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Abstract
We investigated how two different reading tasks, namely reading to memorize [Read & Memorize (RM)] and reading to 
decide whether a text was relevant to a given topic [Read & Decide (RD)], modulated both eye movements (EM) and brain 
activity. To this end, we set up an ecological paradigm using the eye fixation-related potentials (EFRP) technique, in which 
participants freely moved their eyes to process short paragraphs, while their electroencephalography (EEG) activity was 
recorded in synchronization with their EM. A general linear model was used to estimate at best EFRP, taking account of the 
overlap between adjacent potentials, and more precisely with the potential elicited at text onset, as well as saccadic potentials. 
Our results showed that EM patterns were top-down modulated by different task demands. More interestingly, in both tasks, 
we observed slow-wave potentials that gradually increased across the first eye fixations. These slow waves were larger in the 
RD task than in the RM task, specifically over the left hemisphere. These results suggest that the decision-making process 
during reading in the RD task engendered a greater memory load in working memory than that generated in a classic reading 
task. The significance of these findings is discussed in the light of recent theories and models of working memory processing.

Keywords Reading · Eye movements (EM) · Working memory (WM) · Eye fixation-related potentials (EFRP) · EEG · 
Slow wave potentials · General linear model (GLM)

Introduction

Reading is a complex cognitive task involving an interaction 
between a reader and a text, for the purpose of constructing 
meaning from written representations. Over the past few 
decades, two online methodologies based on eye movements 
(EM) and event-related potentials (ERP) have led to a major 
breakthrough in understanding the processes and strategies 

required in reading. There has recently been strong inter-
est in coregistering EM and ERP, allowing for the study of 
eye fixation-related potentials (EFRP) to capitalize on the 
strengths of both techniques and overcome their separate 
weaknesses (Henderson et al. 2013).

In reading, this approach has several major benefits 
(Dimigen et al. 2011; Ditman et al. 2007; Frey et al. 2013; 
Henderson et al. 2013; Hutzler et al. 2007; Kliegl et al. 
2012; Scharinger et al. 2015; Simola et al. 2009). Writ-
ten linguistic symbols are spatially arranged, and because 
high-acuity vision is confined to a relatively small spatial 
area, readers need to coordinate their EM across the text in 
order to perform the task efficiently (comprehension, word 
searching, etc.; Weger and Inhoff 2007). The eye–mind link 
assumption suggests that the location of an observer’s gaze 
reflects, at least in part, what is being processed in his or her 
mind at that time (Reichle and Reingold 2013). EM there-
fore constitute natural markers for segmenting the ongoing 
neural activity, and EFRP analysis allows for that activity 
to be investigated during self-paced perceptual and cogni-
tive behaviors (Simola et al. 2015; Nikolaev et al. 2014). 
By using the temporal and spatial positions of specific eye 

 * Aline Frey 
 aline.frey@u-pec.fr

1 CHArt Laboratory, ESPE of the Créteil Academy, University 
of East-Paris Créteil, Site de Livry-Gargan, 45, avenue Jean 
Zay, 93190 Livry-Gargan, France

2 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, 
LPNC, 38000 Grenoble, France

3 Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, GIN, 
38000 Grenoble, France

4 EFSN, PPNR, CHU Grenoble Alpes, 38043 Grenoble, 
France

5 Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 
38000 Grenoble, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s10548-018-0629-8&domain=pdf


 Brain Topography

1 3

events (e.g., fixations or saccades) as markers for brain activ-
ity measures, the coregistration technique provides a means 
of gaining deeper insight into reading processes using more 
naturalistic experimental designs.

However, this technique still faces methodological issues 
(for a review, see Dimigen et al. 2011) which the present 
study was carried out to address. Specifically, given that 
fixations are generally short (about 250 ms), this results in 
many overlapping electroencephalography (EEG) responses. 
The mean latency of most of ERP components (e.g., P300, 
N400) is longer than the duration of a fixation plus a sac-
cade. This means that the evoked response to a given fixa-
tion is partially superimposed on the previous and/or next 
one (Nikolaev et al. 2016; Ossandón et al. 2010). For exam-
ple, the late components (e.g., N400) of a previous fixation 
may be superimposed on the early components (e.g., P100) 
of the current fixation. In addition, the potential elicited at 
stimulus onset overlaps with those elicited by the first fixa-
tions. Finally, oculomotor parameters can distort or mask 
the effects (e.g., saccade length or direction) of different 
experimental conditions. Nikolaev et al. (2016) emphasized 
this in the following example: “… suppose we are inter-
ested in the effect of stimulus size on visual information 
processing. Inspecting the larger stimulus, however, will 
require larger saccades. The EEG may differ solely because 
of larger saccades rather than because of any differences in 
information processing”. A critical factor in EFRP analysis 
is thus the control of systematic differences in oculomo-
tor variables (Simola et al. 2013). Linear models that break 
down the effects of overlap are a promising solution (Bardy 
et al. 2014; Burns et al. 2013; Congedo et al. 2016; Kris-
tensen et al. 2017a; Smith and Kutas 2015a, b; Woldorff 
1993). Estimation by regression with a general linear model 
(GLM) seems the most flexible method, as it has recently 
been implemented with success in EFRP/eye saccade-related 
potentials estimation (Dandekar et al. 2012; Kristensen et al. 
2017b). Thus, in addition to a classic averaging method 
(Luck 2005), we also used a GLM method for EFRP estima-
tion as an unbiased estimator with respect to the overlapping 
issue. Finally, and whichever estimation method is used, 
EFRP analysis also raises the problem of how to determine 
an adequate interval for baseline correction (Nikolaev et al. 
2016). We therefore considered several possibilities and dis-
cussed their respective implications.

From a more theoretical point of view, relatively little 
is known about reading in more complex settings, as most 
research has been conducted using simpler protocols. And 
yet, finding and selecting relevant online information has 
become an important part of our everyday lives (Gordon and 
Pathak 1999; Pan et al. 2007). The Internet, in particular, can 
offer individuals new text formats, new purposes of reading, 
and new ways of interacting with information and texts that 
can have a major impact on their ability to approach and 

understand a text and could lead to the emergence of specific 
cognitive processes (Leu et al. 2015). It is thus essential to 
investigate reading as part of online search tasks. To this 
end, we compared the effects of two different task demands 
on reading, using comparable reading material. The Read 
& Decide task (RD) simulates having to search the Inter-
net for information about a specific topic. It involves two 
intertwined processes: reading and decision-making. Offer-
ing a reliable comparison, the Read & Memorize (RM) task 
entails reading with the intent of retaining the information 
that is encountered, and involves reading and memoriza-
tion processes. It is akin to reading a recipe before cooking, 
which is a more careful reading than just getting the gist.

Ever since Yarbus’s (1967) groundbreaking study of the 
visual exploration of paintings, it has been widely acknowl-
edged that the nature of the task being performed influences 
EM. In reading, most studies have shown that EM responses 
are mainly and strongly modulated by the text’s linguistic 
properties. A few studies have also shown that goal differ-
ences modulate EM patterns, and hence the selection of 
words in text reading (Kaakinen and Hyönä 2010; Radach 
et al. 2008). In Kaakinen and Hyönä’s (2010) study, results 
showed that task instructions (i.e., proofreading or reading 
for comprehension) influence the initial landing position in 
words, as well as the saccade length, duration of the first 
fixation, and refixation probability. Moreover, Carver (1990) 
identified five reading strategies, based on variations in read-
ing rates [words per minute (wpm)]. Scanning is performed 
at 600 wpm and is used, for example, when the reader is 
looking for a particular word contained in the text. Skim-
ming (450 wpm) is typically observed in situations where the 
reader wants to gain an overview of the text without reading 
it in its entirety. Reading (300 wpm) corresponds to nor-
mal reading with the aim of understanding the text content. 
Learning (200 wpm) is a slow process used for acquiring 
new knowledge. Finally, memorizing (138 wpm) is the slow-
est process of all, involving continuous checks of whether 
previously encountered ideas are still remembered. Adopting 
the opposite approach, Simola et al. (2008) inferred hidden 
cognitive states, strongly related to different information 
search tasks, from observable EM behavior. Their model 
showed that EM provide the information needed to deter-
mine task type.

Complementary information provided by EEG measures 
of brain functioning can be used to compare different cog-
nitive states and degrees of task engagement. In our study, 
we specifically focused on slow waves (i.e., deflections that 
typically last for > 200 ms and up to several seconds; Rösler 
1993) as an indicator of the functioning of working memory 
(WM; Khader et al. 2005). Reading and WM interact closely 
with each other. As sentence or text processing extends over 
long time periods, readers have to maintain the thread of the 
linguistic input, as well as retrieve phonological, syntactic, 
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and semantic word properties from their long-term memory. 
Furthermore, this access to lexical information continuously 
interacts with and overlaps in time with the incremental inte-
gration of this information with the preceding context, to 
build up a message-level representation. The latter process 
refers to unification, which is the assembly of items stored 
in memory to form larger structures (Baggio and Hagoort 
2011; Bastiaansen and Hagoort 2015) and is broadly sus-
tained by WM (Hagoort 2013, 2016). The way that infor-
mation in a text is combined with and integrated into the 
reader’s knowledge has also been specifically expanded on in 
the well-known construction-integration model of text com-
prehension (Kintsch 1998; Weaver et al. 2012), in which 
memory plays an important part. Although the processes of 
integrating and constructing a coherent model of a text have 
been widely studied, and even implemented into computa-
tional versions (Kintsch 1988; Lemaire et al. 2006), much 
work remains to be done to understand how WM is used 
during reading. While there is general agreement that WM 
plays a fundamental role in text comprehension, there is also 
considerable disagreement over what WM is and what role 
it plays (Gordon et al. 2002).

Slow-wave topography and latencies have been shown 
to depend on the nature of the material (object, spatial or 
verbal stimuli) that has to be maintained in WM, and slow-
wave amplitude varies according to the task’s memory load 
and higher order attentional demands (Montfort and Pouthas 
2003). Specifically, slow-wave amplitude recorded over 
frontal regions increases with WM demands, confirming 
the key role played by these frontal regions in the cognitive 
processes engaged during retention in WM. Most research 
on WM has used highly controlled laboratory paradigms 
(e.g., storage task or complex span task, i.e., a serial recall 
task where list presentations are interleaved with distract-
ing subtasks). These are needed to characterize the basic 
function of WM, but are not very informative about how 
WM is used during a complex reading task (e.g., the posi-
tive–negative waveform, observed in an n-back task; Mis-
sonnier et al. 2003). Conversely, our approach to addressing 
this issue was to study WM involvement in ecological tasks 
where participants had to read several lines of text, instead 
of relying on non-ecological paradigms such as presenting 
one word at a time.

To our knowledge, only two studies have recently been 
undertaken to measure WM and/or cognitive load in uncon-
strained paradigms, using EFRP: Körner et al. (2014), using 
a visual search task, and Scharinger et al. (2015), using a 
reading task. In Körner et al.’s (2014) study, slow waves 
were identified during a two-target task, indicating WM 
involvement in the storage of spatial positions to prevent 
the revisiting of loci during the search. More specifically, 
participants saw a display featuring either one or two iden-
tical targets among several distractors, and were instructed 

to indicate whether there were one or two targets in that 
display. Results showed a gradual build-up of a negativity 
shift from the first to the third distractor after the first target 
had been identified, indicating a change in brain activity 
most likely due to memory maintenance of the first target. 
For their part, Scharinger et al. (2015) constructed a proto-
col in which they induced additional load through hyperlink 
selection, comparing this with a baseline condition in which 
participants just had to read the text, with no hypertext pro-
cessing. When they compared parts of the text that required 
pure reading (baseline condition) with parts of the text 
where participants had to interrupt their reading and perform 
hyperlink selection processes (test condition), they observed 
a significant decrease in alpha frequency band power, which 
they interpreted as an increase in memory load.

To sum up, despite a wide variety of research on brain 
responses to memory activation, we still do not understand 
exactly how WM is involved in everyday reading behavior. 
The goal of our study was thus to deepen our understanding 
of how EM sequences associated with neural markers are 
modulated together by administering the two reading tasks 
(RM and RD) mentioned above. Given the current state of 
knowledge, it was hard to predict which task (careful reading 
for memorizing or reading to quickly evaluate the semantic 
matching of the text content) would be more demanding 
with respect to WM.

Materials and Methods

Participants

Participants were 24 volunteers, all right-handed and French 
native speakers, with normal or corrected-to-normal visual 
acuity and no known neurological disorder. None of them 
had prior experience of the experimental task. They all 
gave their written informed consent prior to the experiment 
and were rewarded €20 in vouchers for their participation. 
Owing to technical problems with the ocular data (difficulty 
calibrating their eyes with satisfactory accuracy) and/or 
noisy EEG data (face/neck muscle activity, poor electrode 
contact), the data of four participants could either not be 
recorded or had to be excluded from the final analyses. The 
20 remaining participants were ten women and ten men, 
aged 20–39 years (M = 27.2 years, SD = 5 years 2 months, 
SE = 1 year 2 months).

The whole experiment was reviewed and approved by 
the ethics committee of Grenoble University Hospital (no. 
2011-A00845-36). The EEG/eye-tracker coregistration was 
performed at the IRMaGe neurophysiology facility in Gre-
noble (France).
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Textual Material

We created 120 texts in French for the experimental ses-
sion, and four for the familiarization session. These texts 
contained on average 1.8 sentences (SE = .13), 5.18 lines 
(SE = .16) and 30.1 words (SE = .65). The mean length of 
each word was 5.34 letters (SE = .72). Texts were printed in 
DejaVu font in white against a gray background.

For each text, we selected a topic (two or three words) 
that was either related or unrelated to the text. To assess the 
semantic relationship between a topic and a text, we used 
latent semantic analysis (Landauer et al. 2007). This method 
is based on the processing of a large sample of texts, in 
which a word or set of words (sentence, text, etc.) is rep-
resented by a vector in a 300-dimension semantic space. A 
cosine function is used to compute the similarity between 
the vectors. The higher the cosine value, the more similar 
the words or sets of words. In our case, we used a 24 million 
word corpus of French newspaper articles. For all related 
topics, semantic similarity with the text was above 0.2, while 
for all unrelated topics, semantic similarity was below 0.06.

Experimental Procedure

Every participant completed both tasks in the same order 
(RM then RD). For each participant, the 120 texts were ran-
domly split into two blocks (60 texts per task) in such a way 
that each text was presented the same number of times in 
each condition across the whole experiment. For each trial, 
participants were provided with a topic, a text, and a ques-
tion they had to answer. In the RD task, participants were 
asked to imagine they were doing a press review and had 
to decide whether to retain or reject a text depending on 

the topic they had been given (Q: “Do you want to retain 
or reject the text?”; with two possible answers that were 
counterbalanced), as quickly as possible during their reading 
(as emphasized by Scharinger et al. (2015), it is also impor-
tant to construct realistic reading situations, hence the time 
limit for text reading in our study). Participants were told 
that the answer “Yes” meant that the text was semantically 
related to the topic, and the answer “No” meant that it was 
not. In the RM task, participants were asked to undertake a 
careful reading of the text in order to memorize the words. 
They were then asked to answer one of three questions. 
Two questions about the presence or otherwise of a word 
in either the topic or the text (Q1: “Did you see the word 
‘xxxx’ in the topic?”; Q2: “Did you see the word ‘yyyy’ in 
the text?”). We also wanted to encourage the creation of a 
semantic link between the topic and the text in the RM task, 
to make sure that both tasks were similar in this regard. To 
this end, participants were additionally asked to answer a 
question about the semantic link (Q3: “Did the topic help 
you to understand the text?”). These three questions were 
counterbalanced across participants, ensuring that there were 
as many positive as negative answers.

The timeline of each trial is illustrated in Fig. 1. Each trial 
started with the presentation of the topic, followed by the 
display of a fixation cross, then the text, the question, and 
finally a gray screen before the next trial. The fixation cross 
was displayed to the left of the first letter of the first word of 
the text, for a random duration of 2100–2500 ms, to avoid 
an anticipatory saccade before the text appeared. The text 
was displayed once the participant’s gaze had stabilized on 
the fixation cross (in a rectangle of 3° × 2° pixels around the 
fixation cross). Participants had to read the topic, read the 
text, answer the question, then click on the mouse button 

Fig. 1  Trial timeline showing the different screens. Each condition (RM and RD) comprised 60 trials, each following this timeline
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(with their dominant hand) when they were ready to go to 
the next step.

In both conditions, a pause was scheduled after 60 tri-
als, and participants were given the opportunity to rest if 
necessary. Before the experimental phase, four trials (two 
for each condition) were run to familiarize participants with 
the experimental design. The experiment was built using 
SoftEye software (Ionescu et al. 2009) to control the timing 
of the displays, the eye-tracker, and the sending of synchro-
nization triggers to both devices (i.e., EEG and eye-tracker).

Data Recording

The whole experiment lasted about 90 min, during which 
participants were comfortably seated in an adjustable chair, 
in a sound-attenuated and dimly lit room.

Eye Movement Data Recording

EM were recorded with a video-based infrared eye-tracking 
system (EyeLink® 1000; SR Research Ltd., Ontario, Can-
ada), in pupil-corneal reflection tracking mode, with a sam-
pling rate of 1000 Hz. Participants’ head position was stabi-
lized with a chin rest. Only the dominant eye was recorded.

Participants were seated 57  cm from a 20-in. moni-
tor (38° × 33° visual field) with a screen resolution of 
1024 × 768 pixels. The text was displayed in the center of 
the screen (26° × 9° visual field), with 50.7 letters per line on 
average. Thus, each letter covered a horizontal visual angle 
of 0.46°, corresponding to about 4.3 letters in the foveal 
region.

At the beginning of the experiment, we carried out a 
9-point calibration routine. Drift correction was performed 
every three trials, and calibration every 15 trials, ensuring 
accurate recording of the eye’s fixations on the screen. Cali-
bration was automatically initiated if an offset above 0.5° 
was detected, and the eye-tracker could also be recalibrated 
if the experimenter deemed it necessary.

EEG Data Recording

EEG activity was recorded using a10-20 system (Jasper 
1958) ActiCap containing 64 channels (BrainCapTM; Brain 
Products GmbH, Gilching, Germany). The impedance of 
the electrodes was kept below 5 kΩ by using contact gel 
(SuperVisc Gel, Brain Products, Inc.) to increase the signal-
to-noise ratio. Electrodes were referenced to the head (FCz; 
ground: AFz) during the recording, and re-referenced offline 
to the mean mastoid. EEG data were amplified using Brain-
Amp™ (Brain Products GmbH), sampled at 1000 Hz.

Four EOG electrodes were affixed to the outer canthi and 
infraorbital ridges of both eyes. The seating position and 

head position in the eye-tracker were carefully adapted to 
avoid myogenic artifacts from neck and temple muscles.

Data Preprocessing and Analysis

Eye Movement and EEG Data Integration

Both the EEG and eye-tracker data were sampled at the same 
rate (1000 Hz). EM and EEG signals were synchronized 
offline, on the basis of triggers sent simultaneously during 
the experiment to both the EEG system and the eye-tracker.

Eye Movement Analysis

Saccades were automatically detected from the raw eye coor-
dinate data using the standard saccade detection algorithm 
with the following thresholds: minimum velocity 30°/s, 
minimum acceleration 8000/s/s, and minimum motion 
0.15°. A fixation was defined here as the maintenance of 
the visual gaze on a single location that was neither a blink 
nor a saccade. In line with previous experiments (Dimigen 
et al. 2011), shorter and longer fixations (i.e., fixations last-
ing < 80 ms or > 1000 ms) were excluded. For each trial, 
we considered the first fixation (Rank 1) as the one starting 
after text onset. The last one (Rank N) was the one ending 
before text offset.

EEG Data Preprocessing

EEG data preprocessing and EFRP analyses were carried 
out with BrainVision Analyzer 2 software (Version 2.0.4; 
Brain Products GmbH, Munich, Germany). Continuous EEG 
was first segmented across the whole duration of each text. 
An analog bandpass filter (0.01–100 Hz) was applied, as 
well as a 50-Hz notch filter (symmetrical 5-Hz bandwidth 
around the notch frequency, i.e., 50 ± 2.5 Hz; 24 dB/oct) to 
eliminate interference from mains electricity. Segments con-
taining artifacts (excessive max–min) were rejected using 
a semi-automatic artifact rejection procedure (55.7 (4.0) 
remaining trials on average in the RM task and 55.15 (3.1) 
in the RD). Segments were then broken down by infomax 
independent component analysis (ICA; Jung et al. 2000; 
Makeig et al. 1997), and ICA components reflecting eye 
blinks and saccades were removed. Finally, trials with fewer 
than seven fixations were excluded for methodological and 
theoretical reasons: first, to make sure that the EFRP results 
were not contaminated with ERP related to response pro-
gramming and execution (van Vugt et al. 2014); and second, 
to eliminate excessively brief trials to allow us to observe a 
reading process in both tasks. The number of trials was then 
equalized for each participant across the tasks, by randomly 
removing trials from the RM task. On average, there were 
42.7 (7.7) remaining trials in each of the two tasks. After 
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this selection, the minimum number of fixations in the RM 
task was 14.

Six regions of interest (ROI), each grouping four elec-
trodes, were defined as follows: frontal right (F4, F6, F8, 
FC6); frontal left (F3, F5, F7, FC5); central right (C4, C6, 
T8, CP6); central left (C3, C5, T7, CP5); parietal right (P2, 
P4, P6, PO4); and parietal left (P1, P3, P5, PO3).

Results and Models

Behavioral Results

Response Rate

The rate of correct answers was 97.8% (SE = .49) for the RD 
task and 78.4% (SE = 1.88), for the RM task, t(19) = − 10.39, 
p < .001, ηp2 = .86. More specifically, there were 84.1% cor-
rect answers (SE = 3.33) for the question about the presence 
or absence of a word in the topic, and 72.5% (SE = 3.55) 
for the question about the presence or absence of a word in 
the text.

Reading and Response Times

Regarding the amount of time spent reading the text, results 
showed a significant difference, t(19) = 15.53, p < .001, 
ηp2 = .93, between the two conditions: participants needed 
more time to read the texts in the RM condition (10.05 s; 
SE = .58) than in the RD condition (3.17 s; SE = .25). Results 
also showed a significant difference between the two con-
ditions regarding the time taken to answer the question, 
t(19) = 17.66, p < .001, ηp2 = .95, with a mean time of 2.95 s 
(SE = .16) in the RM condition, and 0.71 s (SE = .04) in the 
RD condition.

Eye Movement Results

Reading Behavior

The following EM variables were used to assess the extent 
to which readers’ behavior was affected by the nature of the 
task: number and mean duration of fixations, duration of 
inter-fixation interval (IFI1), reading speed, percentage of 
refixations (consecutive fixations on the same word), and 
percentage of long progressive fixations (consecutive fixa-
tions skipping words; Underwood and Radach 1998).

In line with the text reading times (see above, “Behav-
ioral Results” section), the EM analysis across participants 
revealed that there were more fixations in the RM condi-
tion (37.66; SE = 1.92) than in the RD condition (12.31; 
SE = .83), and this difference was significant, t(19) = 17.77, 
p < .001, ηp2 = .95. Moreover, mean fixation duration 
was significantly higher in the RM condition (214.44 ms; 
SE = 5.30) than in the RD condition (185.53 ms; SE = 6.08), 
t(19) = 6.96, p < .001, ηp2 = .73. Mean IFI duration was 
significantly higher in the RM condition (254.58  ms; 
SE = 5.28), than in the RD condition (227.03 ms; SE = 5.86), 
t(19) = 6.45, p < .001, ηp2 = .70. We then computed the mean 
reading speed for each participant as the mean number of 
words read per minute (wpm), for all texts. Specifically, 
we calculated the reading speed by considering the posi-
tion of the word corresponding to the farthest fixated word, 
relative to the text reading time. Mean reading speed in the 
RM condition was 199.00 wpm (SE = 12.80), which was 
significantly lower than in the RD condition (488.15 wpm, 
SE = 25.27), t(19) = − 11.22, p < .001, ηp2 = .87.

The percentage of refixations (when there were two con-
secutive fixations on the same word, the second one was 
counted as a refixation) was greater for the RM task (7.74%; 
SE = .87) than for the RD task (2.64%; SE = .51) and this 
difference was significant, t(19) = 8.23, p < .001, ηp2 = .79.

Long progressive fixations (i.e., where at least one whole 
word was skipped) were also analyzed. The percentage of 
long progressive fixations was significantly lower for the 
RM task (5.25%; SE = .54) than for the RD task (14.32%; 
SE = 1.03), t(19) = − 10.30, p < .001, ηp2 = .85.

Figure 2 presents an example of a scanpath for each task, 
showing the differences between the two tasks regarding the 
number of fixations, fixation duration, number of refixations 
and number of long progressive fixations.

Fixations of Interest for EFRP Analyses

Table 1 summarizes the mean duration (SE) and median 
duration (SE) of the fixations of interest selected for the 
EFRP analyses (i.e., first four fixations) for all the trials and 
participants, for each task.

An analysis of variance (ANOVA) including the factors 
condition and fixation rank showed a main effect of condi-
tion for mean duration, F(1, 19) = 41.27, p < .001, ηp2 = .68, 
and for median duration, F(1, 19) = 24.29, p < .001, 
ηp2 = .56, with a fixation duration that was significantly 
lower for the RD task (mean = 188.04, median = 180.84) 
than for the RM task (mean = 217.03, median = 203.00). 
The main effect of rank was also significant for mean dura-
tion, F(3, 57) = 22.22, p < .001, ηp2 = .52, and for median 
duration F(3, 57) = 20.20, p < .001, ηp2 = .52, as the first 
fixation (mean = 185.41, median = 176.12) was shorter than 
the other three (all p < .001). The difference between the 

1 The interval between the offset of a fixation and the onset of the 
following one (thus including the duration of the fixation plus the sac-
cade).
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tasks on fixation duration for all the fixations on the text (see 
above, “Reading Behavior” section) was also observed for 
the four fixations of interest in EEG analysis.

Concerning the first four fixations of interest, the percent-
ages of long progressive fixations and refixations differed 
according to the task. As with the whole text, the percentage 
of refixations was greater for the RM task (3.79%, SE = .51) 
than for the RD task (0.92%, SE = .20), and this differ-
ence was significant, t(19) = 6.72, p < .001, ηp2 = .71. The 
percentage of long progressive fixations was significantly 
lower for the RM task (1.56%, SE = .45) than for the RD task 
(4.74%, SE = .91), t(19) = − 4.36, p < .001, ηp2 = .51. These 
differences were re-investigated from low-level oculomotor 
features, by evaluating the amplitude and direction of the 
incoming saccades. Considering the four fixations of inter-
est in each task, we divided the incoming saccades into four 
categories according to two criteria: direction (progressive 
vs. regressive) and amplitude (short vs. long; split accord-
ing to the median value (3.46°) whatever the direction and 
the task). The sizes of the four categories for each task were 
submitted to an ANOVA including the condition (RM vs. 
RD), direction (progressive vs. regressive) and amplitude 
(short vs. long) factors. As expected, the main effect of 
condition was not significant (see “EEG Data Preprocess-
ing” section; the number of trials was then equalized for 
each participant across the tasks), nor was the main effect 
of amplitude. The main effect of direction was significant, 
F(1, 19) = 271.9, p < .001, ηp2 = .93, with more progressive 
saccades (82.25) than regressive ones (12.46). Results also 

showed a Condition x Direction interaction, F(1, 19) = 10.51, 
p < .005, ηp2 = .36, and a Condition x Amplitude interaction, 
F(1, 19) = 57.26, p < .001, ηp2 = 0.75. Finally, the Condi-
tion x Direction x Amplitude interaction was significant, 
F(1, 19) = 22.84, p < .001, ηp2 = .55. Post hoc comparisons 
(Tukey test) showed that there were more short progressive 
saccades in the RM condition (85.5) than in the RD one 
(62.5, p < .001), and conversely, more long progressive sac-
cades in the RD condition (108) than in the RM one (73, 
p < .001). No significant differences between the two con-
ditions were observed regarding regressive saccades (short 
vs. long).

EEG Data Analysis by Averaging

In order to capture the growth of slow waves, we were first 
inspired by Körner et al.’s (2014) methodology, and applied 
the classic averaging method (Luck 2005), time-locking the 
EEG signal to the onset of each of the first four fixations 
(i.e., fixations of interest) for each text.

The choice of an appropriate baseline in EFRP analysis 
is always very challenging (see Luck 2005; Dimigen et al. 
2011; Körner et al. 2014; Nikolaev et al. 2016). An indi-
vidual baseline, related to each fixation of interest, is mainly 
used to investigate fast processes specifically related to the 
current fixation, based on the premise that these processes 
may change from one fixation to another. This baseline 
has the advantage of being temporally close to the events 
being analyzed and providing a common reference point for 

Fig. 2  Example of scanpaths for the RM task (left) and RD task (right). The center of the circle is the fixation position and its radius is propor-
tional to the fixation duration

Table 1  Statistical summary 
of the fixations of interest for 
EFRP estimations based on 
individual means

Fixations of interest Mean fixation duration (SE) in ms Median fixation duration (SE) in ms

Condition RM RD RM RD

Fix. 1 201.91 (6.98) 168.92 (6.03) 191.47 (6.44) 160.78 (4.70)
Fix. 2 218.93 (6.32) 193.00 (7.75) 203.70 (5.90) 185.90 (7.91)
Fix. 3 225.30 (6.11) 197.69 (6.07) 209.28 (5.56) 189.28 (6.16)
Fix. 4 221.99 (5.48) 192.55 (6.98) 207.55 (5.61) 187.40 (6.81)
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comparing the selected fixations (Körner et al. 2014). On 
the other hand, a common baseline “is applied to all sac-
cade related epochs within one trial. This type of baseline 
allows investigation of accumulative processes occurring 
across sequential EM, such as memory buildup, changes in 
attention and effort” (Nikolaev et al. 2016, p. 66). As we 
aimed to capture slow waves, that is, deflections that typi-
cally unfold over longer durations (i.e., > 200 ms and up to 
several seconds), it seemed obvious to us that we should use 
a common baseline. The overriding criterion of choice in the 
EFRP literature is to avoid any corruption of the baseline by 
preceding and following fixations. Thus, for the four fixa-
tions of interest, we used a common − 100 to 0 ms interval 
before text onset (as in classic ERP studies; for a review, 
see Woodman 2010), during which we would not expect the 
brain response to differ between trials. As a control, and to 
confirm that expected slow waves were not synchronized 
at the onset of each fixation, we also conducted analyses 
with an individual baseline, taking a segment of − 200 to 
− 100 ms before each fixation onset, to avoid corruption by 
pre-saccadic activity. The detailed results of these individual 
baseline analyses are provided in “Appendix 1”.

Estimation by averaging

Thus, the signal x(r)
i
(t) time-locked to the rth fixation onset 

during the ith epoch can be written as:

where f p(r)(t) is the potential evoked at the rth fixation onset 
and ni(t) is the background cortical activity, considered as 
noise. Assuming that all fixations at the rth rank elicited the 
same potential and that the ongoing activity was not syn-
chronized with the fixation onset during the ith epoch, this 
potential was estimated by averaging on a given number of 
epochs, as follows:

This estimator is only unbiased if a single potential is 
elicited per epoch (Ruchkin 1965), and to take our analyses 
further, we adopted an alternative solution using the GLM 
described below.

To minimize EM effects on the EEG signal (especially 
at the onset of the subsequent saccade), we restricted the 
analysis window duration to a period during which the eyes 
were not moving (Körner et al. 2014). For each of the four 
fixations of interest, we segmented 150-ms epochs begin-
ning at the onset of fixation. This duration was chosen to 

(1)x
(r)

i
(t) = f p(r)(t) + ni(t)

(2)̂
fp

(r)

Av
(t) =

1

E

E
∑

i=1

x
(r)

i
(t).

be shorter than the shortest median2 fixation duration value 
(i.e., 160 ms; see Table 1), to best ensure that the eyes were 
fixating.

In both analyses (common and individual baselines), the 
mean amplitude values within the 150-ms window were 
entered in a repeated-measures ANOVA with the condition 
(RM, RD), hemisphere (left, right), ROI (frontal, central, 
parietal) and rank (1, 2, 3, 4) factors. P values were reported 
after the Greenhouse–Geisser correction for nonsphericity 
(Greenhouse and Geisser 1959) and Tukey tests were used 
for post hoc comparisons.

Results on EFRP by Averaging

Based on the potentials elicited at the first four fixation 
onsets, estimated by averaging, the ANOVA on the mean 
amplitudes with a common baseline revealed the following 
significant effects:

Condition: F(1, 19) = 10.26, p < .005, ηp2 = .35
Condition × Hemisphere interaction: F(1, 19) = 5.4, 
p < .05, ηp2 = .22
Condition × ROI interaction: F(2, 38) = 3.71, p = .05, 
ηp2 = .16
Condition × Rank interaction: F(3, 57) = 14.77, p < .001, 
ηp2 = .44
Condition × Hemisphere × ROI interaction: F(2, 
38) = 7.11, p = .01, ηp2 = .27
Condition × Hemisphere × Rank interaction: F(3, 
57) = 7.27, p = .01, ηp2 = .28
Condition × Hemisphere × ROI × Rank interaction: F(6, 
114) = 6.64, p = .01, ηp2 = .26

To avoid redundancy, we only provide the results 
of the post hoc comparison for the Condition × Hemi-
sphere × ROI × Rank interaction. Moreover, we present the 
results for the frontal, central and parietal ROI separately 
(Table 2).

Over the left hemisphere (frontal ROI; i.e., F3, F5, F7, 
FC5), the post hoc comparison revealed that in the RM and 
RD conditions, negativity significantly increased across the 
four fixations, with the first fixation eliciting significantly 
less negativity than the second one, which in turn elicited 
less negativity than the third one, which was also less nega-
tive than the fourth one (Fig. 3).

Over the right hemisphere (frontal ROI; i.e., F4, F6, F8, 
FC6), in the RM condition, the first three fixations did not 
differ from each other, and Fixations 1 and 2 elicited less 
positivity than Fixation 4. In the RD condition, the second 

2 A median value was a more suitable indicator than a mean value, 
owing to the asymmetrical distribution.
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fixation elicited less positivity than the other three fixations, 
which did not differ from each other.

Moreover, over the left hemisphere, the four fixations 
elicited significantly greater negativity in the RD condi-
tion than their equivalent in the RM condition. Over the 
right hemisphere, Fixations 2, 3, and 4 elicited significantly 
greater negativity in the RD condition than their equivalent 
in the RM condition.

Figures 4 and 5 illustrate the EFRP results for the central 
ROI (i.e., C4, C6, T8 and CP6 for the right hemisphere, and 
C3, C5, T7 and CP5 for the left one) and parietal ROI (i.e., 
P2, P4, P6 and PO4 for the right hemisphere, and P1, P3, P5 
and PO3 for the left one).

For the central left ROI in the RM condition, Fixation 
1 elicited less negativity than the other three. Fixations 3 
and 4 did not differ from each other, while Fixation 2 also 
elicited less negativity than Fixation 4. In the RD condition, 
negativity increased significantly across the four fixations 
(Fixation 1 elicited significantly less negativity than Fixa-
tion 2, which in turn elicited less negativity than Fixation 

3, which was also less negative than Fixation 4). Over the 
right hemisphere, no significant difference was observed in 
the RM condition. In the RD condition, Fixations 2, 3 and 
4 did not differ from each other and were significantly less 
negative than Fixation 1. Moreover, over the left hemisphere, 
the four fixations elicited significantly greater negativity in 
the RD condition than their equivalent in the RM condition. 
Over the right hemisphere, Fixations 2, 3, and 4 elicited sig-
nificantly greater negativity in the RD condition than their 
equivalent in the RM condition (Fig. 4).

For the parietal left ROI in the RM condition, Fixation 1 
elicited less negativity than Fixation 2, which in turn elicited 
less negativity than Fixation 3. Fixations 3 and 4 did not dif-
fer from each other. In the RD condition, negativity signifi-
cantly increased across the four fixations (Fixation 1 elicited 
significantly less negativity than Fixation 2, which in turn 
elicited less negativity than Fixation 3, which was also less 
negative than Fixation 4). Over the right hemisphere, in the 
RM condition, Fixations 2, 3 and 4 did not differ from each 
other and were significantly more negative than Fixation 1. 

Table 2  Mean (standard error) amplitude values in µV for the latency ranges of interest for frontal, central and parietal ROI in each condition 
with a common baseline

Significant differences in the rows correspond to post hoc analyses between the four ranks of fixations, and those in the columns correspond to 
post hoc analyses between the two tasks. *p < .05; **p < .01; ***p < .001

Rank 1 Rank 2 Rank 3 Rank 4 Significant differences

Frontal ROI amplitude [µV]
 Left Hem. RM 1.84 (.92) − 1.29 (.91) − 3.45 (1.01) − 4.84 (1.16) 1 > 2 > 3 > 4**
 Left Hem. RD − .10 (.77) − 7.21 (1.22) − 11.95 (1.59) − 14.57 (1.57) 1 > 2 > 3 > 4***
 Significant differences RM > RD

***
RM > RD
***

RM > RD
***

RM > RD
***

 Right Hem. RM 4.27 (.99) 4.57 (1.09) 5.51 (1.04) 6.48 (1.15) 1 = 2 = 3 & (1 = 2) < 4***
 Right Hem. RD 3.70 (1.09) 2.11 (1.43) 3.49 (1.77) 3.86 (1.77) 2 < (1 = 3 = 4)*
 Significant differences ns RM > RD

***
RM > RD
***

RM > RD
***

Central ROI amplitude [µV]
 Left Hem. RM 3.59 (.91) 1.68 (.89) .48 (.80) − .27 (.84) 1 > 2 > (3 = 4) & (2 > 4)
 Left Hem. RD 2.32 (.86) − 2.76 (1.03) − 5.70 (1.13) − 7.59 (.89) 1 > 2 > 3 > 4***
 Significant differences RM > RD

*
RM > RD
***

RM > RD
***

RM > RD
***

 Right Hem RM 4.43 (.95) 3.86 (.91) 3.72 (.84) 3.99 (.91) ns
 Right Hem RD 3.19 (1.07) .59 (1.29) .12 (1.47) − .57 (1.30) 1 > (2 = 3 = 4)***
 Significant differences ns RM > RD

***
RM > RD
***

RM > RD
***

 Parietal ROI amplitude [µV]
 Left Hem RM 5.05 (.96) 2.90 (.99) 1.54 (.90) 1.27 (.92) 1 > 2 > 3 = 4*
 Left Hem RD 4.40 (1.04) 0.00 (1.16) − 2.72 (1.23) − 4.39 (1.00) 1 > 2 > 3 > 4***
 Significant differences ns RM > RD

***
RM > RD
***

RM > RD
***

 Right Hem RM 5.34 (1.01) 3.57 (.95) 2.40 (.85) 2.32 (.86) 1 > (2 = 3 = 4)
 Right Hem RD 4.44 (1.18) .68 (1.30) − 1.33 (1.38) − 2.62 (1.13) 1 > 2 > 3 > 4*
 Significant differences ns RM > RD

***
RM > RD
***

RM > RD
***
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In the RD condition, negativity increased significantly across 
the four fixations (Fixation 1 elicited significantly less nega-
tivity than Fixation 2, which in turn elicited less negativity 
than Fixation 3, which was also less negative than Fixation 
4). Moreover, over both hemispheres, Fixations 2, 3, and 4 
elicited significantly greater negativity in the RD condition 
than their equivalent in the RM condition.

A similar analysis, with the same estimates but with an 
individual baseline, was also conducted. Data and figures 
yielded by the ANOVA on the mean amplitudes are pro-
vided in “Appendix 1”. We therefore set out only the main 
findings here. Our results showed no major increment or 
decrement in synchronized activity elicited at one fixation 
compared with the following fixation, such that the level of 

Fig. 3  Grand-average EFRP, estimated by averaging with a common baseline, for the RM task (top) and RD task (bottom), for the first four fixa-
tions on the text, for the frontal right (right) and frontal left (left) ROI

Fig. 4  Grand-average EFRP, estimated by averaging with a common baseline, for the RM task (top) and RD task (bottom), for the first four fixa-
tions on the text, for the central right (right) and left (left) ROI
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synchronized activity at Fixation n was roughly the same as 
that at Fixation n + 1. As expected, slow-wave activity was 
not synchronized with each fixation.

EEG Data Analysis by Regression

The results of the analysis by averaging provided an initial 
overview of the slow waves generated by each task. With a 
common baseline, results showed that amplitudes followed a 
gradient across successive fixations, but this outcome needed 
to be confirmed using a more suitable estimation method. 
The major concern with the EFRP estimation by averaging 
was the overlap with the potential elicited at text onset. This 
lasted about 700 ms, corresponding to the time needed for 
the stimulus-evoked activity to fade (Dimigen et al. 2011; 
Nikolaev et al. 2016). Moreover, as each task was different, 
the hypothesis of the same evoked potential could appear 
questionable. This overlap became smaller across fixations. 
Hence, the first potential was more impacted than the second 
one, and so on. To compare the slow waves generated by 
each task in the most equivalent way possible, it was thus 
very important to clean up the ERP elicited by the text. Also, 
as we were interested in neural activity over frontal sites, 
and as we observed significant differences in the amplitudes 
and directions of incoming saccades between the two tasks 
(see “Fixations of Interest for EFRP Analyses” section), we 
estimated saccade-related potentials to remove them from 
the estimation of the potential of interest. In the following 
two sections, we first present the simple regression model 

(GLM) based on the previous results, then the results for the 
slow waves, characterized directly by their slope in µV/ms.

Estimation by Regression

Analyses with an individual baseline showed that ampli-
tudes did not follow a gradient across fixations, suggesting 
that the slow waves were not directly time-locked to each 
fixation onset. More specifically, we observed slow-wave 
neural activity time-locked to first fixation onset. This neural 
activity was estimated by a GLM, taking account of overlap-
ping responses (evoked potential at text onset and saccadic 
potentials) to provide an unbiased estimator. Assuming that 
the slow waves were not evoked by a specific fixation, but 
rather continually fueled during task resolution, each sig-
nal xi(t) time-locked to text onset during the ith epoch3 and 
including the first four fixations was modeled by the follow-
ing equation:

where s(t) is the evoked potential at text onset, fp(t) is 
the potential evoked at first fixation onset as well as the 
potentials elicited at subsequent fixation onsets up to the 
end of the epoch, spc(t) is the potential evoked at saccade 

(3)

xi(t) = s(t) + fp
(
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Fig. 5  Grand-average EFRPs, estimated by averaging with a common baseline, for the RM task (top) and RD task (bottom), for the first four 
fixations on the text, for the parietal right (right) and left (left) ROI

3 Each epoch started 100 ms before text onset and ended 1050 (RD) 
or 1150 (RM) ms after text offset (see “Appendix 2”).
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onset for a given category (c) of incoming saccade, and ni(t) 
is the noise of the ongoing activity. Regarding the statistical 
distribution of the features (direction and amplitude) of the 
incoming saccades associated with the fixations of inter-
est, four categories of incoming saccades were defined (see 
Subsection 3.2.2 “Fixations of interest for EFRP analyses”). 
In this equation, for a given epoch (i), � (1)

i
 is the timestamp 

of the first fixation onset, and �
�(l)

c,i
 is the timestamp of an 

incoming saccade (rank l ) belonging to the cth category. 
This model was designed to observe the slow wave resulting 
from a continuous process from first fixation onset.

The interpretation of the potential fp(t) depends on t  . 
From first fixation onset to first fixation offset (i.e., t greater 
than zero and less than the duration of the first fixation4), the 
waveform fp(t) indicates that activity was only synchronized 
with the first fixation onset, that is, the first EFRP. How-
ever, for larger t, the waveform fp(t) indicates that activity 
was less and less synchronized with the first fixation onset. 
In other words, as t increased, the potential fp(t) gradually 
integrated the activity evoked by subsequent fixations. Taken 
together, for larger t, fp(t) reveals averaged activity elicited 
by successive fixations, and only coherent deviations such 
as slow waves can emerge above the noise level across the 
epochs.

By concatenating all the trials, we could estimate s(t) and 
fp(t) using ordinary least square regression. Mathematical 
details for implementing the GLM are given in “Appen-
dix 2”, along with all the configuration parameters for these 
estimations. As in the analysis by averaging, the model was 
applied separately to obtain the estimated f̂pGLM(t) for each 
participant. The slow waves for each electrode cluster (ROI) 

were then characterized by their slope, which was computed 
from a linear fitting on the estimated f̂pGLM(t) . The slope 
values were entered in a repeated-measures ANOVA, with 
the condition (RM, RD), hemisphere (left, right) and ROI 
(frontal, central, parietal) factors. P values were reported 
after Greenhouse–Geisser correction for nonsphericity 
(Greenhouse and Geisser 1959) and Tukey tests were used 
for post hoc comparisons.

Results for EFRP by Regression

Figure 6 shows the GLM-estimated potential elicited by the 
first fixation (f̂pGLM(t)) for the frontal ROI in both tasks.

A clear linear trend was visible in this waveform. This 
trend was in line with the previous result (estimation by 
averaging with a common baseline), showing a quite regu-
lar increase in mean slow-wave amplitude, particularly in 
the RD condition. To evaluate and quantify this trend, we 
computed a slope. Slow-wave gradient was thus expressed 
in µV/ms, contrary to the previous analysis where the devia-
tion was captured at each fixation rank, independently of its 
position in time. This computation integrated the dynamics 
of the fixation flow for each participant, trial and condition, 
taking into account the time interval between two consecu-
tive fixations.

We performed a 2 (condition: RM, RD) × 2 (hemisphere: 
left, right) × 3 (ROI: frontal, central, parietal) repeated-
measures ANOVA on these slope values, with p values 
reported after Greenhouse–Geisser correction for nonsphe-
ricity (Greenhouse and Geisser 1959) and Tukey tests for 
post hoc comparisons. Results revealed a Condition x Hemi-
sphere x ROI interaction, F(2, 38) = 4.23, p < .05, ηp2 = .18. 
Post hoc analysis revealed that the slopes for the frontal left 
ROI (Fig. 7) were significantly steeper, in terms of absolute 
value, in the RD (− .0063 µV/ms) condition than in the RM 

Fig. 6  Grand averages of the 
first GLM-estimated EFRP 
f̂pGLM(t) for the frontal left (top) 
and right (bottom) ROI. The 
linear fitting is plotted in dotted 
line

4 For t > 0 and < 202 (RM) or 169 (RD) ms, corresponding to the 
mean duration of the first fixation (Table 1).
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(.0015 µV/ms) condition (p < .05). No significant differences 
were observed for the other ROI.

Consistent with previous analyses, results for the GLM-
estimated slopes showed a larger increase in slow waves for 
the frontal left ROI in the RD task than in the RM one. It 
should be recalled that the influence of the potential evoked 
at text onset (Eq. 3) was eliminated from this slope computa-
tion on the estimated f̂pGLM(t) , as were the possible effects of 
oculomotor features (i.e., saccade direction and amplitude).

To go further, we took into account the fact that mean 
fixation duration, and consequently IFI duration, differed 
between tasks (significantly lower for RD than for RM), as 
observed in Subsection 3.2.1. Consequently, these slopes 
needed to be assessed not only according to task, but also as 
a function of IFI values, reflecting information processing 

speed. Figure 8 shows the mean slope values (and mean IFI 
values) for each participant in each condition for the frontal 
left and right ROI.

Over the left hemisphere (Fig. 8, left), linear regression 
analysis revealed a regression coefficient (R) of .27 for the 
RM task (coefficient of determination: R2 = .08, ns) and .38 
for the RD task (R2 = .15, p = .09). Over the right hemisphere 
(Fig. 8, right), R was .21 for the RM task (R2 = .04, ns) and 
.20 for the RD task (R2 = .04, ns). Over the left hemisphere, 
R was marginally significant in the RD task, showing that 
the relationship between the mean slope value and IFI dura-
tion was modulated by the task.

Discussion

The goal of the present study was to examine the effects of 
tasks eliciting two different ways of processing a text on EM 
patterns, as well as on WM involvement, investigated by 
EFRP. We wanted to know whether reading to memorize is 
more demanding for WM than reading to assess a semantic 
relationship with a given topic.

As well as contributing to theoretical issues (discussed 
below), our results shed light on major methodological 
issues in EFRP studies. The first methodological contri-
bution concerns the choice of an appropriate interval for 
baseline correction in averaging estimation. With a common 
baseline (rest activity before text onset), our results showed 
that slow-wave amplitude followed a gradient between the 
first and fourth fixations, specifically for the frontal ROI, 
in line with Körner et al.’s (2014) results. Control analyses 
using an individual baseline that reset the mean value to zero 
at each fixation onset failed to reveal any gradient across the 
four fixations of interest. They confirmed that the choice of 

Fig. 7  Mean slope values and standard error bars in µV/ms for frontal 
(F), central (C) and parietal (P) left and right ROI in both conditions

Fig. 8  Graphic representation of 
the relationship between mean 
IFI duration (in ms) and mean 
slope amplitude (in µV/ms) in 
each task for the frontal left 
(left) and right (right) ROI
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an appropriate baseline is very challenging in EFRP studies, 
and depends to a large extent on the study goals. It may gen-
erate substantially different biases in the results, as explained 
by Nikolaev et al. (2016).

The second contribution concerned the challenge posed 
by the overlap in neural responses to sequential EMs in 
simultaneous EEG–EM analysis. Dealing with this issue 
is primarily a question of deconvolving overlapping wave-
forms containing information that is of interest (Hender-
son et al. 2013). Alternative methods include the popular 
ADJAR algorithm (Woldorff 1993) in the context of ERP 
estimation, where the inter-stimulus intervals are defined 
in the experimental design. To our knowledge, the most 
appropriate method of EFRP estimation is based on GLM 
(for a comparison, see Kristensen et al. 2017b). The flex-
ibility of GLM was particularly relevant in our study focus-
ing on slow waves. Good model implementation depends 
mainly on two elements. The first is the definition of the 
potentials of interest to be investigated, which is seldom 
difficult. The second is the establishment of an exhaustive 
list of potentials that may alter the former, which is doubt-
less more challenging. In our study, the epoch of interest 
was the beginning of the task, from text onset to the end of 
the fourth fixation. An intuitive model for this epoch would 
take into account the contribution of the potential elicited 
at text onset, as well as those elicited at the onset of the 
first, second, third and fourth fixations, thus requiring five 
timestamps as regressors. Nevertheless, this is clearly not 
an appropriate model, in view of the results of averaging 
with an individual baseline, which showed that slow waves 
were not synchronized with particular fixations at a specific 
timestamp. For this reason, in our GLM configuration we 
used two timestamps as regressors: the timestamp at text 
onset to estimate the ERP elicited at the beginning of the 
text, and the timestamp at first fixation onset to estimate the 
slow waves from this event. Four supplementary timestamps 
at the onset of each of the first four saccades were added. As 
previous research had shown that saccade properties influ-
ence EFRP amplitudes and waveforms, we also included 
four categories of saccades in the GLM, with respect to their 
direction (progressive vs. regressive) and amplitude (short 
vs. long). This ensured that the estimated potential f̂GLM(t) 
was cleaned from the contribution of the ERP at text onset 
and of oculomotor parameter distortion, and provided a reli-
able means of observing the overall trend in neural activity 
on the timescale of task resolution, and more specifically in 
the slow waves that were generated.

Turning now to the theoretical scope of our results, 
behavioral and EM data clearly indicated that participants 
did not perform the two tasks in the same manner. Both tasks 
were performed correctly by participants, but the RD task 
seemed much easier to complete, as indicated by the suc-
cess rate. Behavioral performances also showed that both the 

total reading time per text and the time required to answer 
the question were longer in the RM condition than in the RD 
one. This result suggests that by the time the question was 
displayed, the decision-making process had already taken 
place in the RD task, during the reading phase.

In support of this assumption, EM results showed that 
the number of fixations and their duration, as well as the 
numbers of refixations and long progressive saccades, were 
higher for the RM task than for the RD task. These differ-
ences, specifically with respect to fixation duration, were 
both general, concerning all the fixations, and local, con-
cerning each of the first four fixations. Such results would 
usually be interpreted as reflecting difficulty processing 
text content (Yang 2012). However, as the textual material 
was equivalent in the two conditions, we can assume that 
they reflected top-down influences on EM control. Previous 
results (Kaakinen and Hyönä 2010) results had indicated that 
task demands influence both the temporal and spatial aspects 
of EM, and prolonged fixations, refixation probability and 
saccade targeting are the result of cognitive mechanisms 
related to the reading intention.

In addition, reading speed was around 200 wpm for the 
RM task and 500 wpm for the RD task. According to Carv-
er’s (1990) classification of the different ways of reading a 
text, based on the reading rate (see Introduction), the RM 
task corresponded to learning (200 wpm), where readers try 
to acquire knowledge from the text, while the RD task cor-
responded to skimming (450 wpm in Carver’s classification, 
500 wpm in our study, but this difference can probably be 
explained by the fact that Carver’s classification was based 
on longer texts (100–300 words) than the ones we used). 
Skimming occurs when readers need to gain a quick over-
view of text content. A reading mode at a slower pace is 
regarded as a more controlled or careful reading strategy, 
with more attention allocated to the task (Wotschack 2009). 
Overall, these results showed that readers adapt their general 
reading style to the task demands, and the RM task seems to 
need more resources than the RD task does.

As our EFRP results showed, the dependence of EM 
responses on task nature also applied to brain responses, as 
reflected by the involvement of WM, and more specifically 
the cognitive load induced by each task. The latter was cap-
tured through the increase in slow waves at the start of text 
processing, using different methodologies that all yielded 
similar results. In both tasks, the processing of the text elic-
ited slow waves that gradually increased over time. Inter-
estingly, by comparing the analyses with an individual vs. 
common baseline (no gradient with the individual baseline, 
as opposed to the common one; see above for the methodo-
logical discussion of these two choices), we were able to 
conclude that the slow waves were not synchronized with 
the local process executed at each fixation, but rather were 
elicited on a more global scale, depending on the nature 
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of the task. In other words, our result is the first, to our 
knowledge, to demonstrate that WM processing is continu-
ally supported by cognitive processes arising from the visual 
processing of information from fixations, but which are not 
strictly synchronized with these fixations. This result is neu-
ropsychological evidence that WM has to fulfil two complex 
and alternating functions, that is, processing and storage. 
More specifically, WM serves to maintain reliable represen-
tations of the environment and protect them from decay and 
interference, at the same time turning these representations 
into goal-oriented behavior (Barrouillet and Camos 2015, 
p. 65)—though possibly not at exactly the same time, as 
we observed both local processes, elicited at each fixation 
(see averaging analyses with an individual baseline), and an 
overall process that was not time-locked to fixations.

Another primary outcome of our results is that although 
the behavioral and EM data suggested that the RD task was 
easier than the RM task, the slow waves were larger for the 
RD task than for the RM task, indicating that the former 
induced a greater memory load than the latter. These results 
are in line with Scharinger et al. (2015) on several points. It 
should be recalled that these authors observed increased load 
during the hyperlink-like selection processes, in terms of 
decreased alpha frequency band power and increased pupil 
dilation, compared with a baseline condition consisting of 
pure text reading. However, they failed to find a significant 
correlation between these two measures. This emphasizes 
the relevance of accumulating measures, as in the EFRP 
technique, to gain a better overview of a given cognitive 
process, as two measures can lead to conclusions that are 
not consistent, indicating that they are sensitive to different 
aspects of the observed process. Moreover, our results show 
that the RD condition may involve a concurrent task that 
overloads WM.

In the RM condition, participants had to retain the words 
in both the topic and the text, and integrate them to form 
the text’s general meaning. This task can be regarded as a 
classic storage-only or simple span task, in which memory 
load is investigated by manipulating the number of items to 
be retained (e.g., Rypma et al. 1999). In the RD condition, 
participants had to read and constantly check whether what 
they had read so far was related to the topic. Processing the 
words and making a decision were intertwined, whereas in 
the RM condition, the decision was postponed until the end 
of reading. This assumption was confirmed by the behavio-
ral results discussed above, as response times were shorter 
in the RD condition, indicating that the decision-making 
process had already taken place by question onset. Task 
switching between sentence integration and semantic com-
parison may require more attentional resources and there-
fore increase memory load (Liefooghe et al. 2008; Vergauwe 
et al. 2015). The RD condition required the topic to be con-
stantly maintained in the WM focus of attention, as it has to 

be systematically compared with the words currently being 
processed. This is consistent with the view that the degree 
of control over what is in WM varies with the availability 
of the resources needed to exert this control (Elward et al. 
2013; Elward and Wilding 2010). Recent theories and mod-
els suggest close interactions between storage and process-
ing functions (Oberauer 2002) and between WM and atten-
tion (Awh et al. 2006), enabling readers to focus on relevant 
items and maintain current goals. Cowan (1995) opined that 
WM content can be deemed to be activated if representa-
tions from long-term memory are currently within the focus 
of attention. In this model (Cowan 1995), WM consists of 
the contents of short-term memory plus controlled atten-
tion. In this sense, we suggest that the RM condition mainly 
engaged short-term memory, whereas the RD condition was 
supported by WM. Along the same lines, the RD condition 
can be likened to the classic complex span task, which can 
be described as a dual task requiring simultaneous short-
term retention of some information and processing of other 
information. Complex span tasks require items to be main-
tained even though other information needs to be processed, 
and may reflect the ability to resist interference. This view 
can be summarized by the equation complex span = simple 
span + controlled attention (Oberauer et al. 2004).

Another possible explanation for the EEG differences 
between the two tasks, as well as the lack of consistency 
between EM and EEG results, is the difference in time pres-
sure. We wanted to construct tasks that were as ecological as 
possible, and the time pressure in the RD task was probably 
typical of online web reading, where a huge number of web 
pages addressing a given topic are available and have to be 
skimmed for relevance (Scharinger et al. 2015). The first 
indicator of the impact of time pressure was the latency of 
the first fixation after text onset, which was shorter for the 
RD task than for the RM task. This showed that participants 
engaged in different mental preparation, depending on the 
task. The skimming observed in the RD task is a reading 
strategy that is classically observed (see literature on web 
browsing) when readers have to cope with too much text 
to read in the time available to them (Duggan and Payne 
2009). Finally, WM is generally considered to be correlated 
with task demands as well as with time pressure (Paas et al. 
1994). Studies have shown that a higher level of arousal 
and/or mental workload under time pressure modulates EEG 
within the alpha and/or gamma frequency bands over fron-
tocentral areas (Cheng 2018), which could also explain the 
greater slow wave increase for our RD task.

This second interpretation does not exclude the first one, 
as the WM time-based resource sharing (TBRS) model 
(Barrouillet et al. 2004, 2007) assumes that cognitive load 
can be estimated as the proportion of time devoted to extra 
tasks that impede the processes currently taking place, and 
that items need to be refreshed to avoid their decay over 
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time. This model assumes that both processing and storage 
require attention, viewed as a pool of limited domain-general 
resources that have to be shared (Vergauwe et al. 2015; see 
also Kiyonaga and Egner 2014a, b, for a similar assump-
tion). Our results are in line with this theoretical point of 
view, albeit using a completely different and more ecological 
measure of memory load. In the RD condition, the topic with 
which the texts had to be compared, as well as the semantic 
comparisons that recurred throughout a given trial, meant 
extra information to manage that increased the proportion of 
time devoted to what could be viewed as distracting activi-
ties. Accordingly, the time taken to perform these extra 
activities in the RD condition may have generated a need 
for more attentional resources to compensate for the decay 
of information that had to be maintained throughout the trial.

Furthermore, our results showed that the increase in slow 
waves was mainly left lateralized. Even if EEG is known 
as a brain imaging technique with particularly poor spatial 
resolution (Burle et al. 2015), this result is consistent with 
research showing left hemispheric lateralization for ver-
bal WM, most notably in the frontal and parietal lobes, in 
contrast to more right hemispheric lateralization for spatial 
WM (Nagel et al. 2013). Our result are in line with studies 
reporting left-lateralized alpha frequency band power effects 
for linguistic task material (Spironelli and Angrilli 2010; 
Strauß et al. 2014). The literature on this topic is still incon-
clusive, but our data point to modality-specific WM (i.e., 
verbal and visuospatial WM) with different lateralization 
patterns according to the material to be maintained (Golby 
et al. 2001).

Finally, both behavioral and EM results showed that the 
visual acquisition rate, that is, the speed at which visual 
acquisition occurs, was faster in the RD condition. More 
specifically, our results showed that in the RD task, the faster 
the fixation rate (indexed by IFI duration), the steeper the 
slow wave slope. This was in line with experiments showing 
that the mental load generated by a task depends on the pace 
at which distractors are processed, and is not necessarily 
determined by their number (Barrouillet et al. 2011, 2013). 
In our experiment, the reading process could be regarded as 
the main task, and the decision-making processes as distrac-
tors. Temporal factors also need to be taken into account to 
understand better how WM operates.

One limitation of the present research that has to be 
addressed is that we decided to administer the two tasks 
in the same order throughout (RM then RD), in order to 
avoid the influence of the RD task on the RM one. We 
wanted the two tasks to be as similar as possible, except 
that in one task, participants had to read and memorize, 
whereas in the other, they had to read and decide. We 
were concerned that if the RD task was presented before 
the RM, participants would be inclined to engage in a 
decision-making process in the RM task too. However, 

we do not think that this choice generated confound effects 
(specifically fatigue) for several reasons. First, when we 
performed pilot tests, none of the participants reported any 
accumulated fatigue. Second, as reported above, behavio-
ral results for the RD task were almost perfect (97.8% cor-
rect answers), even though mental fatigue is traditionally 
associated with a decrease in task performance (Xie et al. 
2016). More specifically, as regards the literature on the 
speed/accuracy trade-off, fatigue can lead to the deteriora-
tion of one or the other (i.e., impaired performance speed, 
but intact accuracy, or vice versa), or else have a detrimen-
tal effect on both speed and accuracy (Alhola and Polo-
Kantola 2007). Again, in our case, results did not show 
any impairment of response speed in the RD task (< 1 s). 
Finally, the many studies that have reported fatigue-related 
deficits in attentional processing and/or memory functions 
tested cognitive performance in tiring conditions that were 
much more demanding than ours, specifically in sleep dep-
rivation conditions (Lowe et al. 2017).

Notwithstanding this limitation, we can conclude that 
coregistering EEG and EMs is a more powerful method 
than carrying out separate registration to understand the 
processes involved in an unconstrained visual paradigm. 
This method had limitations for which our study proposed 
solutions and precautions. We hope that the latter will 
make EFRP simpler and encourage its more frequent use.

Although the two tasks were part of a controlled labora-
tory experiment, they are typical of activities we all per-
form on a daily basis. Investigating the reading process is 
crucial to theories of reading, but our study also improves 
understanding of how different environments affect and 
constrain this process (Simola 2011). In particular, owing 
to the huge amount of data that are now available, search-
ing for information on the Internet has become a signifi-
cant activity in people’s daily lives. Our study enhances 
the understanding of this new form of reading, as a result 
of the Internet’s increasing dominance as a major source 
of information. This activity differs from classic reading 
because the extra information being searched for has to 
remain active in WM. Our study shows that, in contrast to 
intuition or some forms of work (Wotschack 2009), this 
has a higher cognitive cost that is visible in EEG signals 
when they are jointly recorded with EM.

Acknowledgements The authors thank the “Délégation à la Recherche 
Clinique et à l’Innovation” of Grenoble “Centre Hospitalier Univer-
sitaire” (CHU) for its role in the ethics committee, particularly Bea-
trice Portal and Dominique Garin. EEG/eye-tracker co-registration 
was performed at the IRMaGe Neurophysiology facility in Grenoble 
(France), which was partly funded by the French program “Investisse-
ment d’Avenir” run by the “Agence Nationale pour la Recherche” (grant 
‘Infrastructure d’Avenir en Biologie Santé’ - ANR-11-INBS-0006). The 
present study was part-funded by grants from the “Pôle Grenoble Cog-
nition” (PGC_AAP2014), and by a grant from the LabEx PERSYVAL-
Lab (ANR-11-LABX-0025-01).



Brain Topography 

1 3

Appendix 1: EFRP by Averaging 
with an Individual Baseline

Results from the ANOVA revealed the following significant 
effects:

Condition: F(1, 19) = 23.16, p < .001, ηp2 = .55
Condition × Hemisphere interaction: F(1, 19) = 4.74, 

p < .05, ηp2 = .20
Condition × Hemisphere × ROI interaction: F(2, 

38) = 7.62, p = .01, ηp2 = .29
Condition × Hemisphere × Rank interaction: F(3, 

57) = 3.20, p < .05, ηp2 = .14
Condition × ROI × Rank interaction: F(6, 114) = 3.56, 

p < .05, ηp2 = .16
Condition × Hemisphere × ROI × Rank interaction: F(6, 

114) = 2.98, p < .05, ηp2 = .14
Table 3 sets out the results of the post hoc compari-

son for the 4-factor interaction (i.e., Condition × Hemi-
sphere × ROI × Rank), for frontal, central and parietal ROI. 

Figure 9 illustrates the EFRP results with an individual base-
line for the frontal ROI (i.e., F4, F6, F8 and FC6 for the right 
hemisphere and F3, F5, F7 and FC5 for the left one).

As emphasized in Subsection 3.3.2 (“Estimation by aver-
aging”), an individual baseline resets the activity to zero 
(Körner et al. 2014) at each fixation onset. For example, the 
mean activity of the EFRP baseline at fixation n is roughly 
equivalent to the mean activity elicited at fixation n − 1. Our 
results showed no major increment or decrement in syn-
chronized activity elicited at one fixation compared with 
the following fixation, showing that the level of synchro-
nized activity at fixation rank n was roughly the same as 
that at fixation rank n + 1. As expected, slow-wave activity 
was not synchronized with each fixation. There were several 
significant differences between the two tasks, with larger 
mean amplitudes for the RD task than for the RM one, show-
ing that the contribution of a specific fixation to slow-wave 
amplitude was greater in the RD condition than in the RM 
one.

Table 3  Mean (standard error) amplitude values, in µV, in the latency ranges of interest for frontal, central and parietal ROI in both conditions 
with an individual baseline

Significant differences in rows correspond to post hoc analyses between the four fixation ranks, and those in columns correspond to post hoc 
analyses between the two tasks. *p < .05; **p < .01; ***p < .001

Rank 1 Rank 2 Rank 3 Rank 4 Significant differences

Frontal ROI amplitude [µV]
 Left Hem. RM 1.52 (.73) − 3.69 (.69) − 2.69 (.67) − 1.98 (.48) 1 > (4 = 3) > 2***
 Left Hem. RD − .10 (.74) − 7.50 (.95) − 4.91 (.72) − 3.07 (.72) 1 > 4 > 3 > 2***
 Significant differences RM > RD

***
RM > RD
***

RM > RD
***

RM > RD
***

 Right Hem. RM 3.70 (.83) − .03 (.52) .37 (.52) .49 (.56) 1 > 2 = 3 = 4***
 Right Hem. RD 3.60 (.89) − 1.63 (.64) 1.18 (.51) .06 (.87) 1 > 3 > 4 > 2***
 Significant differences ns RM > RD

***
RM > RD
*

ns

Central ROI amplitude [µV]
 Left Hem. RM 3.15 (.76) − 2.45 (.60) − 1.71 (.56) − 1.19 (.43) 1 > (4 = 3 = 2) & 4 > 2***
 Left Hem. RD 2.18 (.68) − 5.17 (.68) − 3.14 (.48) − 2.31 (.63) 1 > 4 > 3 > 2***
 Significant differences RM > RD

***
RM > RD
***

RM > RD
***

RM > RD
***

 Right Hem. RM 4.05 (.82) − .98 (.53) − .68 (.50) − .10 (.50) 1 > (2 = 3 = 4) & 4 > 2**
 Right Hem. RD 3.13 (.90) − 2.69 (.58) − .78 (.39) − 1.07 (.72) 1 > 2 > 3 = 4***
 Significant differences RM > RD

**
RM > RD
***

ns RM > RD
***

Parietal ROI amplitude [µV]
 Left Hem. RM 4.64 (.80) − 2.49 (.62) − 1.73 (.54) − .64 (.44) 1 > (2 = 3) > 4***
 Left Hem. RD 4.16 (.85) − 4.28 (.57) − 2.89 (.53) − 2.14 (.65) 1 > (3 = 4) > 2***
 Significant differences ns RM > RD

***
RM > RD
***

RM > RD
***

 Right Hem. RM 5.00 (.88) − 2.09 (.62) − 1.56 (.54) − .43 (.49) 1 > 4 > (2 = 3)***
 Right Hem. RD 4.25 (1.02) − 3.71 (.58) − 2.23 (.49) − 1.69 (.67) 1 > (3 = 4) > 2***
 Significant differences ns RM > RD

***
ns RM > RD

***
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Appendix 2: Implementation 
and Configuration of the GLM

In the present study, GLM were used to estimate the neu-
ral activity time-locked to the period between first fixation 
onset and fourth fixation offset. This activity can be written 
as fp(t) . The latency of the first fixation onset was around 
200 ms (see Table 4), showing that, as previously empha-
sized, this activity overlapped with the potential elicited at 
text onset s(t).

These two potentials were included in the model as 
described by Eq. 3 (see Subsection 3.4.1), with the potential 
evoked by the first fixation plus the potentials elicited by the 
successive fixations in the selected time window. The sac-
cadic potentials elicited at the four first saccade onsets were 
also considered in the model, as the distribution of the 
incoming saccades, in terms of direction and amplitude, dif-
fered across conditions (see Subsection  3.2.2).  
Let us recall here the equation xi(t) = s(t) + fp(t − �

(1)

i
)+

4
∑

c=1

∑

l

spc(t − �
�(l)

c,i
) + ni(t) , where xi(t) is the signal time-

locked to text onset during the ith epoch, s(t) the potential 
elicited at text onset, fp(t) the potential evoked at first fixa-
tion onset plus the potentials elicited at subsequent fixation 
onsets up to the end of the epoch, spc(t) the saccadic poten-
tial elicited at saccade onset for a given category ( c ), � (1)

i
 the 

timestamp of the first fixation onset, �
�(l)

c,i
 the timestamp of 

the lth saccade onset for the category c , and ni(t) the noise 
of the ongoing activity. We considered four categories of 
saccades: progressive vs. regressive, and short vs. long.

This appendix shows the mathematical implementation 
leading to the final estimation. To estimate s(t) and fp(t) by 
ordinary least square regression, Eq. 3 can be rewritten in 
matrix form:

xi is the vector ( xi =
[

xi(1), … , xi
(

Ne

)]†
; xi ∈ ℝ

Ne ) of 
the observed EEG samples time-locked to text onset, for the 
ith epoch, with [.]† the transpose operator. Ne is the number 
of samples, that is, the length of the observed signal xi(t) . 
ni is the noise vector ( ni =

[

ni(1), … , ni
(

Ne

)]†
; ni ∈ ℝ

Ne ) 

(4)

∀i ∈ {1,… ,E}, xi = Ds.s + Dfp,i .fp +

4
∑

c=1

Dsp,c,i.spc + ni.

Fig. 9  Grand-average EFRP, estimated by averaging with an individual baseline, for the RM task (top) and RD task (bottom), for the first four 
fixations on the text, for the frontal right (right) and left (left) ROI

Table 4  Statistical summary of the latency (in ms) of the first and 
fourth fixation onsets based on individual means

Condition Mean first fixation latency (SE)

RM RD

Fix. 1 206.82 (4.78) 195.77 (4.10)
Fix. 4 975.18 (20.73) 886.31 (18.40)
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with the same number of samples.s ∈ ℝ
Ns is the vector of 

the response time-locked to text onset, and Ns is the length 
of the response s(t) . fp ∈ ℝ

Nfp is the vector of the response 
time-locked to first fixation onset and Nfp is the length of the 
response fp(t) . For a given saccade category c , spc ∈ ℝ

Nsp 
is the vector of the saccadic response time-locked to sac-
cade onset and Nsp is the length of the response spc(t) . 
Ds ∈ ℝ

Ne×Ns is the Toeplitz matrix5 with Ne rows and Ns 
columns, for text onset. Ds is defined by its first column, with 
entries that are all equal to zero except for one at the row 
subscript corresponding to the 0 ms position in the epoch. 
Dfp,i ∈ ℝ

Ne×Nfp is the Toeplitz matrix with Ne rows and Nfp 
columns, for coding the first fixation onset during the ith 
epoch. Dfp,i is defined by its first column, with entries that 
are all equal to zero except one, at the row subscript cor-
responding to the � (1)

i
 ms position in the ith epoch. The Toe-

plitz matrices Dsp,c,i ( c = 1 .. 4 ), Ne rows and Nsp columns, 
were set up in the same way, but using the timestamps �

�(l)

c,i
 

for the row subscripts. Unlike the matrices Dfp,i and Dsp,c,i , 
the Ds matrix does not depend on the epoch number ( i ), 
as the timestamps of text onset are always equal to zero 
whatever the epoch. Ds , Dfp,i and Dsp,c,i ( c = 1..4 ) are sparse 
matrices. Matrices Ds and Dfp,i are composed of only one 
diagonal equal to one, all other values being equal to zero. 
For the matrices Dsp,c,i ( c = 1..4 ), zero, one, two, three or 
four diagonals are equal to one, depending on the number 
of saccades belonging to a given category ( c ), and all other 
values are equal to zero. Considering all epochs ( E ), the 
observations are concatenated such that:

with x =

[

x
†

1
, … , x

†

E

]†

∈ ℝ
N , DS =

[

D†

s
,… ,D†

s

]†
∈ ℝ

N×Ns , 

DFp =

[

D
†

fp,1
,… ,D

†

fp,E

]†

∈ ℝ
N×Nf  and DSp,c =

[

D
†

sp,c,1
,… ,

D
†

sp,c,E

]†

∈ ℝ
N×Nsp ( c = 1..4 ), where N = Ne × E , N is the 

total number of samples. After concatenation of the Toeplitz 
matrices and evoked potentials, Eq. 6 becomes x = D.p + n 
with D equalto [DS,DFp, DSp,1, .., DSp,4] and p is the concat-
enation of the six evoked potentials such that 
p =

[

s†, fp†, sp
†

1
, … , sp

†

4

]†

 . The solution given by the least 

square minimization is:

(5)x = DS.s + DFp.fp +

4
∑

c=1

DSp,c.spc + n

(6)p̂GLM =
(

D†
.D
)−1

.D.x

where p̂GLM is the concatenation of both estimates, such that 
p̂GLM =

[

ŝ
†

GLM
, f̂ p

†

GLM
, ŝp1GLM

†, .., ŝp4GLM
†

]†

.

As for the estimation by averaging, the model was applied 
separately for each participant. The grand average was then 
obtained by averaging all estimates for all participants.

Here, the main configuration parameters for the GLM are 
(1) the time intervals for estimated signals and (2) the time 
interval of the epoch for the observed signal x(t) , providing 
the number of samples6 (i.e.Ns , Nfand Ne ) for the evoked 
potential s(t) , f (t) and observed signal x(t) , respectively. 
The estimation window of the potential s(t) extended from 
100 ms (baseline computation between − 100 and 0 ms) 
before text onset to 700 ms7 after. Thus, the total duration 
for the potential s(t) was 800 ms, thereby defining the num-
ber Ns of samples. The estimation window of the potential 
fp(t) extended from 200 ms (baseline computation between 
− 200 and − 100 ms) before first fixation onset to 920 ms 
after, for the RM condition (840 ms after for the RD condi-
tion). This time value was set to capture the first four fixation 
onsets, that is, the mean IFI between the first and fourth fixa-
tions (see Table 4) was 768 ms, rounded up to 770 + 150 ms 
(690 + 150 ms for the RD condition). The total duration 
for the potential fp(t) was 1120 ms for the RM condition 
(1050 ms for the RD condition), thereby defining the num-
ber Ns of samples. The estimation window for the saccadic 
potential spc(t) ( c = 1..4 ) was configured from 50 ms (base-
line computation between − 50 and − 10 ms) before saccade 
onset to 200 ms after. The epoch duration for the observed 
signal x(t) was set from 100 ms before text onset to 1150 ms 
after for the RM condition (1050 ms for the RD condition). 
These values were chosen as a function of the latency of the 
fourth fixation (+ 150 ms). The number Ne of samples of the 
observed signals was then defined.
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