weiher | Advances, challenges and a developing synthesis of ecological community assembly theory[END_REF][START_REF] Violle | The return of the variance: intraspecific variability in community ecology[END_REF][START_REF] Enquist | Scaling from traits to ecosystems: developing a general Trait Driver Theory via integrating trait-based and metabolic scaling theories[END_REF].

Such phenotypic convergence is expected when regional environmental conditions exert strong pressure on species [START_REF] Weiher | Advances, challenges and a developing synthesis of ecological community assembly theory[END_REF]. Inversely, phenotypes are expected to diverge in competitive contexts as a result of niche partitioning [START_REF] Macarthur | The limiting similarity, convergence and divergence of coexisting species[END_REF], which should consequently favour stable species coexistence under limiting resource conditions [START_REF] Macarthur | The limiting similarity, convergence and divergence of coexisting species[END_REF][START_REF] Grant | What Darwin's finches can teach us about the evolutionary origin and regulation of biodiversity[END_REF][START_REF] Losos | Darwin, lizards, and evolution[END_REF]. That being so, a central challenge is to disentangle the various abiotic and biotic factors that drive local patterns of phenotype variation within communities. [START_REF] Violle | The return of the variance: intraspecific variability in community ecology[END_REF] proposed a spatially explicit framework that defines two operational groups of agents of phenotypic diversification within communities: 'external' and 'internal' filters. These authors did not try to decipher abiotic and biotic factors because they often both act at the same time and at the same place, but rather highlighted the key role of scaledependent community assembly processes. External filters include all pressure agents outside the community whereas internal filters include all the selection agents within the community.

External filtering can be a product of the interplay of both abiotic and biotic factors such as climate conditions, landscape structure, and the composition or global availability of food resources [START_REF] Diaz | Vive la difference: plant functional diversity matters to ecosystem processes[END_REF][START_REF] White | The role of food, weather and climate in limiting the abundance of animals[END_REF][START_REF] Aparicio | Fragmentation and comparative genetic structure of four mediterranean woody species: complex interactions between life history traits and the landscape context[END_REF]. The internal filtering represents all processes within a community such as competition, parasitism or intra-guild predation [START_REF] Violle | The return of the variance: intraspecific variability in community ecology[END_REF]. As agents of pressure, both external and internal filters may have opposite effects on trait variation within communities. In a community, more or less similarity in trait values among co-occurring
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. organisms can thus be observed depending on the type and strength of selective pressures generated by external and/or internal filters [START_REF] Violle | The return of the variance: intraspecific variability in community ecology[END_REF]. Figure 1 summarizes different phenotypic variation patterns within a community depending on the ecological filtering processes at play.

In the last decades, the linkage between ecological filtering processes and phenotypes has been one of the main research questions in community ecology, in an effort to understand community responses to environmental changes and subsequent impacts on ecosystem functions [START_REF] Lavorel | Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail[END_REF]. Community-level trait responses to ecological filters have been mostly studied in plants (e.g., [START_REF] Weiher | Community assembly rules, morphological dispersion, and the coexistence of plant species[END_REF][START_REF] Grime | Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences[END_REF]Lebrija-Trejos, Perez-Garci, Meave, Bongers & Poorter, 2010;[START_REF] Bernard-Verdier | Community assembly along a soil depth gradient: contrasting patterns of plant trait Accepted Article . convergence and divergence in a Mediterranean rangeland[END_REF][START_REF] Tomlinson | Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents[END_REF], which implies a focus on basal levels of trophic webs. However, all species are not affected by ecological filters equally in a trophic web: the trophic rank hypothesis predicts that upper-trophic level organisms should be more harshly affected by environmental changes and disturbance (Holt, Lowton, Polis & Martinez, 1999;[START_REF] Tscharntke | Plant-Insect Interactions in Fragmented Landscapes[END_REF]. As a result of the difficulty of establishing causality relationships in traits in complex food webs [START_REF] Lavorel | Plant functional effects on ecosystem services[END_REF][START_REF] Gravel | The meaning of functional trait composition of food webs for ecosystem functioning[END_REF], studies on the effects of filtering processes on upper-trophic level organisms are scarce (e.g., Farias & Jaksic, 2011;[START_REF] Mouillot | Niche overlap estimates based on quantitative functional traits: a new family of nonparametric indices[END_REF].

We conducted a community-wide approach to life-history trait variation using insect parasitoids as biological models. These organisms occupy high levels in trophic webs and are intimately influenced by their insect hosts. A number of interspecific trait studies have been done on parasitoids suggesting that interspecific phenotypic variation is often related to interspecific competition and host use strategy [START_REF] Jervis | The timing of egg maturation in insects: ovigeny index and initial egg load as measures of fitness and of resource allocation[END_REF][START_REF] Van Baaren | Playing the hare or the tortoise in parasitoids: could different oviposition strategies have an influence in host partitioning in two Aphidius species?[END_REF][START_REF] Le Lann | Partage de la ressource au sein d'une guilde : des histoires de vie, comportements et réactions à la température contrastés[END_REF][START_REF] Andrade | Spatiotemporal variations in aphid-parasitoid relative abundance patterns and food webs in agricultural ecosystems[END_REF]Andrade, Krespi, Bonnardot, van Baaren & Outreman, 2015). For instance, variability in the competitive pressure within an aphid parasitoid guild
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. due to seasonality has been linked to a higher level of food web compartmentalization as well as contrasted life-history traits such as body size and emergence rate [START_REF] Andrade | Spatiotemporal variations in aphid-parasitoid relative abundance patterns and food webs in agricultural ecosystems[END_REF][START_REF] Andrade | Impact of climate winter conditions on the diversity and function of a guild of parasitoids[END_REF]. Laboratory studies have measured the effect of ecological factors such as host species [START_REF] Bilu | Host choice by Aphidius colemani: effects of plants, plant-aphid combinations and the presence of intra-guild predators[END_REF][START_REF] Henry | Covariance of phenotypically plastic traits induces an adaptive shift in host selection behaviour[END_REF]Andrade, Hervé, Outreman, Krespi & van Baaren, 2013;[START_REF] Mayhew | Comparing parasitoid life histories[END_REF], host size [START_REF] Colinet | Host age and fitness-related traits in a koinobiont aphid parasitoid[END_REF][START_REF] Harvey | Factors affecting the evolution of development strategies in parasitoid wasps: the importance of functional constraints and incorporating complexity[END_REF][START_REF] Mayhew | Comparing parasitoid life histories[END_REF], host instar [START_REF] Sequeira | Covariance of adult size and development time in the parasitoid wasp Aphidius ervi in relation to the size of its host, Acyrthosiphon pisum[END_REF][START_REF] Cloutier | Host instar, body size and fitness in the koinobiotic parasitoid Aphidius nigripes[END_REF], host plant species [START_REF] Bilu | Host choice by Aphidius colemani: effects of plants, plant-aphid combinations and the presence of intra-guild predators[END_REF], or temperature [START_REF] Hance | Impact of Extreme Temperatures on Parasitoids in a Climate Change Perspective[END_REF], among others, on fitness components. These ecological factors influence several life-history traits, such as body size, egg load, longevity, which are known to be fitness proxies [START_REF] Godfray | Parasitoids. Behavioral and Evolutionary Ecology[END_REF][START_REF] Roitberg | Fitness, parasitoids, and biological control: an opinion[END_REF]. Although trait differentiation within habitats may likely be driven by divergent evolutionary responses to the various selection pressures operating in the local environment (e.g., McArthur & Levins, 1967), there are some evidences that intra-guild interspecific competition and host-parasitoid interactions would be major factors in explaining trait dissimilarity. However, to our knowledge, no studies have taken an interest in the overall ecological factors that shape such life-history traits in the field. In fact, field conditions encompass a number of factors that are difficult to disentangle.

Our investigation aimed to quantify the relative importance of external and internal filters in driving the variation of parasitoid life-history traits. We hypothesized that life-history traits of parasitoid species are driven by various filtering processes and that the strength of those filters may vary in space (i.e., at the biogeographic scale) but also in time (i.e., temporal variation of habitat properties). To investigate this question, we measured traits that are tightly related to fitness through their effects on survival and reproduction in a guild of aphid parasitoids sampled in three contrasted French regions during two successive years. Two complementary statistical strategies have been used to establish the presence/absence of
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. external and internal filtering processes. In trait-based community ecology, the mean field theory has been widely adopted [START_REF] Mcgill | Rebuilding community ecology from functional traits[END_REF][START_REF] Weiher | Advances, challenges and a developing synthesis of ecological community assembly theory[END_REF] where the focus is on mean trait differences among co-occurring species. Because interactions with the local environment are ultimately based at the individual level [START_REF] Bolnick | The ecology of individuals: Incidence and implications of individual specialization[END_REF], intraspecific trait variation has been shown to be critical for responding to key questions in community ecology [START_REF] Bolnick | Why intraspecific trait variation matters in community ecology[END_REF], Violle et al., 2012[START_REF] Escudero | Trait-based plant ecology: moving towards a unifying species coexistence theory[END_REF]. Here we study the parasitoid guild by analysing both mean trait values of different species and the decomposition of phenotypic variances across hierarchical levels (individual, population, community).

Materials and methods

Studied regions

To carefully examine a broad spectrum of environmental external filters, we selected three research sites presenting contrasted local conditions and far enough apart so that no gene flow was expected. In sum, we generated three contrasted and independent external filtering study cases. The three Long Term Ecological Research (LTER) sites located in western France were considered for this study: "Armorique" (48°29', -01°35'), "Plaine et Val de Sèvre" (46°12',-0°28') and "Vallées et Coteaux de Gascogne" (43°16',0°55'), referred to as "Ar", "PVS" and "VCG", respectively, from here in this article. "PVS" is located roughly 300km south of "Ar" and 350km north of "VCG" and these sites present different climate conditions because of their latitude. The three research regions display contrasted agricultural landscapes. "Ar" presents a gradient of agricultural intensification and hedgerow density [START_REF] Burel | Comparative biodiversity along a gradient of agricultural landscapes[END_REF], with sectors dominated by grasslands, hedgerows and fodder crops, and other sectors marked by a higher density of cultivated areas. "PVS" is mostly dedicated to cereal crop production, its open landscapes bearing low percentages of semi-natural elements
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. such as permanent grasslands or woods. "VCG" is composed of mixed crop-livestock farmlands, with a moderate amount of semi-natural landscape elements throughout the research area. In order to study how filtering processes can vary over time, we performed a two-year sampling in the three research sites. Given that two years represent a large time window for the studied parasitoid species characterized by a short generation time (ca. 20 days depending on temperature, Le Lann et al., 2011a), we expected important temporal changes in trait distribution within the sampled populations at a given site.

Parasitoid sampling

In 2011 and 2012, primary parasitoids (Hymenoptera: Braconidae) of cereal aphids (Hemiptera: Aphididae) were monitored in cereal fields (a majority of winter wheat, as well as barley, oats, triticale) in the three research regions from May to June. Five to ten fields were selected in each research region to capture the gradient of within-site landscape complexity, while maintaining field area uniformity. The number of cereal fields monitored in each research region was: 10 in 2011 and 7 in 2012 in "Ar"; 5 in 2011 and 9 in 2012 in "PVS"; 5 in 2011 and 10 in 2012 in "VCG". Each field was sampled twice a month. For each sampling session, an arbitrary number (no less than one hundred) of plants randomly chosen in the field were thoroughly examined and all parasitized aphids (mummies) found were collected. Each aphid mummy was put in an individual gelatine capsule until parasitoid emergence. New parasitoid emergences were checked twice a day (at 9:00 and 18:00). Lifehistory trait measurements were measured on these emerging parasitoids (see below).

Whenever possible, the aphid species from which each parasitoid emerged was identified based on the morphology of the aphid mummy.
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Life-history trait measurement

The longevity of the emerged parasitoid individuals under starvation conditions was measured as an estimation of the amount of energy stocked in larval development and of the rate of energy consumption after emergence [START_REF] Ellers | A field study of size-fitness relationship in the parasitoid Asobara tabida[END_REF].

Parasitoid longevity was calculated by placing parasitoids in 2.0 ml Eppendorf tubes containing a wet cotton ball (with water being administered daily to avoid desiccation) without any food. This procedure was performed at a room temperature of 20±1°C and a 16:8-h photoperiod. Parasitoid deaths were checked twice a day (at 9:00 and 18:00). After their death, taxonomic identity and sex of parasitoids were determined and their body size was estimated, by using the left hind tibia length as a body size indicator [START_REF] Godfray | Parasitoids. Behavioral and Evolutionary Ecology[END_REF][START_REF] Ellers | A field study of size-fitness relationship in the parasitoid Asobara tabida[END_REF]Cohen, Jonsson, Müller, Godfray & Savage, 2005;[START_REF] Ameri | Morphometric indicators for quality assessment in the aphid parasitoid, Lysiphlebus fabarum (Braconidae : Aphidiinae)[END_REF]. In parasitoids, the left hind tibia length is a well-known proxy for body size, itself positively correlated with several indicators of individual's fitness including longevity, mating preference, fecundity, reproductive longevity, progeny emergence and sex-ratio [START_REF] Collins | The effect of egg depletion on the foraging behaviour of an aphid parasitoid[END_REF][START_REF] Sagarra | Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae)[END_REF]. Hind tibia length was measured by analysing pictures taken with a binocular (6.3x, Olympus SZ-CTV) linked to a video camera (JVC KY-F50) using ImageJ 1.41o [START_REF] Schneider | NIH Image to ImageJ: 25 years of image analysis[END_REF]. Lastly, using ImageJ 1.41, we measured forewing area. Forewing area can be considered as a trait potentially linked with flight ability [START_REF] Kingsolver | Experimental analyses of wing size, flight, and survival in the western white butterfly[END_REF].

Statistical analyses

Our objective is to determine which evolutionary scenarios explain life-history trait variations within the studied parasitoid guild (see Figure 1). The first analysis aims at identifying the different factors driving the species mean-trait values. The second analysis studied the external and internal filtering processes more specifically by considering the trait
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. variation at different organisational levels (i.e. a variance decomposition approach). Finally, we quantified phenotypic space of each species and their overlapping within communities.

Drivers of parasitoid life-history trait variation: a mean-field approach

We used mixed models in order to compare mean trait values of different species between sites while accounting for multiple sources of variation, thus the overall effect of internal and external filters on these mean trait values. A model was created for each life history trait (i.e., tibia length, forewing area, longevity and sex-ratio), including the following fixed factors: the 'research region' (i.e. the environmental context-external filters), the 'parasitoid species' (i.e. internal filters related to interspecific mean trait values differences), as well as the interaction between those two factors (i.e., if the strength of the interspecific mean trait values differences varied according to the environmental context; see Scenario 'IF×EF', Figure 1).

In addition to the inclusion of internal/external filtering processes in mixed models, other factors have been considered. Given that the life-history traits in aphid parasitoids depend on the sex of individuals, this fixed factor was included in the statistical modelling. The host species has also been added in the modelling as a bottom-up effect on life-history traits in order to link traits across trophic guilds. To consider allometric constraints, tibia length was tested as a covariate in the forewing area modelling. Finally, as some individuals originated from the same cereal field and each cereal field within a remote region were selected at random, 'field' was included as random factor in models. Precise details about the explanatory variables initially included in the models are given in Table 1. The effect of these explanatory variables on each life-history trait was tested by using generalized linear mixed modelling (R packages 'nlme' by Pinheiro, Bates, DebRoy, Sarkar & R Core Team 2015 and 'lme4' by [START_REF] Bates | Fitting linear mixed-effects models using lme4[END_REF] considering either a normal error (dependent variables: tibia length, forewing area and longevity) or a binomial error (dependent variable: sex-ratio). The significance of each model term was determined by a
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. Wald² test using the Anova function of the car R package [START_REF] Fox | An {R} Companion to Applied Regression[END_REF].

Residuals of fitted models were visually inspected (quantile-quantile plot and residuals vs. predicted values plot) and all were approximately normal, i.e. unimodal and symmetric.

External and internal filtering processes: a variance decomposition approach

We used the classical permutation framework earlier proposed in community ecology to determine the effects of internal and external filtering processes on community-wide phenotypic variation. In this framework, permutations of traits are carried out on the hierarchical level below the one of intereste.g., means of communities are permuted to test for regional differences. To account for the importance of individual variation that partly regulates community assembly processes [START_REF] Bolnick | Why intraspecific trait variation matters in community ecology[END_REF][START_REF] Enquist | Scaling from traits to ecosystems: developing a general Trait Driver Theory via integrating trait-based and metabolic scaling theories[END_REF], we used a variance decomposition approach from individuals to region. More precisely, used the 'Tstatistics' method that decomposes the sources of phenotypic variances within a community relative to the regional phenotypic variance [START_REF] Violle | The return of the variance: intraspecific variability in community ecology[END_REF]. We partitioned the trait variances among the four hierarchical levels involved in community assembly (i.e., individual level (I), population level (P) (i.e. the community-specific species), the community level (C) (i.e. the guild) and the regional level (R)). This allowed us to detect phenotypic convergence in response to external drivers (e.g., climate, landscape structure) but also within-community phenotypic divergence in response to density-dependent processes such as intra-guild competition. The calculation of two T-statistics indices was implemented to quantify the relative amount of intra-to interspecific variation, and of within-community to regional variation. First, we calculated the T IC/IR index that is the ratio of community-wide variance (i.e. variation of trait values among individuals within a particular community) to total trait variance (i.e. variation of trait values among individuals (I) sampled in all regions(R)), assessed at the individual level. By calculating the T IC/IR index for each trait, we measured the strength of the inter-regional phenotypic divergence (i.e. external filters) when accounting for Accepted Article . individual differences. The lower T IC/IR , the stronger external filters on the community.

Second, we calculated the T IP/IC index that is the ratio of the within-population variance (i.e. variation of trait values among individuals within a single species) averaged across all species co-occurring in a community to the total within-community variance (i.e. variation of trait values among individuals within a community). By calculating the T IP/IC index for each trait, we measured the strength of the phenotypic divergence (i.e. internal filters) within a parasitoid guild. The lower T IP/IC , the higher phenotypic divergence among coexisting species.

To test the significance of the observed T IC/IR and T IP/IC values, a null modelling approach (i.e. a comparison of observed values compared to randomized situations as classically performed in community ecology) is required [START_REF] Gotelli | Species co-occurrence: a meta-analysis of JM Diamond's assembly rules model[END_REF]. More specifically, we used the null model (i.e. for T IC/IR : no external filtering; for T IP/IC : no internal filtering) of the cati package [START_REF] Taudiere | cati: an R package using functional traits to detect and quantify multi-level community assembly processes[END_REF] in which individual trait values are randomized (200 permutations) at the community and regional scales. The departure of the T IC/IR and T IP/IC values from the randomized distributions was calculated using the standardized effect size (SES) as SES = (T obs -T null )/sd null where T obs is the observed T-value and T null and sd null are the mean and standard deviation, respectively, of the null distribution (see e.g. [START_REF] Jung | Intraspecific variability and trait-based community assembly[END_REF][START_REF] Taudiere | cati: an R package using functional traits to detect and quantify multi-level community assembly processes[END_REF]. A significant T IC/IR means that two individuals belonging to a particular guild have more-similar trait values than two individuals drawn randomly from different regions and a significant T IP/IC means that two individuals belonging to the same species have more-similar trait values than two individuals drawn randomly from the guild. T-statistics and their respective SES were calculated for the three quantitative life-history traits (i.e., tibia length, forewing area, longevity).
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Quantifying species' phenotypic space

Finally, we applied a multi-trait analysis to approach the phenotypic space of each species (as a proxy for species niches, [START_REF] Violle | Towards a trait-based quantification of species niche[END_REF] and the overlap between these speciesspecific phenotypic spaces. This is a means to better evaluate the role of internal filtering on phenotypic divergence among coexisting species. For each species of a guild, we estimated its trait multidimensional space. This notion refers to the concept of the Hutchinsonian multidimensional niche: [START_REF] Hutchinson | Concluding remarks[END_REF] first proposed that niches can be quantified by assessing the life-history trait hypervolumes that characterize trait multidimensional space occupied by a set of species (Blonder, Lamanna, Violle & Enquist, 2014[START_REF] Blonder | Do hypervolumes have holes?[END_REF]; see also [START_REF] Lamanna | Functional trait space and the latitudinal diversity gradient[END_REF] for an application). By considering only parasitoid individuals on which the three quantitative life-history traits were measured (i.e., tibia length, forewing area and longevity), we quantified and represented the trait hypervolume using the 'hypervolume' R package [START_REF] Blonder | The n-dimensional hypervolume[END_REF]. These algorithms infer the shape, the volume and the intersection of high-dimensional objects via a thresholded kernel density estimate. To estimate niche differentiation between species within the guild, all possible pairwise hypervolume overlaps between species pairs were calculated. We defined overlap as the hypervolume in common divided by the mean volume of the two hypervolumes. A full description of the algorithms can be found in [START_REF] Blonder | The n-dimensional hypervolume[END_REF].

All the statistical analyses were performed using R 3.1.2 (R Core Team 2015).

Results

Aphid parasitoid taxonomic diversity: sampling year and geography matter

A total of 1905 primary parasitoids (Hymenoptera: Braconidae) were sampled. Five parasitoid species were identified: Aphidius avenae Haliday, A. ervi Haliday, A. rhopalosiphi De Stefani-Perez, Ephedrus plagiator Nees and Praon volucre Haliday (Table 2). The
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. diversity of the guild strongly varied between years and regions. In 2012, all five species were found in the three studied regions. In 2011, A. avenae was not found in both "PVS" and "VCG" and E. plagiator was not found in "Ar". The relative frequencies of the parasitoid species within the guild varied strongly between regions and years. For example, A. avenae represented 15.5% of the parasitoid guild in "Ar" in 2011, and 73.5% in 2012 in this same region, while occurring at very low frequencies in the other two research regions for the two years. From these results, the parasitoid species to include in data analyses were determined (see Table 2 for details about criteria used for specimens' selection).

A total of 1765 aphid mummies were identified: 967 individuals corresponding to the aphid species Metopolophium dirhodum Walker, 790 individuals to the aphid species Sitobion avenae Fabricius, and 8 individuals to Rhopalosiphum padi Linneaus. These three aphid species are used as hosts by the five parasitoid species found in our collections [START_REF] Andrade | Spatiotemporal variations in aphid-parasitoid relative abundance patterns and food webs in agricultural ecosystems[END_REF]. Given their low number, the 8 parasitoid specimens that emerged from R. padi were excluded from all data analyses. Similarly to the parasitoid guild, parasitized aphid relative abundances varied strongly from year to year and between the research regions (Table 2).

Drivers of parasitoid life-history trait variation: the mean-field approach

By using mixed models, we assessed the main driving factors of the mean traits values within the parasitoid guild. The significance of the different explanatory variables on the parasitoid life-history traits is detailed in Table 3. Figure 2 presents the mean of the lifehistory traits for the different parasitoid species sampled in the three regions in 2011 and 2012, respectively.

The effect of the region and the parasitoid species on the parasitoid life-history traits varied from year to year. In 2011, these two factors affected significantly the two morphometric traits (i.e. tibia length and forewing area). The non-significance of the
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. interaction term between these factors indicated that guild-wide interspecific trait differences were not affected by the regional factors (scenario 'IF + EF' of Fig. 1). Overall, parasitoid specimens in "Ar" had the longest tibias and the largest forewing areas and A. rhopalosiphi presented the shortest/smallest organs (i.e. tibia/forewing area) among all parasitoid species (Figure 2). Neither geographical variation nor interspecific variation was found in parasitoid longevity (scenario 'NV', Figure 1) and the sex-ratio in the studied guilds varied between species only (scenario 'IF', Figure 1): the P. volucre populations presented fewer females in the three regions.

Compared to 2011, the statistical modelling retained more significant terms in 2012. The two morphometric traits (i.e., tibia length and forewing area) still varied between regions and parasitoid species. The interaction term was also now significant, indicating that the interspecific trait differences changed with the environmental context (scenario 'IF×EF', Figure 1): interspecific variations for tibia length and forewing area were more pronounced in "Ar" (Figure 2). In 2012, the longevity of parasitoids differed between species and regions (scenario 'IF+EF', Figure 1): parasitoids lived longer in "VCG" and the A. avenae species presented the longest lifespan. Concerning the sex-ratio within the guild, it varied between species and these interspecific differences in sex-ratio changed according to the environmental context (scenario 'IF×EF', Figure 1): in "Ar", the A. ervi populations presented the lowest proportion of females while in "VCG", this sex-ratio bias was observed in A. avenae populations (Figure 2).

Finally, the effects of individual sex and host species on the parasitoid life-history traits were similar in both sampling years (Table 3). In all guilds sampled, parasitoid males and females presented contrasted life-history traits: male specimens had shorter tibias, larger forewing areas and lived longer than females. In 2011 and 2012, the host species affected parasitoid longevity only: parasitoids resulting from S. avenae presented a higher longevity
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. (all parasitoid species considered together; in 2011: S. avenae: 3.97 days ± 0.12; M. dirhodum: 3.17 days ± 0.09; in 2012: S. avenae: 4.71 days ± 0.08; M. dirhodum: 3.88 days ± 0.05).

External and internal filtering processes: a variance decomposition approach

The comparison of the departure of the T-statistics from randomized situations (through SES values) is plotted in Figure 3. The results are not consistent among life-history traits and years. In 2011, T IC/IR values significantly departed from the null model for tibia length in "Ar" and longevity in "PVS" suggesting a parasitoid phenotypic convergence in these regions for those two traits as a result of the local environmental conditions. In "PVS", T IP/IC value was low compared to randomized situations for two life-history traits (tibia length and forewing area) suggesting significant morphometric divergence among coexisting species in this region. In "Ar", two individuals belonging to a particular species displayed more similar forewing area than two individuals drawn randomly from the guild (see Fig. 3). In 2012, the three traits displayed significant pattern for T IC/IR, particularly the morphometric traits (i.e., tibia length and forewing area). This result suggests there was external filtering for these traits, possibly because of strong environmental differences between the sampled regions.

Concerning the T IP/IC results, significant phenotypic divergence among the species of the guild was observed for the three traits: the two morphometric traits strongly diverged between parasitoid species in "Ar" while in the "PVS" guild, phenotypic divergence between parasitoid species concerned longevity only. From all the results, only two traits presented both significant T IC/IR and significant T IP/IC values: tibia length and forewing area measured on parasitoids sampled in "Ar" in 2012. This suggests that the individual morphometry within this guild was governed by both specific regional conditions and intra-guild ecological processes.
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A quantification of species' phenotypic space

Considering the three quantitative life-history traits simultaneously, the species hypervolumes were constructed and represented in order to visualize phenotypic divergence within the parasitoid guilds (Figure 4). Overlap in trait hypervolumes was variable, ranging from 23% to 67.5% (Table 4). In 2011, the narrowest volume and a low degree of hypervolumes overlap between species in "PVS" confirmed phenotypic divergence within the guild in this region. In 2012, both shape and volume of the species hypervolumes in "Ar" were highly contrasted, confirming the phenotypic divergence between parasitoid species living in this region. The hypervolume overlap estimates indicate that the phenotypic space of P. volucre differed from those of the two dominant parasitoid species of the guild in this region.

Discussion

We examined the patterns of life-history trait variation within a guild of insect parasitoids across three different regions in relation to several ecological factors and hypothesized whether such phenotypic patterns reflect adaptation to local conditions and species coexistence processes. In doing so, our results showed that (1) patterns of life-history trait variation across regions suggest a directional environmental filtering and (2) patterns of phenotypic variation within regions emphasize how local coexistence could modulate the expression of life-history trait through niche differentiation processes. Interestingly, our study indicates that the phenotypic variation pattern in a given region may change with time and that bottom-up effects within trophic webs can mediate life-history traits at a given upper trophic level.
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External filtering and parasitoid life-history traits

In the parasitoid guild, most of the life-history traits differed between sampled regions. In 2011 and 2012, parasitoids sampled in the northernmost region (i.e. "Ar") were larger and had broader wings, whereas longevity under starvation was longer in the individuals sampled in the southernmost region in 2012 (i.e. "VCG"). The significant reduction of variance for most of the traits (see T IC/IR values) highlighted a phenotypic convergence in each region suggesting that life-history trait variation is a product of the guild response to regional environmental conditions as a whole. The interregional trait differences may be a result of the different climate conditions linked to the contrasted latitude of the three sampled regions, the difference in agricultural landscapes and practices, the differences in regional aphid host quality/abundance/diversity or a combination of those environmental factors. The observed variation in sex-ratio within the guild should also be related to the regional environmental conditions. In arrhenotokous parasitoids (i.e., species in which unfertilized eggs produce haploid males and fertilized eggs produce diploid females), there can be a high occurrence of sib-mating, especially when hosts are patchily distributed, which is often the case in aphids [START_REF] Völkl | Predators, parasitoids and pathogens[END_REF]. As a result of this type of mating and to consequent local mate competition, most theoretical models on optimal sex allocation patterns in parasitoids predict female-biased sex-ratios [START_REF] Hamilton | Extraordinary sex ratios[END_REF][START_REF] Charnov | Sex ratio evolution in a variable environment[END_REF][START_REF] Werren | Sex ratio evolution under local mate competition in a parasitic wasp[END_REF][START_REF] West | Sex allocation[END_REF], but sex-ratios often decrease as a function of parasitoid and host densities [START_REF] Meunier | The influence of local mate competition on hostparasitoid dynamics[END_REF].

Parasitoid density has been previously reported to increase with landscape complexity (i.e., percentage of arable land) (Thies, Roschewitz & Tscharntke, 2005). Since "PVS" is a region mostly dedicated to crop production and presenting low parasitoid abundances [START_REF] Andrade | Spatiotemporal variations in aphid-parasitoid relative abundance patterns and food webs in agricultural ecosystems[END_REF], this could explain why the guild sex-ratio was more female-biased in this site.
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Internal filtering and parasitoid life-history traits

Our results showed interspecific contrasts in parasitoid life-history traits, indicating differentiation in niche spaces. Globally, A. avenae and A. ervi presented the highest values for tibia length, forewing area, and longevity. There were also interspecific differences in sex-ratio, which could be linked to contrasting population densities and local mate competition [START_REF] Charnov | The Theory of Sex Allocation[END_REF][START_REF] Godfray | Parasitoids. Behavioral and Evolutionary Ecology[END_REF]. The degree of niche differentiation between species varied across the environmental context: phenotypic divergence was mostly observed in "Ar"' (2012) and "PVS" (2011) regions whereas phenotypic convergence has been found in "VCG". In the latter regional environmental context, interspecific trait differences were low and the multidimensional phenotypic spaces overlapped.

Given that interspecific competition for limiting resources may generate divergence in life-history traits among species, niche differentiation would be more pronounced in habitats with highly diverse and abundant guilds. Interestingly, we found no correlation between the degree of trait divergence and species abundance in the different regions. Consequently, using a trait-based analysis to predict a guild composition and diversity would be challenging.

Recent researches show, however, that the ability to predict community composition increases rapidly with the number of phenotypic traits included in the model [START_REF] Laughlin | A predictive model of community assembly that incorporates intraspecific trait variation[END_REF][START_REF] Laughlin | The intrinsic dimensionality of plant traits and its relevance to community assembly[END_REF].

Life-history traits in food webs

We asked whether/how host species control parasitoid life-history traits in nature (bottomup effects), taking into account that both host absolute and relative abundances are affected by the environmental context (Thies et al., 2005;[START_REF] Aqueel | Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars[END_REF][START_REF] Andrade | Spatiotemporal variations in aphid-parasitoid relative abundance patterns and food webs in agricultural ecosystems[END_REF]. In our study, host species influenced parasitoid longevity but not their body size, forewing area nor sex allocation. In relation to longevity, it is possible that the energy reserve accumulated and/or the energy consumption rate would differ between parasitoids emerging
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. from the two cereal aphid host species, S. avenae and M. dirhodum. The interspecific differences in energy consumption rates may be linked to differences in metabolic rates of adult parasitoids (Le Lann et al., 2011a): both A. avenae and A. rhopalosiphi display contrasted metabolic rates and lifespans but accumulate a similar amount of energy resources when exploiting S. avenae (Le Lann, Visser, van Baaren, van Alphen & Ellers, 2012).

Through these effects on parasitoid traits, a host species could modulate both the shape and volume of the phenotypic space of a parasitoid species and hence the overlap between species trait spaces. The phenotypic space packing would then depend on the host selection behavioural strategies in each species of the guild. Some studies conducted on the selection of host species by aphid parasitoids have suggested some host preferences (Andrade et al., 2013[START_REF] Eoche-Bosy | Seasonal variations in the availability of host resources influence foraging strategy in parasitoids[END_REF]. So, the hypervolumes estimated here depended on the host species used by the parasitoids collected and this behavioural effect on niche differentiation must be included in the set of features driving phenotypic evolution.

In conclusion, knowledge of the divergence in host/prey traits among sites, the abundance and distribution of hosts/prey across the landscape, as well as the population density and parasitism/predation rate within sites, are all important for the correct interpretation of trait variation patterns.

Differential response of the life-history traits

Ecological filters may affect distinct traits differently. In the fruit fly parasitoid Leptopilina heterotoma (Hymenoptera: Figitidae), no differences were found between populations from four sites along a 300 km gradient for several fitness traits, including longevity under starvation conditions [START_REF] Vuarin | Geographic variations of life history traits and potential trade-offs in different populations of the parasitoid Leptopilina heterotoma[END_REF], but there were interregional intraspecific differences in wing load, a morphometric trait linked to dispersal [START_REF] Gilchrist | Plastic and genetic variation in wing loading as a function of temperature within and among parallel clines in Drosophila subobscura[END_REF]. Similar patterns of trait responses were
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. found here: the studied life-history traits resulted from different evolutionary patterns, and the two morphometric traits (i.e., tibia length and forewing area) were generally governed by more complex evolutionary scenarios than for longevity (Figures 2,3 and 4). Tibia length is a good estimate of specimen's fitness: in females, tibia length is positively correlated with mating preference, fecundity, reproductive longevity and progeny emergence (e.g., [START_REF] Collins | The effect of egg depletion on the foraging behaviour of an aphid parasitoid[END_REF][START_REF] Ellers | A field study of size-fitness relationship in the parasitoid Asobara tabida[END_REF]; in males, there is also some evidence that large males have greater mating success [START_REF] Godfray | Parasitoids. Behavioral and Evolutionary Ecology[END_REF]. The forewing area was used as a proxy for dispersal ability. In parasitoids, dispersal ability strongly influences the host searching performance of the female and mating success of the male individuals [START_REF] Zepeda-Paulo | Does sex-biased dispersal account for lack of geographic and hostassociated differentiation in introduced populations of the aphid parasitoid?[END_REF]. Our results underlined that as phenotypic differences between guild members may not express themselves equally across all traits, it is important to study multiple traits.

Temporal variation in phenotypic variation patterns

Our findings show that analysing the sources of phenotypic variation over time is crucial for our understanding of the ecological and evolutionary processes shaping phenotypic diversification within the communities. In our study, life-history traits presented contrasting variation patterns according to the sampling year, suggesting variations in evolutionary dynamics of parasitoid species from year to year. Actually, we consider our study as a 'proof of concept' of the importance of temporal monitoring in trait-based community ecology. The observed temporal variation can be interpreted as the outcome of the change in the diversity and/or in the strength of internal and external filters. For instance, we noted a variation in guild diversity between the two sampling years (i.e. more species within the guild in 2012) and the internal filters would be harsh when a guild is more diverse. Also, this temporal variation could be a result of differences in climate conditions between years since climate conditions can alter parasitoid life-history traits directly or indirectly. Emergence rate, development time, growth rate, fecundity, metabolic rate and longevity in aphid parasitoids
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. vary significantly according to temperature variations in the range of 10 to 25 degrees [START_REF] Le Lann | Thermal plasticity of metabolic rates linked to life-history traits and foraging behaviour in a parasitic wasp[END_REF]. By altering aphid populations [START_REF] Dedryver | Seasonal and annual genotypic variation and the effect of climate on population genetic structure of the cereal aphid Sitobion avenae in Northern France[END_REF], climate conditions can modify the parasitoid host resource pool qualitatively and quantitatively. In addition, multiparasitism and hyperparasitism are ecological factors that can partly explain trait differentiation, although these factors tend to increase in importance as aphid populations' crash towards the summer season [START_REF] Traugott | Endoparasitism in cereal aphids: Molecular analysis of a whole parasitoid community[END_REF]. The sources of temporal phenotypic variation are obviously numerous and further work is needed to decipher them.

Mechanisms of phenotypic evolution

Two non-exclusive mechanisms operating at the level of the individual allow the adaptation of a population to the local environment: natural selection and phenotypic plasticity. Divergent selection between sites will result in local adaptation through genetic differentiation [START_REF] Kawecki | Conceptual issues in local adaptation[END_REF]. Genotypes subjected to local selection will exhibit higher fitness in their own environment compared with those from other environments and the trait differences among populations will be genetic in origin. Phenotypic plasticity is defined as the ability of a single genotype to produce multiple phenotypes (morphological, physiological and behavioural) in response to varied environmental conditions, allowing organisms to adapt to the specific conditions in their local environment [START_REF] Schlichting | The Evolution of Phenotypic Plasticity in Plants[END_REF][START_REF] Davidson | Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis[END_REF]. Selection on genetic variability and phenotypic plasticity can be complementary mechanisms adjusting organisms to local conditions [START_REF] Grenier | Phenotypic plasticity and selection: nonexclusive mechanisms of adaptation[END_REF]. In parasitoids, some studies showed how life-history traits are plastic (e.g., [START_REF] Godfray | Parasitoids. Behavioral and Evolutionary Ecology[END_REF]. There is however a shortage of studies testing the role of phenotypic plasticity in the field. Here, we selected three sites presenting contrasted environmental conditions and far enough apart so that no gene flow was expected and local selective pressure varied spatially. This low gene flow among populations may be a prerequisite for
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. local adaptation but it does not necessarily indicate that the phenotypic differences among populations are genetic-based. For example, some differences could be simply be due to differences in host quality among the different regions (i.e. trophic-mediated phenotypes).

Similarly, deviations among species within sites may well be due to different plastic responses (i.e., different reaction norms) or possibly to divergent evolutionary responses to the various selection pressures operating in the local environment rather than to niche divergence (e.g., [START_REF] Macarthur | The limiting similarity, convergence and divergence of coexisting species[END_REF].

To test whether there is a genetic component to differences in populations, further investigations should therefore be addressed in regards to the reasons behind this trait variation. Identifying the evolutionary mechanisms would require culturing specimens in different environments to test for different phenotypic outcomes (reciprocal transplant experiments).

Conclusion

By combining complementary analytical approaches to regional and local life-history trait variation, our study highlights evidence that phenotypic adaptation within communities is complex and community-specific: evolutionary patterns of life history traits could vary dramatically among communities. The application of such trait-based studies to insect parasitoids has the potential to provide further insight on how agricultural landscapes contribute to differential diversification among evolutionary lineages. As insect parasitoids are the dominant parasites of aphids on crops worldwide, there is a growing concern about the functioning of their guilds and we have shown that the inclusion of life-history traits in determining parasitoid responses to agricultural landscapes may be important for future management decisions.
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Table 3: Generalized linear mixed models on the effect of different explanatory variables on the life-history traits of different parasitoid species composing a guild. 
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Table 2 :

 2 Total number parasitoids and their aphid hosts sampled in 2011 and 2012 in three research regions (Armorique: "Ar", Plaine et Val de Sèvre: "PVS", Vallées et Coteaux de Gascogne: "VCG"). a Specimens considered in the mixed models (as we tested the interaction term between the parasitoid species and the research sites, we included in the analyses any species sampled in the three research sites); b Specimens considered in the T IC/IR and T IP/IC values estimate (any species presenting a sampling size greater than 5 individuals for the quality of the intra-species variance estimates); c Specimens considered in the hypervolume approach (parasitoid individuals on which the three quantitative life-history traits were measured).
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 2 Figure 2. Life-history traits (mean value ± standard error) of different species within a

Figure 3 .

 3 Figure 3. Standardized effect size (SES) of T IC/IR and T IP/IC values for the life-history traits
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 4 Figure 4. Hypervolumes considering the life-history traits (tibia length, forewing area and

  

  

  

Table 1 .

 1 Description of the explanatory variables tested for their effect on the life-history traits of different parasitoid species composing a guild. (FF): fixed factor; (RF): random factor; (C): covariate. Checkmark: explanatory variable considered in the statistical modelling.
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