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Abstract
Inhibitory control (IC) is a core executive function that enables humans to resist habits, temptations, or
distractions. IC efficiency in childhood is a strong predictor of academic and professional success later in life.
Based on analysis of the sulcal pattern, a qualitative feature of cortex anatomy determined during fetal life and
stable during development, we searched for evidence that interindividual differences in IC partly trace back to
prenatal processes. Using anatomical magnetic resonance imaging (MRI), we analyzed the sulcal pattern of two
key regions of the IC neural network, the dorsal anterior cingulate cortex (ACC) and the inferior frontal cortex (IFC),
which limits the inferior frontal gyrus. We found that the sulcal pattern asymmetry of both the ACC and IFC
contributes to IC (Stroop score) in children and adults: participants with asymmetrical ACC or IFC sulcal patterns
had better IC efficiency than participants with symmetrical ACC or IFC sulcal patterns. Such additive effects of
IFC and ACC sulcal patterns on IC efficiency suggest that distinct early neurodevelopmental mechanisms
targeting different brain regions likely contribute to IC efficiency. This view shares some analogies with the
“common variant–small effect” model in genetics, which states that frequent genetic polymorphisms have small
effects but collectively account for a large portion of the variance. Similarly, each sulcal polymorphism has a small
but additive effect: IFC and ACC sulcal patterns, respectively, explained 3% and 14% of the variance of the
Stroop interference scores.

Significance Statement

Inhibitory control (IC) is a cognitive function that plays a critical role in the pathophysiology of several
psychiatric conditions and in academic and professional success. Using anatomical magnetic resonance
imaging (MRI) of healthy children and adults, we found that IC efficiency is constrained by the morphology
(sulcal pattern) of two key regions of the neural network underlying IC. Because the sulcal pattern is a
morphologic feature of cortical anatomy that is determined during fetal life and stable during development,
our findings provide evidence that interindividual differences in IC partly trace back to prenatal processes
and that distinct early neurodevelopmental mechanisms targeting different brain regions likely contribute to
IC efficiency.

New Research

January/February 2018, 5(1) e0197-17.2018 1–14

http://orcid.org/0000-0002-0693-3202
http://orcid.org/0000-0002-7506-0310
http://orcid.org/0000-0003-2807-3407
http://orcid.org/0000-0002-3972-2575
http://orcid.org/0000-0002-3972-2575
http://orcid.org/0000-0001-7792-092X
http://orcid.org/0000-0001-9511-9693
http://orcid.org/0000-0002-4945-0032
http://orcid.org/0000-0002-5815-3419
http://orcid.org/0000-0003-2125-4985
http://dx.doi.org/10.1523/ENEURO.0197-17.2018


Key words: anterior cingulate cortex; inferior frontal gyrus; inhibitory control; neurodevelopment; sulcation

Introduction
Inhibitory control (IC) is a core executive function that

enables us to resist habits, temptations, or distractions
(Houdé, 2000; Miyake et al., 2000; Davidson et al., 2006;
Diamond et al., 2007). The efficiency of executive func-
tions in childhood, and in particular IC, are a better pre-
dictor than socioeconomic status or intelligence (IQ) of
later academic success (Moffitt et al., 2011) and health
(Diamond, 2013).

Converging evidence suggests that differences in cog-
nitive ability partly trace back to prenatal processes. In-
deed, several studies report that subtle variations of the in
utero environment, as indexed by birth weight, are ac-
companied by differences in postnatal cognitive abilities
(Shenkin et al., 2004; Raznahan et al., 2012; Walhovd
et al., 2012). In addition to such a global proxy measure of
“uterine optimality” (Raznahan et al., 2012), sulcal pat-
terns, a qualitative characteristic of cortical anatomy,
have been used to provide information on the early con-
straints imposed by the structure of some specific brain
regions on later cognitive development (Mangin et al.,
2010). Indeed, unlike quantitative features of cortical anat-
omy (e.g., thickness, surface area), which can take de-
cades to attain the levels observed in adulthood (Giedd
and Rapoport, 2010; Raznahan et al., 2011; Li et al.,
2014), the qualitative pattern formed by the characteristic
set of primary, secondary, and tertiary folds, or sulci, is
determined during fetal life and is stable throughout de-
velopment (Chi et al., 1977; Cachia et al., 2016).

Several studies investigated the long-term influence of
normal variation in fetal life on later IC efficiency based on
analysis of the sulcal pattern of the dorsal anterior cingu-
late cortex (ACC). Indeed, ACC is a critical region of the
executive network and is constantly activated during IC
tasks (Bush et al., 2000; Alvarez and Emory, 2006; Pe-
tersen and Posner, 2012). In addition, the ACC presents
two qualitatively distinct sulcal patterns (Ono et al., 1990)
that can be easily and reliably classified with structural
magnetic resonance imaging (MRI; Paus et al., 1996). An

asymmetrical sulcal pattern of the ACC was found to be
associated with higher IC efficiency in children at age 5
(Cachia et al., 2014) and 9 (Borst et al., 2014) as well as in
adults (Fornito et al., 2004; Huster et al., 2009). However,
because the sulcal anatomy is very variable (Ono et al.,
1990) and complex to analyze, to date, previous studies
have only investigated the effect of a single region of the
IC neural network on IC efficiency. It is therefore unknown
whether the effect of sulcal anatomy on IC efficiency is
region specific. A good candidate to test this hypothesis
is the inferior frontal cortex (IFC). Indeed, functional neu-
roimaging studies have consistently associated IC effi-
ciency with the activity of the IFC from childhood to
adulthood (for meta-analysis, see Laird et al., 2005).

In this context, the aim of this study was threefold: (1) to
replicate previous findings that the sulcal pattern of the
ACC affects IC efficiency; (2) to determine whether the
sulcal pattern of the IFC also contributes to IC efficiency;
and (3) to investigate whether the effects of the sulcal
pattern of the ACC and of the IFC are affected by age. In
light of the effect of the ACC sulcal pattern asymmetry on
IC efficiency reported in previous studies, we anticipated
that asymmetric IFC and ACC sulcal patterns would be
associated with higher IC efficiency as measured by per-
formance in the color-word Stroop task. The specificity of
the potential effects of the IFC and ACC sulcal pattern on
IC efficiency was determined by testing whether the sulcal
pattern of a cortical area not related to IC efficiency, i.e.,
the occipito-temporal cortex (OTC), affected participants’
IC efficiency. Additionally, we investigated whether the
effects of the sulcal patterns of the IFC and ACC on IC
efficiency varies with age by comparing these effects in
children and adults. Finally, given that we used the sulcal
pattern of the IFC as a proxy for early cerebral constraints
on later IC development, we first investigated whether the
IFC sulcal pattern was affected by development in our
sample by comparing the frequency distribution of the IFC
sulcal pattern in children and adults. We reasoned that if
the sulcal pattern truly reflects early regional cerebral
constraints on cognitive development, then it should not
be affected by age, in line with the stability of the ACC
sulcal pattern with age previously reported (Cachia et al.,
2016). We further investigated the stability of the IFC sulcal
pattern from an independent sample of healthy participants
with repeated MRI at different ages.

Materials and Methods
Participants

The participants consisted of 19 children (M � 10.5 �
0.87 years old, age range � [9.46:11.89], 10 males) from
a public preschool in a location that will be identified if the
article is published and 19 young adults (M � 22.2 � 2.49
years old, age range � [19.05:26.72], 10 males) from the
same area. All subjects were right-handed as determined
by the Edinburgh Handedness Inventory (Oldfield, 1971).
They had no history of neurologic disease and no cerebral
abnormalities. All participants provided written consent,
or parental/guardian written consent was obtained, which
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permitted us to enroll the children in the study. All partic-
ipants were tested in accordance with the national and
international norms that govern the use of human research
participants. The ethics committee of CPP Nord-Ouest III,
France approved our study.

Behavioral assessment
The participants’ IC efficiency was assessed using the

color-word Stroop task, a classic and broadly used experi-
mental paradigm to measure IC abilities (Stroop, 1935; Ma-
cleod, 1991). In this task, participants are asked to name
either the color of rectangles (the no-conflict condition) or
the color of the ink of printed words that denote colors
incongruent with the color of the ink (the conflict condition,
e.g., “GREEN” printed in blue). In the conflict condition,
participants require IC to resolve the conflict between the
task-irrelevant information (the color denoted by the word)
and the task-relevant information (the ink color).

In each condition, participants denominated the color
of 50 items (split over five columns). We used red, green,
blue, and yellow (RGB codes 255;0;0, 0;255;0, 0;0;255,
and 255;255;0, respectively) for the colors of the rectan-
gles and for the ink colors. Participants were instructed to
perform the task as quickly as possible without errors.
Reaction times (RTs) were recorded independently for
each of the two conditions. For each participant, we
computed the Stroop interference score defined as the
difference in RT between the conflict and no-conflict con-
ditions. A higher Stroop interference score revealed a
lower IC efficiency.

MRI acquisition
MRIs were acquired at the Cyceron biomedical imaging

platform (Caen, France, www.cyceron.fr) using the
SENSE parallel imaging technique and a 3T MRI scanner
(Archieva, Philips Medical System) with an eight-channel
phase array head coil. Structural images were acquired in
the sagittal plane with a 3D ultrafast spoiled gradient echo
with magnetization preparation sequence. The acquisition
parameters were as follows: repetition time � 20 ms;
echo time � 4.6 ms; flip angle � 10°; field of view �
256 � 256 mm; matrix size � 256 � 256; slice thickness �
1 mm (voxel size� 1 � 1 � 1); 1 excitation; 180 slices; 252
multishots. The total running time was 9 min 41 s. The
same imaging protocol was applied to children and
adults. Before the scans, the children were familiarized
with the machine’s noise in a MRI mock scanner and were
trained not to move during the acquisitions. To reduce
motion, the children passively watched a cartoon on an
MRI-compatible screen, which also provides a positive
experience (Lemaire et al., 2009).

MRI analysis
The MRI analysis was performed with BrainVISA 4.2

software (RRID:SCR_007354; http://brainvisa.info) using
the Morphologist toolbox (RRID:SCR_013248) with stan-
dard parameters. An automated pre-processing step was
employed to skull-strip T1 MRIs and to segment the brain
tissue. The MRI data were spatially linearly normalized to
MNI space to control for age-related global differences in
brain size. Only linear transformations were used to avoid

potential biases resulting from the shape deformations
that may occur during the non-linear warping process.
Throughout the cortex, the cortical folds were automati-
cally segmented from the skeleton of the gray matter/
cerebrospinal fluid mask. The cortical folds corresponded
to the crevasse bottoms of the “landscape,” the altitude of
which is defined by its intensity on the MRIs. This proce-
dure provided a constant and strong sulcal surface defi-
nition that was not influenced by variations in cortical
thickness or the gray matter/white matter contrast (Mangin
et al., 2004). We visually examined the images at each
processing step and for each MRI. No segmentation errors
and no motion artifacts were detected.

Sulcal pattern classification
We classified the sulcal patterns of the dorsal part of

the ACC and of the IFC (Fig. 1) as well as of the lateral
OTC (Fig. 2) in each participant based on Ono’s classifi-
cation (Ono et al., 1990). The individuals’ 3D mesh-based
reconstruction of the cortical folds was visually inspected
to classify the sulcal pattern. All MRI data were anony-
mized, and the ACC and IFC sulcal patterns were inde-
pendently classified by two of the coauthors (CT, AL).
Labeling of the sulcal pattern in a cortical region (ACC,
IFC, or OTC) was done blinded to possible confounding
information, including the participant’s age and sulcal
pattern in another region (ACC, IFC, or OTC). A sulcal
pattern was considered “symmetric” when it was identical
in both hemispheres and “asymmetric” when it differed
across hemispheres.

ACC classification
The ACC sulcal pattern was categorized in two types:

“single type” or “double parallel type” (Ono et al., 1990)
depending on the absence or presence of a paracingulate
sulcus (PCS), which is a variable secondary sulcus (Paus
et al., 1996; Fig. 1). The PCS was defined as located dorsal
to the cingulate sulcus with a course clearly parallel to the
cingulate sulcus (Paus et al., 1996; Yücel et al., 2001). To
reduce ambiguity from the confluence of the PCS and the
cingulate sulcus with the superior rostral sulcus, we de-
termined the anterior limit of the PCS as the point at which
the sulcus extends posteriorly from an imaginary vertical
line running perpendicular to the line passing through the
anterior and posterior commissures (AC-PC; Yücel et al.,
2001). The PCS was considered absent if there was no
clearly developed horizontal sulcal element parallel to the
cingulate sulcus and extending at least 20 mm (interrup-
tions or gaps in the PCS course were not taken into
account for the length measure). PCS length was mea-
sured in a standard (MNI) space so that the same criterion
could be used in children and adults.

IFC classification
The IFC sulcal pattern was categorized in two types,

“interrupted” and “continuous” (Ono et al., 1990), based
on the presence or absence (i.e., continuous sulcus) of an
interruption of the inferior frontal sulcus (Fig. 1). Identification
of the inferior frontal sulcus was based on Destrieux’s prac-
tical guide for the identification of sulcogyral structures
(Destrieux et al., 2016). Briefly, the inferior frontal sulcus is
a horizontal sulcus running dorsal to the anterior segment

New Research 3 of 14

January/February 2018, 5(1) e0197-17.2018 eNeuro.org

http://www.cyceron.fr
https://scicrunch.org/resolver/SCR_007354
http://brainvisa.info
https://scicrunch.org/resolver/SCR_013248


of the lateral fissure. Dorsally, the inferior frontal sulcus
limits the inferior frontal gyrus, and posteriorly, it connects
at a right angle to the inferior segment of the precentral
sulcus. After a horizontal course, the inferior frontal sulcus
anteriorly takes a descending and then more or less pos-
terior direction. The inferior frontal sulcus may be con-
nected to the precentral sulcus.

OTC classification
The lateral OTC was categorized in two types, inter-

rupted and continuous (Ono et al., 1990), based on the
presence or absence (i.e., continuous sulcus) of an inter-
ruption of the occipito-temporal sulcus (Ono et al., 1990;
Borst et al., 2016; Cachia et al., 2017). We distinguished
anterior and posterior OTC interruptions (Cachia et al.,
2017), with “posterior interruption” corresponding to an
interruption located in the posterior part of the sulcus,
hosting the visual word form area (VWFA; Vinckier et al.,
2007; Dehaene and Cohen, 2011) and the “anterior” in-
terruption corresponded to the anterior part of the sulcus
(Fig. 2). We a priori focused on the anterior part of OTC
since the posterior part of the left OTC hosting the VWFA,
but not the anterior part of the left OTC, contributes to
reading skills (Cachia et al., 2017), skills which are in-
volved in the Stroop task used to evaluate IC efficiency.
We used an anatomic criterion, namely the y-coordinate
of the posterior extremity of the brainstem (PEB), as a
limit to define the anterior and posterior interruptions of
the left and right OTC. The functional validity of this
anatomic criterion, which can accurately and reliably

demarcate the VWFA in the left OTC, was previously
established (Cachia et al., 2017). In addition, such an-
atomic criterion can be similarly used in the left and
right OTC, a critical issue to evaluate the left-right
asymmetry of OTC sulcal pattern.

Longitudinal stability of the IFC sulcal pattern
The stability of the sulcal pattern of the IFC from child-

hood to adulthood was directly tested using a longitudinal
design based on an independent sample with multiple
individual MRI scans acquired at different ages. A total of
50 MRI scans of twelve healthy participants (age range:
8.2-27.8 years old; age at first scan: 8.2–11.7 years old;
age at latest scan: 15.4–27.8 years old) were selected
from a prospective longitudinal study on brain develop-
ment at the National Institute of Mental Health (NIMH);
details on participant recruitment and MRI acquisition can
be found in (Giedd et al., 1999). Participants were se-
lected based on the following criteria: (1) the first MRI
scan should be acquired before 10 years old; (2) there
should be at least three longitudinal MRI scans for the
participant; and (3) there should be no gross sulcal seg-
mentation artifact in both left and right prefrontal cortices.
The individual IFC sulcal patterns were then randomly and
separately classified for each MRI scan. Classification of
IFC sulcal pattern was done blinded to possible con-
founds, including the label of the IFC sulcal pattern in the
contralateral hemisphere and in the other time points.

Figure 1. Sulcal patterns of the ACC and the IFC. Left panel, The two ACC sulcal patterns: single type, with only the cingulate sulcus
(yellow); and double parallel type, with an additional PCS (blue). Right panel, The two IFC sulcal patterns: with a continuous sulcus
or with a sulcus with an interruption (black arrow). The sulci are represented on the cortical surface (gray/white interface).
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Statistical analysis
To determine whether the sulcal symmetry of the IFC

and ACC was associated with IC efficiency as measured
by RTs on the Stroop task, we used a linear model with
one categorical within-subject factor, the Stroop condi-
tion (“conflict” vs “no-conflict”), and four categorical
between-subject factors: the IFC sulcal pattern (symmet-
ric vs asymmetric), the ACC sulcal pattern (symmetric vs
asymmetric), the age group (“children” vs “adults”), and
the gender (“female” vs “male”). Specifically, we imple-
mented the mixed-effect linear model using repeated-
measures MANOVA (Fox and Weisberg, 2010) as detailed
below (R syntax):

CONDITION � rbind(’incongruent’,’congruent’)

idata �- data.frame(CONDITION)

lm.model �- lm(cbind(RT_Stroop_Incongruent, RT_Stroop_Congruent)
� (IFC_Asymetry � ACC_Asymetry) � AgeGroup � Sex)

Anova(lm.model, idata�idata, idesign��CONDITION)

Analyses a priori included gender as a covariable be-
cause gender was previously shown to have a potential
effect on sulcal anatomy (Duchesnay et al., 2007). The
interaction between ACC sulcal pattern (two categories)
and IFC sulcal pattern (two categories) was not entered
into the model due to the restricted number of partici-
pants in each of the four categories. To evaluate the
specificity of the effects of the ACC and IFC sulcal pat-
terns on IC efficiency, the same analyses were performed
again but replacing ACC and IFC factors by a factor
related to OTC sulcal pattern (symmetric vs asymmetric).

Main effects and interactions in the linear model were
probed with F tests derived from Pillai’s trace value. A
two-tailed p � 0.05 was considered statistically signifi-

cant. The relative importance of each factor in the linear
model was estimated using the “lmg” metric, which is also
known as “hierarchical partitioning” (Grömping, 2015).
Using this approach, we could decompose the total vari-
ance (adjusted R2) of the Stroop interference score
(RTconflict condition – RTnonconflict condition) in four independent
sources of variability related to the four factors of the
model, i.e., ACC asymmetry, IFC asymmetry, sex, and
age. Of note, lmg metric has the advantage to provide a
robust estimation of the part of variance explained by
each factor, while controlling for possible shared variance
with other factors in the model (Grömping, 2015). The
95% confidence intervals (CIs) for relative importance was
estimated using 1000 bootstrap replicates. All the statis-
tical analyses were conducted with R 2.9 software (http://
www.r-project.org/; RRID � SCR_001905) and “car,”
“effects,” “nnet,” “multcomp,” “lattice,” “relaimpo,” “pwr,”
and “heplots” libraries.

Results
Age effect on the frequency distribution of ACC and
IFC sulcal patterns

As anticipated, there was no frequency distribution dif-
ference between children and adults in the sulcal patterns
of the left and right ACC or in the sulcal patterns of the left
and right IFC (Table 1). The observed power value of the
statistical tests is reported in Table 2.

The complementary analysis of the NIMH sample of
healthy participants with repeated scan acquisitions at
different ages revealed that the IFC sulcal pattern in the
left and right hemispheres remained, without exception,
the same at each time point (Fig. 3). The longitudinal
stability of the left and right, as well as the left-right

Figure 2. Sulcal patterns of the lateral OTC. Left hemisphere with an anterior interruption (left panel), a posterior interruption (middle
panel), or a continuous sulcus. Sulcus are depicted in blue and the sulcal interruption with a red arrow. The PEB (dashed line) was
used as a limit to define the anterior and posterior interruptions.
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asymmetry, of the IFC sulcal pattern was therefore of
100%.

In addition, ACC sulcal pattern symmetry was not cor-
related with IFC sulcal pattern symmetry, �2(1) � 0.259,
pg � 0.61.

Effects of sulcal pattern variability on IC efficiency
The analysis of the RTs, based on the linear model with

as within subject factor the Stroop condition and as
between-factors the IFC and ACC sulcal pattern as well
as age group and gender, revealed a classic color-word
Stroop effect, with the participants being slower in the
conflict (M � 54.1 � 19.1 s) than in the no-conflict (M �
30.8 � 7.8 s) condition, F(1,33) � 388.02, ph � 2.2 � 10�16,
�2

p � 0.92. The children (M � 52.6 � 20.3 s) were overall
slower than the adults (M � 32.3 � 9.0 s), F(1,33) � 46.50,
pi � 8.8 � 10�8, �2

p � 0.58. The main effect of gender was
not significant, F(1,33) � 1. We found a significant interac-

tion between Stroop condition and age group, with a
larger difference in RTs between the conflict and the
no-conflict conditions for children (M � 69.0 � 15.2 s and
M � 36.3 � 6.8 s, respectively) than for adults (M � 39.1 �
7.1 s and M � 25.4 � 4.0 s, respectively), F(1,33) �
52.51, pj � 2.6 � 10�8, �2

p � 0.61. The interaction
between Stroop condition and gender was not signifi-
cant, F(1,33) � 1.

The main effects of IFC sulcal pattern symmetry, F(1,33) �
1.22, pk � 0.28, and ACC sulcal pattern symmetry, F(1,33) �
1.78, pl � 0.19, were not significant. However, as ex-
pected, the difference in RTs between the conflict and the
no-conflict conditions (i.e., the Stroop effect) was greater
for participants with symmetric IFC sulcal patterns (M �
53.5 � 20.8 s and M � 30.0 � 8.4 s, respectively) than for
participants with asymmetric IFC sulcal patterns (M �
55.4 � 15.2 s and M � 33.0 � 5.5 s, respectively), F(1,33) �
5.58, pm � 0.024, �2

p � 0.14 (Fig. 4). Similarly, the differ-

Table 1. Frequency distribution of the sulcal patterns of the ACC and the IFC in children and adults

Children
(N � 19)

Adults
(N � 19)

Total
(N � 38) Children vs adults

ACC Left Single 3 4 7 � � 0.17; pa � 0.67
Double parallel 16 15 31

Right Single 9 13 22 � � 1.72; pb � 0.19
Double parallel 10 6 16

Asymmetry Symmetry 7 2 9 � � 3.64; pc � 0.06
Asymmetry 12 17 29

IFC Left Interrupted 7 3 10 � � 2.17; pd � 0.14
Continuous 12 16 28

Right Interrupted 5 4 9 � � 0.14; pe � 0.70
Continuous 14 15 29

Asymmetry Symmetry 11 16 27 � � 3.19; pf � 0.07
Asymmetry 8 3 11

Table 2. Statistical table

Analyses Variable Test
Data
structure

Type
of test Power

ACC distribution in children and adults Left pattern a Binomial �2 test 0.07
Right pattern b Binomial �2 test 0.26
Pattern asymmetry c Binomial �2 test 0.33

IFC distribution in children and adults Left pattern d Binomial �2 test 0.31
Right pattern e Binomial �2 test 0.07
Pattern asymmetry f Binomial �2 test 0.29

Correlation IFC and ACC Pattern asymmetry g Binomial �2 test 0.08
Stroop RT and IFC and ACC Condition: conflict vs non-conflict h Normal F test 0.99

Age: children vs adults i Normal F test 0.99
Interaction: condition � age j Normal F test 0.99
IFC: asymmetry vs symmetry k Normal F test 0.18
ACC: asymmetry vs symmetry l Normal F test 0.25
Interaction: IFC asymmetry � condition m Normal F test 0.57
Interaction: ACC asymmetry � condition n Normal F test 0.51
Interaction: ACC asymmetry � age �

condition
o Normal F test 0.15

Interaction: IFC asymmetry � age �
condition

p Normal F test 0.05

Stroop RT and Complexity Complexity q Normal F test 0.15
Interaction: complexity � age r Normal F test 0.15
Interaction: complexity � condition s Normal F test 0.22
Interaction: complexity � condition � age t Normal F test 0.05

Stroop RT and OTC Interaction: OTC asymmetry � condition u Normal F test 0.17
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Figure 3. Longitudinal stability of the sulcal pattern (continuous or interrupted) of the IFC (in purple) in the left and right hemispheres.
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ence in RTs between the conflict and the no-conflict
conditions was greater for participants with symmetric
ACC sulcal patterns (M � 68.4 � 23.0 s and M � 34.6 �
10.3 s, respectively) than for participants with asymmetric
ACC sulcal patterns (M � 49.6 � 15.7 s and M � 29.7 �
6.6 s, respectively), F(1,33) � 4.69, pn � 0.038, �2

p � 0.12
(Fig. 4). IFC and ACC sulcal pattern asymmetry explained
3.0% (95% CI � [0.9–10.5]) and 13.7% ([1.5–31.5]), re-
spectively, of the variance in Stroop interference scores
(for the cumulative effect of IFC and ACC sulcal pattern
asymmetry, see Fig. 5).

We found no triple interaction between Stroop condition,
age group and ACC sulcal pattern asymmetry, F(1,31) � 1,
po � 0.36, �2

p � 0.02, or between Stroop condition, age
group and IFC pattern asymmetry, F(1,31) � 1, pp � 0.88,
�2

p � 0.0007, suggesting that the effect of ACC and IFC
sulcal pattern asymmetry on the difference in RTs between
the conflict and the no-conflict conditions in the color-word
Stroop task was similar in children and adults.

Because double parallel ACC and interrupted IFC
sulcal patterns represent higher complexity than single
ACC and continuous IFC sulcal patterns, we tested the
hypothesis that sulcal pattern complexity may be an
alternative explanation to sulcal pattern asymmetry. To
determine whether complexity may also explain IC ef-
ficiency, we tested a complementary model adding a
numeric between-subject covariate related to the sulcal
complexity, ranging from 0 (single ACC and continuous

IFC sulcal pattern) to 4 (double parallel ACC and inter-
rupted IFC sulcal pattern), into the initial model. The
main effect of complexity was found to be not signifi-
cant (F(1,29) � 1.16, pq � 0.29, �2

p � 0.03), there was no
interaction between complexity and age groups (F(1,29) �
1.03, pr � 0.32, �2

p � 0.03), no interaction between com-
plexity and Stroop condition (F(1,29) � 1.73, ps � 0.19,
�2

p � 0.05) and no triple interaction between complexity,
Stroop condition and age group (F(1,29) � 0.00, pt � 0.95,
�2

p � 0.0001).
Finally, analysis of the sulcal pattern of the anterior part

of the OTC, a cortical area not related to IC efficiency,
indicated that, as expected, the interaction between Stroop
condition and asymmetry of the OTC sulcal pattern was
not significant (F(1,33) � 0.00, pu � 0.99). Furthermore,
OTC sulcal pattern asymmetry was found to explain only
0.08% ([0.08–9.7]) of the variance in Stroop interference
scores.

Discussion
Our study provides the first evidence that the sulcal

patterns of two regions of the IC network, namely, the
dorsal ACC and the IFC, affect IC efficiency. Interestingly,
we found the same effect of the ACC and IFC sulcal
patterns on IC in children and adults, in line with the
notion that the sulcal pattern is an anatomic trait marker of
cognition (Borst et al., 2016; Cachia et al., 2016). Our
findings replicate previous studies of ACC sulcal patterns

Figure 4. Inhibitory control efficiency and asymmetry of the IFC and ACC sulcal patterns. RTs of Stroop interference scores in
participants with a symmetrical sulcal pattern (same pattern in both hemispheres; dark gray) or an asymmetrical sulcal pattern
(different pattern in each hemisphere; hatched gray). Error bars denote the SEM. Data were linearly adjusted based on age and
gender; �p � 0.05.

New Research 8 of 14

January/February 2018, 5(1) e0197-17.2018 eNeuro.org



and IC efficiency (Fornito et al., 2004; Huster et al., 2009;
Borst et al., 2014; Cachia et al., 2014) and extend them to
another cortical region, namely, the IFG. Finally, we found
that the frequency distribution of the sulcal patterns of the
ACC and IFC was similar across ages. Because there
were trends toward differences in sulcal pattern asymme-
try between adults and children, we performed a comple-
mentary analysis to confirm the stability of IFC sulcal
pattern during development. Using a longitudinal design
from an independent sample of healthy participants with
repeated scan acquisitions at different ages, we found
that individual sulcal patterns of the left and the right IFC
remain stable during development. These results are con-
sistent with a previous longitudinal study showing stability
of the ACC sulcal pattern throughout development (Ca-
chia et al., 2016). Taken together, such findings provide
further evidence that interindividual differences in IC effi-
ciency partly arise from the fetal stages of brain develop-
ment, when the sulcal patterns of the ACC and IFC are
determined (Chi et al., 1977; Cachia et al., 2016) under the
effects of genetic and environmental factors (Dehay et al.,
1996; Molko et al., 2003; Rakic, 2004; White et al., 2010;
Barkovich et al., 2012). Such analysis of long-term effect
of fetal life on later IC efficiency complement findings from
previous studies suggesting that individual differences in
IC efficiency were related to individual differences in the
volume, surface or cortical thickness of the ACC and of
the IFC (Casey et al., 1997; Tamnes et al., 2010; Fjell et al.,

2012; Takeuchi et al., 2012; Kharitonova et al., 2013),
which constitute typical markers of neuroplasticity (Za-
torre et al., 2012). The precise mechanism underlying
cortical folding is still unknown. However, several factors
likely contribute to the prenatal processes that influence
the shape of the folded cerebral cortex, including cor-
tical growth (Kuida et al., 1996; Haydar et al., 1999;
Chenn and Walsh, 2002; Toro and Burnod, 2005), ap-
optosis (i.e., programmed cell death; Haydar et al.,
1999), differential expansion of superior and inferior
cortical layers (Richman et al., 1975; Kriegstein et al.,
2006), differential tangential expansion (Ronan et al.,
2014), and/or structural connectivity through axonal
tension forces (Dehay et al., 1996; Hilgetag and Barbas,
2006; Van Essen, 1997).

The lack of correlation between the frequency distribu-
tion of IFC and ACC sulcal patterns might be associated
with the specific functional role of the ACC (Ebitz and
Hayden, 2016; Kolling et al., 2016; Shenhav et al., 2016)
and the IFG (Aron et al., 2014; Swick and Chatham, 2014)
in IC. The ACC is classically associated with cognitive
control (Shackman et al., 2011; Petersen and Posner,
2012; Shenhav et al., 2013), including conflict monitoring
(Carter et al., 1998; Botvinick et al., 1999, 2001, 2004; van
Veen et al., 2001; Kerns et al., 2004). During the Stroop
task, the ACC can be viewed as a central executive
system (Peterson et al., 1999) that monitors ongoing pro-
cessing and signals conflict between potential responses

Figure 5. IC efficiency and global asymmetry of the sulcal patterns. RTs of Stroop interference scores in participants with
non-asymmetric sulcal pattern (0: IFC and ACC sulcal patterns are not asymmetric), one asymmetric sulcal pattern (1: IFC or ACC
sulcal patterns are asymmetric), or two asymmetric sulcal pattern (2: IFC and ACC sulcal patterns are asymmetric). Error bars denote
the SEM. Data were linearly adjusted based on age and gender; �p � 0.05.
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and indicates the need for additional cognitive resources
to the cognitive control system sustained by the dorso-
lateral prefrontal cortex (Egner and Hirsch, 2005). A recent
integrative theory proposes that ACC activity is involved
not only in cognitive control but also in evaluation and
motivation (Shenhav et al., 2013, 2016). Such a model
helps specify the currently optimal allocation of control by
establishing the overall expected value of control. Several
functional roles have been attributed to the IFG. For in-
stance, the IFC has been associated with selective atten-
tion processes (Kemmotsu et al., 2005), controlling
competing responses and refocusing attention on rele-
vant stimulus features (Zysset et al., 2001). The IFC, and
particularly the inferior frontal junction, might also be
critical for updating task representations (Brass et al.,
2005; Derrfuss et al., 2005). During motor response inhi-
bition, Aron et al. (2004, 2014) considered the right IFC as
a brake that can be activated in different modes (i.e.,
totally, to stop a response; or partially, to pause) and in
different contexts (i.e., externally, by stop or noticeable
signals; or internally, by goals). Subregions of the right IFC
might also be involved in a broad but distinct aspect of
task-oriented processing (Hampshire et al., 2010, 2012;
Hampshire, 2015). This study focused on a single cogni-
tive domain (IC) assessed with a single test (Stroop task).
It was therefore not possible to directly test the specificity
of the observed relationship between ACC and IFC sulcal
patterns and IC efficiency. It is important to note, how-
ever, that previous studies have provided evidence that
the effects of the ACC sulcal patterns were specific to IC
efficiency (Borst et al., 2016; Cachia et al., 2016). That
said, we found that the sulcal pattern of the anterior part
of the OTC, a cortical area not directly involved in IC, did
not affect participants’ IC efficiency in the present study
providing evidence in favor of the specificity of the effects
of the sulcal pattern of the ACC and IFC on IC efficiency.
Finally, we note that it would be interesting to investigate
whether the sulcal pattern of other prefrontal brain regions
involved in IC also contribute to IC efficiency. A good
candidate might be the orbitofrontal cortex (OFC) essen-
tially because its sulcal pattern variants are clearly docu-
mented (Nakamura et al., 2007). However, we could not
directly test the possible effect of OFC sulcal pattern on
IC efficiency in the current study because the OFC seg-
mentation and the 3D mesh-based rendering was not
good enough, likely because of acquisition artifacts
related to MRI signal decrease due to sinus air/bone
interface, to reliably distinguish the different OFC sulcal
patterns, i.e., connection, or not, of the medial and lateral
orbital sulci.

Our finding of additive effects of IFC and ACC sulcal
patterns on IC efficiency suggests that distinct early neu-
rodevelopmental mechanisms targeting different brain re-
gions likely contribute to IC efficiency. This interpretation
is in line with a recent study of schizophrenia showing that
IC variability may be the final common pathway of several
early neurodevelopmental mechanisms (Gay et al., 2016).
This view shares some analogies with the “common vari-
ant–small effect” model in genetics (Bodmer and Bonilla,
2008). This classic genetic model of complex and multi-

factorial conditions (e.g., psychiatric or cardiovascular
disorders) states that frequent genetic polymorphisms
(e.g., single-nucleotide polymorphisms; SNP) have small
effects but collectively account for a large portion of the
variance. Similarly, each sulcal polymorphism has a small
but additive effect: the IFG and ACC sulcal patterns ex-
plain, respectively, around 3% and 14% of the variance of
the Stroop interference scores. The large CIs for the
relative importance of IFG and ACC are likely related to
the relatively small sample size. Of note, the lower bond of
the CI related to IFG was strictly 	0, thus providing
evidence that the contribution of IFG while being limited is
not null. In addition, it is important to note that the sulcal
pattern in a cortical area not directly involved in IC (i.e., the
anterior part of the OTC) contribute to 0.08% of the
variance of IC versus 3% of the variance explained by
the sulcal pattern of the IFC. Although analogy has well-
known limitations (Hofstadter and Sander, 2013), it allows
for the generation of original models derived from one
domain and translated to another domain. Following this
analogy, some properties of the genetic polymorphisms
could be translated to the sulcal polymorphisms. For
instance, the genetic notion that human cells have two
homologous copies/alleles of each gene (diploidy) is very
close to the neural notion that the cortical sulci have two
homologous copies in each hemisphere. Genetic zygosity
and heterozygosity (same or different gene alleles) is
therefore analogous to sulcal symmetry and asymmetry
(same or different sulcal pattern in left and right hemi-
spheres). In addition, the recent finding of a specific ab-
normal sulcal pattern in the central/precentral region in
type 2 focal cortical dysplasia (Mellerio et al., 2015) sug-
gests that in addition to the common variant–small effect
model, the “rare variant–high effect” genetic model may
also be relevant for understanding sulcal polymorphisms.

Although our findings are suggestive of a causal role of
sulcation in determining later IC efficiency, a direct causal
link has yet to be established. A longitudinal study with
long-term follow-up from birth, or young age, to adult-
hood, a period of major IC efficiency change (Luna et al.,
2004; Luna, 2009), could provide such evidence. It would
also be informative to follow individual children (for re-
view, see Diamond, 2013) or adults (Diamond, 2013;
Maraver et al., 2016; Zhao et al., 2016) during intense
short-term training of IC and to investigate the possible
modulatory effect of the ACC and IFC sulcal patterns on
the receptivity to IC training, namely whether cognitive
changes after IC training are different, or not, in partici-
pants with different ACC and IFC sulcal patterns. The
sulcal patterns is a feature robust to neuroplastic pro-
cesses underlying brain development (Chi et al., 1977;
Cachia et al., 2016) and thus should not be modified by IC
training. This interpretation is consistent with the findings
that the sulcal pattern of the left lateral OTC (Cachia et al.,
2017), a cortical region hosting the VWFA and associated
with reading skills in children (Borst et al., 2016) and
adults (Cachia et al., 2017) is not affected by learning to
read which typically requires an intense and protracted
cognitive training.
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In addition, the physiologic mechanisms underlying the
association of IC efficiency and sulcal pattern asymmetry
are not straightforward. This association is likely mediated
by the effect of sulcal pattern on the functional brain
activity (Crosson et al., 1999; Artiges et al., 2006; Amiez
et al., 2013). For instance, functional MRI activation during
an interference task was found to be left-sided in subjects
with double-parallel type ACC, and right-sided in subjects
with single type ACC (Artiges et al., 2006). Several studies
have also reported a correlation between the shape of the
folded cerebral cortex and the underlying structural con-
nectivity through axonal tension forces (Dehay et al.,
1996; Van Essen, 1997; Hilgetag and Barbas, 2006; Leon-
ard et al., 2009). Therefore, we speculate that the differ-
ences in IC efficiency observed in children and adults with
symmetrical versus asymmetrical sulcal patterns might be
associated with differences in brain network efficiency
due to differences in interhemispheric brain connectivity.
Increased cognitive efficiency in asymmetric brains might
be associated with hemispheric specialization, as it is
more efficient to transfer information between close areas
within the same hemisphere than between distant areas
distributed across the two hemispheres (Toga and Thomp-
son, 2003; Deary et al., 2010). In addition, asymmetry
might enhance the specialization of neural substrates by
limiting useless replication of identical circuits in both
hemispheres (Levy, 1977) and decrease conflict between
the two hemispheres (Concha et al., 2012). Such an as-
sociation between hemispheric specialization and brain
asymmetry is supported by anatomic studies of the cor-
pus callosum (i.e., a large bundle of interhemispheric
fibers) that showed that asymmetrical brains have fewer
and/or thinner fibers connecting the two hemispheres
than more symmetrical brains, as revealed by a reduced
midsagittal area (Witelson, 1985) and microstructural in-
tegrity measured using diffusion MRI (Putnam et al.,
2008). Individuals with no corpus callosum (i.e., complete
agenesis) exhibit an intact Stroop interference effect
(Brown et al., 2001), suggesting that the processes in-
volved in performing the Stroop task are highly lateralized
in the brain. In this context, further investigation of the
influence of the lateralization of the sulcal pattern (i.e.,
whether double parallel ACC or interrupted IFC is present
in the right or left hemisphere in asymmetric sulcal pat-
terns) on IC efficiency on large sample could provide
interesting insights. Such analysis could not be performed
in the current study because the unbalanced distribution
of leftward and rightward asymmetries led to a very lim-
ited number of participants in some categories (e.g., N �
1 adult with rightward IFC asymmetry, N � 2 adults with
leftward IFC asymmetry, N � 3 children with rightward
ACC asymmetry). Finally, an alternative interpretation of
the increased IC efficiency found in participant with asym-
metric sulcal patterns relies on the increased complexity
of asymmetric sulcal patterns. Indeed, although the
formal definition of sulcal pattern complexity is not
straightforward, one can argue that double parallel ACC,
or interrupted IFC, represent higher complexity, in terms
of increased number of folds, than single ACC, or contin-
uous IFC. This alternative hypothesis was ruled out in the

present study as suggested by the lack of significant
effect of the complexity of the sulcal pattern of these two
cortical areas on IC efficiency. However, it is important to
note that the values of the complexity covariate were not
equally distributed (17 participants with a complexity of 1,
15 with a complexity of 2, five with a complexity of 3, and
one with a complexity of 4) and may have biased and/or
limited the power of the statistical analysis which should
therefore be replicated in a larger sample for confirmation.

In conclusion, this study provides the first evidence that
sulcal polymorphisms in the ACC and the IFG comple-
mentarily contribute to variability in IC efficiency in chil-
dren and adults, suggesting that IC variability may be the
final common pathway of several early neurodevelopmen-
tal mechanisms targeting different cortical areas.
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