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ON PROJECTIVE UMBILICS: A GEOMETRIC INVARIANT
AND AN INDEX

RICARDO URIBE-VARGAS

Abstract. We define a geometric invariant and an index (+1 or −1) for projective umbilics
of smooth surfaces. We prove that the sum of the indices of the projective umbilics inside a
connected component H of the hyperbolic domain remains constant in any 1-parameter family
of surfaces if the topological type of H does not change. We prove the same statement for any
connected component E of the elliptic domain. We give formulas for the invariant and for the
index which do not depend on any normal form.

1. Introduction

The points at which a smooth plane curve has higher contact with its osculating circle (ver-
tices) or with its osculating conic (sextactic points) have been extensively studied. Recent works
relate this classical subject of differential geometry to singularity theory, and to contact and
symplectic geometry (cf. [1, 2, 4, 6, 10, 16, 13]).

For a smooth surface of R3 the analogues of the vertices, called umbilics, are the points at
which a sphere has higher contact (than usual) with the surface.

Projective umbilics are the analogous of sextactic points for smooth surfaces of RP3: the
points where the surface is approximated by a quadric up to order 3. (Projective umbilics are
also called quadratic points (see [9]).)

Although projective umbilics have been studied in classical literature (cf. [3, 12, 17]), the few
known global results about them are rather recent. Let us mention two examples : a convex
smooth surface of RP3 has at least 6 projective umbilics [10]; if a generic smooth surface of RP3

contains a hyperbolic disc bounded by a Jordan parabolic curve, then there exists an odd number
of projective umbilics inside this disc (and hence at least one) [16]. We mention other recent
results in Section 4.

Tabachnikov and Ovsienko stated a (still open) conjecture [9]: the least number of projective
umbilics on a generic compact smooth hyperbolic surface is 8.1

Hyperbonodes - Ellipnodes. To make it short, we shall call hyperbonodes the hyperbolic pro-
jective umbilics and ellipnodes the elliptic ones.

To present our results, we will describe some features of generic smooth surfaces of RP3 (and
of R3) and will give another characterisation of hyperbonodes:
Contact with lines. The points of a surface in 3-space are characterised by asymptotic lines
(tangent lines of the surface with more than 2-point contact). A point is called hyperbolic (resp.
elliptic) if there is two distinct asymptotic lines (resp. no asymptotic line). The parabolic curve
consists of the points where there is a unique (but double) asymptotic line. The flecnodal curve
is the locus of hyperbolic points where an asymptotic line admits more than 3-point contact
with the surface.

2010 Mathematics Subject Classification. 53A20, 53A55, 53D10, 57R45, 58K05.
Key words and phrases. Differential geometry, surface, singularity, parabolic curve, flecnodal curve, projective

umbilic, invariant, index, cross-ratio, quadratic point.
1An analogue conjecture, but for surfaces of S3, was named “Ovsienko-Tabachnikov conjecture” in [5] and

negatively solved. However, the original Ovsienko-Tabachnikov conjecture was not solved in [5], remaining open.
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We distinguish two branches of the flecnodal curve : “left” and “right”, defined below. We
represent the right branch of the flecnodal curve and the right asymptotic lines in black, and the
left branch and asymptotic lines in white. The elliptic domain is represented in white.

A hyperbonode is a point of intersection of the left and right branches of the flecnodal curve
(Fig.1). A biflecnode is a point of the flecnodal curve at which one asymptotic tangent line has at
least 5-point contact with S - at a biflecnode that asymptotic line is tangent to the corresponding
flecnodal curve (Fig.2).

Fig. 1. A hyperbonode. Fig. 2. Left and right
biflecnodes.

Ellipnodes and hyperbonodes are crucial in the metamorphosis of the parabolic curve of
evolving smooth surfaces, and in the metamorphosis of wave fronts occurring in generic 1-
parameter families [15] : any Morse metamorphosis of the parabolic curve takes place at an
ellipnode (or hyperbonode) which is replaced by a hyperbonode (resp. by an ellipnode) - Fig. 3-left;
any A3-metamorphosis of a wave front, where two swallowtail points are born or die, take place
at an ellipnode (or hyperbonode) which is replaced by a hyperbonode (resp. by an ellipnode) -
Fig.3- right.

Fig. 3. Examples where an ellipnode is replaced by a hyperbonode or vice-versa.

In this paper we introduce a geometric invariant for hyperbonodes as the cross-ratio deter-
mined by the asymptotic lines and the tangents to the two branches of the flecnodal curve (it is
in fact a contact invariant). This invariant describes some basic features of hyperbonodes and its
sign distinguishes the hyperbonodes that are born or die at a creation/annihilation transition.
We use this invariant to introduce an index for hyperbonodes, with values +1 or −1. Then
we prove that the sum of the indices of the hyperbonodes inside a connected component H of
the hyperbolic domain remains constant in any 1-parameter family of surfaces, provided that the
topological type of H does not change (Theorem3). A similar theorem is proved for ellipnodes.

We provide formulas for the invariant and for the index of a hyperbonode which do not depend
on any normal form (Theorems 2 and 5).

2. Cr-Invariant: Definition and Basic Properties

An asymptotic curve is an integral curve of a field of asymptotic directions.
Left and right asymptotic and flecnodal curves. Fix an orientation in the projective space
RP3 (or in R3). The two asymptotic curves passing through a point of the hyperbolic domain of
a generic smooth surface are distinguished: one twists like a left screw and the other like a right
screw. More precisely, a regularly parametrised smooth curve is said to be a left (right) curve if
its first three derivatives at each point form a negative (resp. a positive) frame.

We need the following basic, but important, fact on surfaces (cf. [16]):

Fact. At each hyperbolic point one asymptotic curve is left and the other is right.
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The respective tangent lines L`, Lr are called left and right asymptotic lines.
This left-right distinction does not depend on the orientability of the surface.

Definition. The left (right) flecnodal curve F` (resp. Fr) of a surface S consists of the points
for which the left (resp. right) asymptotic line is over-osculating.

Remark. The transverse intersections of the left and right flecnodal curves (that is, the hyper-
bonodes) are stable; but the self-intersections of one branch of the flecnodal curve (left or right)
are unstable [15].

The projective invariant. At a hyperbonode the two asymptotic lines L`, Lr and the tangent
lines to the left and right flecnodal curves, which we note LF`

and LFr
, determine a cross-ratio,

which is a projective invariant :
Cr-invariant. The cr-invariant ρ(h) of a hyperbonode (hyperbolic projective umbilic) is the
cross-ratio of the lines LF`

, Lr, LFr
, L` :
ρ(h) := (LF`

, Lr, LFr
, L`).

Property 1. The cr-invariant does not depend on the chosen orientation of RP3.
Indeed, a change of orientation permutes left and right, but

(LFr , L`, LF`
, Lr) = (LF`

, Lr, LFr , L`).

Property 2. By its definition, the value of ρ is negative if F` and Lr locally separate Fr from
L` (Fig. 4).

Fig. 4. Some generic positions of the asymptotic lines and flecnodal curves.

Property 3. The sign of the cr-invariant distinguishes the hyperbonodes that take part in a
“creation/annihilation” transition (Fig. 5).

It follows because near the creation/annihilation moment (of two hyperbonodes) both branches
of the flecnodal curve are transverse to the asymptotic lines (Fig. 5).

Fig. 5. A transition with “creation/annihilation” of two hyperbonodes.

Property 4. The sign of ρ changes at a “flec-hyperbonode” transition (Fig. 6).

Fig. 6. A “flec-hyperbonode” transition where a biflecnode and a hyperbonode overlap.
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To study the (unstable) hyperbonodes for which the cr-invariant change sign, ρ = 0 and
ρ =∞, one usually perturbs them inside a generic 1-parameter family of smooth surfaces, where
they become stable. See Figs. 5 and 6.

Property 5. The only local transitions involving hyperbonodes, occurring inside the hyperbolic
domain, correspond to the following values of ρ :

a) F` and Fr are tangent ⇐⇒ ρ = 0 (double hyperbonode) ;
b) L` is tangent to F` or Lr is tangent to Fr ⇐⇒ ρ =∞ (flec-hyperbonode) .

Remark. The value ρ = 1 corresponds to a non-generic hyperbonode where L` is tangent to Fr
or Lr is tangent to F`, but this provides no relevant transition.

2.1. Some Expressions for the Invariant.
Normal forms. According to Landis-Platonova’s Theorem [8, 11] and Ovsienko-Tabachnikov’s
Theorem [9], the 4-jet of a surface at a hyperbonode can be sent by projective transformations
to the respective normal forms

z = xy + 1
3!(ax

3y + bxy3) + 1
4! (x

4 ± y4) (L-P)

z = xy + 1
3!(x

3y ± xy3) + 1
4! (Ix

4 + Jy4) (O-T)

Remark. These normal forms are equivalent for generic hyperbonodes. Indeed, writing x = x/u,
y = y/u and z = z/uv with u2 = |a|, v2 = |b| we transform

z = xy + 1
3!(ax3y + bxy3) + 1

4! (±x4 + y4) to z = xy ± 1
3! (x

3y ± xy3) + 1
4! (Ix

4 + Jy4),

where I = ±|b/a3|1/2 and J = ±|a/b3|1/2 with the appropriate choice of signs.
However, in (L-P) the biflecnodes are impossible, while in (O-T) the tangency of Lr with F`

(or of L` with Fr) is impossible.

To encompass both normal forms we consider the “prenormal” form

z = xy + 1
3!(ax

3y + bxy3) + 1
4! (Ix

4 + Jy4) . (H)

The following theorem implies that for a = 0 (b = 0) we get a hyperbonode where the left
(resp. right) asymptotic line is tangent to the right (resp. left) flecnodal curve; and for I = 0
(J = 0) we get a hyperbonode where the right (resp. left) asymptotic line is tangent to the right
(resp. left) flecnodal curve (i.e., a biflecnode overlaps with the hyperbonode - Fig. 6).

Theorem 1. Let h be a hyperbonode, with cr-invariant ρ, of a generic smooth surface S. If
we put the 4-jet of S (after projective transformations) in the “prenormal” form (H), then the
resulting coefficients a, b, I, J satisfy the relation

1− ab

IJ
= ρ .

The respective relations satisfied by the normal forms (L-P) and (O-T) are

1∓ ab = ρ and 1∓ 1
IJ

= ρ .

Proof. It is a direct corollary of Theorem2 below. �

Remark. In order that the normal form (L-P) represents only generic hyperbonodes, the restric-
tions ab 6= 0 and ab 6= ±1 have to be imposed. Similarly, the conditions IJ 6= 0 and IJ 6= ±1
have to be imposed to (O-T).
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Formulas. In order to get formulas for the cr-invariant, we shall identify the affine chart of the
projective space, {[x : y : z : 1]} ⊂ RP3 with R3, and present the germs of surfaces in R3 at the
origin in Monge form z = f(x, y) with f(0, 0) = 0 and df(0, 0) = 0.
Notation. We shall express the partial derivatives of f with numerical subscripts :

fij(x, y) := (∂i+jf/∂xi∂yj)(x, y) and fij := fij(0, 0) .

Theorem 2 (Proved in Section 6). Let h be a hyperbonode of a generic smooth surface. Taking
the asymptotic lines as coordinate axes, the cr-invariant of h is given by

(2.1) ρ(h) = 1− (3f2
21 − 2f11f31)(3f2

12 − 2f11f13)
4f2

11f40f04
.

Thus, the Monge form for the above special hyperbonodes (ρ = 0 and ρ = ∞) satisfies the
following relations (taking the asymptotic lines as coordinates axes) :

Corollary 1. At a hyperbonode the left and right branches of the flecnodal curve are tangent
(i.e. there is a double hyperbonode) if and only if

4f2
11f40f04 − (3f2

21 − 2f11f31)(3f2
12 − 2f11f13) = 0 .

Proof. One obtains this equality from formula (2.1) by putting ρ(h) = 0. �

Corollary 2. At a hyperbonode h an asymptotic tangent line has at least 5-point contact with
the surface (i.e. a biflecnode overlaps with h) if and only if f40f04 = 0.

Proof. At a hyperbonode we have f30 = f03 = 0. The surface has exactly 4-point contact with
the x and y axes if and only if f40 6= 0 and f04 6= 0. The statement follows from formula (2.1)
assuming that ρ(h) =∞. �

Theorem 2’. If at a hyperbonode h we take the diagonals y = ±x as asymptotic lines and we
assume the cubic terms of f are missing for the chosen affine coordinate system, then

(2.2) ρ(h) = 4[(f40 + 3f22)(f04 + 3f22)− (f31 + 3f13)(f13 + 3f31)]
(f40 + 6f22 + f04)2 − 16(f31 + f13)2 .

3. The index of a hyperbonode

At any point of the left flecnodal curve, which is not a left biflecnode, the left asymptotic line
has exactly 4-point contact with the surface. Thus at all such points the left asymptotic line
locally lies in one of the two sides of the surface - the same holds for the right flecnodal curve.
Then in a tubular neighbourhood of the flecnodal curve, the surface is locally cooriented by the
corresponding asymptotic line - this local coorientation changes only at the biflecnodes.

At a hyperbonode both asymptotic lines may locally lie in the same side of the surface, but
also may locally lie in opposite sides.
Parity. We say that a hyperbonode has parity σ(h) = +1 if both asymptotic lines locally lie on
the same side of the surface and σ(h) = −1 otherwise.2

Remark. The cr-invariant ρ and the parity σ are independent of the orientation of RP3.

Index. A generic hyperbonode is said to be positive or of index +1 if σ(h)ρ(h) > 0, and negative
or of index −1 if σ(h)ρ(h) < 0, that is,

ind(h) = σ(h) sign(ρ(h)) .

Proposition 1. In generic 1-parameter families of smooth surfaces, the two hyperbonodes that
collapse during a creation/annihilation transition have opposite indices.

2The choice of a local coorientation of the surface S provides a signature to each hyperbonode ([9]): it is a
pair of signs, s = (sr, s`), which are + (or −) if that local coorientation coincides (or not) with the coorientations
given by the left and right asymptotic lines. Of course, s depends on the chosen coorientation of S. The points of
signature s = (+,+) or (−,−) have parity σ = +1, and those of signature (+,−) or (−,+) have parity σ = −1.
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Proof. The cr-invariant has distinct sign at these hyperbonodes (Property 3), and either both
hyperbonodes are odd, σ(h) = −1, or both are even, σ(h) = +1, because there is no biflecnode
between them. Then they have opposite indices. �

Proposition 2. When a hyperbonode undergoes a “flec-hyperbonode” transition its index does
not change (Fig. 6).

Proof. At a “flec-hyperbonode” transition both the parity and the cr-invariant of the hyperbon-
ode change sign. Thus the index remains constant. �

A corollary of these propositions is the following theorem :

Theorem 3. The sum of the indices of the hyperbonodes inside a connected component H of
the hyperbolic domain remains constant in a continuous 1-parameter family of surfaces, provided
that the topological type of H does not change.

Proof. The only local transitions that involve hyperbonodes, occurring in the interior of the
hyperbolic domain, are the creation/annihilation and the flec-hyperbonode transitions (Property
5). �

A consequence of the theorem of [16] (p. 744) quoted in the introduction is the

Corollary. In a hyperbolic disc D bounded by a closed parabolic curve, the sum of the indices
of the hyperbonodes inside D equals 1.

Theorem 4. If the 4-jet of h is expressed in the “prenormal form” (H), then
ind(h) = sign(IJ − ab) .

Proof. It is a direct corollary of Theorem5 below. �

Theorem 5. If the asymptotic lines are the coordinate axes at a hyperbonode h, then
ind(h) = sign

(
4f2

11f40f04 − (3f2
21 − 2f11f31)(3f2

12 − 2f11f13)
)
.

Proof. The formula follows from Theorem2 because σ(h) = sign(f40f04). �

Theorem 5’. If the asymptotic lines are the diagonals y = ±x at a hyperbonode h, then
ind(h) = sign ((f40 + 3f22)(f04 + 3f22)− (f31 + 3f13)(f13 + 3f31)) .

Proof. This follows from Theorem2’ because σ(h) = sign
(
(f40 + 6f22 + f04)2 − 16(f31 + f13)2).

Indeed, the parity is the sign of ∂4
v+f · ∂4

v−f at the origin, with v+ = (1, 1), v− = (1,−1), and
∂4
v+f = (f40 + 6f22 + f04) + 4(f31 + f13) , ∂4

v−f = (f40 + 6f22 + f04)− 4(f31 + f13) . �

4. Some Remarks and a Problem

Remark 1. In [7], hyperbonodes and ellipnodes are characterised as the singular points of an
intrinsic field of lines on the surface; then an index is defined at these points.

In the case of hyperbonodes, our index ind(h) coincides with the index of [7], providing a new
characterisation of it. In [7], it was proved that :
The sum of indices of the hyperbonodes lying inside a connected component of the hyperbolic
domain equals the Euler characteristic of that domain.

Remark 2. In the case of ellipnodes, the index of [7] has fractional values +1/3 or −1/3. A
godron is a parabolic point at which the unique (but double) asymptotic line is tangent to the
parabolic curve. The godrons of generic surfaces have an intrinsic index with value +1 or −1
(cf. [10, 16]).

A godron, hyperbonode or ellipnode is said to be positive (negative) if its index is positive
(resp. negative). The following theorem was proved in [7] :

Let H be a connected component of the hyperbolic domain and E a connected component of
the elliptic domain.
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Theorem. Write #e(E) for the number of positive ellipnodes of E minus the negative ones;
#g(E) for the number of positive godrons on ∂E minus the negative ones; #h(H) for the number
of positive hyperbonodes of H minus the negative ones; and #g(H) for the number of positive
godrons on ∂H minus the negative ones. Then

#h(H) + #g(∂H) = 3χ(H) and #e(E)−#g(∂E) = 3χ(E) .

Remark 3. Unfortunately, the results of the present paper and those of [7] provide no help
to prove or disprove Ovsienko-Tabachnikov’s conjecture because a compact smooth hyperbolic
surface has zero Euler characteristic.

Problem. Landis-Platonova’s and Ovsienko-Tabachnikov’s normal forms contain two moduli.
Then, to determine the 4-jet of the surface at a hyperbonode the geometric invariant ρ does not
suffice. The problem is to find a second geometric invariant (in order to determine that 4-jet by
two geometric invariants).

5. The Cross-Ratio Invariant for Ellipnodes

At an elliptic point of a generic surface there is a pair of complex conjugate asymptotic lines
(the zeros of the quadratic form in the Monge form). For example, if f(x, y) = x2 + y2 + . . .,
the asymptotic lines at the origin are L : y = ix and L : y = −ix. Near an ellipnode there
is a corresponding pair of complex conjugate flecnodal curves (consisting of the complex points
where an asymptotic line is also a line of zeros of the cubic term of f). The cross-ratio defined
by the asymptotic lines Li, L with the tangent directions of the flecnodal curves F, F is a real
number:

ρ(e) :=
(
LF , L, LF , L

)
.

Express the surface in Monge form z = f(x, y) with quadratic part Q = α
2 (x2 + y2) and

assume that (for the chosen affine coordinate system) the cubic terms of f are missing.

Theorem 6. For an ellipnode e of a generic smooth surface the cr-invariant is given by

(5.1) ρ(e) = 4[(f40 − 3f22)(f04 − 3f22)− (f31 − 3f13)(f13 − 3f31)]
(f40 − 6f22 + f04)2 + 16(f31 − f13)2 .

(Compare this formula with formula (2.2) of Theorem2’.)

As in Property 3, the cr-invariant of an ellipnode vanishes if the complex conjugate flecnodal
curves are tangent. Hence the sign of the cr-invariant distinguishes the ellipnodes that take part
in a “creation/annihilation” transition (Fig. 7). In fact, in the case of ellipnodes the sign of the
cross-ratio invariant behaves as an index (the value of the index being defined up to a factor) :
Positive and Negative Ellipnodes. An ellipnode is said to be positive or negative if its cross-
ratio invariant is respectively positive or negative.

Corollary 3. An ellipnode is double - it is a creation/annihilation transition of two ellipnodes
of opposite sign - if and only if

(f40 − 3f22)(f04 − 3f22)− (f31 − 3f13)(f13 − 3f31) = 0 .

Fig. 7. “Creation/annihilation” of 2 ellipnodes at a tangency of 2 complex conjugate
flecnodal curves.
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In generic 1-parameter families of smooth surfaces, the cross-ratio invariant of an ellipnode
never takes the value ∞ because the vanishing of the denominator of (5.1) would need two
conditions. A consequence of this fact and of Corollary 3 is the following theorem :

Theorem 7. The algebraic sum of the ellipnodes inside a connected component E of the ellip-
tic domain remains constant in a continuous 1-parameter family of surfaces, provided that the
topological type of E does not change.

Proof. The only local transition that involves ellipnodes, occurring in the interior of the elliptic
domain, is the creation/annihilation of two ellipnodes of opposite sign. �

6. Proof of Theorem 2

We take the asymptotic lines at h as coordinate axes, that is, f20 = f02 = 0, and we use the
fact that h is a hyperbonode, that is, f30 = f03 = 0.

Lemma (proved below). The tangent lines to the right and left flecnodal curves at h have the
respective equations
(LFr ) 2f11f40 x− (3f2

21 − 2f11f31) y = 0 .

(LF`
) −(3f2

12 − 2f11f13)x+ 2f11f04 y = 0 .

Proof of Theorem 2. To compute ρ(h), we shall use the intersection points of the lines LF`
,

Lr, LFr , L` with the line of equation y = 1, which is parallel to Lr. The x-coordinates of the
respective intersection points are (by the Lemma) :

xF`
= 2f11f04

(3f2
12 − 2f11f13) ; xLr

=∞; xFr
= (3f2

21 − 2f11f31)
2f11f40

; xL`
= 0 .

We have that ρ(h) = (xF`
− xFr

)/(xF`
− xL`

), because xLr
=∞. Therefore,

ρ(h) = 1− (3f2
21 − 2f11f31)(3f2

12 − 2f11f13)
4f2

11f40f04
. �

Before to prove the Lemma, we very briefly explain the geometry that justify the needed
calculations. For more a complete explanation see [15].

6.1. Flecnodal Curve and Geometry in the Space of 1-Jets. Assume our surface S is
locally given in Monge form z = f(x, y), where our hyperbonode h is the origin. At each point
of S the pair of asymptotic lines is determined by the kernel of the second fundamental form of
S. This means that each solution of the implicit differential equation (IDE)
(6.1) f20(x, y)dx2 + 2f11(x, y)dxdy + f02(x, y)dy2 = 0 .
is the image of an asymptotic curve by the projection (x, y, z)→ (x, y). Moreover, the image of
the flecnodal curve F under the same projection (x, y, z) → (x, y) is the curve F̂ formed by the
inflections of the solutions of (6.1) (cf. [14, 15]).

Since our hyperbonode h is the origin of the xy-plane, which is the tangent plane to S at h,
the curves F and F̂ have the same tangent lines. Therefore, we only need to find the tangent
lines to the left and right branches of F̂ .

Putting p = dy/dx, the IDE (6.1) is “materialised” by the surface A ⊂ J1(R,R) of equation

af (x, y, p) := f20(x, y) + 2f11(x, y)p+ f02(x, y)p2 = 0 .
Remark. The surface A does not take into account the asymptotic lines parallel to the y direction because this
direction corresponds to p =∞.

The space of 1-jets J1(R,R) (with coordinates x, y, p) has a natural contact structure: it is
the field of contact planes on J1(R,R) which are the kernels of the 1-form α = dy − pdx. At
each generic point of A the contact plane and the tangent pane to A determine a characteristic
line tangent to A.
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The surface A is foliated by the integral curves of the characteristic lines of A, whose projec-
tions to the xy-plane are the solutions of the IDE af (x, y, p) = 0.

In [14, 15], it is proved that the curve of inflections F̂ is the image by the natural projection
π : A ⊂ J1(R,R) → R2, (x, y, p) 7→ (x, y), of the curve F ⊂ A formed by the fold points of
the Legendre dual projection π∨ : A 3 J1(R,R) 7→ (p, px− y). That is, F ⊂ A is the apparent
contour of A by the projection π∨ : A → (R2)∨

According to [14, 15], the apparent contour F ⊂ A is the intersection of A with the surface
I ⊂ J1(R,R) given locally by the equation

I(x, y, p) := afx(x, y, p) + pafy(x, y, p) = 0 .

Therefore, the “curve of inflections” F̂ is (locally) the projection to the xy-plane, along the
p-direction, of the intersection A ∩ I. Now we can prove the Lemma.

6.2. Proof of the Lemma. The right flecnodal curve is locally obtained from the intersection
A∩I near the origin. Therefore, the tangent line to the right flecnodal curve at h is the projection
of the intersection line of the tangent planes to the surfaces A and I at (0, 0, 0). These planes
are provided by the differentials of af and I at the origin:

daf|0̄
= f30dx+ f21dy + 2f11dp and dI|0̄ = f40dx+ f31dy + 2f21dp .

Using the condition f30 = 0, we get the equations of the tangent planes :

f21y + 2f11p = 0 and f40x+ f31y + 2f21p = 0 .

Then the tangent line LFr to the right flecnodal curve at the origin has equation

LFr
: 2f11f40 x− (3f2

21 − 2f11f31) y = 0 .

To get the tangent line to left flecnodal curve at the origin, in which the y axis is the left
asymptotic line, we make similar computations with the equations

âf (x, y, q) := f20q
2 + 2f11q + f02 = 0 and âfy(x, y, q) + qâfx(x, y, q) = 0.

Then we get the equation of the tangent line LF`
to the left flecnodal curve :

LF`
: 2f11f04 y − (3f2

12 − 2f11f13)x = 0 . �

On the Proof of Theorems 2’ and 6. The proofs of the Theorems 2’ and 6 follow exactly the same
pattern of the proof of Theorem2. Moreover, in Theorems 2’ and 6, the Monge forms differ only
in one sign of the quadratic term (being respectively x2−y2 and x2 +y2), so that the calculations
involved in their proofs are almost identical.

To compute the cross-ratio in the elliptic case (Theorem6), we take the tangent plane to S at
an ellipnode e where we find the points of intersection of the line of equation y = −ix+ 2i with
the (complex conjugate) asymptotic lines (L: ix− y = 0 ; L: ix+ y = 0;) and with the tangent
lines to the (complex conjugate) flecnodal curves (LF : ax+ by = 0 ; LF : āx+ b̄y = 0;), where
a = (f40 − 3f22) + i(3f31 − f13) and b = (f31 − 3f13)− i(f04 − 3f22).

The x-coordinates of those four intersection points are

xL = 1; xL =∞; xF = 2ib
bi− a

; xF = 2ib̄
b̄i− ā

.

Hence ρ(e) = (xF − xF )/(xF − xL) because xL =∞. Therefore,

ρ(e) = 4[(f40 − 3f22)(f04 − 3f22)− (f31 − 3f13)(f13 − 3f31)]
(f40 − 6f22 + f04)2 + 16(f31 − f13)2 . �
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