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ABSTRACT1

The wide majority of large-scale traffic flow models based on the Macroscopic Fundamental Dia-2

gram (MFD) are still grounded on what has been called the “accumulation-based” model by some3

authors. Recent studies have highlighted the limitations of such an approach in fast-varying condi-4

tions, and have focused on a better and more flexible representation of the reservoir inner dynamics,5

which has been referred as the “trip-based” model. However, when connecting several reservoirs6

together, the management of inflows and outflows to propagate congestion properly through the7

reservoirs is still a challenge in both modeling approaches. In particular, in saturated traffic condi-8

tions, handling inflow merge at a reservoir entry or outflow diverge at exit is of crucial importance9

as it governs the global system state evolution. Unfortunately, this has not been deeply investigated10

in the literature.11

In this paper, we propose a thorough analysis of the way congestion is usually handled12

in the accumulation-based framework. This serves as a basis to implement a proper congestion13

propagation model in the trip-based approach. Theoretical and simulation studies show that in14

case of several trip lengths in a zone, there exists only one form of inflow limitation at the reservoir15

entry that complies with the global constraints on flow and production. Moreover, the outflows16

from all trips exiting the same zone have to be all inter-dependent to satisfy the main hypothesis17

of the reservoir model, i.e. that all users are traveling at the same mean speed. This has strong18

implications when several reservoirs are connected together. We notably point out that the system19

could converge to global gridlock if a safe outflow management based on the most constrained exit20

of each reservoir is not adopted. Simulation examples are given.21

Keywords: Macroscopic Fundamental Diagram, reservoir systems, congestion propagation, trip22

length, accumulation-based model, trip-based model23
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INTRODUCTION1

Over the past decade, the Macroscopic Fundamental Diagram (MFD) has appeared to be a power-2

ful tool to describe traffic states at the network level with few implementation and computational3

efforts. Many studies have notably used MFD-based traffic simulators for several promising ap-4

plications, like traffic state estimation (Knoop and Hoogendoorn, Yildirimoglu and Geroliminis,5

1, 2), perimeter control (Haddad, Haddad and Mirkin, Ampountolas et al., 3, 4, 5), route guid-6

ance at large scale (Hajiahmadi et al., Ding et al., 6, 7), or analyzing cruising-for-parking issues7

(Leclercq et al., Cao and Menendez, Zheng and Geroliminis, 8, 9, 10). Their modeling approaches8

take advantage of the multi-reservoir representation of a city, where the dynamics of each urban9

region (also called “reservoir”) are described by the single reservoir model of Daganzo (11). This10

framework, also referred as the “accumulation-based” model, assumes that the reservoir outflow11

is proportional to the total circulating flow inside the zone if one consider a constant average trip12

length shared by all travelers. Some authors have extended this approach to account for multi-13

ple trip lengths in a reservoir, either to develop new applications like modeling search-for-parking14

(Geroliminis, 12, 13) and macroscopic routing (Yildirimoglu et al., Ramezani et al., 14, 15); or to15

highlight inaccuracies in MFD-based models due the constant trip length hypothesis (Yildirimoglu16

and Geroliminis, Leclercq et al., 2, 16).17

More recently, a “trip-based” formulation of the single reservoir model has gained a new18

interest in the community. Based on a idea of Arnott (17), this approach has been exploited in Da-19

ganzo and Lehe (18) and then Leclercq et al., Lamotte and Geroliminis (8, 19). The principle is that20

all users travel at the same space-mean speed (given by the MFD) at a given time, and exit the zone21

once they have completed their individually assigned trip length. As shown in a thorough compari-22

son with the accumulation-based model by Mariotte et al. (20), the trip-based approach gives more23

accurate results during transient phases. Nevertheless, some authors like Haddad and Mirkin (21)24

suggest that the inaccuracies of the accumulation-based model can be taken into account directly25

by implementing delays in the control-oriented formulation of the conservation equation. While26

being interesting for control applications, we find this approach still limited in a multi-reservoir27

context as it relies on a quasi-static approximation for calculating delays.28

However, from the modeler’s perspective, despite all these recent advances in MFD-based29

simulation, congestion propagation in a multi-reservoir framework is not fully understood yet.30

Notably, the questions of if and how boundary flows should be limited when a reservoir is over-31

saturated, and how to distribute inflows and outflows are rarely addressed. In details, as the wide32

majority of MFD-based simulators are still developed for control applications, most authors argue,33

with reason, that the controllers will not allow the reservoir to reach highly congested states, so34

that the aforementioned concerns may be eclipsed (see e.g. Kouvelas et al., 22). However, other35

applications of MFD-based models should not ignore them. Actually some interesting works al-36

ready propose incomplete but viable solutions to deal with congestion propagation. Hajiahmadi37

et al., Lentzakis et al. (6, 23), whose simulator is based on the Network Transmission Model (NTM)38

of Knoop and Hoogendoorn (1), consider exogenous boundary capacities between reservoirs and39

a global entry supply function per reservoir. Their approach ensures a perfect protection of the40

reservoirs from global gridlock, nevertheless this one can hardly be extended to heterogeneous trip41

length situations. Yildirimoglu and Geroliminis (2) certainly developed the more advanced tool42

in MFD-based simulation, as they account for different trip lengths and manage flow exchanges43

with a Dynamic Traffic Assignment (DTA) procedure on macro-routes (succession of reservoirs).44

However, they handle each boundary between two adjacent reservoirs separately with a pro-rata45
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inflow merge, and do not provide any further information on how the global protection of each1

reservoir is ensured.2

In this paper, we investigate the constraints and the requirements to design a proper con-3

gestion propagation model, applicable in any situation in an MFD-based multi-reservoir system.4

For the accumulation-based model, we will refer to the framework of Yildirimoglu and Geroli-5

minis, Geroliminis (2, 13). For the trip-based model, we will pursue the effort of Mariotte et al.6

(20) who provide a first attempt to handle spillbacks in this formulation. For both modeling ap-7

proaches, it appears that elementary constraints on flow and production lead to a unique definition8

of the entry supply function for each accumulation or trip length category in one reservoir. More-9

over, applying the same constraints for exit flows allow us to show that each partial outflow cannot10

be treated independently from the other categories in a reservoir. It follows that if one wants to11

preserve the consistency of an MFD-based model (i.e. that the users are traveling at the same mean12

speed at each time), one must let the inflow merge and outflow diverge allocation be endogenously13

defined by the reservoir state. Consequently, only a few degrees of freedom are left to the mod-14

eler to control flow exchanges in simulation. We then propose two approaches of outflow share15

complying with all these constraints.16

This paper is organized as follows: section 2 first introduces spillbacks modeling in a17

single reservoir with one trip length, then section 3 extends this framework to different trip length18

categories in one reservoir.19

SPILLBACKS IN A SINGLE RESERVOIR WITH UNIQUE TRIP LENGTH20

Accumulation-based formulation21

In this study, we focus on how a reservoir should interact with its neighbors in the context of a22

multi-reservoir representation of a city.23

The concept of the single reservoir model has been first presented in Daganzo, Geroliminis24

and Daganzo (11, 24). It corresponds to a given zone in a urban network where the traffic states25

are characterized by a well-defined production-MFD P(n) (in [veh.m/s]), or equivalently, a speed-26

MFD V (n) = P(n)/n (in [m/s]), where n (in [veh]) is the accumulation (number of circulating27

vehicles in the reservoir) . The reservoir entry (also conceptually called “upstream boundary”)28

is the aggregation of all individual entry nodes of the network; similarly the reservoir exit (or29

“downstream boundary”) aggregates all the exit nodes. Through the entry is defined the total30

effective inflow qin(t), and through the exit the total effective outflow qout(t) (in [veh/s]). In a first31

approach, we do not consider internal trips (trips that start or end into the reservoir), and assume32

that traffic states result from “external” trips only (trips from the aggregated entry to the aggregated33

exit). The question of internal trips will come up in the discussion (section 4). In this framework,34

the reservoir dynamics are governed by the following vehicle conservation equation (Daganzo,35

11):36
dn
dt

= qin(t)−qout(t) (reservoir dynamics) (1)

The accumulation and trip-based models differ on the definition of qin(t) and qout(t). We present37

here the accumulation-based model first. Most of the previous studies dealing with MFD-based38

aggregated dynamics actually do the distinction between internal and external trips, however their39

treatments are often mixed in the same modeling approach, so that a proper definition of inflow40

and outflow is sometimes missing. In control-oriented works, some authors like Ampountolas41

et al., Kouvelas et al., Aboudolas and Geroliminis (5, 22, 25) split the inflow into the receiving42
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flow from adjacent reservoirs (for which the controllers apply), and the “uncontrolled demand”1

which may be internal or external. Because we focus on a reservoir interacting with its neighbors2

here, we propose a definition of flow exchange at boundaries inspired by the Cell Transmission3

Model (CTM) of Daganzo (26). Thus, at the reservoir entry, the effective inflow results from the4

competition between a given demand λ (t) from some sending reservoirs and an entry supply func-5

tion I(n) depending on the reservoir state and restraining the inflow when the reservoir becomes6

congested:7

qin(t) = min[λ (t); I(n)] (effective inflow) (2)

At the reservoir exit, the effective outflow balances a given supply µ(t) (inflow restriction into8

some destination reservoirs in case of congestion), and an outflow demand function O(n) also9

depending on the reservoir state:10

qout(t) = min[µ(t);O(n)] (effective outflow) (3)

The single reservoir model with its boundary conditions is represented in figure 1(a). As there is no11

spatial extension in the reservoir, the simplest version of the accumulation-based model assumes12

an average trip length L for all travelers and applies the queuing formula of Little (27) to define13

the “trip completion rate” G(n) = n/L ·V (n) = P(n)/L (Daganzo, 11). This quasi-static approach14

has several limitations as detailed in Mariotte et al. (20). To our best knowledge, all the studies15

from the literature consider that the system outflow always equals G(n). In our opinion however,16

we believe that this is only true to model internal congestion for the outflow of inner trips, but17

that a distinction between O(n) and G(n) should be made for external trips. Otherwise, we may18

encounter unrealistic situations where the reservoir state is sticked to an equilibrium point on the19

congested part of the MFD during a temporary supply reduction at exit. In such a case, the system20

would be unable to retrieve a free-flow situation after the end of the supply reduction. The reader21

can refer to Mariotte et al. (20) for more details, but this situation will be also illustrated in the next22

section. This can be avoided if we adopt the following definition of outflow demand:23

O(n) =

{
n
LV (n) = G(n) if n < nc
Pc
L otherwise

(outflow demand function) (4)

At the reservoir entry, the general shape of the entry supply function I(n) is first introduced in Da-24

ganzo (11), but the authors do not mention any explicit formulation. Like in Knoop and Hoogen-25

doorn, Hajiahmadi et al., Lentzakis et al. (1, 6, 23), we define I(n) in accordance with the basic26

principles of traffic flow theory:27

I(n) =

{
Pc
L if n < nc
n
LV (n) = G(n) otherwise

(entry supply function) (5)

These two functions are represented in figures 1(c) and (d), for a typical shape of the production-28

MFD in figure 1(b). Note that O(n) and I(n) are similar to the entry and exit functions of a cell29

in the CTM (Daganzo, 26). When dealing with external trips only, such a formulation for the30

accumulation-based model is fully consistent to handle both free-flow and congested situations in31

the reservoir. Figures 1(c) and (d) show examples of equilibrium states reached in free-flow and32

congestion respectively with given boundary conditions.33
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FIGURE 1 (a) Single reservoir with its boundaries, (b) production-MFD, (c) outflow
demand function O(n) with the equilibrium point for a given inflow demand λ in free-flow,
(d) inflow supply function I(n) with the equilibrium point for a given exit restriction µ in
congestion, and (e) cumulative count curves with the accumulation n(t), the experienced
travel time T (t) and the exact predictive travel time T ∗(t)

Trip-based formulation1

The theoretical background of the trip-based model has been settled by Arnott (17). Let consider2

a single reservoir with a unique trip length L. It is assumed that at each time t, all the vehicles are3

traveling at the same speed V (n(t)). A user exiting the reservoir at t has traveled during a period of4

T (t) by definition, T (t) being the user experienced travel time. This user thus entered the reservoir5

at t −T (t), and his/her trip distance was L. The trip-based model considers that the accumulation6

and therefore the mean speed may change during the user’s trip, which is mathematically expressed7

as:8

L =
∫ t

t−T (t)
V (n(s))ds (6)

By using basic relationships based on entering and exiting count curves, it can be shown that the9

derivative of equation 6 leads to (see e.g. Arnott, Mariotte et al., 17, 20):10

qout(t) = qin(t −T (t)) · V (n(t))
V
(
n(t −T (t))

) (7)

Using equation 7 to solve the conservation equation 1 leads to a differential equation with endoge-11

nous delay. Despite being mathematically intractable, this formulation of the outflow can allow the12

development of efficient numerical resolution schemes (Mariotte et al., 20). These methods work13
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in free-flow only, where qin(t) is the input, equal to the inflow demand λ (t), and where qout(t) is1

the consequence of the system evolution. In congestion however, the role of inflow and outflow2

are switched, as qout(t) becomes the input, equal to the outflow supply µ(t), and qin(t) has now to3

adapt to the system evolution due to the restriction at exit. It can be shown that equation 7 can be4

reversed to express qin(t) as a function of qout(t):5

qin(t) = qout(t +T ∗(t)) · V (n(t))
V
(
n(t +T ∗(t))

) (8)

where T ∗(t) is the exact predictive travel time, i.e. the time during which the user entering at t will6

travel, see also figure 1(e). By construction we have: T (t) = T ∗(t−T (t)). But equation 8 suggests7

that (i) it is not possible to deduce the inflow when downstream supply restriction should apply8

(this would require the knowledge of the system future evolution), and (ii) if this was possible we9

have no clue on how to made the switch.10

Thus in practice, this model needs to be coupled with another model for reproducing con-11

gestion propagation. A first attempt has been made by Mariotte et al. (20). They assume a free-12

flow evolution of the system and then apply the outflow reduction and the minimum principle of13

Newell (28) on the inflow. This method with off-line calculations is sufficient for the analysis of14

a single reservoir, but not suitable in a multi-reservoir context where reservoir states may be all15

inter-dependent with time. A simple way to perform in-line computations of inflow limitations16

is to switch to the accumulation-based framework in congestion, by using the same entry supply17

function I(n).18

Trip-based numerical implementation19

In the following of this paper, we will use the event-based scheme from Mariotte et al. (20) to20

solve numerically the trip-based model. In congestion, the reservoir exit flow is limited to µ(t)21

at each time by retaining the vehicles inside the zone until the next exit time, even if they have22

already completed their trip length. At entry, the inflow limitation is ensured with the definition of23

a minimum or supply time for entering the reservoir:24

tNin

entry supply = tNin−1
entry +

1
I(n)

(entry supply time) (9)

where tNin

entry supply is the supply time for the Ninth vehicle to enter the reservoir, tNin−1
entry is the entering25

time of the previous vehicle, and I(n) is the entry supply function of the accumulation-based model,26

see equation 5.27

The application of this method is illustrated with two test cases. The first one is about a de-28

mand peak temporarily exceeding the exit supply, and the second one concerns a supply reduction29

at exit below the demand level at entry. These numerical examples consider a single reservoir with30

maximum accumulation n j = 1000 veh, average trip length L = 2.5 km, free-flow speed u = 15 m/s,31

and characterized by a parabolic production-MFD with maximum production Pc = 3000 veh.m/s32

and critical accumulation nc = 400 veh.33

Figure 2(a1) shows the demand λ (t) and supply µ(t) profiles for the demand peak case.34

The simulation scenario has been designed to let the congestion reach the entry before the de-35

mand decreases. The reservoir state evolution is presented in figures 2(b1) and (c1) with the in-36

flow/outflow and accumulation. The blue curves correspond to the accumulation-based model, the37
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Mariotte and Leclercq 7

green ones to the trip-based model. All graphs show similar results for both modeling approaches.1

This was actually expected, since the modeling of spillbacks is handled in the same manner in2

both models. This also proves that the switch to the accumulation-based model works well in the3

trip-based framework with few modifications in the event-based resolution scheme.4

Figure 2(a2) shows the demand λ (t) and supply µ(t) profiles for the supply reduction case.5

Similarly, the simulation scenario has been designed to let the congestion reach the entry before the6

exit supply increases again. In figures 2(b2) and (c2), the red and yellow curves corresponds to the7

evolution of inflow/outflow and accumulation when O(n) always equals G(n) as it is traditionally8

assumed in the literature. In the accumulation-based model (in red), we observe that the system9

reaches an equilibrium point once inflow equals outflow shortly after 4000 s. Then, the reservoir10

state does not evolve anymore because after this point the outflow corresponds to the exit demand11

O(n), and thus qout(t) is not impacted by an increase of µ(t), see equation 7. In the trip-based12

approach (in yellow), the users travel at a low mean speed after 4000 s to adapt the exit supply13

reduction. But when this limitation disappears, the vehicle exit rate is still the same because the14

mean speed remains low, and consequently the system cannot recover from congestion in this15

framework too. We can fix this problem if we keep the outflow demand O(n) maximum during16

severe congestion periods. This can be modeled in the trip-based framework only if we force17

the travelers to complete their trip length when n ≥ nc. Theoretically, it implies that the users18

concerned will have a speed different from V (n) during congested situations. This formulation19

happens to be equivalent to the outflow demand definition of equation 4. This is illustrated by the20

blue and green curves in figures 2(b2) and (c2), which also show similar results for both models.21
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FIGURE 2 (a1) Demand peak at the reservoir entry, demand λ (t) and supply µ(t) profiles,
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CONGESTION PROPAGATION WITH SEVERAL TRIP CATEGORIES1

Accumulation-based framework2

The aim of our study is to propose a robust modeling framework for congestion propagation in3

a multi-reservoir environment. Like in the approach of Yildirimoglu and Geroliminis (2), we4

consider that users are assigned to a set of given “macro-routes”, i.e. successions of reservoirs, as5

illustrated in figure 3(a), and that the system state can be described at the level of a macro-route,6

later simply referred as “route”. As a reservoir can be crossed by different routes with different7

trip lengths, the thorough understanding of flow dynamics in one reservoir with heterogeneous trip8

lengths is essential to build a proper multi-reservoir simulation tool.9

The extension of the single reservoir model with one trip length to several trip lengths has10

been first established in (Geroliminis, 12, 13). It is inspired by the two-bin model of Daganzo11

(11). This theoretical framework has then been used in various studies with more complex multi-12

reservoir settings (e.g. Yildirimoglu and Geroliminis, Ramezani et al., 2, 15). Let consider a single13

reservoir with N trip length categories Li, or N routes with length Li, as presented in figure 3(b).14

All accumulations ni in each route i should satisfy the following system (Geroliminis, 13):15

∀i ∈ {1, . . . ,N}, dni

dt
= qin,i(t)−qout,i(t) (10)

where qin,i(t) and qout,i(t) are respectively the effective inflow and outflow for route i. Con-16

ceptually, the reservoir is split into “sub-reservoirs” governed by the accumulation ni. These17

sub-reservoirs are coupled together by the mean speed V (n) or the total production P(n), where18

n = ∑N
i=1 ni. It is assumed that in slow-varying conditions, the trip completion rate Gi of each route19

i satisfies the queuing formula of Little (27):20

Gi(n1, . . . ,nN) = Gi(ni,n) =
ni

Li
V (n) =

ni

n
P(n)

Li
(trip completion rate) (11)

It follows that the definition of the outflow demand Oi for each category i should be:21

Oi(ni,n) =

{
ni
n

P(n)
Li

= Gi(ni,n) if n < nc
ni
n

Pc
Li

otherwise
(outflow demand) (12)

with by definition:

n =
N

∑
i=1

ni (total accumulation) (13)

G(n) =
N

∑
i=1

Gi(ni,n) (total trip completion rate) (14)

O(n) =
N

∑
i=1

Oi(ni,n) (total outflow demand) (15)

Similarly to the single trip length case, we suppose that the outflow demand is maximum in over-22

saturated situations (n > nc).23

TRB 2018 Annual Meeting Original paper submittal



Mariotte and Leclercq 10

Note also that a dynamic average trip length L(t) can be defined in applying Little’s formula1

at the reservoir scale: G(n) = n/L ·V (n). It comes (Geroliminis, 12):2

L(t) =
n(t)

∑N
i=1

ni(t)
Li

=
∑N

i=1 Gi(ni(t),n(t))Li

G(n(t))
(average trip length) (16)

The major difference with the unique trip length model is that here, each outflow demand Oi de-3

pends not only on ni, but also on the other accumulations n1, . . . ,nN through the total accumulation4

n.5

Calculating perimeter inflows6

All the effective inflows qin,i(t) for each route i may be treated as independent variables. They are7

the result of the competition between the corresponding demand λi(t) and an entry supply function8

Ii(n1, . . . ,nN):9

∀i ∈ {1, . . . ,N}, qin,i(t) = min[λi(t); Ii(n1(t), . . . ,nN(t))] (effective inflow route i) (17)

There is no clear consensus on the definition of each entry supply function Ii(·) in the literature.10

Knoop and Hoogendoorn (1) consider a global supply function I(n) at the reservoir entry that11

applies for all inflows, while Yildirimoglu and Geroliminis, Geroliminis, Ramezani et al. (2, 12, 15)12

treat each boundary flow separately (exchange with adjacent reservoirs). Knoop and Hoogendoorn13

(1) use the same definition as in equation 5, but they also define exogenous boundary capacities14

between adjacent reservoirs. Ramezani et al. (15) simplify the evolution of I(n) for n > nc with15

a linear curve, however they give no further details on the maximum flow capacity they use for16

n < nc. The general idea is to allocate portion of flows regarding a global inflow limitation for the17

whole reservoir to prevent it from gridlock (our point is that gridlock may happen due to internal18

demand but not due to external loading at the perimeter). Main issues are the definitions of: (i) the19

allocation scheme, (ii) the maximum allowed flow for each route (capacity at entry), and (iii) the20

distinction between under- and oversaturated states.21

The functions Ii(·) must be designed to ensure that the total effective inflow and total entry
production (i) never exceed the reservoir capacity and (ii) adapt to the reservoir state in oversat-
urated regime. Similarly to the case of one trip length, we suppose that under- and oversaturated
states are distinguished by the critical accumulation nc. Therefore the entry supply functions must
comply with the two following global constraints at any time, on flow and production respectively
(the ni are omitted):

N

∑
i=1

Ii =

{
Pc
L if n < nc
P(n)

L otherwise
(flow constraint) (18)

N

∑
i=1

LiIi =

{
Pc if n < nc

P(n) otherwise
(production constraint) (19)

where L is the average trip length defined in equation 16. We will demonstrate that under these22

two constraints, the unique possible definition of the Ii(·) is:23

∀i ∈ {1, . . . ,N}, Ii(ni,n) =

{
ni
n

Pc
Li

if n < nc
ni
n

P(n)
Li

= ni
Li

V (n) otherwise
(entry supply function) (20)
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FIGURE 3 (a) Examples of three routes (i, j,k) for a macro-OD (Ro,Rd) in a multi-reservoir
system, (b) representation of the reservoir R crossed by the routes in the
accumulation-based and (c) trip-based frameworks

Proof. Let assume without loss of generality that each function Ii can be regarded as a portion of a1

global entry supply I(n): ∀i ∈ {1, . . . ,N}, Ii = αiI(n) where the αi(·) are functions of (n1, . . . ,nN).2

As we have ∑N
i=1 Ii = I(n), the functions αi(·) should verify ∑N

i=1 αi = 1. We first consider that3

n ≥ nc. The application of the flow constraint (equation 18) forces I(n) = P(n)/L, whereas the4

application of the production constraint (equation 19) leads to I(n)∑N
i=1 Liαi = P(n), and thus5

∑N
i=1 Liαi = L. This suggests the following expression of the αi(·) functions: ∀i ∈ {1, . . . ,N},αi =6
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βiL/Li, where βi(·) are functions of (n1, . . . ,nN) and satisfy ∑N
i=1 βi = 1. Knowing that ∑N

i=1 αi = 1,1

it results that ∑N
i=1 βi = 1/L = ∑N

i=1 ni/(nLi). Again, this suggests the following expression of the2

βi(·) functions: ∀i ∈ {1, . . . ,N},βi = γini/n, where γi(·) are functions of (n1, . . . ,nN) and must3

verify ∑N
i=1 βi = ∑N

i=1 γini/n = 1. Because the last equality if true whatever the accumulations4

(n1, . . . ,nN), it follows that ∀i ∈ {1, . . . ,N},γi = 1, and therefore ∀i ∈ {1, . . . ,N},αi = ni/n ·L/Li.5

Finally we have shown that ∀i ∈ {1, . . . ,N}, Ii = ni/n ·P(n)/Li when n ≥ nc, and the same demon-6

stration applies similarly for the case n < nc.7

Calculating perimeter outflows8

Because they are the result of the reservoir inner dynamics, the situation may be different for the9

outflows qout,i(t) of each route i. Without loss of generality we can consider that each outflow is a10

fraction of the total outflow qout (time t is omitted): ∀i ∈ {1, . . . ,N},qout,i = αiqout where the αi(·)11

may eventually be function of (n1, . . . ,nN). Because by definition ∑N
i=1 qout,i = qout, the coefficients12

αi(·) verify ∑N
i=1 αi = 1. If we assume that the expression of the average trip length L(t) is always13

defined by equation 16 at any time (this is equivalent to assuming that Little’s formula applies at14

any time at the reservoir scale), then the total exit production should verify:15

N

∑
i=1

Liqout,i(t) = L(t)qout(t) (exit production) (21)

Replacing qout,i by αiqout in equation 21 leads to: ∑N
i=1 Liαi = L. Thus our previous demonstration16

about inflow perimeter can also apply here. Knowing that ∑N
i=1 αi = 1, such a relationship results17

in: ∀i ∈ {1, . . . ,N},αi = ni/n ·L/Li.18

Therefore it appears that, to be consistent with the reservoir inner dynamics (characterized19

by the average trip length), the definition of the exit production imposes the exit flows to be all inter-20

dependent. Because in our study the supplies µi(t) represent the connection to the “downstream”21

reservoirs, they may take any values, which in general have few chances to comply with these22

inter-dependence relationships. Actually, our analysis shows that there exist only one degree of23

freedom to restrain the outflow of all routes at the reservoir exit. This is similar to what is observed24

for the diverge model of Newell (29) where the FIFO conditions apply to all vehicles whatever25

their destinations.26

In a first approach, we may use the total supply µ(t) = ∑N
i=1 µi(t) to limit the total outflow

demand. We call this the “global supply” restriction approach, and it gives the following effective
outflows:

qout(t) = min[µ(t);O(n(t))] (total effective outflow) (22)

∀i ∈ {1, . . . ,N}, qout,i(t) =
ni(t)
n(t)

L(t)
Li

qout(t) (effective outflow route i) (23)

Note that in free-flow, the expressions of qout,i(t) simplify to Gi(ni,n). During congestion, this27

choice ensures that the reservoir exits the maximum flow possible allowed by all downstream28

reservoirs. However, there is a chance that one or more routes exceed the local exit supply, i.e. there29

may exist a given i for which qout,i(t)> µi(t) because no constraint is applied locally. This would30

be critical for the corresponding downstream reservoir (next reservoir in route i), as this would31
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mean that an excess of inflow could enter (µi(t) represents the inflow limitation of this downstream1

reservoir).2

For this reason, we propose a second approach called the “most constrained” supply method.
To avoid that one route might send excess of flow to the next reservoir, we have to ensure that all
exit restrictions are respected: ∀i ∈ {1, . . . ,N},qout,i(t)≤ µi(t). This is possible if we define all the
outflows thanks to the most restricted exit k:

qout,k(t) = µk(t) (most constrained outflow) (24)
where: Ok(nk,n) = max

Oi(ni,n)>µi(t)
Oi(ni,n)

∀i ∈ {1, . . . ,N}, i ̸= k qout,i(t) =
ni(t)
nk(t)

Lk

Li
qout,k(t) (effective outflow route i) (25)

Note that in free-flow, no exit is constrained so that qout,k(t) = Ok(nk,n). In congestion, with this3

formulation, the system will adapt to the limitation µk(t) for route k, so that at equilibrium we have4

Gk(nk,n) = nk(t)/LkV (n(t)) = µk(t) (assuming that µk(t) is constant after a given time). Knowing5

that outflow k is chosen as the maximum of the constrained outflows (equation 24), all effective6

outflows i in equation 25 will be automatically lower than their respective limitations µi(t). But in7

such a case, each route downstream capacity may be underused.8

Note that if users travel the same distance, i.e. ∀i ∈ {1, . . . ,N},Li = L(t) = L0, all our con-9

clusions still apply with few simplifications when considering different accumulation categories10

(users are distinguished by their route or destination).11

Implementation in the trip-based model12

The management of both inflows and outflows can be easily implemented in the trip-based frame-13

work. Inflow restrictions are described following the same principle as in the single reservoir14

model, we switch to the accumulation-based for each route in congestion. As for the inter-15

dependence between the outflows, this is even more simple here: keeping the global order of16

the vehicles by their arrival times ensures that the reservoir inner dynamics are preserved on each17

route. In practice, there is a waiting list of users which may have different trip lengths in the reser-18

voir, and because there are all traveling at the same speed, they can be simply ordered by their19

remaining travel distance.20

At the reservoir entry, each route i may restrain its inflow by a supply time tNin
i

entry supply,i for21

the Nin
i th vehicle willing to enter:22

∀i ∈ {1, . . . ,N} tNin
i

entry supply,i = tNin
i −1

entry,i +
1

Ii(ni,n)
(entry supply time) (26)

where tNin
i −1

entry,i is the entry time of the previous vehicle in route i, see also figure 3(c).23

At the reservoir exit, the vehicles are kept in order inside the reservoir until the next exit24

time. The two outflow management methods differ on the definition of the exit supply time of25

the first vehicle Nout
j of the waiting list. Here, the {Nout

i }1≤i≤N represent the numbers of the next26

vehicles to exit in each route i. For the global supply approach, the calculation of the total flow27

supply µ(t) as the sum of all µi(t) is translated in a mean time headway estimation:28

t
Nout

j
exit supply = t

Nout
k −1

exit,k +
1

∑N
i=1 1/

(
tNout

i
exit supply,i − tNout

i −1
exit,i

) (global supply time) (27)
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where t
Nout

j
exit supply is the global supply time for the next vehicle to exit (to a given route j), t

Nout
k −1

exit,k is1

the exit time of the previous vehicle (to another route k), and
(

tNout
i

exit supply,i − tNout
i −1

exit,i

)
represents the2

admissible headway for entering the next reservoir in route i.3

For the most constrained exit approach, respecting the downstream inflow limitations is4

ensured by defining the exit supply time as the supply time of the actual route of vehicle Nout
j :5

t
Nout

j
exit supply = t

Nout
j

exit supply, j (local supply time) (28)

where t
Nout

j
exit supply, j is the local supply time of route j, defined by the next reservoir entry limitation.6

Example for two routes7

We present here the above-mentioned results with a simple case of a sudden demand increase in8

two routes. The network and MFD characteristics are the same as in section 2. The reservoir9

configuration is presented in figure 4(a), route 1 has a length of L1 = 2000 m, route 2 of L2 =10

1000 m. Figure 4(b) presents a scenario of a demand gap on route 2 while the demand for route11

1 is constant. After 1000 s we have λ1(t) = 0.4 veh/s and λ2(t) = 1.2 veh/s, whereas the exit12

supplies are µ1(t) = µ2(t) = 0.5 veh/s. Figures 4(c) and (d) show the evolution of accumulations13

and inflows/outflows respectively for the global supply approach in the accumulation-based model.14

In figure 4(d), we notice that the total inflow or outflow corresponds to µ1(t)+ µ2(t) = 1 veh/s15

after 3000 s, however it appears clearly that the flow on route 2 exceeds its limitation (qout,2(t) =16

0.8 veh/s > µ2(t) at equilibrium). Consequently, the next reservoir in route 2 may encounter17

gridlock if such a situation lasts a significant period. As explained previously, this approach is18

unacceptable in a multi-reservoir context, which explains why the second method is the most19

relevant.20

In the second approach, outflows are defined by the most constrained exit. In practice,21

while this is easy to implement in the trip-based framework as detailed previously, it is much22

harder to determine this exit in the accumulation-based model, because we need to know the out-23

flow share in steady state. To this end, one can solve the system equation 10 under congested24

conditions with the first approach. Using equations 20 and 23 leads to: ∀i ∈ {1, . . . ,N},qin,i(t) =25

ni(t)/LiV (n(t)) = qout,i(t) =
ni(t)
n(t)

L(t)
Li

µ(t), thus n(t)/L(t)V (n(t)) = µ(t), but this is insufficient to26

get the final solution. Actually, solving analytically this system seems intractable as the equilib-27

rium state in congestion also depends on the demands λi(t). Consequently, an iterative search on28

all exits is implemented in the accumulation-based model to determine the most limiting outflow29

at each time. Its principle is the following. (i) For all exits where demand flow exceeds supply,30

the exit with the highest supply is assumed to be the most restrictive one. (ii) We calculate other31

outflows through equation 25 and check that they are all below their respective supplies. (iii) If32

one exit does not respect its local constraint, then it is assumed to be the most restrictive one. We33

go back to (ii) and loop until all constraints are verified.34

The differences between the two outflow management approaches are presented in fig-35

ures 4(e) and (f) for the accumulation-based model, and 4(g) and (h) for the trip-based model.36

Like the case of one trip length in section 2, the accumulation- and trip-based models give similar37

results in congestion for both approaches. Figures 4(e) and (g) show the evolution of (n1(t),n2(t))38

in the accumulation plane, where the total trip completion rate function G(n1,n2) is also plot-39

ted. The red line corresponds to all the equilibrium points verifying G(n1,n2) = µ(t) = 1 veh/s.40
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Although the evolution of accumulations is quite similar in both outflow managements, the flow1

equilibrium is completely different. Figures 4(f) and (h) show the evolution of (qin,1(t),qin,2(t))2

and (qout,1(t),qout,2(t)) in the flow plane. Each route exit limitations µ1, µ2 are indicated, and the3

brown area shows where the total flow is lower than µ1+µ2. One clearly notices that the only point4

allowing a maximum total outflow and complying with each local constraint is µ1 = µ2 = 0.5 veh/s.5

This would be possible if L1 = L2 and λ1 = λ2. But here the second route sends the higher outflow,6

this is the critical exit in this scenario. With the first approach, its outflow exceeds the downstream7

limitation, leading the next reservoir to gridlock. Whereas with the second approach, its outflow is8

set to the right limitation, reducing automatically the outflow of route 1 (the longest) in the same9

time.10
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FIGURE 4 (a) Two routes in a reservoir, (b) demand gap with demand and supply profiles,
(c) accumulation and (d) inflow/outflow for each route. (e) Accumulation-based model with
the global supply and most constrained supply approaches, evolution of (n1(t),n2(t)) in the
accumulation plane, (f) evolution of (qin,1(t),qin,2(t)) and (qout,1(t),qout,2(t)) in the flow
plane. (g) Trip-based model with the global supply and most constrained supply
approaches, evolution of accumulation and (h) inflow/outflow
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DISCUSSION AND CONCLUSION1

This study proposed a general framework to handle spillbacks in multi-reservoir systems for the2

accumulation and trip-based models. We focused on a single reservoir crossed by multiple macro-3

routes (or trip categories) because it corresponds to the building block of any multi-reservoir sim-4

ulator. A major contribution of this paper is the proper treatment of flow exchanges at a reservoir5

perimeter when congestion spillbacks. The framework we developed in such a case (entry flow6

functions and allocation scheme for downstream capacities) resorts to the accumulation-based for-7

mulation, but we demonstrated that it can be easily implemented in the trip-based formulation too8

while smoothly handling the transition with the free-flow case and the regular trip-based function-9

ing. Not surprisingly, the results are similar for both modeling approaches when congestion is10

propagating.11

The last ingredient we should include in our framework is internal trips (starting or ending12

in the reservoir). Inflows and outflows for such trips should have special treatments as they can13

start or end anywhere within the reservoir and should not be restricted by perimeter constraints.14

As such, we assume that internal inflow is unrestricted, and that internal outflow (rate at which the15

users reach their destination) decreases proportionally to the production-MFD in the accumulation-16

based model, or that the vehicles go on driving at the speed-MFD during congestion until they reach17

their destination for the trip-based model. The resulting simulation is presented in figure 5(a) for a18

simple demand peak scenario with two trips, internal and external. The system evolution is shown19

in figures 5(b), (c) and (d). It clearly appears that even with the inflow boundary at the perimeter the20

reservoir can reach oversaturated regimes due to the presence of inner trips. Figure 5(d) shows that21

the total inflow temporarily exceeds the reservoir capacity Pc/L(t). We can also notice a counter-22

clockwise hysteresis loop for the exit production of internal trips. Note that inner trips may easily23

lead the reservoir to gridlock when the internal inflow is high, see Mahmassani et al. (30) for more24

information on urban gridlock. Although this simple test case certainly needs more investigations,25

it proves that the integration of internal trips is straightforward in our framework.26

Further developments of our MFD-based simulator will include a macro-route choice set27

generator and a DTA module for several applications like routing strategies, search-for-parking or28

perimeter control.29
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FIGURE 5 Demand peak for internal trips in a single reservoir. (a) demand profile λ (t) for
internal trips and external trips, (b) evolution of the system in the (accumulation ni,
production Pi = Liqout,i) plane for each trip category i (“internal” or “external”), (c)
evolution of accumulation and (d) inflow/outflow for each trip category
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