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Determinantal Point Processes for Coresets

Nicolas Tremblay, Simon Barthelmé, and Pierre-Olivier Amblard

Abstract. When one is faced with a dataset too large to be used all at once, an obvious solution is to retain only

part of it. In practice this takes a wide variety of different forms, but among them “coresets” are especially appealing.

A coreset is a (small) weighted sample of the original data that comes with a guarantee: that a cost function can be
evaluated on the smaller set instead of the larger one, with low relative error. For some classes of problems, and via

a careful choice of sampling distribution, iid random sampling has turned to be one of the most successful methods

to build coresets efficiently. However, independent samples are sometimes overly redundant, and one could hope that
enforcing diversity would lead to better performance. The difficulty lies in proving coreset properties in non-iid samples.

We show that the coreset property holds for samples formed with determinantal point processes (DPP). DPPs are

interesting because they are a rare example of repulsive point processes with tractable theoretical properties, enabling
us to construct general coreset theorems. We apply our results to the k-means problem, and give empirical evidence of

the superior performance of DPP samples over state of the art methods.

1. Introduction

Given a learning task, if an algorithm is too slow on large datasets, one can either speed up the
algorithm or reduce the amount of data. The theory of “coresets” gives theoretical guarantees on the
latter option. A coreset is a weighted sub-sample of the original data, with the guarantee that for any
learning parameter, the task’s cost function estimated on the coreset is equal to the cost computed
on the entire dataset up to a controlled relative error.

An elegant consequence of such a property is that one may run learning algorithms solely on the
coreset, allowing for a significant decrease in the computational cost while guaranteeing a controlled
error on the learning performance. There are many algorithms that produce coresets (see for in-
stance [1–4]), with some tailored for a specific task (such as k-means, k-medians, logistic regression,
etc.), and others more generic [5]. Also, note that there are coreset results both in the streaming
setting and the offline setting: we choose here to focus on the offline setting. The state of the art
for many problems consists in tailoring a sampling distribution for the dataset at hand, and then
sampling iid from that distribution [4, 6, 7]. However, iid samples are generally inefficient, as an iid
process is ignorant of the past, and thus liable to sample similar points repeatedly. An avenue for
improvement is to produce samples that are less redundant than what iid sampling produces.

DPPs are known to produce diverse samples, and their theoretical properties are well-known [8].
We show here that DPPs can be used to produce diverse samples with the coreset property. Our
theorems are quite generic, and assume mostly that the cost functions under study are Lipschitz. We
have two main lines of argument: the first is that DPPs do indeed produce coresets, and the second
is that DPPs should produce better coresets (than iid methods) if one uses the right marginal kernel
to define the DPP. We apply our results to the k-means problem, for which the optimal marginal
kernel is unfortunately out of reach. We nevertheless argue that a tractable approximation based on
a Gaussian kernel and Random Fourier Features can work well in practice and show that it improves
over the state of the art on various artificial and real-world datasets.

1.1. Related work

Various coreset construction techniques have been proposed in the past. We follow the recent review [9]
to classify them in four categories:

1) Geometric decompositions [1,2,10,11]. These methods propose to first discretize the ambient
space of the data in a set of cells, snap each data point to its nearest cell in the discretization,
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and then use these weighted cells to approximate the target tasks. In all these construc-
tions, the minimum number of samples required to guarantee the coreset property depends
exponentially in the number of dimensions of the ambient space, making them less useful in
high-dimensional problems.

2) Gradient descent [3, 12–14]. These methods have been originally designed for the smallest
enclosing ball problem (i.e., finding the ball of minimum radius enclosing all datapoints), and
have been later generalized to other problems. One of the main drawback of these algorithms in
the k-means setting for instance is their running time exponentially depending on the number
of classes k [14]. Also, these algorithms provide only so-called weak coresets.

3) Random sampling [4, 6, 7, 15, 16]. The state of the art for many different tasks such as k-
means or k-median is currently via iid random non-uniform sampling. The optimal probability
distribution with which to sample datapoints should be set proportional to a quantity known
as sensitivity and introduced by Langberg et al. [4], also known as statistical leverage scores
in the related field of random linear algebra literature [17]. In practice, it is unpractical to
compute all sensitivities: state of the art algorithms rely on bi-criteria approximations to find
upper bounds of the sensitivity, and set the probability distribution proportional to this upper
bound. More details on these results are provided in Section 2.4.

4) Sketching and projections [18–25]. Another direction of research regarding data reduction
that provably keeps the relevant information for a given learning task is via sketches [19]:
compressed mappings (obtained via projections) of the original dataset that are in general
easy to update with new or changed data. Sketches are not strictly speaking coresets, and
the difference resides in the fact that coresets are subsets of the data, whereas sketches are
projections of the data. Note finally that the frontier between the two is permeable and some
data summaries may combine both.

1.2. Contributions

Our main contribution falls into the random sampling category within which we propose to improve
over iid sampling by considering negatively correlated point processes, i.e., point processes for which
sampling jointly two similar datapoints is less probable than sampling two very different datapoints.
We decide to concentrate on a special type of negative correlation sampling: determinantal point
processes, known to provide samples representing the “diversity” of the dataset [8]. To the best
of our knowledge, we provide the first coreset guarantee using non-iid random sampling. DPPs are
parametrized by a matrix called marginal kernel and denoted by K, whose diagonal elements encode for
the inclusion probabilities of each sample, and non-diagonal elements encode the correlation between
samples. We first show that whatever the choice of the non-diagonal elements of K, if the inclusion
probabilities of the DPP are set proportional to the sensitivity, then the results are at least as good
as the iid case. We further show with a variance argument that DPP sampling, due to the negative
correlations encoded by the non-diagonal elements of K, necessarily provides better performances
than its iid counterpart with same inclusion probabilities. Technical difficulties in controlling the
concentration properties of correlated samples currently keeps us from exactly deriving the minimum
coreset size one may hope for using DPPs.

We then apply our theorems to the k-means problem where the initial data consists in N points in
Rd. We discuss the ideal choice of marginal kernel K for DPP sampling in this case. This ideal kernel
being prohibitive to compute in practice, we provide a heuristics based on random Fourier features
of the Gaussian kernel. This heuristics outputs a coreset sample in O(Nm2) time where m is the
number of samples of the coreset, to compare to O(Nmd) the cost of the current state of the art iid
sampling algorithm via bi-criteria approximation. m being necessarily larger than d to obtain the
coreset guarantee, our proposition is computationally heavier, especially as m increases. We provide
nonetheless empirical evidence showing that this additional cost comes with enhanced performances.

We also provide a side contribution that may be of independent interest: an explicit formula for
the sensitivity in the 1-means case.
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Finally, a Python toolbox will soon be available on the authors’ website1.

1.3. Organization of the paper

The paper is organized as follows. Section 2 recalls the background: the considered types of learning
problems under consideration, the formal definition of coresets, sensitivities and DPPs. Section 3
presents our main theorems on the performance of DPPs to sample coresets. In Section 4, we show
how these theorems are applicable to the k-means problem. We provide in Section 5 a discussion on the
choice of marginal kernel adapted to the k-means problem, and detail our sampling algorithm. Finally,
Section 6 presents experiments on artificial as well as real-world datasets comparing the performances
of DPP sampling vs. iid sampling. Section 7 concludes the paper. Note that for readability’s sake,
we pushed many proofs and some implementation details in the Appendix.

2. Background

Let X = {x1, . . . , xN} be a set of N datapoints. Let Θ be a metric space of parameters, and θ an
element of Θ. We consider cost functions of the form:

L(X , θ) =
∑
x∈X

f(x, θ),(1)

where f is a non-negative γ-Lipschitz function (γ > 0) with respect to θ, i.e., ∀x ∈ X :

∀θ ∈ Θ f(x, θ) > 0,(2)

∀(θ, θ′) ∈ Θ2 |f(x, θ)− f(x, θ′)| 6 γ dΘ(θ, θ′).(3)

Many classical machine learning cost functions fall under this model: k-means (as will be shown in
Section 4), k-median, logistic or linear regression, support-vector machines, etc.

2.1. Problem considered

A standard learning task is to minimize the cost L over all θ ∈ Θ. We write:

θopt = argmin
θ∈Θ

L(X , θ), Lopt = L(X , θopt) and 〈f〉opt =
Lopt

N
.(4)

In some instances of this problem, e.g., if N is very large and/or if f is expensive to evaluate and
should be computed as rarely as possible, one may rely on sampling strategies to efficiently perform
this optimization task.

2.2. Coresets

Let S ⊂ X be a subset of X . To each element s ∈ S, associate a weight ω(s) ∈ R+. Define the
estimated cost as:

L̂(S, θ) =
∑
s∈S

ω(s)f(s, θ).(5)

Definition 2.1 (Coreset). Let ε ∈ (0, 1). The weighted subset S is a ε-coreset for L if, for any
parameter θ, the estimated cost is equal to the exact cost up to a relative error:

∀θ ∈ Θ

∣∣∣∣∣ L̂L − 1

∣∣∣∣∣ 6 ε.(6)

This is the so-called “strong” coreset definition, as the ε-approximation is required for all θ ∈ Θ.
A weaker version of this definition exists in the literature where the ε-approximation is only required
for θopt. In the following, we focus on theorems providing the strong coreset property.

1Toolbox DPP4Coreset soon available at http://www.gipsa-lab.fr/~nicolas.tremblay/index.php?page=downloads

http://www.gipsa-lab.fr/~nicolas.tremblay/index.php?page=downloads
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Let us write θ̂opt the optimal solution computed on the weighted subset S. An important conse-
quence of the coreset property is the following:

(1− ε)L(X , θopt) 6 (1− ε)L(X , θ̂opt) 6 L̂(S, θ̂opt) 6 L̂(S, θopt) 6 (1 + ε)L(X , θopt),

i.e.: running an optimization algorithm on the weighted sample S will result in a minimal learning
cost that is a controlled ε-approximation of the learning cost one would have obtained by running the
same algorithm on the entire dataset X . Note that the guarantee is over costs only: the estimated

optimal parameters θ̂opt and θopt may be different. Nevertheless, if the cost function is well suited
to the problem: either there is one clear global minimum and the estimated parameters will almost
coincide; or there are multiple solutions for which the learning cost is similar and selecting one over
the other is not an issue.

In terms of computation cost, if the sampling scheme is efficient, N is very large and/or f is
expensive to compute for each datapoint, coresets thus enable a significant gain in computing time.

2.3. Sensitivity

Langberg and Schulman [4] introduce the notion of sensitivity:

Definition 2.2 (Sensitivity). The sensitivity of a datapoint xi ∈ X with respect to f : X ,Θ→ R+ is:

σi = max
θ∈Θ

f(xi, θ)

L(X , θ)
∈ [0, 1].(7)

Also, the total sensitivity is defined as :

S =

N∑
i=1

σi.(8)

The sensitivity is sometimes called statistical leverage score [17]. It plays a crucial role in the iid
random sampling theorems in the coreset literature as well as in the randomized numerical linear
algebra literature [20]. In words, the sensitivity σi is the worse case contribution of datapoint xi in
the total cost. Intuitively, the larger it is, the larger its “outlierness” [26].

2.4. iid importance sampling and state of the art results

In the iid sampling paradigm, the importance sampling estimator of L is the following. Say the sample
set S consists in m samples drawn iid with replacement from a probability distribution p. Denote by
εi the random variable counting the number of occurences of xi in S. One may define L̂, the so-called
importance sampling estimator of L, as :

L̂(S, θ) =
∑
i

f(xi, θ)εi
mpi

.(9)

One can show that E(εi) = mpi, such that L̂ is an unbiased estimator of L:

E(L̂(S, θ)) = L(X , θ).(10)

The concentration of L̂ around its expected value is controlled by the following state of the art
theorem:

Theorem 2.3 (Coresets with iid random sampling). Let p ∈ [0, 1]N be a probability distribution
over all datapoints X with pi the probability of sampling xi and

∑
i pi = 1. Draw m iid samples

with replacement according to p. Associate to each sample xs a weight ω(s) = 1/mps. The obtained
weighted subset is a ε-coreset with probability 1− δ provided that:

m > m∗(11)
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with

m∗ = O

(
1

ε2

(
max
i

σi
pi

)2

(d′ + log (1/δ))

)
,(12)

where d′ is the pseudo-dimension of Θ (a generalization of the Vapnik-Chervonenkis dimension). The
optimal probability distribution minimizing m∗ is pi = σi/S. In this case, the obtained weighted subset
is a ε-coreset with probability 1− δ provided that:

m > O
(
S2

ε2
(d′ + log (1/δ))

)
.(13)

For instance, in the k-means setting2, d′ = dk log k and S = O(k) such that the coreset property is
guaranteed with probability 1− δ provided that:

m > O
(
k2

ε2
(dk log k + log (1/δ))

)
.(14)

This theorem is taken from [16] but its original form goes back to [4]. Note that sensitivities
cannot be computed rapidly, such that, as it is, this theorem is unpractical. Thankfully, bi-criteria
approximation schemes (such as Alg. 2 of [16], or other propositions such as in [15, 28]) may be used
to efficiently find an upper bound of the sensitivity for all i: si > σi. Noting S =

∑
si, and setting

pi = si/S, one shows that the coreset property may be guaranteed in the iid framework provided

that m > O
(
S2

ε2 (d′ + log (1/δ))
)

. This idea of using bi-criteria approximations to upper bound the

sensitivity also goes back to [4] and has been used in many works on coresets [5, 7, 15,28].
Note that if one authorizes coresets with negative weights (that is, authorizes negative weights in

the estimated cost equation 5), then the stated result may be further improved [15]. Nevertheless,
we prefer to restrict ourselves to positive weights as optimization algorithms such as Lloyd’s k-means
heuristics [29] are in practice more straightforward to implement on positively weighted sets rather
than on sets with possibly negative weights.

Finally, Braverman et al. (Thm 5.5 of [7]) improve the previous theorem by showing that un-
der the same non-uniform iid framework, the coreset property is guaranteed provided that m >
O
(
S
ε2 (d′ logS + log (1/δ))

)
, thus reducing the term in S2 to S logS. In this paper, we present re-

sults proportional to the squared total sensitivity S2, and we thus prefer to focus on the results of
Thm. 2.3 in order to ease comparison.

2.5. Correlated importance sampling

Eq. (9) is not suited to correlated sampling and, in the following, we will use a slightly different
importance sampling estimator, more adapted to this case. Consider a point process defined on X
that outputs a random sample S ⊂ X . For each data point xi, denote by πi its inclusion (or marginal)
probability:

πi = P (xi ∈ S) .(15)

Moreover, denote by εi the random Boolean variable such that εi = 1 if xi ∈ S, and 0 otherwise. In
the following, we will focus on the following definition of the importance sampling cost estimator L̂:

L̂(S, θ) =
∑
i

f(xi, θ)εi
πi

.(16)

By construction, E(εi) = πi, such that L̂ is an unbiased estimator of L:

E(L̂(S, θ)) = L(X , θ).(17)

Studying the coreset property in this setting boils down to studying the concentration properties of
L̂ around its expected value.

2In the literature [15,27], d′ is often taken to be equal to dk. We nevertheless agree with [16] and their discussion in
Section 2.6 regarding k-means’ pseudo-dimension and thus write d′ = dk log k
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2.6. Determinantal Point Processes

In order to induce negative correlations within the samples, we choose to focus on Determinantal Point
Processes (DPP), point processes that have recently gained attention due to their ability to output
“diverse” subsets within a tractable probabilistic framework (for instance with explicit formulas for
marginal probabilities). In the following, [N ] denotes the set of N first integers {1, 2, . . . , N}.
Definition 2.4 (Determinantal Point Process [8]). Consider a point process, i.e., a process that
randomly draws an element S ∈ [N ]. It is determinantal if there exists a semi-definite positive matrix
K ∈ RN×N verifying 0 � K � 1 such that, for every A ⊆ S,

P(A ⊆ S) = det(KA),

where KA is the restriction of K to the rows and columns indexed by the elements of A. K is called
the marginal kernel of the DPP.

By definition, the probability of inclusion of i, denoted by πi, is equal to Kii and the expected
number3 of samples is µ =

∑
i πi = Tr(K). Moreover, to gain insight in the repulsive nature of DPPs,

one may readily see that the joint marginal probability of sampling i and j reads: det(K{i,j}) =

πiπj − K2
ij and is necessarily smaller than πiπj , the joint probability in the case of uncorrelated

sampling. The stronger the “interaction” between i and j (encoded by the absolute value of element
Kij), the smaller the probability of sampling both jointly: this determinantal nature thus favors diverse
sets of samples.

Our goal will be to design the best possible K such that sampling a DPP with marginal kernel K
guarantees the coreset property with high probability.

3. Coreset theorems

We now detail our main contributions. In Sections 3.1 to 3.2, we present our main theorems providing
sufficient conditions on the marginal probabilities (i.e., the diagonal elements of K) to guarantee
the coreset property. We will see that, similar to the iid case (theorem 2.3), the optimal marginal
probability should be set proportional to the sensitivity. These theorems are valid for any choice of
non-diagonal elements of the matrix K. We further discuss in Section 3.3 how one may take advantage
of these additional degrees of freedom to improve the coreset performance over iid sampling.

3.1. Determinantal Point Processes for Coresets

Theorem 3.1 (DPP for coresets). Consider S a sample from a DPP with marginal kernel K. Let
ε ∈ (0, 1), δ ∈ (0, 1). Denote by n the minimum number of balls of radius ε〈f〉opt/6γ necessary to
cover Θ. With probability higher than 1− δ, S is a ε-coreset provided that

µ > µ∗ = max(µ∗1, µ
∗
2)(18)

with:

µ∗1 =
32

ε2

(
εmax

i

σi
π̄i

+ 4

(
max
i

σi
π̄i

)2
)

log
10n

δ
,(19)

µ∗2 =
32

ε2

(
ε

Nπ̄min
+

4

N2π̄2
min

)
log

10

δ
,(20)

and ∀i, π̄i = πi/µ.

The proof is provided in Appendix A. Note that µ∗1 and µ∗2 are not independent of µ: they are in
fact dependent via π̄i = πi/µ. While this formulation may be surprising at first, this is due to the fact
that in non-iid settings, separating µ from πi is not as straightforward as in the iid case (in Thm. 2.3,
m and pi are independent) . Also, we decide upon this particular formulation of the theorem to mimic
classical concentration results obtained with iid sampling.

3in fact, the number of samples of a DPP is itself random: it is a sum of Bernoullis parametrized by K’s eigenvalues
(see [8] for details)
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In order to simplify further analysis, we suppose from now on that Nσmin > 1. As shown in the
second lemma of Appendix B, this is in fact verified in the k-means case on which we will focus in
Section 4. Nevertheless, the following results may be generalized to cases with unconstrained σmin if
needed.

Lemma 3.2. If Nσmin > 1, then µ∗1 > µ
∗
2 and the coreset property of Theorem 3.1 is verified if:

µ > µ∗ =
32

ε2

(
εmax

i

σi
π̄i

+ 4

(
max
i

σi
π̄i

)2
)

log
10n

δ
(21)

with ∀i, π̄i = πi/µ.

Proof. Denote by j the index for which π̄i is minimal and, provided that Nσmin > 1, one has:

max
i

σi
π̄i
Nπ̄min > Nσj > Nσmin > 1.

This implies that:

(max
i

σi
π̄i
Nπ̄min)2 > log

10

δ
/ (log

10

δ
+ log n),(22)

as n is necessarily larger than 1. One can show that Eq. (22) is equivalent to µ∗1 > µ∗2, such that
µ∗ = max(µ∗1, µ

∗
2) = µ∗1. �

One would like to have the coreset guarantee for a minimal number of samples, that is: to find the
marginal probabilities πi minimizing µ∗.

Corollary 3.3. If there exists α > 0 and β > 1 such that:

∀i ασi 6 πi 6 αβσi,(23)

and
α

β
>

32

ε2
(ε+ 4S) log

10n

δ
,(24)

then S is a ε-coreset with probability at least 1 − δ. In this case, the expected number of samples
verifies:

µ >
32

ε2
βS(ε+ 4S) log

10n

δ
.

Proof. Let us suppose that there exists α > 0 and β > 1 such that:

∀i, ασi 6 πi 6 αβσi.

Note that:

εmax
i

σi
πi

+ 4

(
max
i

σi
πi

)2

µ 6
ε

α
+ 4

µ

α2
6
ε

α
+ 4

βS

α
=
β

α

(
ε

β
+ 4S

)
6
β

α
(ε+ 4S) .

Thus, the inequality

α

β
>

32

ε2
(ε+ 4S) log

10n

δ

implies:

1 >
32

ε2

(
εmax

i

σi
πi

+ 4

(
max
i

σi
πi

)2

µ

)
log

10n

δ
,

that we recognize as the coreset condition (21) by multiplying on both sides by µ: S is indeed a
ε-coreset with probability larger than 1− δ. Moreover, in this case:

µ =
∑
i

πi > α
∑
i

σi = αS >
32

ε2
βS(ε+ 4S) log

10n

δ
.

�



8 N. TREMBLAY, S. BARTHELMÉ, AND P-O. AMBLARD

Corollary 3.3 is applicable to cases where σmax is not too large. In fact, in order for ασi to be
smaller than πi, and thus smaller than 1 as πi is a probability, α should always be set inferior to

1
σmax

. Now, if σmax is so large that 1
σmax

6 32
ε2 (ε+ 4S) log 10n

δ , then, even by setting β to its minimum

value 1, there is no admissible α verifying both conditions (26) and (27). We refer to App. C for a
simple workaround if this issue arises. We will further see in the experimental section (Section 6) that
outliers are not an issue in practice.

3.2. m-Determinantal Point Processes for coresets

In some cases, we would like to specify deterministically the number of samples, instead of having a
random number of them (with a given mean). This leads to m-DPPs: DPPs conditioned to output
m samples.

Definition 3.4 (m-DPP [8]). Consider a point process that randomly draws an element S ∈ [N ].
This process is an m-DPP with kernel K if:

i) ∀S s.t. |S| 6= m, P(S) = 0
ii) ∀S s.t. |S| = m, P(S) = 1

Z det(KS), where Z is a normalization constant.

Note that πi, the marginal probability of inclusion, is not necessarily equal to Kii anymore in the
case of an m-DPP. In fact:

πi =
1

Z

∑
S s.t |S|=m and i∈S

det(KS)

We deliver the following result assuming that Nσmin > 1.

Theorem 3.5 (m-DPP for coresets). Let S be a sample from an m-DPP with kernel K, ε ∈ (0, 1),

and n the minimal number of balls of radius
ε〈f〉opt

6γ necessary to cover Θ. We assume for simplicity

that Nσmin > 1. S is a ε-coreset with probability larger than 1− δ provided that:

m >
32

ε2

(
max
i

σi
π̄i

)2

log
4n

δ
(25)

with π̄i = πi/m. Also, if there exists α > 0 and β > 1 such that:

∀i ασi 6 πi 6 αβσi,(26)

and
α

β
>

32

ε2
S log

4n

δ
,(27)

then S is a ε-coreset with probability larger than 1− δ. In this case, the number of samples verifies:

m >
32

ε2
βS2 log

4n

δ
.

Proof. According to [30], replace Eq. (44) by:

m >
8

ε2
C2 log

2

δ
,(28)

with C = max
i

f(xi, θ)

Lπ̄i
, where π̄i is a shorthand for πi/m; and Eq. (46) by:

m >
8

ε2N2π̄2
min

log
2

δ
,(29)

and change accordingly the rest of the proof. �
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3.3. Links with the iid case and the variance argument

Let us first compare our results with Thm. 2.3 obtained in the iid setting. A few remarks are in order:

1) setting β to 1 and πi to ασi in Thm 3.5, the minimum number of required samples is
32S2

ε2 (log n+ log 4
δ ), to compare to O(S2

ε2 (d′ + log (1/δ))) of Thm 2.3, where d′ is the pseudo-

dimension of Θ. n being the number of balls of radius
ε〈f〉opt

6γ necessary to cover Θ, it will

typically be
ε〈f〉opt

6γ to the power of the ambient dimension of Θ (similar to d′). Both forms are

very similar, up to the dependency in ε and in 〈f〉opt of the log term. This difference is due to
the fact that coreset theorems in the iid case (see for instance [16]) take advantage of powerful
results from the Vapnik-Chervonenkis (VC) theory such as the ones detailed in [31]. Unfor-
tunately, these fundamental results are valid in the iid case, and are not easily generalized to
the correlated case. Further work should enable to reduce this small gap.

2) Outliers are not naturally dealt with using our proof techniques, mainly due to our multiple
use of the union bound that necessarily englobes the worse-case scenario. In fact, in the
importance sampling estimator used in the iid case (Eq. 9), outliers are not problematic as
they can be sampled several times. In our setting, outliers are constrained to be sampled only
once, which in itself makes sense, but complicates the analysis. Empirically, we will see in
Section 6 that outliers are not an issue.

3) Finally, our results take only into account the inclusion probability of the DPP, that is: the
diagonal elements of K. These theorems are thus valid for any choice of non-diagonal elements
(provided K stays semi-definite positive with eigenvalues between 0 and 1). As we will see with
the following variance argument: a smart choice of K’s non-diagonal elements will necessarily
improve our results, thus outperforming the iid setting.

Theorem 3.6 (The variance argument). Given θ ∈ Θ, and writing Variid the variance of the impor-
tance sampling estimator of Eq. 16 in the iid case, we have:

Var(L̂) = Variid −
∑
i6=j

K2
ij

πiπj
f(xi, θ)f(xj , θ).(30)

As the function f is positive, the variance of L̂ via DPP sampling is thus necessarily smaller than its
iid counterpart with same probability of inclusion.

Proof. We have:

Var(L̂) = E(L̂2)− E(L̂)2(31)

=
∑
i,j

E(εiεj)

πiπj
f(xi, θ)f(xj , θ)− L2.(32)

As S is sampled from a DPP, we have: E(εiεj) = det(K{i,j}) = πiπj − K2
ij , i.e.:

Var(L̂) = Variid −
∑
i6=j

K2
ij

πiπj
f(xi, θ)f(xj , θ),(33)

where Variid =
∑
i,j f(xi, θ)f(xj , θ) − L2 is the variance one would obtain with a Poisson-type un-

correlated sampling strategy with same marginal probability, i.e., for processes such that E(εiεj) =
πiπj . �

As a consequence, adding negative correlations (i.e., non-zero non-diagonal elements of K) neces-
sarily decreases the estimation’s variance. To conclude this Section: we provided theorems that explain
how the diagonal elements of K should be set in order to match the iid performance. And we show
here that any choice of off-diagonal elements of K (provided K stays SDP with eigenvalues between
0 and 1) will necessarily improve the coreset performance of DPP sampling versus its iid couterpart.
In addition, this variance equation will provide useful indications for our choice of marginal kernel in
Section 5.
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4. Application to k-means

The above results are valid for any learning problem of the form detailed in Section 2.1. We now
specifically consider the k-means problem on a set X comprised of N datapoints in Rd. This problem
boils down to finding k centroids θ = (c1, . . . , ck), all in Rd, such that the following cost is minimized:

L(X , θ) =
∑
x∈X

f(x, θ) with f(x, θ) = min
c∈θ
‖x− c‖2 .

Let ρ be the diameter of the minimum eclosing ball of X (the smallest ball enclosing all points in X ).
Theorem 3.1 is applicable to the k-means problem, such that:

Corollary 4.1 (DPP for k-means). Let S be a sample from a DPP with marginal kernel K. Let
ε, δ ∈ (0, 1)2. With probability at least 1− δ, S is a ε-coreset provided that:

µ > µ∗ =
32

ε2

(
εmax

i

σi
π̄i

+ 4

(
max
i

σi
π̄i

)2
)(

kd log

(
24ρ2

ε〈f〉opt
+ 1

)
+ log

10

δ

)
,(34)

with ∀i, π̄i = πi/µ.
If there exists α > 0 and β > 1 such that:

∀i, ασi 6 πi 6 αβσi,(35)

and
α

β
>

32

ε2
(ε+ 4S)

(
kd log

(
24ρ2

ε〈f〉opt
+ 1

)
+ log

10

δ

)
,(36)

then S is a ε-coreset with probability larger than 1 − δ. In this case, the expected number of samples
verifies:

µ >
32

ε2
βS(ε+ 4S)

(
kd log

(
24ρ2

ε〈f〉opt
+ 1

)
+ log

10

δ

)
.

Proof. Let us write B the minimum enclosing ball of X , of diameter ρ. The potentially interesting
centroids are necessarily included in B such that the space of parameters Θ in the k-means setting is
the set of all possible k centroids in B: Θ = Bk. The metric dΘ we consider is the Hausdorff metric
associated to the Euclidean distance:

∀θ, θ′, dΘ(θ, θ′) = max

{
max
c∈θ

min
c′∈θ′

‖c− c′‖2 , max
c′∈θ′

min
c∈θ
‖c− c′‖2

}
.

- An ε′-net of Θ. Consider ΓB an ε′-net of B: it consists in at least ( 2ρ
ε′ + 1)d small balls of radius ε′

(see, e.g., Lemma 2.5 in [32]). Consider Γ = ΓkB of cardinality |Γ| = ( 2ρ
ε′ + 1)kd. Let us show that Γ is

an ε′-net of Θ, that is:

∀θ ∈ Bk, ∃θ∗ ∈ Γ s.t. dΘ(θ, θ∗) 6 ε′.

In fact, consider θ = (c1, . . . , ck) ∈ Bk. By construction, as ΓB is an ε′-net of B, we have:

∀i = 1, . . . , k ∃c∗i ∈ ΓB s.t. ‖ci − c∗i ‖ 6 ε′.

Writing θ∗ = (c∗1, . . . , c
∗
k) ∈ Γ, one has:

dΘ(θ, θ∗) 6 ε′,

which proves that Γ is an ε′-net of Θ. The number of balls of radius ε′ = ε〈f〉opt/6γ necessary to

cover Θ is thus at least n = ( 12ργ
ε〈f〉opt

+ 1)kd.

- f(x, θ) is γ-Lipschitz with γ = 2ρ. Consider any θ, θ′ and x ∈ X . We want to show that:

−γ dΘ(θ, θ′) 6 f(x,θ)− f(x, θ′) 6 γ dΘ(θ, θ′).
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Let us write c = argmint∈θ ‖x− t‖
2

the centroid in θ closest to x and c′ = argmint′∈θ′ ‖x− t′‖
2

the

centroid in θ′ closest to x. Moreover, let us write c̃′ = argmint′∈θ′ ‖c− t′‖
2

the centroid in θ′ closest
to c. Note that c′ and c̃′ are not necessarily equal. By definition of c′, one has:

‖x− c′‖ 6 ‖x− c̃′‖ ,

such that:

‖x− c′‖2 − ‖x− c‖2 6 ‖x− c̃
′‖2 − ‖x− c‖2 6 ‖c̃

′ − c‖2 6 dΘ(θ, θ′).

Thus:

f(x, θ′)− f(x, θ) = ‖x− c′(x)‖2 − ‖x− c‖2 = (‖x− c′‖ − ‖x− c‖)(‖x− c′‖+ ‖x− c‖)
6 (‖x− c′‖+ ‖x− c‖) dΘ(θ, θ′) 6 2ρ dΘ(θ, θ′).

- Finally, Nσmin > 1, as shown by the second Lemma of Appendix B.
Given all these elements, Thm. 3.1 is thus applicable to the k-means setting and one obtains the

desired result. �

Similarly, in the case of fixed-size DPP, Thm. 3.5 is applicable to the k-means problem, such that:

Corollary 4.2 (m-DPP for k-means). Let S be a sample from an m-DPP with marginal kernel K.
Let ε, δ ∈ (0, 1)2. With probability at least 1− δ, S is a ε-coreset provided that:

m > m∗ =
32

ε2

(
max
i

σi
π̄i

)2(
kd log

(
24ρ2

ε〈f〉opt
+ 1

)
+ log

4

δ

)
,(37)

with ∀i, π̄i = πi/m.
If there exists α > 0 and β > 1 such that:

∀i, ασi 6 πi 6 αβσi,(38)

and
α

β
>

32

ε2
S

(
kd log

(
24ρ2

ε〈f〉opt
+ 1

)
+ log

4

δ

)
,(39)

then S is a ε-coreset with probability larger than 1− δ. In this case, the number of samples verifies:

m >
32

ε2
βS2

(
kd log

(
24ρ2

ε〈f〉opt
+ 1

)
+ log

4

δ

)
.

Remark 4.3. Remember from Appendix C that σmax should not be too large in order to be able to
find admissible values of α verifying Eqs. (35) and (36): it should in fact verify 1

σmax
> O(kdS).

Thankfully, this constraint is often very loose. For instance, in the case of 1-means (k-means with
k = 1) and supposing without loss of generality that the data is centered (i.e.,

∑
j xj = 0), we show

in the first lemma of Appendix B that ∀i, σi = 1
N

(
1 + ‖xi‖2

v

)
, where v = 1

N

∑
x ‖x‖

2
. Thus, S = 2,

and the constraint boils down to:

max
i

‖xi‖2

v
6 O

(
N

d

)
(40)

Suppose for instance that the underlying data distribution is a Gaussian centered in the origin with

variance ν. v is an estimator of ν, such that maxi
‖xi‖2
v is the normalized norm of the most extreme

event of the drawing and is typically smaller than 10 with very high probability, implying a very
loose constraint indeed in our context of large N . If for any reason there are true outliers for which
‖xi‖2
v is larger than O(N/d), then, following the strategy outlined in Appendix C, one samples them

beforehands, associates to each of them a weight of 1, and then applies the sampling theorems to the
rest of the data.
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5. Implementation for k-means

5.1. The DPP’s ideal marginal kernel

Following the theorems’ results, the ideal strategy (although unrealistic) to build the ideal marginal
kernel K would be as follows. 1/ Deal with outliers as explained in Appendix C until 1

σmax
> 32

ε2 (ε +

4S)
(
kd log

(
24ρ2

ε〈f〉opt
+ 1
)

+ log 10
δ

)
. 2/ Compute all σi. 3/ Set α = 32

ε2 (ε+4S)
(
kd log

(
24ρ2

ε〈f〉opt + 1
)

+ log 10
δ

)
and β = 1. 4/ Set all πi = Kii to ασi. 4/ Find all non-diagonal elements of K in order to minimize
for all θ the estimator’s variance, as derived in Eq. (33):

Var(L̂) = Variid −
∑
i 6=j

K2
ij

πiπj
f(xi, θ)f(xj , θ)(41)

while constraining K to be a valid marginal kernel, i.e.: SDP with 0 � K � 1, 5/ sample a DPP
with kernel K. On our way to derive a practical algorithm with a linear complexity in N , many
obstacles stand before us: there is no known polynomial algorithm to compute all σi in the general
setting, solving exactly the minimization problem of step 4 under eigenvalue constraint is involved,
and sampling from this engineered ideal K costs O(N3) number of operations. Designing a linear-time
algorithm that provably verifies under a controlled error the conditions of our previous theorems is out-
of-scope of this paper. In the following, we prefer to first recall the intuitions behind the construction
of a good kernel, and then discuss the choice of kernel we advocate.

5.2. In practice: a marginal kernel based on the Gaussian kernel

In order for K to be a good candidate for coresets, it needs to verify the following two properties:

• As indicated by the theorems, the diagonal entries Kii should increase as the associated σi
increases.
• As indicated by the variance equation, off-diagonal elements should be as large as possible (in

absolute value) given the eigenvalue constraints. In fact, we cannot set all non-diagonal entries
of K to large values as the matrix’s 2-norm would rapidly be larger than 1. We thus need to
choose the best pairs (i, j) for which it is worth setting a large value of Kij . A first glance
at the variance equation indicates that the larger f(xi, θ)f(xj , θ) is, the larger Kij should be,
in order to decrease the variance as much as possible. Recall nevertheless that in the coreset
setting, all sampling parameters should be independent of θ. The off-diagonal elements should
thus verify the following property: the larger is the correlation between xi and xj (the more
similar are f(xi, θ) and f(xj , θ) for all θ), the larger Kij should be.

We show in the following in what ways the choice of marginal kernel

K = L(I + L)−1

with L the Gaussian kernel matrix with parameter s:

∀(i, j) Lij = exp−
‖xi−xj‖2

s2 ,

is a good candidate to build coresets for k-means. Note that L is called the L-ensemble associated to
K [8]. Let us write U = (u1| . . . |uN ) the orthonormal eigenvector basis of L and Λ = diag(λ1| . . . |λN )
its diagonal matrix of sorted eigenvalues, 0 6 λ1 6 . . . 6 λN . U and Λ naturally depend on s. One
shows for instance that, with respect to s, λN is a monotonically increasing function between 1 and
N .

Concerning the off-diagonal elements of K, let us first note that if xi and xj are correlated (that is,
in the k-means setting, if they are close to each other), then

Kij =
∑
k

λk
1 + λk

uk(i)uk(j)

is large in absolute value. In fact, in the limit where xi = xj , then ∀k, uk(i) = uk(j) and Kij = Kii =
Kjj . The determinant of the 2× 2 submatrix of K indexed by i and j is therefore null: sampling both
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will never occur. Thus, the closer are xi and xj , the lower is the chance of sampling both jointly.
Moreover, if xi and xj are far from each other (for instance, in different clusters), then the entries i and
j of L′s eigenvectors will be very different. Fo instance, say the dataset contains two well separated
clusters of similar size. If the Gaussian parameter s is set to the size of these clusters, then the kernel
matrix L will be quasi-block diagonal, with each block corresponding to the entries of each cluster.
Also, each eigenvector uk will have energy either in one cluster or the other such that Kij is necessarily
small if i and j belong to different clusters, and the event of sampling both jointly is probable.

Concerning the probability of inclusion of i, we have:

Kii =
∑
k

λk
1 + λk

qi(k)2,

where qi is the vector of size N verifying ∀k, qi(k) = uk(i). For all i, ‖qi‖2 = 1. The probability of
inclusion is thus directly linked to the values of k that contain the energy of qi: the more the energy
of qi is contained on high values of k, the larger is the probability of inclusion. Say we are again
in a situation where the clusters and the choice of Gaussian parameter s are such that L is quasi
block diagonal. Within each block, the eigenvector associated with the highest eigenvalue corresponds
approximately to the constant vector. These eigenvectors being normalized, the associated entry of
qi(k) is thus approximately equal to 1/

√
#Ci where #Ci is the size of the cluster containing data xi.

Typically, if the cluster is small, that is, if #Ci tends to 1, the associated entry qi(k) tends to 1 as
well, such that all the energy of qi is drawn towards high values of k, thus increasing the probability
of inclusion of i. In other words, the more isolated, the higher the chance of being sampled. This
corresponds to the intuition one may obtain for the sensitivity σi. It has indeed been shown that the
sensitivity may be interpreted as a measure of outlierness [26].

In the context of coresets for k-means, we thus advocate to sample DPPs via a Gaussian kernel
L-ensemble. We now move on to detailing an efficient sampling implementation.

5.3. Efficient implementation

Sampling a DPP from the Gaussian L-ensemble verifying

∀(i, j) Lij = exp−
‖xi−xj‖2

s2

consists in the following steps:

1) Compute L.
2) Diagonalize L in its set of eigenvectors {uk} and eigenvalues {λk}.
3) Sample a DPP given {uk} and {λk} via Alg. 1 of [8].

Step 1 costs O(N2d), step 2 costs O(N3), step 3 costs O(Nµ3). This naive approach is thus not
practical. We detail in Appendix D how to reduce the overall complexity to O(Nµ2), by 1/ taking
advantage of Random Fourier Features (RFF) [33] to estimate a low dimensional representation Ψ ∈
R2r×N of the L-ensemble L ' ΨᵀΨ, where r is the chosen number of features; and 2/ running a DPP
sampling algorithm adapted to such a low rank representation.

In the experimental section, we will concentrate on m-DPPs as they are simpler to compare with
state of the art methods that all have a fixed known-in-advance number of samples. The overall
m-DPP sampling algorithm adapted to the k-means problem that we will consider is summarized
in Alg. 1: given the data X , the number of desired samples m, and the Gaussian parameter s, it
outputs a weighted set of m samples S that is a good candidate to be a coreset if m is large enough.
The runtime to build Ψ is O(Ndr); to compute C and diagonalize it is O(Nr2); to sample a m-DPP
given this dual eigendecomposition is O(Nm2). Given that r is set to a few times m and that m
is necessarily larger than d in order to obtain coresets for k-means, the overall runtime of Alg. 1 is
O(Nm2).

Given a number of samples m to draw, how should one set the Gaussian parameter s? The larger
is s, the more repulsive is the m-DPP, and the smaller is the numerical rank of Ψ (the number of
eigenvalues ν such that Nν is larger than the machine’s precision). Now, numerical instabilities arise
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Algorithm 1 The overall coreset sampling heuristics for k-means

Input: X = {xi} a set of N points in Rd, the Gaussian kernel parameter s, the number of samples m
· Draw r > O(m) random Fourier vectors associated to the Gaussian kernel with parameter s
· Compute the associated RFF matrix Ψ ∈ R2r×N as explained in Appendix D.1
· Compute C = ΨΨᵀ ∈ R2r×2r the dual representation
· Compute the eigendecomposition of C: obtain eigenvectors {vk} and eigenvalues {νk}
· Draw a sample S from a m-DPP with L-ensemble L = ΨᵀΨ as explained in Appendix D.3.
· Compute the marginal probabilities πs for s ∈ S and set weights ω(s) = 1/πs, as in Appendix D.3.

Output: {S, ω} a weighted sample of size m.

while sampling an m-DPP if the numerical rank of Ψ decreases below m: s should not be set too
large. Also, the smaller is s, the closer is L to the identity matrix, such that the closer is the m-DPP
to uniform sampling without replacement: s should not be set too small. We will see in the following
experimental section how the choice of s affects results.

6. Experiments

6.1. Different strategies to compare...

We will empirically compare results obtained with the four following approaches:

1) m-DPP : The strategy summarized in Alg. 1.
2) matched iid : An iid sampling strategy with replacement, matched to m-DPP. More precisely,

m samples are drawn iid with replacement, the probability of selecting xi at each draw being
set to pi = πi/m, where πi is the marginal probability of drawing xi in m-DPP.

3) uniform iid : Uniform iid sampling with replacement.
4) sensitivity iid : The current state of the art iid sampling based on a bi-criteria approxi-

mation to upper bound the sensitivity (Alg. 2 of [16]), or, if available (for instance in the case
of 1-means as in Section 6.2.1), an analytical formula of the sensitivity.

For the three iid methods (methods 2, 3 and 4), we will use the importance sampling estimator adapted
to iid sampling of Eq. (9). For method 1, we will use the importance sampling estimator adapted to
correlated sampling of Eq. (16).

Empirically, when the ambient dimension d is small, performance of all methods is enhanced if the

weights in L̂ are set via Voronoi cells rather than set to inverse probabilities: given the sample S of
size m, compute its Voronoi tessellation in m cells, and associate to each sample s a weight ω(s) equal
to the number of datapoints in its associated Voronoi cell. We will call the associated cost estimators
L̂ the Voronoi estimators.

For completeness, we compare all these methods with another negatively correlated sampling
method called D2-sampling (commonly used for k-means++ seeding [34]):

5) D2 : sample the first element of S uniformly at random. Each subsequent element of S is
drawn according to a probability proportional to the squared distance to the closest of the
already sampled elements. The marginal probabilities are not known in this algorithm, so we
will only be able to build the associated Voronoi cost estimator.

To measure the performance of each method, we will empirically estimate the probability that,
given the method’s sampled weighted subset, it verifies the coreset property of Eq. 6 for a given
randomly chosen θ (setting ε to 0.1). On the artificial data models we investigate, we estimate this
probability via 50 randomly chosen θ on 1000 realizations of the data. On the real-world datasets, we
estimate this probability via 5000 randomly chosen θ. We will in general plot this probability versus
the number of samples: the closer it is to 1, the better the sampling method for coresets.

In Sections 6.2.2 and 6.2.3, we will not only compare the coreset property of the samples obtained
by each method, we will also compare the result of Lloyd’s classical k-means heuristics [29] performed
on the entire data versus the result obtained on the weighted samples of each method. To be precise,
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a) b) c)

Figure 1. a) A realization of an artificial dataset of N = 1000 data points; blue points are drawn from an
isotropic Gaussian, a proportion q = 0.01 of the points are drawn as outliers (displayed in red). b) In a case
without outliers, and for m = 20, we represent the inverse importance sampling weights of sensitivity iid,
i.e.: mσi/S. c) On the same data realization, and also setting m = 20, we represent the inverse importance
sampling weights of m-DPP: the inclusion probability πi.

once the k-means heuristics on the weighted subset outputs k centroids, we classify all nodes (sampled
or not) according to their closest distance to the centroids: this gives us a partition that we then
compare using the Adjusted Rand (AR) similarity index [35] to the ground truth associated to the
dataset. The AR index is a number between −1 and 1: the closer it is to 1, the closer are the partitions,
the better the sampling method.

6.2. ...on different datasets

6.2.1. To start with: a well controlled case

We start with a perfectly controlled case: the 1-means case, for which we show in the first lemma
of Appendix B that, supposing without loss of generality that the data is centered (

∑
j xj = 0), the

sensitivity verifies the following analytic form:

σi =
1

N

(
1 +
‖xi‖2

v

)
,(42)

where v = 1
N

∑
x∈X ‖x‖

2
. We are thus able to compare our method versus the ideal iid sampling

scheme for which we set pi, the probability of drawing xi, exactly to its ideal value given in Thm 2.3:
pi = σi/S = σi/2.

We will work on a simple isotropic Gaussian dataset of N = 1000 points in dimension d = 2, 20 or
100. A percentage q of the N points are drawn as outliers (uniformly in the ambient space and far
from the Gaussian mean). An instance of such a dataset in d = 2 dimensions, and with q = 0.01 is
shown in Fig. 1a.

We start by showing in Fig. 2 the results of m-DPP versus the number of dimensions and the choice
of parameter s for the Gaussian kernel. All shown results are with q = 0 (no outlier) and with a
number of random Fourier features r = 200. Several comments are in order. Firstly, compared to the
importance sampling estimator, the Voronoi estimator produces good results in low dimensions, and
fails as the dimension increases. Secondly, the performance of all methods increase and uniformize as
the dimension increases. This is due to the fact that in large dimensions, interpoint distances tend to
uniformize such that any pair of points tend to be representative of all interpoint distances, thus sim-
plifying the problem of finding good coresets. This may also explain why the choice of s is less crucial
in higher dimension. In low dimensions, however, the choice of s has a strong impact on performance.
The best choice for s depends in fact on the number of samples m one requires: as m increases, s
should be set smaller. This is in fact natural: if one desires a very short summary of the dataset
(small m), the repulsion of the DPP has to be strong in order to sample a diverse subset. Whereas if
the length of the summary is less constrained, s should be decreased to allow for a less coarse-grained
description. This observation leads to the natural question of the optimal s given the data and m.
We currently lack of a satisfying answer to this question, both theoretically and empirically. A usual
heuristics in kernel methods is to set s to the average (or median) interdistance of the points in the
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Voronoi weights Importance sampling weights

d = 2

d = 20

d = 100

Figure 2. Performance of m-DPP on the 1-means problem, versus the dimension d, the parameter s of the
Gaussian kernel and the choice of weights (Voronoi or importance sampling weights) in the cost estimator.

dataset. In the experiments of Fig. 1, the average interdistance corresponds to s ' 1.5, 6.3 and 14.0
for d = 2, 20 and 100 respectively, which give in fact a good order of magnitude for the choice of s. In
the following, to simplify the discussion, we will sometimes set s to be the average interdistance, that
we will denote by s̄.

We pursue by comparing the performance of several methods in Fig. 3. One observes that the supe-
rior performance of the Voronoi estimator over the importance sampling estimator in low dimension d
is verified for all methods. Moreover, as the dimension increases, all methods’ performance converge to
the performance of the uniform iid sampling method. Finally, m-DPP associated with Voronoi weights
is competitive with D2 in low d; and, regardless of how one chooses the weights, our method has a
clear edge over the sensitivity-based iid random sampling (the lower the dimension, the clearer the
edge).
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Voronoi weights Importance sampling weights

d = 2

d = 20

d = 100

Figure 3. Performance comparison of different sampling methods on the 1-means problem, versus the dimen-
sion d and the choice of weights (Voronoi or importance sampling weights) in the cost estimator.

In order to clarify further discussion, we will from now on only discuss the importance sampling
estimated cost. One should keep in mind that in low dimensions, Voronoi-based estimated costs usu-
ally perform well, but fail (sometimes drastically) as the dimension increases.

A natural question arises at this point: is the observed edge of m-DPP over sensitivity iid due
to a better probability of inclusion of the point process? Or is it truly due to the negative corre-
lations induced by the determinantal nature of our method? In fact, we compare in Fig. 1b and c
the probability of inclusion for sensitivity iid versus m-DPP: they have a similar general behavior
but are nevertheless quantitatively different. In Fig. 4, we compare m-DPP versus matched iid and
sensitivity iid: the observed edge is clearly due to the negative correlations induced by the de-
terminantal nature of our method. As expected from Corollary 4.2, the best inclusion probability is
based on the sensitivity. Nevertheless, the figure shows that even if it is not set to its ideal value, one
can still improve the performance by inducing negative correlations.

To be complete, we still need to discuss the impact of two variables: the number of random Fourier
features r used in our method, and the percentage of outliers q in the data. In the following, we
set s to s̄, the average interdistance. Fig. 5 shows the impact of the choice of r on performances:
as expected, as r increases, performance increases, and as d increases, performances become more
sensitive to the choice of r. The impact of the choice of r is nevertheless very limited: setting r to a
multiple of m has been a safe choice in all our experiments. Finally, Fig. 6 shows the impact of the
percentage of outliers q on performances. Empirically, we see here that outliers have a smaller impact
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Figure 4. Performance comparison on the 1-means problem. We compare m-DPP versus matched iid and
sensitivity iid.

Figure 5. Performance comparison of m-DPP on the 1-means problem versus the number of RFF r, for d = 2
(left) and d = 20 (right). For readability’s sake, the y-axis of both figures are in logarithmic scale.

Figure 6. Performance comparison of m-DPP (left), uniform iid (middle) and senisitivity iid (right) on
the 1-means problem versus the percentage of outliers q.

on DPP sampling than on uniform or sensitivity-based iid sampling.

We conclude this first well-controlled experimental section by summarizing the observed behaviors:

• m-DPP outperforms the current state of the art sensitivity iid, even in the 1-means case,
where sensitivities do not need to be estimated but may be computed exactly.
• As the dimension increases, the edge over iid sampling decreases.
• The best choice of parameter s of the Gaussian kernel in our method is still an open problem.

Empirically, a good order of magnitude is the average interdistance of the datapoints. Ideally,
nevertheless, s should increase as m, the number of wanted samples, decreases.
• Regarding the number of RFFs r, setting r to a few times m is sufficient.
• Regarding the impact of outliers. Our theorems are not well suited to outliers (due to the proof

techniques used); nevertheless, in practice, we see that outliers are not an issue in our method:
they even have a smaller impact on our method’s performances than on other methods.
• Replacing weights by Voronoi weights yields in general better results, but only in low dimen-

sion. As the dimension increases, the Voronoi cost estimator fails (sometimes drastically).

6.2.2. Experiments on non-Gaussian data: the case of spectral features

Spectral features. Given a graph of N nodes where W ∈ RN×N is the adjacency matrix (i.e.,
Wij = 1 if nodes i and j are connected, and 0 ortherwise), a standard problem consists in partitioning
the nodes in k communities, i.e., sets of nodes more connected to themselves than to other nodes of
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Figure 7. Examples of SBM spectral features xi, here with k = 2. Each colour corresponds to one block of the
SBM. On the left, for an “easy” classification task (ζ = ζc/4), and on the right, for a harder setting (ζ = ζc/2).

Coreset property k-means performance

ζ = ζc
4

ζ = ζc
2

Figure 8. Performance comparison of different methods on the k-means problem for spectral features of balanced
SBM graphs (here, k = 2). Left: testing the coreset property. Right: the Adjusted Rand index between the
partition recovered by k-means on the weighted subsets and the ground truth partition of the SBM. ζ quantifies
the difficulty of the classification task (see text): the lower it is, the easier the classification task.

the graph [36]. A classical algorithm to solve efficiently this problem is the so-called spectral clustering
algorithm [37]:

• Define the normalized Laplacian matrix L = I − D−
1
2 WD−

1
2 ∈ RN×N where I is here the

identity matrix in dimension N , and D ∈ RN×N is a diagonal matrix with Dii = di =
∑
j Wij

the degree of node i.
• Compute via Arnoldi iterations or a similar algorithm the k first eigenvectors of L: (u1, . . . ,uk).
• Associate to each node i a (spectral) feature vector xi ∈ Rk: ∀l = 1, . . . , k xi(l) = ul(i).
• Normalize all feature vectors: xi ← xi/ ‖xi‖2.
• Run k-means on all such normalized spectral features.

An extensive literature exists on spectral clustering and it has shown to be a very successful unsuper-
vised classification algorithm in many situations [38].

The Stochastic Block Model (SBM). We consider random community-structured graphs drawn
from the SBM, a classical class of structured random graphs (see for instance [39]). We first look at
graphs with k communities of same size N/k. In the SBM, the probability of connection between any
two nodes i and j is q1 if they are in the same community, and q2 otherwise. One can show that
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ζ = ζc
4

ζ = ζc
2

Figure 9. Same as Fig. 8 but with k = 10.

the average degree reads c = q1

(
N
k − 1

)
+ q2

(
N − N

k

)
. Thus, instead of providing the probabilities

(q1, q2), one may characterize a SBM by considering (ζ = q2
q1
, c). The larger ζ, the fuzzier the commu-

nity structure, the harder the classification task. In fact, authors in [40] show that above the critical
value ζc = (c−

√
c)/(c+

√
c(k− 1)), community structure becomes undetectable in the large N limit.

In the following, we set N = 1000 and c = 16; k and ζ will vary. Note that spectral features xi are
not Gaussian and, in fact, do not fall into any classical data model (see Fig. 7 to visualize instances
of SBM spectral features with k = 2). They are thus interesting candidates to test k-means algorithms.

Results. For different values of ζ and k, we generate 1000 such SBM graphs from which we sam-
ple subsets according to different methods. We test both the coreset property (as before) and the
k-means performance on the weighted subset compared to the k-means performed on all data. We
plot in Fig. 8 (resp. Fig. 9) the results obtained for k = 2 (resp. k = 10). Note that in this case,
we have no explicit formula for the sensitivity such that for sensitivity iid, we use the bi-criteria
approximation scheme provided in [16] (Alg. 2). Here again, we see how our method outperforms
iid sampling schemes, even in difficult classification contexts (for instance when ζ = ζc/2: even with
all the data, k-means’ performance saturates at an AR index of 0.9). Moreover, as the dimension
increases (here d = k), performances of all methods tend to uniformize. Surprisingly, uniform iid

performs as well (k = 2) and even outperforms (k = 10) sensitivity iid. We believe this is due to
approximation errors of the bi-criteria scheme used to find upper bounds of the sensitivity. Also, in
this balanced case (communities have the same number of nodes), uniform sampling is in fact a good
option. We will now see how this changes in the unbalanced case.

The unbalanced case. In the unbalanced case, ζc is no longer a recovery threshold, but we may
still use ζ as a marker of difficulty of the recovery task. We set ζ to ζc/4 and perform the same
experiments as previously with k = 2 blocks of unbalanced size. Results are shown in Fig. 10. For
a fixed ζ, the more unbalanced, the more difficult the recovery task. Also, the more unbalanced, the
better is sensitivity iid compared to uniform iid. Nevertheless, m-DPP shows an edge over all
iid methods in all tested configurations.
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600/400

700/300

800/200

900/100

950/50

Figure 10. Same as Fig. 8 but with a fixed ζ = ζc/4 and a varying level of balance within the sizes of the k = 2
communities. N1/N2 means one community with N1 nodes and the other with N2 nodes.

6.2.3. Experiments on two real world datasets

The MNIST dataset. We perform a first experiment on the MNIST dataset [41] that consists in
7 · 104 images of handwritten digits (from 0 to 9) for which the ground truth is known. The classical
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Figure 11. Classification performance on the MNIST dataset obtained with different sampling methods versus
the result obtained without sampling, using Voronoi weights (left), or importance sampling weights (right).

associated machine learning goal is to classify them in 10 classes (one for each digit). To do so, we
pre-process the data in the following unsupervised way. We consider all images and extract SIFT
descriptors [42] for each image. We then use FLANN [43] to compute a κ-nearest neighbor graph
(with κ=10) based on these descriptors. We finally run the spectral clustering algorithm with k = 10
to find the 10 classes corresponding to each digit, as explained in Section 6.2.2. The k-means step
is thus the last step of the overall processing. We compare results obtained with different sampling
methods versus the results obtained without sampling in Fig. 11 (bottom). For m-DPP, several val-
ues of s were tried, and we show here the result obtained for s = 2.2. Also, a number r = 200 of
Fourier features were used. We see that, in the Voronoi weight setting, m-DPP is competitive with D2.
Moreover, uniform iid outperforms sensitivity iid certainly due to approximation errors of the
bi-criteria procedure and to the fact that the data is balanced (there are more or less 7 · 103 instances
of each digit in the dataset), thus favoring uniform sampling. Finally, m-DPP outperforms once again
the iid random sampling techniques. Note that the methods’ classification performance is remarkable.
Without sampling, the overall classification performance in terms of AR index with the ground truth
is 0.95. With only ∼ 20 samples, m-DPP reaches a performance of ∼ 0.9!

The US Census dataset. We also perform experiments on the 1990 US Census dataset4, that
consists in N = 2458285 surveyed person, and d = 68 categorical attributes such as age, income,
etc. The data was pre-processed by a series of operation detailed on its download webpage. In our
experiments, and in order to limit memory usage, we perform experiments on the first N = 5 · 105

instances of the data. As there is no ground truth in this dataset to compare to, we arbitrarily decide
k = 15 classes, and show solely the coreset property of the samples obtained via different methods. For
m-DPP, s was set to 70 (the mean interdistance estimated on 1000 randomly chosen pairs of datapoints),
and a number r = 25 of Fourier features was chosen. Experiments were done with s ranging from
s = 30 to s = 140 with no qualitative change in performance (not shown). Fig. 12 shows the results of
the experiments. We see that m-DPP outperforms all other methods, in both Voronoi and importance
sampling settings. In this example, note that sensitivity iid outperforms uniform iid probably
due to the fact that the 15 potential classes are unbalanced.

7. Conclusion

In this work, we introduced a new random sampling method based on DPPs to build coresets. Different
from sensitivity-based iid random sampling, our method introduces negative correlations between
samples due to its determinantal nature. Also, different from D2 sampling, also known to be repulsive,
our method is tractable in the sense that marginal probabilities are known and importance sampling
schemes can be used. Our theoretical results may be summarized in two points. Firstly, Thms 3.1
and 3.5 provide coreset guarantees in function of the point process’ probabilities of inclusion, that
is: the diagonal elements of the marginal kernel K parametrizing the DPP. These guarantees are not
stronger than the iid case and are in fact similar: they both show that the ideal marginal probabilities
are proportional to the sensitivity. Nevertheless, these results do not take into account the off-diagonal

4downloaded from https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)

https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
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Figure 12. Performance of different sampling methods on the US Census dataset. Left: performance using
Voronoi weights. Right: performance using importance sampling weights.

elements of K coding for the repulsion within the sampled subsets and are in fact verified for any choice
of off-diagonal elements (provided K stays SDP with eigenvalues between 0 and 1). This leads to the
second point: given that these off-diagonal elements offer extra degrees of freedom and due to a simple
variance argument (Thm 3.6), we show that DPP-based random sampling will necessarily provide
better performance than its iid counterpart. On the theoretical side, additional work is required to
specify precisely the minimum number of required samples guaranteeing the coreset property. We
expect that further research on concentration properties of DPPs, involving not only the diagonal
elements of K but also its off-diagonal elements, should enable to move forward in this direction.

We applied our general coreset theorems to the ubiquitous k-means problem. Given a dataset, the
ideal marginal kernel K adapted to the k-means problem is untractable and we thus propose a heuristics
via random Fourier features and the Gaussian kernel in order to efficiently sample a DPP that has the
desirable properties to sample coresets (if not provably, at least quantitatively). To sample a subset of
size m, our heuristics runs in O(Nm2). This is more expensive than the sensitivity-based iid strategy
(that runs in O(Ndm)), especially as the number of samples m increases; but empirically provides
better results both regarding the coreset property and the k-means performance in classification tasks,
on different artificial and real-world datasets.
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Appendix A - Proof of Theorem 3.1

Proof. The theorem consists in proving that Eq. (6) is true. We follow a classical proof scheme from
compressed sensing [44], in four steps:

1) we first use concentration arguments for a given θ ∈ Θ.
2) we then build an ε-net paving the space of parameters.
3) via the union bound, we obtain the result for all θ in the ε-net.
4) via the Lipschitz property of f , we obtain the desired result for all θ ∈ Θ.

Step 1 (Concentration around θ ∈ Θ) For a given θ ∈ Θ, we have the following concentration
result [30]: ∀ε ∈ (0, 1),∀δ ∈ (0, 1):

P

(∣∣∣∣∣ L̂L − 1

∣∣∣∣∣ > ε
)

= P
(∣∣∣L̂− L∣∣∣ > εL) 6 δ,(43)

provided that:

µ >
16

ε2
(
εC + 2C2

)
log

5

δ
,(44)
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with C = max
i

f(xi, θ)

Lπ̄i
, where π̄i is a shorthand for πi/µ.

Using the same concentration results, we also have:

∀(ε, δ) ∈ (0, 1)2, P

(∣∣∣∣∣
∑
i
εi
πi

N
− 1

∣∣∣∣∣ > ε
)
6 δ,(45)

provided that:

µ >
16

ε2Nπ̄min

(
ε+

2

Nπ̄min

)
log

5

δ
,(46)

where π̄min = mini π̄i.
Step 2 (ε′-net of Θ) Consider Γε′ = (θ∗1 , . . . , θ

∗
n) the smallest subset of Θ such that balls of radius

ε′ centered around the elements in Γε′ cover Θ. Γε′ is called an ε′-net of Θ and n = |Γε′ | its covering
number. The covering property entails that:

∀θ ∈ Θ ∃θ∗ ∈ Γε′ s.t. dΘ(θ, θ∗) 6 ε′.(47)

Step 3. (Union bound) Write δ′ = δ/2n. From step 1, we know that, ∀θ∗ ∈ Γε′ :

P

(∣∣∣∣∣ L̂L − 1

∣∣∣∣∣ > ε
)
6 δ′(48)

provided that:

µ >
16

ε2
(
εC + 2C2

)
log

5

δ′
.(49)

From the union bound, we have:

P

(
∀θ∗ ∈ Γε′ ,

∣∣∣∣∣ L̂L − 1

∣∣∣∣∣ 6 ε
)
> 1−

∑
θ∗∈Γ

δ′ = 1− δ

2
,(50)

provided that:

µ >
16

ε2
max
θ∗∈Γε′

(
εC + 2C2

)
log

10n

δ
.(51)

Given that π̄i will in fine be independent of θ (as we want the coreset property to be true for all
θ ∈ Θ),

max
θ∗∈Γε′

C = max
θ∗∈Γε′

max
i

f(xi, θ)

Lπ̄i
(52)

= max
i

1

π̄i
max
θ∗∈Γε′

f(xi, θ)

L
(53)

6 max
i

1

π̄i
max
θ∈Θ

f(xi, θ)

L
= max

i

σi
π̄i
,(54)

where we see how the sensitivity σi naturally arises in the proof. Eq. (54) entails that Eq. (51) is
verified if µ > µ1 with

µ1 =
16

ε2

(
εmax

i

σi
π̄i

+ 2

(
max
i

σi
π̄i

)2
)

log
10n

δ
.(55)

Write δ′′ = δ/2. From Eq. (45), we have:

P

(∣∣∣∣∣
∑
i
εi
πi

N
− 1

∣∣∣∣∣ > ε
)
6 δ′′,(56)

provided that µ > µ2 with

µ2 =
16

ε2Nπ̄min

(
ε+

2

Nπ̄min

)
log

10

δ
.(57)
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We have (with the union bound again):

P

(∣∣∣∣∣
∑
i
εi
πi

N
− 1

∣∣∣∣∣ 6 ε AND ∀θ∗ ∈ Γε′ ,

∣∣∣∣∣ L̂L − 1

∣∣∣∣∣ 6 ε
)

> 1− δ/2− δ′′ = 1− δ,(58)

provided that:

µ > max(µ1, µ2).(59)

Step 4 (Continuity argument) Suppose that µ > max(µ∗1, µ
∗
2) with µ∗1, µ∗2 as defined in the theorem.

The result of step 3 with ε← ε/2 states that, with probability at least 1− δ, one has:∣∣∣∣∣
∑
i
εi
πi

N
− 1

∣∣∣∣∣ 6 ε

2
AND ∀θ∗ ∈ Γε′ ,

∣∣∣∣∣ L̂L − 1

∣∣∣∣∣ 6 ε

2
.(60)

We now look for the maximum value of ε′ such that Eq. (60) implies the following desired result:

∀θ ∈ Θ,

∣∣∣∣∣ L̂L − 1

∣∣∣∣∣ 6 ε.(61)

Consider θ ∈ Θ. By the covering property of Γε′ , we have:

∃θ∗ ∈ Γε′ s.t. dΘ(θ, θ∗) 6 ε′.(62)

Moreover, as f is γ-Lipschitz, ∀xi ∈ X :

|f(xi, θ)− f(xi, θ
∗)| 6 γ dΘ(θ, θ∗) 6 γε′.(63)

Thus, using Eqs. (60) and (63):

L̂(X , θ) 6 L̂(X , θ∗) + γε′
∑
i

εi
πi

(64)

6 (1 +
ε

2
)(L(X , θ∗) +Nγε′).(65)

Also, using Eq. (63) again:

L(X , θ∗) 6 L(X , θ) +Nγε′.(66)

Thus:

L̂(X , θ) 6 (1 +
ε

2
)L(X , θ) + 2Nγε′(1 +

ε

2
).(67)

Similarly, for the lower bound, one obtains:

(1− ε

2
)(L(X , θ)− 2Nγε′) 6 L̂(X , θ)(68)

In order for Eqs (67) and (68) to imply Eq.(61), we need:

2Nγε′(1 +
ε

2
) 6

ε

2
L(X , θ),(69)

i.e.:

ε′ 6
εL(X , θ)

4Nγ(1 + ε
2 )
6
εL(X , θ)

6Nγ
.(70)

In order for this condition to be true for all θ, we choose:

ε′ =
εminθ∈Θ L(X , θ)

6Nγ
=
εLopt

6Nγ
=
ε〈f〉opt

6γ
.(71)

Concluding the proof. Consider S a sample from a DPP with kernel K, marginal probabilities of
inclusion Kii = πi and normalized marginal probabilities π̄i = πi/µ. Consider ε ∈ (0, 1) and δ ∈ (0, 1).
Define ε′ as in Eq. (71) and Γ the set of centers of the n balls of radius ε′ covering the parameter
space. We showed that if µ > max(µ∗1, µ

∗
2), then S is an ε-coreset with probability at least 1− δ. �
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Appendix B - Proof of two Lemmas

Lemma B.1. In the 1-means problem (the k-means problem with k = 1), and supposing without loss
of generality that the data is centered (i.e.:

∑
j xj = 0), we have:

σi =
1

N

(
1 +
‖xi‖2

v

)
,(72)

where v = 1
N

∑
x∈X ‖x‖

2
.

Proof. By definition:

1

σi
= min

c

∑
x ‖x− c‖

2

‖xi − c‖2
.

Consider S(xi, R) the sphere centered on xi and radius R > 0. We have that:

min
c

= min
R>0

min
c∈S

We thus have:

1

σi
= min

R>0

1

R2
min
c∈S

∑
x

‖x− c‖2 .

Writing x− c = x− xi − (c− xi), we may write∑
x

‖x− c‖2 = NR2+
∑
x

‖x− xi‖2

− 2R

∥∥∥∥∥∑
x

x− xi

∥∥∥∥∥ cos θ,

with θ the angle formed by
∑
x x − xi and c − xi. As the minimum is sought for c on the sphere,

the angle θ may take any value, such that the minimum is always attained with θ s.t. cos θ = 1. We
finally obtain:

1

σi
= N + min

R>0

1

R2

(∑
x

‖x− xi‖2 − 2R

∥∥∥∥∥∑
x

x− xi

∥∥∥∥∥
)
.

Studying analytically the function f(R) = a−2bR
R2 , its minimum is attained for R∗ = a

b and f(R∗) =

− b
2

a , such that:

1

σi
= N −

||
∑
x x− xi||2∑

x ‖x− xi‖
2 .

Supposing without loss of generality that the data is centered, i.e.:
∑
x x = 0 and denoting v =

1
N

∑
x ‖x‖

2
, we have:

1

σi
= N − N2 ‖xi‖2

Nv +N ‖xi‖2
.

Inverting this equation yields:

σi =
v + ‖xi‖2

Nv +N ‖xi‖2 −N ‖xi‖2

=
1

N

(
1 +
‖xi‖2

v

)
�

Lemma B.2. In the k-means problem, Nσmin > 1.
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Proof. Consider θopt = (copt
1 , . . . , copt

k ) the optimal solution of k-means and {V1,V2, . . . ,Vk} their
associated Voronoi sets. Consider xi ∈ X and suppose, without loss of generality that xi ∈ V1. Also,
for any x ∈ X , we denote by c(x) = argminc∈θ ‖x− c‖

2
. We have:

1

σi
= min
c1,...,ck

∑
x∈X ‖x− c(x)‖2

‖xi − c(xi)‖2

= min
c1,...,ck

∑
x∈V1 ‖x− c(x)‖2

‖xi − c(xi)‖2
+

k∑
j=2

∑
x∈Vj ‖x− c(x)‖2

‖xi − c(xi)‖2

Given that, by definition of c(x), ∀j, ‖x− c(x)‖2 6 ‖x− cj‖2, we have:

1

σi
6 min
c1,...,ck

∑
x∈V1 ‖x− c1‖

2

‖xi − c(xi)‖2
+

k∑
j=2

∑
x∈Vj ‖x− cj‖

2

‖xi − c(xi)‖2

To further bound this quantity, let us constrain the domain over which the minimum is sought.
Consider B(xi, R) the ball centered on xi and radius R > 0. Consider S(xi, R) its surface (i.e., the
associated sphere). We have that:

min
c1,...,ck

6 min
R>0

min
c1∈S,(c2,...,ck)/∈B

Given this restricted search space, we have: c(xi) = c1 and ‖xi − c1‖2 = R2, and thus:

1

σi
6 min

R>0

1

R2
min
c1∈S

(∑
x∈V1

‖x− c1‖2

+ min
(c2,...,ck)/∈B

k∑
j=2

∑
x∈Vj

‖x− cj‖2


Now, one may show, for all j = 2, . . . , k, that:∑
x∈Vj

‖x− cj‖2 =
∑
x∈Vj

∥∥x− copt
j

∥∥2
+ #Vj

∥∥cj − copt
j

∥∥2
,

due to the fact that copt
j = 1

#Vj
∑
x∈Vj x. Given that the minimum of

∥∥cj − copt
j

∥∥2
is necessarily

smaller than R2:

min
cj /∈B

∑
x∈Vj

‖x− cj‖2 6
∑
x∈Vj

∥∥x− copt
j

∥∥2
+ #VjR2,

such that:

1

σi
6min
R>0

1

R2
min
c1∈S

(∑
x∈V1

‖x− c1‖2 + α+ (N −#V1)R2

)

= N −#V1 + min
R>0

1

R2
min
c1∈S

(∑
x∈V1

‖x− c1‖2 + α

)
with α = Lopt\V the optimal (k − 1)-means cost on X\V. Writing x − c1 = x − xi − (c1 − xi), we

may decompose
∑
x∈V1 ‖x− c1‖

2
in R2#V1 +

∑
x∈V1 ‖x− xi‖

2− 2R
∥∥∑

x∈V1 x− xi
∥∥ cos θ, with θ the

angle formed by
∑
x∈V1 x− xi and c1 − xi. As the minimum is sought for c1 on the sphere, the angle

θ may take any value, such that the minimum is always attained with θ s.t. cos θ = 1. We finally
obtain, denoting ∀x ∈ V1, y = x− xi:

1

σi
6N + min

R>0

1

R2

(∑
x∈V1

‖y‖2 − 2R

∥∥∥∥∥∑
x∈V1

y

∥∥∥∥∥+ α

)
.
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Studying analytically the function f(R) = a−2bR+α
R2 , its minimum is attained for R∗ = a+α

b and

f(R∗) = − b2

a+α , such that:

1

σi
6N −

||
∑
x∈V1 y||

2∑
x∈V1 ‖y‖

2
+ α

6 N.

This is true for all i, and in particular for σmin. �

Appendix C - The issue of outliers

Corollary 3.3 is applicable to cases where σmax is not too large. In fact, in order for ασi to be smaller
than πi, and thus smaller than 1 as πi is a probability, α should always be set inferior to 1

σmax
. Now, if

σmax is so large that 1
σmax

6 32
ε2 (ε+ 4S) log 10n

δ , then, even by setting β to its minimum value 1, there

is no admissible α verifying both conditions (26) and (27). Large values of σi means strong outliers5.
A simple workaround in this case is to separate the data in two: Xo = {xi s.t. σi > σ∗} the set of
outliers and X̄ = {xi s.t. σi 6 σ∗} the others, where σ∗ is the threshold sensitivity over which a data
point is considered as an outlier (it is set in the following). The initial cost L may also be separated
in two: L = Lo + L̄ where

Lo =
∑
x∈Xo

f(x, θ) and L̄ =
∑
x∈X̄

f(x, θ).(73)

Let us write σ̄i the sensitivity of data point i in X̄ and S̄ =
∑
x∈X̄ σ̄i. Let us choose σ∗ to be the

largest value in [1/N, 1] for which 1
σ̄max

> 32
ε2 (ε + 4S̄) log 10n

δ is verified. One can thus apply the

corollary to X̄ to obtain S̄ such that:

∀θ ∈ Θ (1− ε)L̄(X̄ , θ) 6 ˆ̄L(S̄, θ) 6 (1 + ε)L̄(X̄ , θ).

Trivially, one may add to S̄ all outliers in Xo and associate to each of them a weight 1 in the estimated
cost. The resulting set S is thus necessarily a coreset for all datapoints:

∀θ ∈ Θ (1− ε)L 6 (1− ε)L̄+ Lo 6 L̂ = ˆ̄L+ Lo 6 (1 + ε)L̄+ Lo 6 (1 + ε)L.

The number of required samples is thus the number required for S̄ to be a coreset for X̄ plus the

number of outliers in Xo: O(|Xo| + S̄
ε2 (ε + S̄) log n

δ ). The exact value of σ∗ is application and data
dependent. In general, we expect it to beO(1), such that the number of outliers |Xo|may be considered
as a constant and the number of required samples is of the order O(S

ε2 (ε+ S) log n
δ ).

Appendix D - Implementation

D.1. Approximating the kernel via Random Fourier Features

In order to approximate L in time linear in N , we rely on random Fourier features (RFF) [33]. We
briefly recall the RFF framework in the following.

Let us write κ the Gaussian kernel that we use: κ(t) = exp(−t2/s2). Its Fourier transform is:

κ̂(ω) =

∫
Rd
κ(t) exp−iω

ᵀt dt.(74)

It has real values as κ is symmetrical. One may write:

(75) κ(x,y) = κ(x− y) =
1

Z

∫
Rd
κ̂(ω) expiω

ᵀ(x−y) dω,

where, in order to ensure that κ(x,x) = 1:

Z =

∫
Rd
κ̂(ω)dω.(76)

5sensitivities have indeed been shown to be good outlierness indicators [26]
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According to Bochner’s theorem, and due to the fact that κ is positive-definite, κ̂/Z is a valid proba-
bility density function. κ(x,y) may thus be interpreted as the expected value of expiω

ᵀ(x−y) provided
that ω is drawn from κ̂/Z:

κ(x,y) = Eω

(
expiω

ᵀ(x−y)
)

(77)

The distribution κ̂/Z from which ω should be drawn from may be shown to be N (ω; 0, 2/s2), where
N (x;µ, v) is the normal law:

N (x;µ, v) =
1√
2vπ

exp−
(x−µ)2

2v .(78)

In practice, we draw r random Fourier vectors from κ̂/Z:

Ωr = (ω1, . . . ,ωr).

For each data point xj , we define a column feature vector associated to Ωr:

ψj =
1√
r

[cos(ωᵀ
1xj)| · · · | cos(ωᵀ

rxj)| sin(ωᵀ
1xj)| · · · | sin(ωᵀ

rxj)]
ᵀ ∈ R2r,(79)

and call Ψ = (ψ1| · · · |ψN ) ∈ R2r×N the RFF matrix. Other embeddings are possible in the RFF
framework, but this one was shown to be the most appropriate to the Gaussian kernel [45]. As r
increases, κ(xi,xj) concentrates around its expected value: ψᵀ

i ψj ' κ(xi,xj). The Gaussian kernel
matrix is thus approximated via:

L ' ΨᵀΨ.(80)

Computing the RFF matrix requires O(Nrd) operations.

Remark D.1. How many random features r should we choose? Firstly, note that the entry-wise
concentration of ΨᵀΨ around its expected value L is controlled by a multiplicative error ε provided
that r > O(d/ε2) [33]. Thus, r should at least be of the order of the dimension d. Note also that, in
fine, our goal is to obtain in average µ samples from a DPP with L-ensemble ΨᵀΨ. The maximum
number of samples of such a DPP is the rank of Ψ, such that r should necessarily be chosen larger
than µ. Finally, in our setting of k-means, we know that in the best scenario µ = O(dkS2) > d. In
the following, we thus set r to be a few times µ.

D.2. Fast sampling of DPPs

In order to sample a DPP from a L-ensemble given its eigenvectors {uk} and eigenvalues λk, one may
follow Alg. 1 of [8], originally from [46]. This algorithm runs in O(Nµ3) in average. The limiting
step of the overall sampling algorithm is the O(N3) cost of the diagonalisation of L. Thankfully, the
RFFs not only provide us with an approximation of L in linear time, it also provides us with a dual
representation, i.e., a representation of L in the form

L = ΨᵀΨ.(81)

Thus, we may circumvent the prohibitive diagonalization cost of L and only diagonalize its dual form:

C = ΨΨᵀ ∈ R2r×2r,(82)

costing only O(Nr2) = O(Nµ2) (time to compute C from Ψ and to compute the low-dimensional
diagonalization). C’s eigendecomposition yields:

C = VDVᵀ,(83)

with V = (v1| . . . |v2r) the orthonormal basis of eigenvectors and D the diagonal matrix of eigenvalues
such that 0 6 ν1 6 . . . 6 ν2r.
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Note that all eigenvectors associated to non-zero eigenvalues of L can be recovered from C’s eigen-
decomposition (see, e.g., Proposition 3.1 in [8]). More precisely, if vk is an eigenvector of C associated
to eigenvalue νk, then:

uk =
1
√
νk

Ψᵀvk(84)

is a normalized eigenvector of L associated to the same eigenvalue.
In the case of such a dual representation, two standard approaches are used in the literature:

1) either follow Alg. 1 of [8] with the reconstructed eigenvectors U = ΨᵀVD−1/2 as inputs, running in
O(Nµ3); 2) or follow Alg. 3 of [8] with the dual eigendecomposition {vk} and {νk} as inputs, running
in O(Nrµ2 + r2µ3). Both approaches are nevertheless suboptimal and we show in [47] that the first
(resp. second) one has an equivalent formulation running in O(Nµ2) (resp. O(Nµr)). In this paper,
we work with the following sampling strategy, given the dual eigendecomposition {vk} and {νk}:

i/ Sample eigenvectors. Draw N Bernoulli variables with parameters νk/(1 + νk): for k =
1, . . . , 2r, add k to the set of sampled indices J with probability νk/(1 + νk). We generically
denote by J the number of elements in J . Note that the expected value of J is µ.

ii/ Run Alg. 2 to sample a J-DPP with projective L-ensemble P = WWᵀ where W ∈ RN×J
concatenates all the reconstructed eigenvectors uk = 1√

νk
Ψᵀvk such that k ∈ J .

Algorithm 2 Efficient J-DPP sampling algorithm with projective L-ensemble P = WWᵀ

Input: W ∈ RN×J such that WᵀW = IJ
Write ∀i, yi = Wᵀδi ∈ RJ .
S ← ∅
Define p ∈ RN : ∀i, p(i) = ‖yi‖2
for n = 1, . . . , J do:

· Draw sn with proba P(s) = p(s)/
∑
i p(i)

· S ← S ∪ {sn}
· Compute fn = ysn −

∑n−1
l=1 fl(f

ᵀ
l ysn) ∈ RJ

· Normalize fn ← fn/
√
fᵀ
nysn

· Update p : ∀i p(i)← p(i)− (fᵀ
nyi)

2

end for
Output: S of size J .

The runtime of this strategy given the dual eigendecomposition is O(Nµ2). Also, for a proof that
this strategy does sample from a DPP with L-ensemble L = ΨᵀΨ we refer the reader to our technical
report [47].

D.3. Fast sampling of m-DPPs

In the experiments, we will only provide results for m-DPP sampling. In fact, results are easier to
compare with classical i.i.d. coreset methods when the number of samples is fixed and not random.
Given the eigendecomposition of the dual representation C, one samples a m-DPP via the following
two steps (we refer once again to [47] for a proof):

i/ Sample m eigenvectors. Draw 2r Bernoulli variables with parameters νk/(1 + νk) under the
constraint that exactly m variables should be equal to one. Call J the set of indices thus
drawn: |J | = J = m.

ii/ Run Alg. 2 to sample a J-DPP with projective L-ensemble P = WWᵀ where W ∈ RN×J
concatenates all the reconstructed eigenvectors uk = 1√

νk
Ψᵀvk such that k ∈ J .

The only difference with a usual DPP is in the first step, where the N Bernoulli variables are not
drawn independently anymore, but under constraint that exactly m of them should be equal to one.
To do so, one may follow Alg. 8 of [8] which runs in O(Nm). Step ii/ runs in O(Nm2), such that the
overall cost of sampling a m-DPP given the dual eigendecomposition is also O(Nm2). Alg. 8 of [8]
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makes use of elementary polynomials. Given the eigenvalues of C, {νi}, the n-th order associated
elementary polynomial reads:

en(ν1, . . . , ν2r) =
∑

J⊆{1,2,...,2r} s.t. |J |=n

∏
j∈J

νj ∈ R.(85)

As r increases, these polynomials become less and less stable to compute and Alg. 8 of [8] fails in
many practical situations due to numerical precision errors as m becomes too large. In order to avoid
these errors, we follow the saddle-point approximation method detailed in [48]. This method has the
additional advantage of providing very accurate approximations of the probabilities of inclusion of the
m-DPP (that are exactly written as a ratio of elementary polynomials and thus also vulnerable to
numerical instability). We in fact need these marginals as the weight of each sample in the importance
sampling estimator is the inverse of its probability of inclusion.
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