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Abstract.  

A global horizontal irradiation prediction (from 1 hour to 6 hours) is performed using 2 persistence 

models (simple and “smart” ones) and 4 machine learning tools belonging to the regression trees 

methods family (normal, pruned, boosted and bagged). A prediction band is associated to each 

forecast using methodologies based on: bootstrap sampling and k-fold approach, mutual information, 

stationary time series process with clear sky model, quantiles estimation and cumulative distribution 

function. New reliability indexes (gamma index and gamma test) are built from the mean interval 

length (MIL) and prediction interval coverage probability (PCIP). With such methods and error 

metrics, good prediction bands are estimated for Ajaccio (France) with a MIL close to 113 Wh/m², a 

PCIP reaching 70% and a gamma index lower than 0.9. 

Keywords: probabilistic forecasts, bagging, boosting, pruning, mean interval length, prediction interval 

coverage probability 
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1. Prediction intervals instead of single predictions… Why? 

Electrical operators have to ensure an exact balance between electricity production and consumption at 

any time of the year [1,2]. They often have some difficulties to maintain this stability with 

conventional (heat engine, nuclear power plant, hydroelectricity, etc.) and incontrollable energy 

production system (PV and wind farm), almost in small or no interconnected electrical grid (as island 

ones [3,4]). The consistency of the electrical system is in fact dependent on the ability of the system to 

accommodate expected and unexpected changes in production and consumption in order to maintain 

quality and continuity of service to the customers [5,6]. Usually, the prediction of the solar and wind 

energy system production is necessary to achieve this goal. A lot of studies show that the time series 

formalism gives the best results for horizons between 1 hour and 6 hours [3,5,7,8], while for deeper 

horizons the use of satellite data and numerical weather predictions becomes the most attractive 

methods [9–11]. Satellite-based irradiance models are able to estimate the solar radiation levels 

(historic, recent and future levels) without the need of installing ground sensors at the location of 

interest but correction based on measurements improves the results [12]. As clouds are the dominant 

source of small-scale variability in surface solar radiation and uncertainty in its prediction, for very 

short term global horizontal irradiance forecast, it is possible and recommended to use sky images as 

described by Schmidt et al. [13] .The present paper focuses on the first problem also called the 

nowcasting and proposes a machine learning methodology aiming on prediction intervals [14–16] 

rather than a single forecasted value [7,17]. In statistical inferences, specifically predictive inferences, 

a prediction interval is an estimation of the interval in which future observations will be with a given 

probability. This kind of approach is often denoted probabilistic forecasting and is often used in 

atmospheric science [18,19] in both regression analysis and frequentist statistics and allows the 

distribution generation of individual future prediction [20]. For the grid manager, this sort of 

information (prediction interval or reliability index of prediction) is essential and allows important 

additional information making it possible to master the management of electrical networks and 

particularly to increase the intermittent renewable energy part. 
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The structure of this paper will be: data and predictors description, prediction interval generation, 

results and then conclusions. 

 

2. The data used 

The data used to build the models are hourly solar global horizontal irradiation (GHI) measured from a 

meteorological station and a usual cleaning approach is then operated in order to identify and remove 

the desired data. Mistakes often appear in the temporal series of solar data due to problems with the 

acquisition system; an automatic quality check used in the frame of GEOSS project (Group on Earth 

Observation System of System) [21] has been applied to the data. The process to estimate the quality 

of the data [22] and the procedure applied to flag suspicious or erroneous measurements is described 

in detail in [20]. 

2.1. Measurements 

All the experiments and numerical simulations are related to Ajaccio, during a period of 9 years from 

2006 to 2014, (Corsica Island, France). This station is equipped with pyranometers (CM 11 Kipp & 

Zonen) and standard meteorological sensors (pressure, nebulosity, etc.). It is located near the 

Mediterranean Sea (100 m) and nearby mountains (1000 m altitude at 40 km from the site). This 

specific geographical configuration makes nebulosity difficult to forecast. Mediterranean climate is 

characterized by hot summers with abundant sunshine and mild, dry and clear winters. As the 

computing power was increasing over the past few decades, the field of machine learning has rapidly 

advanced in both theory and practice. Machine learning methods are usually based on the assumption 

that the data generation mechanism does not change over time, thus considering that the used process 

is stationary. In the next subsection, the  method used to make the GHI time series stationary is 

exposed [23]. 
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2.2. Clear sky modelling 

In previous studies [24,25], it has been demonstrated that the clear sky index (CSI) calculated with the 

simplified Solis model of Ineichen [26] is the most reliable for Ajaccio. This model generates a clear 

sky hourly irradiation (CS) expressed by Eq. (1), this model requires a fitting parameter (g), the 

extraterrestrial irradiation (I0), the solar elevation (h) and the total measured atmospheric optical depth 

( ): 

                
  

          
                   (1) 

The simplified Solis clear sky model is based on radiative transfer calculations and the Lambert-Beer 

relation [26] . The expression of the atmospheric transmittance is valid with polychromatic radiations, 

however when dealing with global radiation, the Lambert-Beer relation is only an approximation 

because of the backscattered effects. In view to improve the quality of the CS modelling, monthly 

average of water vapor column and aerosol optical depth at 700nm were introduced in the model using 

the aeronet sources [27]. According to [28] this model remains a good fitting function of the global 

horizontal radiation. The new computed time series (CSI) defined by equation (2) can be directly used 

with the machine learning forecasting: 

                             (2) 

 

3. The prediction models 

In this paper, the time series approach is used, the common notation specifying a time series CSI that 

is indexed by the natural number is written CSI = {      : t T} where T is the time index set. The 

modelling of a time series can be defined by a linear or non-linear model denoted fn (see Eq. 3 where t 

= [n, n-1,…, p+1, p] and n and p are respectively the number of observations and of parameters of the 

model ; n   p; h is the horizon of prediction and      the associated error) [29].  

                                                     (3) 
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To estimate    using a machine learning method, a stationary hypothesis is often required and implies 

to use a stable process [30,31]. A process is defined stable if its mean and/or variance variations 

remain constant over time. Previous studies [3,32,33] confirmed that the use of the clear sky index 

(CSI) (Eq. (2)) makes the time series stationary hence it can be introduced in a machine learning tool 

such as regression tree forecasting. A lot of methods of prediction based on machine learning are 

available, interested readers can refer to [34] concerning on random forest ensemble of support vector 

regression models, to [35] about Kalman filter and regressor, to [36] for works related to the Kriging, 

NWP and gradient boosted regression tree and to [37] for a very interesting evaluation of statistical 

learning configurations. 

3.1. Naïve and reference methods: the persistence 

The persistence is a naïve forecasting method. It is the most cost-effective and provides a benchmark 

against which more sophisticated models can be compared. The persistence approach [12] considers 

that the future GHI values are equal to the observed GHI at time t (Eq. 4). It considers that the 

atmospheric conditions and the solar irradiation remain unchanged between the current time t and the 

future time t+h. 

                           (4) 

A scaled persistence, also called “smart persistence” is defined by Eq. 5, using the clear sky Solis 

model   . This model takes into account the daily solar irradiance profile. In numerous papers, this 

model is used as a reference and allows very good predictions (in stable meteorological conditions) 

[3,38].  

                 
       

     
         (5) 
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3.2. Predictions based on regression trees  

Regression tree learning is a method based on the use of a decision tree as a predictive model. It is 

particularly used in data mining and in automatic learning and machine learning. In these tree 

structures, the leaves represent the values of the target variable and the branch lines correspond to 

combinations of input variables that lead to these values [39–42]. Decision trees have originally been 

used for decision analysis. They were used to explicitly represent the decisions made and the processes 

that lead to them. They have since been introduced in machine learning and data mining. A decision 

tree describes the data but not the decisions themselves. It is a supervised learning technique: we use a 

set of data containing the past measurements and the target to build the tree. We then validate the tree 

performances by extrapolating its results to the test data set. 

3.3. Classic regression tree (RT) 

Hastie and Tibshirani [43] proposed a formalization of the classic regression tree models: 

                             
                      (6) 

Where   are constant factors, I is a function returning 1 if the input is used and 0 if not. Once the tree 

structure has been constructed, a regression model is computed for each node. The learning phase is an 

iterative process where the error (defined as the mean of the absolute difference between the predicted 

and the actual value) will be minimized. 

3.3.1. Pruned regression trees (RT_pruned) 

Pruned regression aims to reduce the number of nodes to make the regression tree more regularizable. 

Pruned trees are built by increasing the quadratic error tolerance per node. Splitting nodes stops when 

the quadratic error per node drops below a given tolerance (   the split variable). For normal RT the 

tolerance is close to zero, while for the pruned RT, a higher value is chosen using a heuristic method 

based on the minimizing of the global error of prediction. In a pruned RT, I (see Eq. (6)) returns 0 

more frequently than in the normal mode. 
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3.3.2. Boosted regression trees (RT_boosted) 

There is a lot of interest in “ensemble learning” methods that generate many regression models and 

aggregate their results. For RT, two well-known methods are boosting and bagging of classification 

trees [44–46]. In boosting, the trees are built successively. The trees improving the prediction are 

weighted by an extra coefficient. The prediction is then obtained by the weighted linear combination 

of the trees [47]. Eq. (7) gives the function for additive models applied to the solar forecasting by 

boosted regression trees. 

                                    (7) 

The basis function                 represents the individual trees with    the split variable, defined 

by different values at each node and prediction results.    is the coefficient taken into account in the 

global algorithm to weight the results obtained by the different trees.  

 

3.3.3. Bagged regression tree (RT_bagged) 

In bagging, the trees do not depend on earlier trees. Each one is independently constructed using a 

bootstrap sample of the data set. At the end, a simple majority vote is taken for prediction. The 

Bagging method is another version of the prediction with regression trees, it was described by 

Breiman [48]. Bagging means bootstrap aggregating, the model is an aggregation of regression trees 

which grow from samples of dataset. The subtrees are employed for the prediction and a vote takes 

place for the prediction (Eq (8)): 

                                   (8) 

Where    are the different predictors before the aggregation and     is the mean of the different 

predictors.  
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3.4. Experiment set-up 

Various steps are necessary for developing forecasting simulations and to objectively compare 

methodologies in view to draw reliable conclusions. These guidelines are listed below. 

3.4.1. Feature selection 

One step is common to all data driven or machine learning models: the choice of the number of 

endogenous inputs to consider, this step is called “feature selection”. The same methodology is applied 

for all numerical experiments by using the mutual information applied to the CSI time series: the auto-

mutual information (AMI). This information measures statistical dependence between the current state, 

       and the previous measures          (         , for N number of observations). In 

contrast to the correlation coefficients defined by Spearman and Pearson, the AMI measures non-

monotonic and other more complicated relationships between variables [49]. It is expressed as a 

combination of marginal and conditional entropies (respectively         ) and                

    ) as described in the Eq (9). 

                                                       (9) 

This quantity is constructed from the amount of randomness of the random variable        given that 

the value          is known. The maximum of lagged inputs to consider (i.e. number of inputs of the 

regression tree) corresponds to index im of the first minimum of the auto-mutual information [50]. For 

example, this study in Ajaccio gives a first     minimum at the 8th time lag (im = 8), hence the 

regression tree will be constructed with 8 inputs (in Eq (3) p = im). 

3.4.2. Filtering process 

Concerning the GHI forecasting, it is a usual practice to transform the data in order to remove night 

hours and to objectively compare the studied predictors. This filtering is possible because during night 

time there is not significant PV electricity production [7]. We chose to apply a filtering criterion based 

on the solar elevation angle: solar radiation data for which the solar elevation angle is lower than 10° 
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have been removed. Moreover, this filtering process allows to consider only data associated with high 

measurement accuracy. Indeed, the measurement uncertainties associated to pyranometers are 

typically much higher than ± 3.0% for solar elevation angle of less than 10°[3]. Note that for the 

sunset and sunrise, the prediction is also very difficult (mainly for the mountainous area) owing to the 

geographic shield. 

3.4.3. Validation rules and error metrics 

The models parameters (i.e. an approximation to the function fn in equation (3)) are determined with 

the help of pairs of input and output examples contained in the training data. Once the model is fitted 

(or trained), it can be evaluated on a test data set totally independent of the training data. In our 

context,                      
  represents the training data set. The vector      contains the p 

past values (defining by the first minimum of the auto-mutual information) of the clear sky index for 

training sample i, CSIi =                                   . The column vector inputs for 

all N training cases can be aggregated in the so-called     design matrix       and the 

corresponding measurements are collected in the vector       , so we can write 

                . Similarly, we have                     for the test data set. During this 

study, a k-fold methodology has been used. In a k-fold cross-validation, the original sample is 

randomly partitioned into k equal sized subsamples [51]. k-fold cross validation should be employed 

to estimate the accuracy of the model induced from a regression algorithm, because the accuracy 

resulting from the training data of the model is generally too optimistic [52]. The k subsamples are 

used as training data. The cross-validation process is then repeated k times (k=50 in our case), with 

each of the k subsamples used exactly once as the training data. The k results from the folds can then 

be averaged (or differently combined) to produce a single estimation or used to compute probabilistic 

forecasts. The advantage of this method over repeated random sub-sampling (see below) is that all 

observations are used for both training and validation, and each observation is used for validation 

exactly once [53]. More than 10-fold cross-validation is commonly used, but generally k remains an 

unfixed parameter (50 in our study). In this study, the accuracy of the forecasting models will be 
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estimated on the basis of the normalized root mean square error (nRMSE) and the skill core (ss) which 

are the two most used error criterion in solar radiation forecasting [3,54].  

                      and           
          

                     
    (10) 

According to the definition of the skill score factor ss (Eq (10), the scaled persistence model has a 

forecast skill ss= 0% [3]. A value of ss= 100% denotes a perfect forecast. Negative values of s indicate 

that the forecasting model fails to outperform the smart persistence model while positive values of ss 

means that the forecasting method improves on smart persistence. Furthermore, the higher the skill 

score is, the better the improvement is. 

4. Probabilistic forecasts and prediction interval generation  

Several methods are available to product a bounded prediction [55], however the methodology used in 

this paper is based on the bootstrap of the training set [56,57]. In our case, bootstrapping refers to the 

building of several predictors based on different subsets of the training data. The resampling is done 

with the k-fold method, with subsets containing only 10% of the training data, randomly chosen [55]. 

For large subsets, all the bootstrapped estimations are equivalent and the prediction distributions do 

not allow generation of prediction intervals. For each fold k (see section 3.4.3), a new learning subset 

is built and is used to train a new regression tree. Each tree will return a prediction and the k predicted 

values will be used to construct a cumulative distribution function (CDF, described in the next 

subsection) for each step. In our study, we took     , leading to 50 predictions per step. 

4.1. Percentile bootstrap  

All bootstrap methods [15,58] are constructed without making assumptions about the underlying 

distributions from which our observations could have been sampled. With this kind of methods, the 

data themselves are used to estimate sampling distributions of predictions from the k subsets and k 

associated predictors. These estimated sampling distributions are then used to compute the confidence 

intervals based on percentiles estimation [59]. In descriptive statistics, a percentile is each of the 99 
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values that divide the data sorted into 100 equal parts, so that each part represents 1/100 of the 

population sample. 

4.2. Prediction distributions 

The cumulative distribution function (CDF) of prediction is computed from the predicted GHI 

probability distribution function (PDF). The prediction interval methodology used during this study 

requires to determine these two kinds of distributions: 

-for the PDF, we use the fact that when a sufficiently large sample is available, PDF is 

equivalent to the histogram of the predicted      [60], 

-for the CDF, it is easy to compute because it is the normalized integral of the PDF [19]. 

Evaluated at a particular value (denoted      *
), CDF gives the probability that      will take a value 

less than or equal to      * 
[16,20], it gives the area under the PDF from minus infinity to      *

.  

An example of CDF of prediction (regression trees in Ajaccio with hourly data) is available in 

Figure 1. 

Figure 1. Example of prediction cumulative distribution function (CDF) used during prediction 

interval generation 

With this tool, all the percentiles can be generated in order to compute the prediction intervals. A 

percentile (or a centile) is a statistical measure indicating the value below which a given percentage of 

prediction falls. For example, the 30
th
 percentile Q(0.3) is the value below which 30% of the prediction 

may be found (110 Wh/m² in Fig. 1, dashed line). The 25
th
 percentile Q(0.25) is called first quartile, 

the 50th one Q(0.5) is the median, and the 75th percentile the third one Q(0.75). The median value 

Q(0.5) of the CDF can be considered as a      prediction and the other quantiles are used to define ad-

hoc prediction intervals. The 50 available intervals framing the forecast are given with the triplet of Eq 

(11) (with          defining the 50 intervals) and     
                                       

       

(where (    
                       is the upper bound and     

       the lower bound of the framing). 

https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Probability_density_function
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        (11) 

Where          is the CDF related to the 50 bootstrapped estimators (50-fold in section 3.4.3) as 

described in Eq. (12).  

                                               (12) 

In the figure 1, concerning n = 20, the prediction would be equal to 116Wh/m², the higher bound to 

122/m² and the lower bound to 110Wh/m². 

5. Prediction interval relevance  

The uncertainties induced by the global radiation forecasting can be decomposed into three parts [55]: 

the first one is related to the measure, the second one to the time series characteristics and the last one 

to the data driven method. Here, the method is based on a methodology of estimation of the 

uncertainties due to the data driven method,  some authors [16,20,61] proposed probabilistic 

forecasting from data driven methods and exposed the related uncertainty. Two kinds of approaches, a 

bit similar, not competing but complementary, are proposed to draw a confidence band around 

predictions. If the works presented in [16,20] are quite similar to our approach, the tools that we use 

(prediction interval coverage probability and mean interval length) are probably more intuitive than 

the reliability diagram, the rank histogram, the continuous ranked probability score and its associated 

skill score. The grid manager needs to have a simple method for estimating the reliability of the 

forecasting and he must be able to draw easily conclusions and to react rapidly. The most interesting 

aspect of the present study is the simplicity of the algorithms. Moreover, our prediction band 

generation methodology is usable for all the machine learning methods and for different time 

granularities and horizons. New metrics taking into account the aspects of accuracy (measures 

between the bounds of the bands) and relevance (intervals length) are proposed in order to compare all 

the proposed bands.  
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5.1. Mean interval length (MIL) and prediction interval 

coverage probability (PICP) 

The mean interval length (MIL) is defined by the difference between upper and lower bounds of the 

prediction interval (respectively     
                       and     

      ) as described in Eq (13).  

          
                           

               (13) 

The prediction interval coverage probability (PICP) is defined by the probability that the measure at 

t+h be between the upper and lower prediction bounds [62]. It is estimated by the rule defined in the 

Eq. (14) (N the number of available data). 

 PICPn = (100/N).count(j) with j :     
                                    

          Eq 14 

To have a PICP close to 100% – that is to say, to be sure that the forecast will be, with 100% 

probability in the MIL range – a very large MIL must be chosen.  But, for a grid manager, the interest 

of this approach will be inefficient. The goal of the prediction interval is to elaborate a methodology 

conducing to a good compromise between high value of PICP and a low value of MIL. Considering 

the theory of the global radiation calculation under clear sky, 100% of the predicted values will be 

included between the upper born corresponding to the global radiation in clear sky conditions and the 

lower one, diffuse radiation under clear sky, considering uncertainties related to the Solis modeling 

error (see Eq. 2). 

5.2. A new test: the gamma test 

A methodology called gamma test [63,64] have been developed in order to compare two 2D maps. In 

this paper this method is adapted to the interval comparison. With the two previous parameters MIL 

and PICP a gamma factor is computed using Eq. (15) concerning the 50 prediction intervals (       

and         are two tolerances depending on the considered problem, and         , see Eq. (11)). 

     
    

      
 
 
  

       

         
 
 
        (15) 



 

14 

The higher the index, the less the prediction interval is efficient. With this index, it is possible to 

construct a statistical hypothesis test.  In the start of the procedure, there are two hypotheses, the null 

hypothesis (H0) and the alternative hypothesis (H1) defined by: 

-H0: “the prediction interval is relevant” if   <1, 

-H1: “the prediction interval is not relevant” if   >1 

Computing    for the n intervals and each predictor, we propose a simple rule (or test) allowing to 

validate the prediction interval. This test allows to boundary the Cartesian coordinate plane defined by 

the two variables MIL and (100-PICP) (figure 3). This limit is an ellipse: 

-inside the ellipse, the hypothesis H0 is retained, it is the “prediction interval is relevant” area, 

-outside the ellipse, H1 is retained, it is the “prediction interval is not relevant” area. 

We have taken       =0.5         and          =50%, meaning that a good interval 

proposes a MIL inferior than 50% of the mean value of the GHI and also allows to obtain a PICP 

higher than 50%. Note that this two values may be modified considering the problem. The gamma 

index is, for our case defined by the equation 16 with a factor o (       ) allowing to bias one of the 

two variables (MILn and PICPn). In the following sections we have chosen o = 0 in order to make the 

readability of the article easier. 

           
    

           
 
 
        

       

   
 
 
      (16) 

6. Results 

The data used in this application are solar global horizontal irradiations GHI measured in Ajaccio with 

an hourly time granularity for the years 2006-2014. In the next we apply the previous methodologies 

to the real case of the GHI prediction interval measured in-situ.  
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As previously mentioned, the machine learning methods can be applied only to stationary time series 

and to satisfy this requirement, the solar irradiations GHI are transformed in clear sky index CSI. 

Thus, CSI are predicted and at last, a reverse process is applied to obtain the corresponding GHI. 

Only endogenous data were used as input and the number of inputs was calculated by auto-mutual 

information methods (AMI) (paragraph 3.4.1). The application of this AMI showed that the 8 previous 

data must be used to forecast the future data. 

6.1. Predictors comparison (h+1) 

 

Using the methodology previously described, some prediction intervals obtained with classical 

Regression tree, were calculated as shown in Fig. 2. 

Figure 2. GHI prediction concerning 3 intervals defined from percentiles  

This kind of figure is not enough interesting to consider a ranking of intervals or to estimate the best 

model of forecast to propose to the grid manager (the 1348
th
 and 1366

th
 hours are ill-modeled but is 

this a bad model?). In this scope, it is essential to compare the different parameters exposed previously 

(nRMSE,      MIL and PICP). In Table 1, the values of these parameters for the 6 tested predictors (4 

kinds of regression trees (classic, pruned, bagged and boosted) and 2 models of persistence (classic 

and smart one). For each regression tree, we show results related to classical forecasts realized using a 

time series formalism without quantiles estimation (denoted “classic” in the table) and to forecasts 

based on the Q(0.5) quantile estimation (denoted “median Q(0.5)”).  

Table 1. Predictors comparison for a time horizon h+1 hour (in bold the best results) 

The     values in Table 1 are related to the lowest value computed among the 50 prediction intervals 

descriptions for each regression trees type (see section 3.4.3) as shown in Eq (17).  

 
               

        

           (17) 
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The ellipse related to gamma index and the comparison of the predictors are plotted in Fig. 3. Each 

mark is related to a prediction interval based on the quantile estimation (50 marks per RT predictor).  

Figure 3. Comparison of the predictors and of the predictions interval definition using the MIL-PICP 

plot.      for the RT_pruned,     for the RT_bagged,     for RT and     for RT_boosted. 

In Table 1 and Figure 3, only two regression trees pass the gamma test (RT and RT_boosted). The 

marks the closest to the origin of inner product space defined by MIL and 100-PICP (Fig. 3) show the 

best intervals and quantiles to consider. For all the models, the best configurations are obtained for n 

between 35 and 45 (see Eq. (11)) because theses couples of MIL and 100-PICP are those which 

minimize MIL and maximize 100-PICP. For all the tested models, the predictions of the Q(0.5) 

estimation give very good results compared to the classical approaches. Excepted for RT 

(nRMSE=0.2477), the machine learning methods propose results better than the smart persistence. In 

the next paragraph, a comparison of the parameters of prediction intervals will be analyzed depending 

on the horizon of forecasts.     

6.2. Influence of the prediction horizon  

In this part, only the best predictor, RT_boosted, is used for more clarity. Table 2 shows the values of 

the gamma index, MIL, PICP and skill Score for RT_boosted. These values are reported according to 

the time horizons between 1h and 6h by hourly time step. 

Table 2. Prediction interval evolution concerning the considered horizon for the RT_boosted 

For horizons upper than 2 hours, the best     is related to a MIL close to 100 Wh/m² while for h+1 

horizon it is 134 Wh/m². The PICP decreases from the horizon h+2. It is a consequence of the 

variability of the CSI (and GHI) and of the decrease of forecastability with the horizon. Note also that 

the skill score is, for h+2 and h+3 lower than 1, that is meaning that, for these horizons, the smart 

persistence is better than RT_boosted. But it has to be kept in mind that the smart persistence cannot 

generate confidence bands. In the next part, the performance of the band estimation will be improved 

with the Solis model. 
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6.3. Use of model of knowledge to bound the prediction 

intervals 

In order to improve the prediction bounds, it is possible to use the Solis clear sky model [28]. Indeed, 

the measured horizontal global irradiation is most of the time lower than the global irradiation 

estimated with a clear sky and higher than the horizontal diffuse irradiation (the only solar component 

present by cloudy condition and minimum when the sky is clear). In Fig. 4, the scheme related to this 

correction.  

Figure 4. Solis model as improvement of the band generation. In Gray the prediction band, in black the 

measurements and in blue the upper and lower bounds computed with the Solis model 

In theory, this correction is attractive, because it allows, with a same PCIP to decrease the MIL and so 

to decrease the gamma index. In practice, the fact to use the Solis model is very interesting but the 

numerical uncertainties of Solis model modify slightly the PICP (less than 5 percentage points). The 

result of this improvement is shown in Table 3 for the RT_boosted predictor and a horizon h+1.  

Table 3. Impact of the clear sky model improvement on the result of the prediction bands 

For the same PICP, the MIL is decreased by 15% using the Solis model as limit of confidence bands. 

The gamma is strongly modified from 0.88 to 0.74, so it is improved by 16% with this simple 

modification. If we consider a large band defined only with the global and the diffuse clear sky 

modelling (Solis model), the MIL is equal to 408.87 Wh/m² and the PICP is close to 100% (all the 

measured values are between the global and the diffuse clear sky limits). The gamma index becomes 

0.94 instead of 0.74 with the RT_boosted. 

7. Comments and conclusions 

In this paper, some results related to the GHI probabilistic forecasting were exposed with 2 persistence 

models (simple and smart one based on the Solis model) and 4 machine learning tools related to the 

regression trees (normal, pruned, boosted and bagged). A prediction band methodology was 
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elaborated, based on the bootstrap sampling and the cumulative distribution function (CDF) of 

prediction for horizons varying between 1 to 6 hours. A new validation tool was built based on the 

mean interval length (MIL) and prediction interval coverage probability (PICP) and called the gamma 

test. With these methods and the error metrics, a reliable prediction band was elaborated for Ajaccio 

with a MIL close to 113 Wh/m², a PCIP reaching 70% and a gamma index lower than 0.9. The 

proposed graphical tool would allow the grid manager to better assess the risk taking on the forecast. 

In future, this methodology will be applied in an on-line system based on the Tilos Island through the 

TILOS ((Technology innovation for the Local Scale, Optimum integration of Battery Energy Storage) 

H2020 project. 
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