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The wide majority of large-scale traffic flow models based on the Macroscopic Fundamental Diagram (MFD) are still grounded on what has been called the "accumulation-based" model by some authors. Recent studies have highlighted the limitations of such an approach in fast-varying conditions, and have focused on a better and more flexible representation of the reservoir inner dynamics, which has been referred as the "trip-based" model. However, when connecting several reservoirs together, the management of inflows and outflows to propagate congestion properly through the reservoirs is still a challenge in both modeling approaches. In particular, in saturated traffic conditions, handling inflow merge at a reservoir entry or outflow diverge at exit is of crucial importance as it governs the global system state evolution. Unfortunately, this has not been deeply investigated in the literature.

In this paper, we propose a thorough analysis of the way congestion is usually handled in the accumulation-based framework. This serves as a basis to implement a proper congestion propagation model in the trip-based approach. Theoretical and simulation studies show that in case of several trip lengths in a zone, there exists only one form of inflow limitation at the reservoir entry that complies with the global constraints on flow and production. Moreover, the outflows from all trips exiting the same zone have to be all inter-dependent to satisfy the main hypothesis of the reservoir model, i.e. that all users are traveling at the same mean speed. This has strong implications when several reservoirs are connected together. We notably point out that the system could converge to global gridlock if a safe outflow management based on the most constrained exit of each reservoir is not adopted. Simulation examples are given.

INTRODUCTION

Over the past decade, the Macroscopic Fundamental Diagram (MFD) has appeared to be a powerful tool to describe traffic states at the network level with few implementation and computational efforts. Many studies have notably used MFD-based traffic simulators for several promising applications, like traffic state estimation (Knoop and Hoogendoorn, Yildirimoglu and Geroliminis, 1, 2), perimeter control (Haddad,Haddad and Mirkin,Ampountolas et al.,[START_REF] Haddad | Robust constrained control of uncertain macroscopic fundamental diagram networks[END_REF][START_REF] Haddad | Coordinated distributed adaptive perimeter control for large-scale urban road networks[END_REF][START_REF] Ampountolas | Macroscopic modelling and robust control of bi-modal multi-region urban road networks[END_REF], route guidance at large scale (Hajiahmadi et al.,Ding et al.,[START_REF] Hajiahmadi | Optimal dynamic route guidance: A model predictive approach using the macroscopic fundamental diagram[END_REF][START_REF] Ding | Traffic guidanceperimeter control coupled method for the congestion in a macro network[END_REF], or analyzing cruising-for-parking issues (Leclercq et al.,Cao and Menendez,Zheng and Geroliminis,[START_REF] Leclercq | Dynamic macroscopic simulation of on-street parking search: A trip-based approach[END_REF][START_REF] Cao | System dynamics of urban traffic based on its parking-relatedstates[END_REF][START_REF] Zheng | Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing[END_REF]. Their modeling approaches take advantage of the multi-reservoir representation of a city, where the dynamics of each urban region (also called "reservoir") are described by the single reservoir model of Daganzo (11). This framework, also referred as the "accumulation-based" model, assumes that the reservoir outflow is proportional to the total circulating flow inside the zone if one consider a constant average trip length shared by all travelers. Some authors have extended this approach to account for multiple trip lengths in a reservoir, either to develop new applications like modeling search-for-parking (Geroliminis,[START_REF] Geroliminis | Dynamics of Peak Hour and Effect of Parking for Congested Cities[END_REF][START_REF] Geroliminis | Cruising-for-parking in congested cities with an {MFD} representation[END_REF] and macroscopic routing (Yildirimoglu et al.,Ramezani et al.,[START_REF] Yildirimoglu | Equilibrium analysis and route guidance in large-scale networks with {MFD} dynamics[END_REF][START_REF] Ramezani | Dynamics of heterogeneity in urban net-TRB 2018 Annual Meeting Original paper submittal works: aggregated traffic modeling and hierarchical control[END_REF]; or to highlight inaccuracies in MFD-based models due the constant trip length hypothesis (Yildirimoglu and Geroliminis,Leclercq et al.,[START_REF] Yildirimoglu | Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams[END_REF][START_REF] Leclercq | Macroscopic traffic dynamics with heterogeneous route patterns[END_REF].

More recently, a "trip-based" formulation of the single reservoir model has gained a new interest in the community. Based on a idea of Arnott [START_REF] Arnott | A bathtub model of downtown traffic congestion[END_REF], this approach has been exploited in Daganzo and Lehe [START_REF] Daganzo | Distance-dependent congestion pricing for downtown zones[END_REF] and then Leclercq et al., Lamotte and Geroliminis (8,[START_REF] Lamotte | The morning commute in urban areas with heterogeneous trip lengths[END_REF]. The principle is that all users travel at the same space-mean speed (given by the MFD) at a given time, and exit the zone once they have completed their individually assigned trip length. As shown in a thorough comparison with the accumulation-based model by Mariotte et al. (20), the trip-based approach gives more accurate results during transient phases. Nevertheless, some authors like Haddad and Mirkin [START_REF] Haddad | Adaptive perimeter traffic control of urban road networks based on MFD model with time delays[END_REF] suggest that the inaccuracies of the accumulation-based model can be taken into account directly by implementing delays in the control-oriented formulation of the conservation equation. While being interesting for control applications, we find this approach still limited in a multi-reservoir context as it relies on a quasi-static approximation for calculating delays. However, from the modeler's perspective, despite all these recent advances in MFD-based simulation, congestion propagation in a multi-reservoir framework is not fully understood yet.

Notably, the questions of if and how boundary flows should be limited when a reservoir is oversaturated, and how to distribute inflows and outflows are rarely addressed. In details, as the wide majority of MFD-based simulators are still developed for control applications, most authors argue, with reason, that the controllers will not allow the reservoir to reach highly congested states, so that the aforementioned concerns may be eclipsed (see e.g. Kouvelas et al.,[START_REF] Kouvelas | Enhancing model-based feedback perimeter control with data-driven online adaptive optimization[END_REF]. However, other applications of MFD-based models should not ignore them. Actually some interesting works already propose incomplete but viable solutions to deal with congestion propagation. Hajiahmadi et al., Lentzakis et al. (6,[START_REF] Lentzakis | Region-based dynamic forecast routing for autonomous vehicles[END_REF], whose simulator is based on the Network Transmission Model (NTM) of Knoop and Hoogendoorn (1), consider exogenous boundary capacities between reservoirs and a global entry supply function per reservoir. Their approach ensures a perfect protection of the reservoirs from global gridlock, nevertheless this one can hardly be extended to heterogeneous trip length situations. Yildirimoglu and Geroliminis (2) certainly developed the more advanced tool in MFD-based simulation, as they account for different trip lengths and manage flow exchanges with a Dynamic Traffic Assignment (DTA) procedure on macro-routes (succession of reservoirs). However, they handle each boundary between two adjacent reservoirs separately with a pro-rata TRB 2018 Annual Meeting Original paper submittal inflow merge, and do not provide any further information on how the global protection of each reservoir is ensured.

In this paper, we investigate the constraints and the requirements to design a proper congestion propagation model, applicable in any situation in an MFD-based multi-reservoir system.

For the accumulation-based model, we will refer to the framework of Yildirimoglu and Geroliminis, Geroliminis [START_REF] Yildirimoglu | Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams[END_REF][START_REF] Geroliminis | Cruising-for-parking in congested cities with an {MFD} representation[END_REF]. For the trip-based model, we will pursue the effort of Mariotte et al. This paper is organized as follows: section 2 first introduces spillbacks modeling in a single reservoir with one trip length, then section 3 extends this framework to different trip length categories in one reservoir.

SPILLBACKS IN A SINGLE RESERVOIR WITH UNIQUE TRIP LENGTH

Accumulation-based formulation

In this study, we focus on how a reservoir should interact with its neighbors in the context of a multi-reservoir representation of a city.

The concept of the single reservoir model has been first presented in Daganzo, Geroliminis and Daganzo [START_REF] Daganzo | Urban gridlock: Macroscopic modeling and mitigation approaches[END_REF][START_REF] Geroliminis | Macroscopic Modeling of Traffic in Cities[END_REF]. It corresponds to a given zone in a urban network where the traffic states are characterized by a well-defined production-MFD P(n) (in [veh.m/s]), or equivalently, a speed-

MFD V (n) = P(n)/n (in [m/s]), where n (in [veh]
) is the accumulation (number of circulating vehicles in the reservoir) . The reservoir entry (also conceptually called "upstream boundary")

is the aggregation of all individual entry nodes of the network; similarly the reservoir exit (or "downstream boundary") aggregates all the exit nodes. Through the entry is defined the total effective inflow q in (t), and through the exit the total effective outflow q out (t) (in [veh/s]). In a first approach, we do not consider internal trips (trips that start or end into the reservoir), and assume that traffic states result from "external" trips only (trips from the aggregated entry to the aggregated exit). The question of internal trips will come up in the discussion (section 4). In this framework, the reservoir dynamics are governed by the following vehicle conservation equation (Daganzo,[START_REF] Daganzo | Urban gridlock: Macroscopic modeling and mitigation approaches[END_REF]:

dn dt = q in (t) -q out (t) (reservoir dynamics) (1) 
The accumulation and trip-based models differ on the definition of q in (t) and q out (t). We present here the accumulation-based model first. Most of the previous studies dealing with MFD-based aggregated dynamics actually do the distinction between internal and external trips, however their treatments are often mixed in the same modeling approach, so that a proper definition of inflow and outflow is sometimes missing. In control-oriented works, some authors like Ampountolas et al., Kouvelas et al., Aboudolas and Geroliminis [START_REF] Ampountolas | Macroscopic modelling and robust control of bi-modal multi-region urban road networks[END_REF][START_REF] Kouvelas | Enhancing model-based feedback perimeter control with data-driven online adaptive optimization[END_REF][START_REF] Aboudolas | Perimeter and boundary flow control in multi-reservoir heterogeneous networks[END_REF] split the inflow into the receiving TRB 2018 Annual Meeting Original paper submittal flow from adjacent reservoirs (for which the controllers apply), and the "uncontrolled demand" which may be internal or external. Because we focus on a reservoir interacting with its neighbors here, we propose a definition of flow exchange at boundaries inspired by the Cell Transmission Model (CTM) of Daganzo [START_REF] Daganzo | The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory[END_REF]. Thus, at the reservoir entry, the effective inflow results from the competition between a given demand λ (t) from some sending reservoirs and an entry supply function I(n) depending on the reservoir state and restraining the inflow when the reservoir becomes congested:

q in (t) = min[λ (t); I(n)] (effective inflow) (2) 
At the reservoir exit, the effective outflow balances a given supply µ(t) (inflow restriction into some destination reservoirs in case of congestion), and an outflow demand function O(n) also depending on the reservoir state:

q out (t) = min[µ(t); O(n)] (effective outflow) (3) 
The single reservoir model with its boundary conditions is represented in figure 1(a). As there is no spatial extension in the reservoir, the simplest version of the accumulation-based model assumes an average trip length L for all travelers and applies the queuing formula of Little [START_REF] Little | A Proof for the Queuing Formula[END_REF] to define the "trip completion rate" (Daganzo,[START_REF] Daganzo | Urban gridlock: Macroscopic modeling and mitigation approaches[END_REF]. This quasi-static approach has several limitations as detailed in Mariotte et al. [START_REF] Mariotte | Macroscopic urban dynamics: Analytical and numerical comparisons of existing models[END_REF]. To our best knowledge, all the studies from the literature consider that the system outflow always equals G(n). In our opinion however, we believe that this is only true to model internal congestion for the outflow of inner trips, but that a distinction between O(n) and G(n) should be made for external trips. Otherwise, we may encounter unrealistic situations where the reservoir state is sticked to an equilibrium point on the congested part of the MFD during a temporary supply reduction at exit. In such a case, the system would be unable to retrieve a free-flow situation after the end of the supply reduction. The reader can refer to Mariotte et al. [START_REF] Mariotte | Macroscopic urban dynamics: Analytical and numerical comparisons of existing models[END_REF] for more details, but this situation will be also illustrated in the next section. This can be avoided if we adopt the following definition of outflow demand:

G(n) = n/L •V (n) = P(n)/L
O(n) = { n L V (n) = G(n) if n < n c P c L otherwise (outflow demand function) (4) 
At the reservoir entry, the general shape of the entry supply function I(n) is first introduced in Daganzo [START_REF] Daganzo | Urban gridlock: Macroscopic modeling and mitigation approaches[END_REF], but the authors do not mention any explicit formulation. Like in Knoop and Hoogendoorn, Hajiahmadi et al., Lentzakis et al. [START_REF] Knoop | Network Transmission Model: a Dynamic Traffic Model at Network Level[END_REF][START_REF] Hajiahmadi | Optimal dynamic route guidance: A model predictive approach using the macroscopic fundamental diagram[END_REF][START_REF] Lentzakis | Region-based dynamic forecast routing for autonomous vehicles[END_REF], we define I(n) in accordance with the basic principles of traffic flow theory: 

I(n) = { P c L if n < n c n L V (n) = G(n) otherwise
q in (t) q out (t) t # veh N in (t ) N out (t ) n(t ) n(t ) (a) 
(e) 

T (t) T * (t) t t-T (t) t +T * (t) λ(t ) μ(t) I (n) n O(n) (c) n I (n) (d) P c L P c L λ μ n eq, free n eq, cong n c n c n P(n) P c n c O(n)

Trip-based formulation

The theoretical background of the trip-based model has been settled by Arnott [START_REF] Arnott | A bathtub model of downtown traffic congestion[END_REF]. Let consider a single reservoir with a unique trip length L. It is assumed that at each time t, all the vehicles are traveling at the same speed V (n(t)). A user exiting the reservoir at t has traveled during a period of T (t) by definition, T (t) being the user experienced travel time. This user thus entered the reservoir at t -T (t), and his/her trip distance was L. The trip-based model considers that the accumulation and therefore the mean speed may change during the user's trip, which is mathematically expressed as:

L = ∫ t t-T (t) V (n(s))ds (6) 
By using basic relationships based on entering and exiting count curves, it can be shown that the derivative of equation 6 leads to (see e.g. Arnott,Mariotte et al.,[START_REF] Arnott | A bathtub model of downtown traffic congestion[END_REF][START_REF] Mariotte | Macroscopic urban dynamics: Analytical and numerical comparisons of existing models[END_REF]:

q out (t) = q in (t -T (t)) • V (n(t)) V ( n(t -T (t)) ) (7) 
Using equation 7 to solve the conservation equation 1 leads to a differential equation with endogenous delay. Despite being mathematically intractable, this formulation of the outflow can allow the development of efficient numerical resolution schemes (Mariotte et al.,[START_REF] Mariotte | Macroscopic urban dynamics: Analytical and numerical comparisons of existing models[END_REF]. These methods work TRB 2018 Annual Meeting Original paper submittal in free-flow only, where q in (t) is the input, equal to the inflow demand λ (t), and where q out (t) is the consequence of the system evolution. In congestion however, the role of inflow and outflow are switched, as q out (t) becomes the input, equal to the outflow supply µ(t), and q in (t) has now to adapt to the system evolution due to the restriction at exit. It can be shown that equation 7 can be reversed to express q in (t) as a function of q out (t):

q in (t) = q out (t + T * (t)) • V (n(t)) V ( n(t + T * (t)) ) (8) 
where T * (t) is the exact predictive travel time, i.e. the time during which the user entering at t will travel, see also figure 1(e). By construction we have:

T (t) = T * (t -T (t)).
But equation 8 suggests that (i) it is not possible to deduce the inflow when downstream supply restriction should apply (this would require the knowledge of the system future evolution), and (ii) if this was possible we have no clue on how to made the switch.

Thus in practice, this model needs to be coupled with another model for reproducing congestion propagation. A first attempt has been made by Mariotte et al. (20). They assume a freeflow evolution of the system and then apply the outflow reduction and the minimum principle of Newell ( 28) on the inflow. This method with off-line calculations is sufficient for the analysis of a single reservoir, but not suitable in a multi-reservoir context where reservoir states may be all inter-dependent with time. A simple way to perform in-line computations of inflow limitations is to switch to the accumulation-based framework in congestion, by using the same entry supply function I(n).

Trip-based numerical implementation

In the following of this paper, we will use the event-based scheme from Mariotte et al. [START_REF] Mariotte | Macroscopic urban dynamics: Analytical and numerical comparisons of existing models[END_REF] to solve numerically the trip-based model. In congestion, the reservoir exit flow is limited to µ(t)

at each time by retaining the vehicles inside the zone until the next exit time, even if they have already completed their trip length. At entry, the inflow limitation is ensured with the definition of a minimum or supply time for entering the reservoir:

t N in entry supply = t N in -1 entry + 1 I(n) (entry supply time) (9) 
where t N in entry supply is the supply time for the N in th vehicle to enter the reservoir, t N in -1 entry is the entering This was actually expected, since the modeling of spillbacks is handled in the same manner in both models. This also proves that the switch to the accumulation-based model works well in the trip-based framework with few modifications in the event-based resolution scheme.

Figure 2(a2) shows the demand λ (t) and supply µ(t) profiles for the supply reduction case.

Similarly, the simulation scenario has been designed to let the congestion reach the entry before the exit supply increases again. In figures 2(b2) and (c2), the red and yellow curves corresponds to the evolution of inflow/outflow and accumulation when O(n) always equals G(n) as it is traditionally assumed in the literature. In the accumulation-based model (in red), we observe that the system reaches an equilibrium point once inflow equals outflow shortly after 4000 s. Then, the reservoir state does not evolve anymore because after this point the outflow corresponds to the exit demand O(n), and thus q out (t) is not impacted by an increase of µ(t), see equation 7. In the trip-based approach (in yellow), the users travel at a low mean speed after 4000 s to adapt the exit supply reduction. But when this limitation disappears, the vehicle exit rate is still the same because the mean speed remains low, and consequently the system cannot recover from congestion in this framework too. We can fix this problem if we keep the outflow demand O(n) maximum during severe congestion periods. This can be modeled in the trip-based framework only if we force the travelers to complete their trip length when n ≥ n c . Theoretically, it implies that the users concerned will have a speed different from V (n) during congested situations. This formulation happens to be equivalent to the outflow demand definition of equation 4. This is illustrated by the blue and green curves in figures 2(b2) and (c2), which also show similar results for both models.

TRB 2018 Annual Meeting Original paper submittal FIGURE 2 (a1) Demand peak at the reservoir entry, demand λ (t) and supply µ(t) profiles, (b1) inflow q in (t) and outflow q out (t) and (c1) accumulation n(t) for the accumulation and trip-based models. (a2) Supply reduction at the reservoir exit, demand and supply profiles, (b2) inflow and outflow and (c2) accumulation for the accumulation and trip-based models, where model "2" corresponds to the assumption that O(n) always equals G(n)
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CONGESTION PROPAGATION WITH SEVERAL TRIP CATEGORIES Accumulation-based framework

The aim of our study is to propose a robust modeling framework for congestion propagation in a multi-reservoir environment. Like in the approach of Yildirimoglu and Geroliminis (2), we consider that users are assigned to a set of given "macro-routes", i.e. successions of reservoirs, as illustrated in figure 3(a), and that the system state can be described at the level of a macro-route, later simply referred as "route". As a reservoir can be crossed by different routes with different trip lengths, the thorough understanding of flow dynamics in one reservoir with heterogeneous trip lengths is essential to build a proper multi-reservoir simulation tool.

The extension of the single reservoir model with one trip length to several trip lengths has been first established in (Geroliminis,[START_REF] Geroliminis | Dynamics of Peak Hour and Effect of Parking for Congested Cities[END_REF][START_REF] Geroliminis | Cruising-for-parking in congested cities with an {MFD} representation[END_REF]. It is inspired by the two-bin model of Daganzo [START_REF] Daganzo | Urban gridlock: Macroscopic modeling and mitigation approaches[END_REF]. This theoretical framework has then been used in various studies with more complex multireservoir settings (e.g. Yildirimoglu and Geroliminis, Ramezani et al., [START_REF] Yildirimoglu | Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams[END_REF][START_REF] Ramezani | Dynamics of heterogeneity in urban net-TRB 2018 Annual Meeting Original paper submittal works: aggregated traffic modeling and hierarchical control[END_REF]. Let consider a single reservoir with N trip length categories L i , or N routes with length L i , as presented in figure 3(b).

All accumulations n i in each route i should satisfy the following system (Geroliminis, 13):

∀i ∈ {1, . . . , N}, dn i dt = q in,i (t) -q out,i (t) (10) 
where q in,i (t) and q out,i (t) are respectively the effective inflow and outflow for route i. Conceptually, the reservoir is split into "sub-reservoirs" governed by the accumulation n i . These sub-reservoirs are coupled together by the mean speed V (n) or the total production P(n), where

n = ∑ N i=1 n i .
It is assumed that in slow-varying conditions, the trip completion rate G i of each route i satisfies the queuing formula of Little [START_REF] Little | A Proof for the Queuing Formula[END_REF]:

G i (n 1 , . . . , n N ) = G i (n i , n) = n i L i V (n) = n i n P(n) L i (trip completion rate) (11) 
It follows that the definition of the outflow demand O i for each category i should be:

O i (n i , n) = { n i n P(n) L i = G i (n i , n) if n < n c n i n P c L i otherwise (outflow demand) (12) 
with by definition:

n = N ∑ i=1 n i (total accumulation) ( 13 
)
G(n) = N ∑ i=1 G i (n i , n) (total trip completion rate) (14) O(n) = N ∑ i=1 O i (n i , n) (total outflow demand) (15) 
Similarly to the single trip length case, we suppose that the outflow demand is maximum in oversaturated situations (n > n c ).

TRB 2018 Annual Meeting Original paper submittal Note also that a dynamic average trip length L(t) can be defined in applying Little's formula at the reservoir scale: (Geroliminis,[START_REF] Geroliminis | Dynamics of Peak Hour and Effect of Parking for Congested Cities[END_REF]:

G(n) = n/L •V (n). It comes
L(t) = n(t) ∑ N i=1 n i (t) L i = ∑ N i=1 G i (n i (t), n(t))L i G(n(t)) (average trip length) (16) 
The major difference with the unique trip length model is that here, each outflow demand O i depends not only on n i , but also on the other accumulations n 1 , . . . , n N through the total accumulation n.

Calculating perimeter inflows

All the effective inflows q in,i (t) for each route i may be treated as independent variables. They are the result of the competition between the corresponding demand λ i (t) and an entry supply function

I i (n 1 , . . . , n N ): ∀i ∈ {1, . . . , N}, q in,i (t) = min[λ i (t); I i (n 1 (t), . . . , n N (t))] (effective inflow route i) (17)
There is no clear consensus on the definition of each entry supply function I i (•) in the literature.

Knoop and Hoogendoorn (1) consider a global supply function I(n) at the reservoir entry that applies for all inflows, while Yildirimoglu and Geroliminis, Geroliminis, Ramezani et al. [START_REF] Yildirimoglu | Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams[END_REF][START_REF] Geroliminis | Dynamics of Peak Hour and Effect of Parking for Congested Cities[END_REF][START_REF] Ramezani | Dynamics of heterogeneity in urban net-TRB 2018 Annual Meeting Original paper submittal works: aggregated traffic modeling and hierarchical control[END_REF] treat each boundary flow separately (exchange with adjacent reservoirs). Knoop and Hoogendoorn

(1) use the same definition as in equation 5, but they also define exogenous boundary capacities between adjacent reservoirs. Ramezani et al. [START_REF] Ramezani | Dynamics of heterogeneity in urban net-TRB 2018 Annual Meeting Original paper submittal works: aggregated traffic modeling and hierarchical control[END_REF] simplify the evolution of I(n) for n > n c with a linear curve, however they give no further details on the maximum flow capacity they use for n < n c . The general idea is to allocate portion of flows regarding a global inflow limitation for the whole reservoir to prevent it from gridlock (our point is that gridlock may happen due to internal demand but not due to external loading at the perimeter). Main issues are the definitions of: (i) the allocation scheme, (ii) the maximum allowed flow for each route (capacity at entry), and (iii) the distinction between under-and oversaturated states.

The functions I i (•) must be designed to ensure that the total effective inflow and total entry production (i) never exceed the reservoir capacity and (ii) adapt to the reservoir state in oversaturated regime. Similarly to the case of one trip length, we suppose that under-and oversaturated states are distinguished by the critical accumulation n c . Therefore the entry supply functions must comply with the two following global constraints at any time, on flow and production respectively (the n i are omitted):

N ∑ i=1 I i = { P c L if n < n c P(n) L otherwise (flow constraint) ( 18 
) N ∑ i=1 L i I i = { P c if n < n c P(n) otherwise (production constraint) ( 19 
)
where L is the average trip length defined in equation 16. We will demonstrate that under these two constraints, the unique possible definition of the

I i (•) is: ∀i ∈ {1, . . . , N}, I i (n i , n) = { n i n P c L i if n < n c n i n P(n) L i = n i L i V (n) otherwise
(entry supply function) [START_REF] Mariotte | Macroscopic urban dynamics: Analytical and numerical comparisons of existing models[END_REF] TRB 2018 Annual Meeting Original paper submittal

λ j I j (n j , n) O i (n i , n) μ i (t) λ i I i (n i ,n) O j (n j , n) μ j (t ) q out, j (t ) (a) R o R d q out, i (t)
q in, j (t ) 

q in,i (t ) L i L j n j (t ) n i (t) L k i j k ... ... Route i Route j Route k R Reservoir R n(t) L(t ) (b 
N i in -1 N j in -1 N i in N j in N i out N j out N i out -1 N j out -1
∑ N i=1 L i α i = L.
This suggests the following expression of the α i (•) functions: ∀i ∈ {1, . . . , N}, α i = TRB 2018 Annual Meeting Original paper submittal β i L/L i , where β i (•) are functions of (n 1 , . . . , n N ) and satisfy

∑ N i=1 β i = 1. Knowing that ∑ N i=1 α i = 1, it results that ∑ N i=1 β i = 1/L = ∑ N i=1 n i /(nL i ).
Again, this suggests the following expression of the β i (•) functions: ∀i ∈ {1, . . . , N}, β i = γ i n i /n, where γ i (•) are functions of (n 1 , . . . , n N ) and must

verify ∑ N i=1 β i = ∑ N i=1 γ i n i /n = 1.
Because the last equality if true whatever the accumulations (n 1 , . . . , n N ), it follows that ∀i ∈ {1, . . . , N}, γ i = 1, and therefore ∀i ∈ {1, . . . , N},

α i = n i /n • L/L i .
Finally we have shown that ∀i ∈ {1, . . . , N}, I i = n i /n • P(n)/L i when n ≥ n c , and the same demonstration applies similarly for the case n < n c .

Calculating perimeter outflows

Because they are the result of the reservoir inner dynamics, the situation may be different for the outflows q out,i (t) of each route i. Without loss of generality we can consider that each outflow is a fraction of the total outflow q out (time t is omitted): ∀i ∈ {1, . . . , N}, q out,i = α i q out where the α i (•)

may eventually be function of (n 1 , . . . , n N ). Because by definition ∑ N i=1 q out,i = q out , the coefficients

α i (•) verify ∑ N i=1 α i = 1.
If we assume that the expression of the average trip length L(t) is always defined by equation 16 at any time (this is equivalent to assuming that Little's formula applies at any time at the reservoir scale), then the total exit production should verify:

N ∑ i=1 L i q out,i (t) = L(t)q out (t) (exit production) (21) 
Replacing q out,i by α i q out in equation 21 leads to: ∑ N i=1 L i α i = L. Thus our previous demonstration about inflow perimeter can also apply here. Knowing that ∑ N i=1 α i = 1, such a relationship results in: ∀i ∈ {1, . . . , N},

α i = n i /n • L/L i .
Therefore it appears that, to be consistent with the reservoir inner dynamics (characterized by the average trip length), the definition of the exit production imposes the exit flows to be all interdependent. Because in our study the supplies µ i (t) represent the connection to the "downstream" reservoirs, they may take any values, which in general have few chances to comply with these inter-dependence relationships. Actually, our analysis shows that there exist only one degree of freedom to restrain the outflow of all routes at the reservoir exit. This is similar to what is observed for the diverge model of Newell [START_REF] Newell | A simplified theory of kinematic waves in highway traffic, part III: Multidestination flows[END_REF] where the FIFO conditions apply to all vehicles whatever their destinations.

In a first approach, we may use the total supply µ(t) = ∑ N i=1 µ i (t) to limit the total outflow demand. We call this the "global supply" restriction approach, and it gives the following effective outflows:

q out (t) = min[µ(t); O(n(t))] (total effective outflow) ( 22 
) ∀i ∈ {1, . . . , N}, q out,i (t) = n i (t) n(t) L(t) L i q out (t) (effective outflow route i) (23) 
Note that in free-flow, the expressions of q out,i (t) simplify to G i (n i , n). During congestion, this choice ensures that the reservoir exits the maximum flow possible allowed by all downstream reservoirs. However, there is a chance that one or more routes exceed the local exit supply, i.e. there may exist a given i for which q out,i (t) > µ i (t) because no constraint is applied locally. This would be critical for the corresponding downstream reservoir (next reservoir in route i), as this would TRB 2018 Annual Meeting Original paper submittal mean that an excess of inflow could enter (µ i (t) represents the inflow limitation of this downstream reservoir).

For this reason, we propose a second approach called the "most constrained" supply method. To avoid that one route might send excess of flow to the next reservoir, we have to ensure that all exit restrictions are respected: ∀i ∈ {1, . . . , N}, q out,i (t) ≤ µ i (t). This is possible if we define all the outflows thanks to the most restricted exit k:

q out,k (t) = µ k (t) (most constrained outflow) (24) where: O k (n k , n) = max O i (n i ,n)>µ i (t) O i (n i , n) ∀i ∈ {1, . . . , N}, i ̸ = k q out,i (t) = n i (t) n k (t) L k L i q out,k (t) (effective outflow route i) (25) 
Note that in free-flow, no exit is constrained so that q out,k (t

) = O k (n k , n).
In congestion, with this formulation, the system will adapt to the limitation µ k (t) for route k, so that at equilibrium we have

G k (n k , n) = n k (t)/L k V (n(t)) = µ k (t) (assuming that µ k (t) is constant after a given time).
Knowing that outflow k is chosen as the maximum of the constrained outflows (equation 24), all effective outflows i in equation 25 will be automatically lower than their respective limitations µ i (t). But in such a case, each route downstream capacity may be underused.

Note that if users travel the same distance, i.e. ∀i ∈ {1, . . . , N}, L i = L(t) = L 0 , all our conclusions still apply with few simplifications when considering different accumulation categories (users are distinguished by their route or destination).

Implementation in the trip-based model

The management of both inflows and outflows can be easily implemented in the trip-based framework. Inflow restrictions are described following the same principle as in the single reservoir model, we switch to the accumulation-based for each route in congestion. As for the interdependence between the outflows, this is even more simple here: keeping the global order of the vehicles by their arrival times ensures that the reservoir inner dynamics are preserved on each route. In practice, there is a waiting list of users which may have different trip lengths in the reservoir, and because there are all traveling at the same speed, they can be simply ordered by their remaining travel distance.

At the reservoir entry, each route i may restrain its inflow by a supply time t N in i entry supply,i for the N in i th vehicle willing to enter:

∀i ∈ {1, . . . , N} t N in i entry supply,i = t N in i -1 entry,i + 1 I i (n i , n) (entry supply time) (26) 
where t

N in i -1
entry,i is the entry time of the previous vehicle in route i, see also figure 3(c).

At the reservoir exit, the vehicles are kept in order inside the reservoir until the next exit time. The two outflow management methods differ on the definition of the exit supply time of the first vehicle N out j of the waiting list. Here, the {N out i } 1≤i≤N represent the numbers of the next vehicles to exit in each route i. For the global supply approach, the calculation of the total flow supply µ(t) as the sum of all µ i (t) is translated in a mean time headway estimation: 

t N out j exit supply = t N out k -1 exit,k + 1 ∑ N i=1
where t N out j exit supply, j is the local supply time of route j, defined by the next reservoir entry limitation.

Example for two routes

We present here the above-mentioned results with a simple case of a sudden demand increase in two routes. The network and MFD characteristics are the same as in section 2. The reservoir configuration is presented in figure 4 In figure 4(d), we notice that the total inflow or outflow corresponds to µ 1 (t) + µ 2 (t) = 1 veh/s after 3000 s, however it appears clearly that the flow on route 2 exceeds its limitation (q out,2 (t) = 0.8 veh/s > µ 2 (t) at equilibrium). Consequently, the next reservoir in route 2 may encounter gridlock if such a situation lasts a significant period. As explained previously, this approach is unacceptable in a multi-reservoir context, which explains why the second method is the most relevant.

In the second approach, outflows are defined by the most constrained exit. In practice, while this is easy to implement in the trip-based framework as detailed previously, it is much harder to determine this exit in the accumulation-based model, because we need to know the outflow share in steady state. To this end, one can solve the system equation 10 under congested conditions with the first approach. Using equations 20 and 23 leads to: ∀i ∈ {1, . . . , N}, q in,i (t) =

n i (t)/L i V (n(t)) = q out,i (t) = n i (t) n(t) L(t)
L i µ(t), thus n(t)/L(t)V (n(t)) = µ(t), but this is insufficient to get the final solution. Actually, solving analytically this system seems intractable as the equilibrium state in congestion also depends on the demands λ i (t). Consequently, an iterative search on all exits is implemented in the accumulation-based model to determine the most limiting outflow at each time. Its principle is the following. (i) For all exits where demand flow exceeds supply, the exit with the highest supply is assumed to be the most restrictive one. (ii) We calculate other outflows through equation 25 and check that they are all below their respective supplies. (iii) If one exit does not respect its local constraint, then it is assumed to be the most restrictive one. We go back to (ii) and loop until all constraints are verified.

The differences between the two outflow management approaches are presented in fig- Although the evolution of accumulations is quite similar in both outflow managements, the flow equilibrium is completely different. Figures 4(f) and (h) show the evolution of (q in,1 (t), q in,2 (t))

and (q out,1 (t), q out,2 (t)) in the flow plane. Each route exit limitations µ 1 , µ 2 are indicated, and the brown area shows where the total flow is lower than µ 1 + µ 2 . One clearly notices that the only point allowing a maximum total outflow and complying with each local constraint is µ 1 = µ 2 = 0.5 veh/s.

This would be possible if L 1 = L 2 and λ 1 = λ 2 . But here the second route sends the higher outflow, this is the critical exit in this scenario. With the first approach, its outflow exceeds the downstream limitation, leading the next reservoir to gridlock. Whereas with the second approach, its outflow is set to the right limitation, reducing automatically the outflow of route 1 (the longest) in the same time.

TRB in,outflow q in,1 (t), q out,1 (t) [veh/s] 0 0.5 1 in,outflow q in,2 (t), q out,2 (t) [veh/s] 0 0.5 the global supply and most constrained supply approaches, evolution of (n 1 (t), n 2 (t)) in the accumulation plane, (f) evolution of (q in,1 (t), q in,2 (t)) and (q out,1 (t), q out,2 (t)) in the flow plane. The last ingredient we should include in our framework is internal trips (starting or ending in the reservoir). Inflows and outflows for such trips should have special treatments as they can start or end anywhere within the reservoir and should not be restricted by perimeter constraints.

As such, we assume that internal inflow is unrestricted, and that internal outflow (rate at which the 

( 20 )

 20 who provide a first attempt to handle spillbacks in this formulation. For both modeling approaches, it appears that elementary constraints on flow and production lead to a unique definition of the entry supply function for each accumulation or trip length category in one reservoir. Moreover, applying the same constraints for exit flows allow us to show that each partial outflow cannot be treated independently from the other categories in a reservoir. It follows that if one wants to preserve the consistency of an MFD-based model (i.e. that the users are traveling at the same mean speed at each time), one must let the inflow merge and outflow diverge allocation be endogenously defined by the reservoir state. Consequently, only a few degrees of freedom are left to the modeler to control flow exchanges in simulation. We then propose two approaches of outflow share complying with all these constraints.

(entry supply function) ( 5 )

 5 These two functions are represented in figures 1(c) and (d), for a typical shape of the production-MFD in figure1(b). Note that O(n) and I(n) are similar to the entry and exit functions of a cell in the CTM(Daganzo,[START_REF] Daganzo | The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory[END_REF]. When dealing with external trips only, such a formulation for the accumulation-based model is fully consistent to handle both free-flow and congested situations in the reservoir. Figures1(c) and (d) show examples of equilibrium states reached in free-flow and congestion respectively with given boundary conditions. TRB 2018 Annual Meeting Original paper submittal

FIGURE 1

 1 FIGURE 1 (a) Single reservoir with its boundaries, (b) production-MFD, (c) outflow demand function O(n) with the equilibrium point for a given inflow demand λ in free-flow, (d) inflow supply function I(n) with the equilibrium point for a given exit restriction µ in congestion, and (e) cumulative count curves with the accumulation n(t), the experienced travel time T (t) and the exact predictive travel time T * (t)

  time of the previous vehicle, and I(n) is the entry supply function of the accumulation-based model, see equation 5.The application of this method is illustrated with two test cases. The first one is about a demand peak temporarily exceeding the exit supply, and the second one concerns a supply reduction at exit below the demand level at entry. These numerical examples consider a single reservoir with maximum accumulation n j = 1000 veh, average trip length L = 2.5 km, free-flow speed u = 15 m/s, and characterized by a parabolic production-MFD with maximum production P c = 3000 veh.m/s and critical accumulation n c = 400 veh.

Figure 2 (

 2 Figure 2(a1) shows the demand λ (t) and supply µ(t) profiles for the demand peak case.The simulation scenario has been designed to let the congestion reach the entry before the demand decreases. The reservoir state evolution is presented in figures 2(b1) and (c1) with the inflow/outflow and accumulation. The blue curves correspond to the accumulation-based model, the

FIGURE 3 (

 3 FIGURE 3 (a) Examples of three routes (i, j, k) for a macro-OD (R o , R d ) in a multi-reservoir system, (b) representation of the reservoir R crossed by the routes in the accumulation-based and (c) trip-based frameworks

  (a), route 1 has a length of L 1 = 2000 m, route 2 of L 2 = 1000 m. Figure4(b) presents a scenario of a demand gap on route 2 while the demand for route 1 is constant. After 1000 s we have λ 1 (t) = 0.4 veh/s and λ 2 (t) = 1.2 veh/s, whereas the exit supplies are µ 1 (t) = µ 2 (t) = 0.5 veh/s. Figures4(c) and (d)show the evolution of accumulations and inflows/outflows respectively for the global supply approach in the accumulation-based model.

ures 4 (

 4 e) and (f) for the accumulation-based model, and 4(g) and (h) for the trip-based model.Like the case of one trip length in section 2, the accumulation-and trip-based models give similar results in congestion for both approaches. Figures4(e) and (g) show the evolution of (n 1 (t), n 2 (t)) in the accumulation plane, where the total trip completion rate function G(n 1 , n 2 ) is also plotted. The red line corresponds to all the equilibrium points verifying G(n 1 , n 2 ) = µ(t) = 1 veh/s.TRB 2018 Annual MeetingOriginal paper submittal
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FIGURE 4 (

 4 FIGURE 4 (a) Two routes in a reservoir, (b) demand gap with demand and supply profiles, (c) accumulation and (d) inflow/outflow for each route. (e) Accumulation-based model withthe global supply and most constrained supply approaches, evolution of (n 1 (t), n 2 (t)) in the accumulation plane, (f) evolution of (q in,1 (t), q in,2 (t)) and (q out,1 (t), q out,2 (t)) in the flow plane. (g) Trip-based model with the global supply and most constrained supply approaches, evolution of accumulation and (h) inflow/outflow

  FIGURE 4 (a) Two routes in a reservoir, (b) demand gap with demand and supply profiles, (c) accumulation and (d) inflow/outflow for each route. (e) Accumulation-based model withthe global supply and most constrained supply approaches, evolution of (n 1 (t), n 2 (t)) in the accumulation plane, (f) evolution of (q in,1 (t), q in,2 (t)) and (q out,1 (t), q out,2 (t)) in the flow plane. (g) Trip-based model with the global supply and most constrained supply approaches, evolution of accumulation and (h) inflow/outflow TRB 2018 Annual Meeting Original paper submittal

FIGURE 5

 5 FIGURE 5 Demand peak for internal trips in a single reservoir. (a) demand profile λ (t) for internal trips and external trips, (b) evolution of the system in the (accumulation n i , production P i = L i q out,i ) plane for each trip category i ("internal" or "external"), (c) evolution of accumulation and (d) inflow/outflow for each trip category
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