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Abstract

This article deals with the allocation of ob-
jects where each agent receives a single item.
Starting from an initial endowment, the agents
can be better off by exchanging their objects.
However, not all trades are likely because some
participants are unable to communicate. By
considering that the agents are embedded in a
social network, we propose to study the pos-
sible allocations emerging from a sequence of
simple swaps between pairs of neighbors in the
network. This model raises natural questions
regarding (i) the reachability of a given full al-
location, (ii) the ability of an agent to obtain
a given object, and (iii) the search of Pareto-
efficient allocations. We investigate the com-
plexity of these problems by providing, accord-
ing to the structure of the social network, poly-
nomial and NP-complete cases.

1 Introduction

Allocating indivisible resources to agents is a fundamen-
tal problem in AI [Chevaleyre et al., 2006], which lies at
the interface of computer science and economics. When
the set of solutions is restricted to the allocations where
each agent receives a single resource, this problem cor-
responds to a specific type of matching under prefer-
ences [Manlove, 2013; Klaus et al., 2016], called one-
sided matching. The specificity of the one-sided match-
ing lies on the fact that the resources have no prefer-
ences over the possible allocations, on the contrary of
two-sided matching. One-sided matchings have been
widely studied under different names: assignment prob-
lem [Gardenfors, 1973], house allocation [Abdulkadiroǧlu
and Sönmez, 1998]. When each agent is initially endowed
with a resource, the problem is known in the literature as
the housing market problem [Shapley and Scarf, 1974].
Starting from the initial endowment and performing a
sequence of exchanges among the agents is a standard
approach to reallocate the resources. The top-trading cy-
cle algorithm and its variants [Shapley and Scarf, 1974;
Abdulkadiroǧlu and Sönmez, 1999; Aziz and De Keijzer,

2012] exploit this idea in order to compute a better allo-
cation. Another way to grasp the problem is by letting
the agents perform the exchanges by themselves. A rich
literature has been developed on this approach, formaliz-
ing conditions for realistic trades and analyzing the qual-
ity of the possible outcomes [Sandholm, 1998; Dunne et
al., 2005; Chevaleyre et al., 2005; Endriss et al., 2006;
Chevaleyre et al., 2007; Dunne and Chevaleyre, 2008;
Chevaleyre et al., 2008; Aziz et al., 2016]. Most part of
this literature is devoted to general resource allocations
where agents typically receive bundles of resources, but
only a few articles specifically address the housing mar-
ket problem [Damamme et al., 2015].

In the housing market setting, it is implicitly assumed
that all the agents have the capacity to perform direct
deals. This assumption is unlikely in large scale in-
stances, where some agents are unable to communicate.
Restricting the set of direct exchanges to the ones which
are actually possible seems more realistic and relevant in
large scale instances. The ability of agents to exchange
resources can be modeled as a social network [Jackson,
2008; Easley and Kleinberg, 2010]. Recent works on
matching have investigated the use of a social network
in order to capture other types of social behavior such
as altruism [Anshelevich et al., 2013], social contact [Ar-
caute and Vassilvitskii, 2009], peer effects [Bodine-Baron
et al., 2011] or collaboration [Hoefer, 2013]. Most of
these works focus on two-sided matchings and, up to our
knowledge, only a few articles are devoted to resource al-
location. In this line, the notion of negotiation topology
graph [Chevaleyre et al., 2007], where the exchanges are
restricted to agents belonging to the same clique of the
social network, is noteworthy.

This article deals with a variant of housing market,
where the agents are embedded in a social network
which determines their ability to exchange their objects.
Each participant is initially endowed with a single ob-
ject, and she has strict ordinal preferences over objects.
The agents may exchange their items under two con-
ditions: they find it mutually profitable, and they are
socially tied. Though sophisticated exchanges involving
multiple agents have been analyzed [Sandholm, 1998;
Dunne and Chevaleyre, 2008; Damamme et al., 2015],
we focus on simple trades between pairs of neighbors.
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The exchanges are made without payments or monetary
compensations. Our main question is, starting from the
initial endowment, which allocation of the objects can
emerge? Indeed, some solutions are ruled out because of
the agents’ preferences over the objects (e.g. no one is
interested in exchanging her current object with some-
thing that she considers as worse). In addition, the net-
work limits the access of certain participants to each
other. Therefore, it is particularly challenging to un-
derstand how the combination of these two natural in-
gredients influence the outcome of a dynamics in which
connected agents agree on mutually profitable swaps of
objects. Moreover, it appears interesting to consider the
quality of a resulting allocation by sequence of profitable
exchanges. In the context of ordinal preferences, Pareto-
efficiency appears as the minimal requirement for an al-
location to be socially acceptable. Pareto-efficiency has
been widely studied in the context of house allocation
[Abraham et al., 2005] and housing market [Aziz et al.,
2016]. As far as we know, the computation of Pareto-
efficient allocations has not been investigated when the
possible allocations are constrained by a social network.

The paper is organized as follows. The model of object
allocation along a social network is defined in Section 2,
as well as the problems under consideration. Then, in
Section 3, we address the problem of reachability for
an object and in Section 4 the reachability of a given
full allocation. Before concluding, the search of Pareto-
efficient allocations is investigated in Section 5.

2 Model

2.1 Notations

Let N = {1, . . . n} be a set of agents and X =
{x1, . . . , xn} be a set of objects such that |N | = |X| = n.
An allocation is a bijection σ : N → X, where σ(i) de-
notes the object assigned to agent i in σ. We may write
σ as an n-tuple σ = (σ(1), . . . , σ(n)). Each agent is
initially endowed with an object; σ0 denotes this initial
allocation. We assume w.l.o.g. that σ0(i) = xi for every
agent i. Each agent i ∈ N has strict preferences over the
objects, represented by a strict linear order �i over X.
The agents’ preference profile is denoted by �.

Let G = (N,E) be an undirected graph representing a
social network over the agents, where the edges capture
the possibility of communication and trade between two
agents. An instance is a tuple (N,X,�, G, σ0).

2.2 Swap Dynamics

In this article we focus on rational trades between pairs
of agents. A trade between two agents is rational if both
agents benefit by exchanging their objects. An allocation
σ′ results from a rational trade from σ for agents i and
j if σ′(i) = σ(j), σ′(j) = σ(i), σ′(i) �i σ(i) and σ′(j) �j
σ(j), and for any agent k /∈ {i, j}, σ′(k) = σ(k).

We assume that every trade is necessarily performed
between two neighbors in the network. Rational trades
defined according to G are called swaps. An assignment
σ′ results from a swap from σ w.r.t. G = (N,E) if there

exist two agents i and j such that (i, j) ∈ E and σ′ is a
rational trade from σ for i and j.

A sequence of swaps is a sequence of assignments
(σ0, σ1, σ2, . . . , σt) such that for any k ∈ {1, . . . , t}, σk
results from a swap from σk−1. An allocation σ is stable
if no swap can be performed from σ.

Example 1 Consider an instance where n = 4. The
network, the preferences and a sequence of swaps are
described below.

G :
σ0 :

σ1 :

σ2 :

1
x1
x2
x2

2
x2
x1
x3

3
x3
x3
x1

4
x4
x4
x4

1: x4 � x2 �x1� x3
2: x3 � x1 �x2� x4
3: x4 � x2 � x1 �x3
4: x2 �x4� x1 � x3

From σ0, represented by squares within the prefer-
ences, agents 1 and 2 can perform a swap: they are linked
and they both prefer the object of the other. The same
holds for agents 2 and 3. If agents 1 and 2 exchange
their objects (bold arrow in the figure), we obtain allo-
cation σ1. From σ1, only agents 2 and 3 can perform a
swap, leading to allocation σ2. In σ2, agents 1 and 4 pre-
fer the object of the other but they are not connected in
G, thus this exchange is not feasible. No swap is possible
in σ2, hence σ2 is stable.

An assignment σ′ is reachable if there exists a sequence
of swaps (σ0, . . . , σt) such that σt = σ′. Let us denote by
RA the set of all reachable assignments. By extension,
an object x ∈ X is reachable for an agent i ∈ N if there
is a sequence of swaps (σ0, . . . , σt) such that σt(i) = x.

Swap dynamics is a distributed process where, starting
from σ0, the agents exchange their objects without any
external intervention, until a stable allocation is reached.

2.3 Issues

In order to analyze the distributed process of swap dy-
namics, we are interested in all the allocations obtained
from σ0 by sequences of swaps. The following two deci-
sion problems naturally arise from our model.

Reachable Object
Instance: (N,X,�, G, σ0), agent i, object x
Question: Is x reachable for i?

Reachable Assignment
Instance: (N,X,�, G, σ0), assignment σ
Question: Is σ reachable?

The swaps dynamics always converges to a stable al-
location. However, the following example shows that we
can reach a rather bad assignment if the agents exchange
their objects in an uncoordinated way.

Example 2 Consider an instance with n agents. The
network and the preferences are described below.
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n

1
2

3

n-1

1: xn � [. . .] �x1
2: x1 � [. . .] �x2
.
.
.

...
n-2: xn−3 � [. . .] � xn−2
n-1: xn−2 � [. . .] � xn � xn−1
n: xn−1 � xn−2 � [. . .] � x1 �xn

Consider allocation σ1 resulting from the swap between
agents n-1 and n. The center agent n obtains her most
preferred object, thus no further swap is possible and σ1
is stable. However, if we consider the sequence of swaps
performed by the pairs of agents (n,1),(n,2),. . . ,(n,n-2),
(n,n-1), then we reach an allocation σ′ where every
agent obtains her most preferred object.

An allocation σ is Pareto-efficient if there is no as-
signment σ′ such that for all i ∈ N , σ′(i) �i σ(i) and
there exists j ∈ N such that σ′(j) �j σ(j). We restrict
the definition of Pareto-efficiency within the set RA of
reachable allocations, otherwise a Pareto-efficient alloca-
tion in the standard meaning may not be reachable.

As informally noticed in Example 2, swap dynamics
can reach an allocation that is Pareto dominated. This
observation also leads us to consider the swap dynam-
ics under a centralized perspective. The swaps, though
constrained by the social network and the mutual benefit
for the two involved agents, are guided by a coordinator,
in order to reach a Pareto-efficient allocation among all
reachable allocations. Consequently, we also study the
following optimization problem.

Pareto
Instance: (N,X,�, G, σ0)
Goal: Find a Pareto-efficient allocation σ within RA

3 Reachable Object
In this section we focus on Reachable Object. We
prove that the problem is NP-complete even when the
network is a tree. However, for some further restrictions
on the graph, the problem becomes polynomial.

First observe that in any network, an object cannot
pass twice by the same agent. This is derived from the
definition of a swap where both agents are better off.

Observation 1 If for a reachable assignment σ and an
agent i, σ(i) 6= σ0(i) then in any assignment σ′ reachable
from σ, σ′(i) 6= σ0(i).

Theorem 1 Reachable Object is NP-complete even
when the network is a tree.

Sketch of proof: One can easily verify that the prob-
lem is in NP. We use a reduction from the NP-complete
problem 2P1N-SAT [Yoshinaka, 2005]. In 2P1N-SAT,
we are given a set V = {v1, . . . , vn} of variables, and
a collection C = {C1, . . . , Cm} of clauses over V such
that each positive (resp., negative) literal occurs exactly
2 (resp., 1) times in C. Is C satisfiable?

Let vik (resp., vik) denote the positive (resp., negative)
literal vk if present in Ci. Index pkj (resp., nk) refers to

the clause containing the jth occurrence (j ∈ {1, 2}) of
vk (resp., the occurrence of vk).

We construct an instance (N,X,�, G, σ0) of Reach-
able Object as follows. Each literal vik (resp., vik) is

associated with an agent Xi
k (resp., X

i

k) which is ini-
tially endowed with object xik (resp., xik). Every clause
Ci is associated with an agent Ci initially endowed with
object ci. We add an agent T initially endowed with
object t, leading to |N | = |X| = m+ 3n+ 1. The graph
G = (N,E) is as follows.

TC1C2Cm

X
p11
1X

p12
1X

n1

1

X
p21
2X

p22
2X

n2

2

X
pn1
nX

pn2
nX

nn

n

The preference profile � is defined below. We only
represent the objects that each agent prefers to her ini-
tial one, and {`i} denotes the set of the objects associ-
ated with the literals of clause Ci, which are ranked in
arbitrary order.

T : {`1} � t
Ci: {`i+1} � t � {`i} � c1 � {`i−1} � . . . � ci−1 � {`1} � ci
Cm: t � {`m} � c1 � {`m−1} � . . . � cm−1 � {`1} � cm

X
pk1
k : cm−nk+1 � cm−pk2+1 � x

pk2
k � cm−pk1+1 � xnk

k �x
pk1
k

X
pk2
k : cm−pk1+1 � x

pk1
k � xnk

k �x
pk2
k

X
nk

k : x
pk2
k �xnk

k

Now, we have an instance of Reachable Object
and we claim that C is satisfiable iff t is reachable for
Cm. The details of the equivalence are omitted.

Observe, on one hand, that in the dipath τ from T to
Cm, every agent prefers t to her initial object, and only
accepts to exchange t with an object of her successor
in τ , corresponding to a literal that satisfies the clause
associated with the successor. Therefore, the only way
to move t from T to Cm is to give to each agent Ci an
object associated with a literal that satisfies the clause
Ci. Thus, for i = 1 to m, an object of {`i} moves to Ci.

On the other hand, we ensure in each branch corre-
sponding to a variable vk, that if an object xik (resp.,

xjk) moves out of the branch, then an object xi
′

k (resp.,

xj
′

k ) cannot move out thereafter. Indeed, if xn
k

k is the

first object to move out of the branch, then agent X
pk1
k

obtains her most preferred object and no other object

in this branch can move out. Otherwise, if x
pk1
k or x

pk2
k

moves first, then agent X
pk1
k has received an object that

she prefers to xn
k

k , so xn
k

k is blocked. �

The network in the previous proof is a tree where
all the subtrees derived from a common root are
paths (called generalized star thereafter). Neverthe-
less, Reachable Object is solvable in polynomial time
when the network is a star.
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Proposition 1 When G is a star, there exists a poly-
nomial algorithm for Reachable Object.

Proof: The problem asks whether agent i can get object
x. The network consists of a center denoted by n, and n−
1 leaves denoted by 1, . . . , n−1. A swap always involves
the center and a leaf. Once a leaf has exchanged her
initial object, she is not involved in a subsequent swap
(Observation 1). Thus, any sequence of swaps reduces to
an ordered list (without repetition) of leaves, indicating
with which agents the center exchanges her object.

Let us first focus on the case where agent i is the
center. The problem reduces to the search of a path in
a digraph GD = (N,E′) where (a, b) ∈ E′ with a ∈ N
and b ∈ N \ {n} iff the center and leaf b can rationally
trade when the center owns the initial object of a while
b owns her initial object. There is a path from n to b
in the digraph iff the center can get the initial object of
agent b. A linear algorithm solves this path problem and
the construction of the digraph is polynomial.

In case i is a leaf, the problem reduces to the previous
one: the center gets x and then, i and n swap their
objects. Return “yes” if these two steps are feasible. �

Now we suppose that the network is a path. Each time
G is a path, we assume that E = {(j, j + 1) : 1 ≤ j <
n}. Observation 1 implies that when G is a path, once
an object “moves” in a given direction, then it cannot
“move” in the opposite direction.

Let us define as canonical sequence of exchanges
κ(j, k) the sequence of exchanges which assigns object
xj to agent k by directly moving it along the dipath
from j to k. This is the sequence of exchanges between
the following pairs of agents if j < k: (j, j+1), (j+1, j+
2), . . . , (k − 1, k). It transforms σ0 into an assignment σ
where σ(`) = x` if ` < j, σ(`) = x`+1 if j ≤ ` < k and
σ(k) = xj . This sequence is said to be a sequence of
swaps if all its exchanges are rational.

Proposition 2 When G is a path, if object xj is reach-
able for agent n, then κ(j, n) is a sequence of swaps.

Proof: Assume by contradiction that there exists k ∈
{j+ 1, . . . , n} such that the exchange between k− 1 and
k is not rational i.e., xk �k xj or xj �k−1 xk.

Assume first that xk �k xj holds. Note that if there
exists a sequence of swaps leading to assign xj to n, then
xj must be assigned once to agent k since the path from
j to n is unique. Because xk �k xj , agent k will never
accept xj , contradiction.

Assume now that xj �k−1 xk holds. If there exists a
sequence of swaps leading to assign xj to n, then xj must
be exchanged once with xk, because xj must reach n and
there is no agent after n to receive xk. This swap cannot
be performed between k−1 and k since xj �k−1 xk, and
thus occurs between some agents before k. Consequently,
agents k−1 and k must have performed an earlier swap in
order to make xk moving to the agents with lower indices
than k. After this swap, the object currently owned by
k − 1 must move to the direction of n before xj , and xj
cannot overtake this object, contradiction. �

For testing that an object is reachable for a leaf of the
path, it suffices to verify that the associated canonical
sequence of exchanges is a sequence of swaps.

Corollary 1 When G is a path and agent i a leaf of G,
Reachable Object is solvable in polynomial time.

Other solvable cases of Reachable Object in a path
can be listed. The main one is when the distance between
the agent and the object is a constant. We omit the
details due to the space limitation but they essentially
rely on the following observations. If agent i tries to get
object xj , with i < j, then we can ignore agent k and
object xk, for k > j. If one can guess which set N ′ ⊂ N
of agents eventually get the objects of {xk : i ≤ k < j},
then we can deduce the final allocation: for two agents
a, b ∈ N ′ such that a < b, the object received by agent
a must have a smaller index than the object received by
agent b. It suffices to test whether the final allocation is
reachable, a problem that is solved in polynomial time
in the next section (Proposition 3).

Despite its apparent simplicity, Reachable Object
in a path is a challenging open problem when no restric-
tion on the agent’s location is made. We believe that
this case is at the frontier of tractability.

4 Reachable Assignment

In this section, we address the decision problem Reach-
able Assignment: does σ belong to RA? We prove
that this problem is NP-complete in general but polyno-
mial when the network is a tree.

Theorem 2 Reachable Assignment is NP-
complete.

Proof: One can easily verify that the problem is in
NP. We propose a reduction from Reachable Ob-
ject. Take an instance I = (N,X,G,�, σ0). The
problem asks whether an agent (called 1 w.l.o.g.) can
reach a given object (called x` thereafter). We con-
struct an instance of Reachable Assignment I ′ =
(N ∪ N ′, X ∪ X ′, G′,�′, σ′0) where each element of N
(resp., X) has a copy in N ′ (resp., X ′). The copies of j
and xj are denoted by j′ and x′j , respectively. The edge
set of G′ is a superset of E and each j′ ∈ N ′ has an edge
with every k ∈ N ′ ∪ {j}. The initial assignment σ′0 is
such that σ′0(j) = σ0(j) when j ∈ N , and σ′0(j) = x′j
when j ∈ N ′. For every j ∈ N , �′j consists of x′j on top,
followed by �j , and the remaining objects are put on the
last positions. For the agents of N ′, the preferences �′
are defined as follows.

1′: x` �′ x′1
`′: x1 �′ . . . �′ xn �′ x′` �′ x`
j′ /∈ {1′, `′}: xj �′ xj+1 �′ . . . �′ xn �′ xj−1 �′ . . . �′ x1 �′ x′j �′ x`

We claim that x` is reachable for agent 1 in I iff every
agent gets her most preferred object in I ′.

Suppose that x` is reachable for agent 1 in I. By con-
struction, it is also the case in I ′. Once x` has reached
agent 1, every agent j ∈ N exchanges her object with her
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copy j′ ∈ N ′. Thus, each j ∈ N possesses her most pre-
ferred object x′j . The same holds for agent 1′. Then, by
starting with `′ and afterwards considering every j′ by
increasing order of indices, j′ exchanges her object with
the current owner of her most preferred object. Those
exchanges are swaps by construction.

Suppose that every agent can get her most preferred
object in I ′. Agent 1′ must receive x` after an exchange
with agent 1 because no agent in N ′ \ {1′} prefers x` to
her initial object. For the same reason, x` cannot reach
1′ through the agents of N ′ \ {1′}. The preferences and
the network topology impose that no object of X ′ can
be involved in the move of x` to agent 1. �

In the previous reduction, we have constructed a graph
which contains cycles. When G is a tree, a polynomial al-
gorithm (Algorithm 1) solves Reachable Assignment.

The global idea of the algorithm is that every object
must move along a unique dipath in order to reach its
owner in σ from its owner in σ0. Therefore, it suffices
to verify that every dipath intersects another one of the
opposite direction within a swap for the involved agents.
In the pseudocode, list L stores the first arc of each di-
path and pop(P ) outputs the first arc of dipath P and
deletes this arc from P .

Algorithm 1:

Input: (N,X,�, G, σ0), assignment σ
Output: whether σ is reachable from σ0

1 L← ∅; σ′ ← σ0;
2 for each x ∈ X do
3 Px ← the unique dipath from the owner of x in

σ0 to the owner of x in σ;
4 L← L ∪ {pop(Px)};
5 while L 6= ∅ do
6 if ∃i,j∈N,i 6=j : (i, j), (j, i) ∈ L then
7 if (σ′(i) �i σ′(j)) ∨ (σ′(j) �j σ′(i)) then
8 return false;

9 Update σ′ with exchange between i and j;
10 L← L \ {(i, j), (j, i)};
11 L← L ∪ {pop(Pσ′(i))} ∪ {pop(Pσ′(j))};
12 else return false;

13 return true;

Let us illustrate Algorithm 1 with an example.

Example 3 Consider an instance with 5 agents trying
to reach allocation (x4, x5, x1, x3, x2). The social net-
work and the preferences are as follows.

1
2

3
4

5

1: x4 �x1
2: x5 � x3 � x1 � x4 �x2
3: x1 �x3
4: x3 � x5 � x2 �x4
5: x2 �x5

The dipaths Px computed at line 3 of Algorithm 1 are:
Px1

= {(1, 2), (2, 3)} Px3
= {(3, 2), (2, 4)} Px5

= {(5, 4), (4, 2)}
Px2

= {(2, 4), (4, 5)} Px4
= {(4, 2), (2, 1)}

The following table illustrates the differents steps of the
while loop (lines 5-12):

L Swap σ′

{(1, 2), (2, 4), (3, 2), (4, 2), (5, 4)} 2 ↔ 4 (x1, x4, x3, x2, x5)
{(1, 2), (4, 5), (3, 2), (2, 1), (5, 4)} 1 ↔ 2 (x4, x1, x3, x2, x5)
{(2, 3), (4, 5), (3, 2), ∅, (5, 4)} 2 ↔ 3 (x4, x3, x1, x2, x5)
{∅, (4, 5), (2, 4), ∅, (5, 4)} 4 ↔ 5 (x4, x3, x1, x5, x2)
{∅, ∅, (2, 4), ∅, (4, 2)} 2 ↔ 4 (x4, x5, x1, x3, x2)

∅ - -

At each step L stores the first arc of each Pxi . At step 1,
only one exchange is possible: between agents 2 and 4.
This exchange being rational, σ′ is updated by performing
the swap. Arcs (2, 4) and (4, 2) are removed from L.
Arcs (4, 5) and (2, 1), which are respectively the new first
arcs of Px2

and Px4
, are inserted in L. The algorithm

stops when L is empty, implying that σ is reached.

Proposition 3 Algorithm 1 solves Reachable As-
signment in polynomial time when G is a tree.

Proof: Consider an instance with a minimum number
of agents where σ is reachable but Algorithm 1 returns
“false”. Let s be a feasible sequence of swaps from σ0 to
σ. The allocation reached by Algorithm 1 is denoted by
σ′. Since some objects have not reached their destination
in σ′, L is non empty at the end of the execution.
Case 1. L contains no pair of opposite arcs. Start from
a node x such that σ(x) 6= σ′(x) and follow the arcs of
L. Since G is acyclic, the walk is finite and ends with an
arc, say (a, b). Object σ′(a) must pass through agent b
to reach it owner in σ, but object σ′(b) has reached its
destination (no arc goes out of b because σ′(b) = σ(b)).

Because a unique path links two nodes in a tree, we
know that in s, agent a exchanges σ′(a) with an object
held by agent b. Suppose this object is assigned in σ′ to
agent c. It holds that σ′(c) 6= σ′(b) and σ′(c) �a σ′(a).

Consider the path τ from a to c in G. Suppose b ∈ τ .
By considering b as the root of G, we observe that a and
c belong to two distinct subtrees. Moreover, σ′(c) 6= σ(c)
and σ′(a) 6= σ(a). Therefore by removing σ′(a) or σ′(c),
we get a smaller counterexample to Algorithm 1, contra-
diction. Now suppose b /∈ τ . Since σ′(c) passes through
b then a in s, a has been assigned σ′(c) before getting
σ′(a), which implies that σ′(a) �a σ′(c), contradiction.
Case 2. Two opposite arcs (a, b), (b, a) belong to L but
σ′(a) �a σ′(b) . In s, agent a exchanges σ′(a) with an
object held by agent b. Suppose this object is assigned
in σ′ to agent c. It holds that σ′(c) 6= σ′(b) and σ′(c) �a
σ′(a). Since σ′(c) passes through (b, a) in s, if a has
been assigned σ′(c) before getting σ′(a), then σ′(a) �a
σ′(c), contradiction. If a has not been assigned σ′(c)
before getting σ′(a), then σ′(c), together with σ′(a) and
σ′(b), has not reached its destination. Thus, a smaller
counterexample without one of these objects exists. �

5 Pareto-Efficient Allocations
The question of this section is how to coordinate the
swaps in order to reach a Pareto-efficient allocation
within RA. Note that a Pareto-efficient allocation is
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stable, otherwise at least two agents will benefit from
a possible swap. However, the reverse does not hold, as
we can see in Example 2 with allocation σ1 that is stable
but Pareto dominated by another reachable allocation.

Proposition 4 Pareto is NP-hard.

Proof: The reduction is the same as in the proof of The-
orem 2. I is a yes-instance iff every agent gets her most
preferred object in I ′ (which must be the unique Pareto-
efficient assignment). Therefore, an algorithm comput-
ing a Pareto-efficient assignment can be used to recognize
a yes-instance of Reachable Object. �

This negative result does not prevent the existence of a
polynomial algorithm for constructing a Pareto-efficient
allocation in a specific class of instances. The remainder
of this section is devoted to the resolution of Pareto in
a path and in a star.

A classical algorithm for achieving Pareto-efficiency is
Serial Dictatorship [Abdulkadiroǧlu and Sönmez, 1998].
It ranks the agents in an arbitrary manner, and assigns
them in turns their most favorite object within the set of
unassigned objects, until each object is assigned. When
the social network is a path, one can use this idea to
compute a Pareto-efficient allocation within RA.

Algorithm 2:

Input: (N,X,�, G, σ0), agent k
Output: an assignment σ

1 if k = 1 then
2 return σ0;

3 xi ← best reachable object for k;
4 σ ← apply κ(i, k) on σ0;
5 return Algorithm 2 ((N,X,�, G, σ), k − 1);

The parameter k of Algorithm 2 designates the dicta-
tor who chooses her best reachable object, and κ(i, k) is
the canonical sequence (see Proposition 2).

Proposition 5 When G is a path, Algorithm 2 with k =
n solves Pareto in polynomial time.

Sketch of proof: The algorithm starts with a leaf of
the path, modifies the current allocation in such a way
that the leaf agent obtains her best object (Corollary 1 is
used), and continues on the subpath from k−1 to 1. The
proof is by induction on k: when the decision for agent
k is made, the partial allocation for agents {k+1, . . . , n}
is Pareto-efficient. �

Now we study the case of a star. The network consists
of a center denoted by n, and n − 1 leaves denoted by
1, . . . , n− 1 (see Example 2 for an illustration). We can
suppose w.l.o.g. that ∀i < n, xi �n xi+1. Indeed, if
xn �n xj for some j then the center will never exchange
her object with j, so j keeps her object in any sequence
of swaps. The algorithm is simple: for i = n − 1 down
to 1, exchange the objects of n and i if it is rational.

Proposition 6 When G is a star, there exists a linear
time algorithm for Pareto.

Proof: As already mentioned, a leaf who has exchanged
her initial object is not involved in a subsequent swap.
The algorithm considers the objects by increasing order
of preference of the center agent. Suppose by contra-
diction that the allocation σ returned by the algorithm
is Pareto dominated by another reachable allocation σ′.
Let us denote by s and s′ the sequences of exchanges
leading respectively to σ and σ′. The key observation
is that any feasible sequence of swaps is performed by
decreasing index of the leaves. In the first step for which
s and s′ differ, the center swaps her object with ` and
`′, respectively. Since ` < `′, ` and n cannot swap their
object in s′. Therefore σ(`) �` σ′(`), contradiction. �

It appears interesting to see if Pareto is polynomial
time solvable in a generalized star by a combination of
the techniques used to solve the cases of paths and stars.

6 Conclusion
We have investigated some natural problems arising
when a group of agents exchange their object along a so-
cial network. Our results show that, beyond the agents’
preferences, the network can widely influence and con-
strain the possible allocations. In particular, we proved
that deciding whether an agent can obtain a given object
(Reachable Object) is computationally difficult, even
if the network is a tree. Nevertheless, an efficient algo-
rithm can determine if a complete allocation (Reach-
able Assignment) is reachable in a tree. Concerning
simple graph structures like paths, we were able to de-
cide if a leaf agent can acquire a given object. This result
can be extended to the case where the distance between
a non-leaf agent and the original location of the object
is bounded by a constant. We left open the question
whether Reachable Object can be efficiently solved
in a path, without restriction on the agent’s location.

In this article, the social quality of reachable alloca-
tions has also been studied through the search of Pareto-
efficient allocations. This problem is shown difficult in
general networks. On the positive side, polynomial al-
gorithms have been presented for paths and stars. It
seems challenging to settle the complexity of computing
a Pareto-efficient allocation when the network is a tree.

As future works, many additional aspects of the model
deserve attention. For example, we have not investigated
the impact if some agents adopt a strategic behavior.
Reasoning strategically can drive an agent to refuse a
profitable deal (e.g. in a lookahead search). It would
also be important to study the social welfare of the fea-
sible allocations. Beyond Pareto-efficiency, is it hard to
optimize the egalitarian or the utilitarian social welfare?
Like in the price of anarchy/stability, how bad a sta-
ble outcome can be, compared to an allocation that is
not constrained by the social network? Another future
direction is to allow more than two agents to exchange
their objects along the network and see which allocations
emerge. Finally, our work does not assume any restric-
tion on the preference domain (e.g. single peakedness or
single crossingness) which may fit well with our model.
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Julien Lesca, and Jérôme Monnot. Optimal realloca-
tion under additive and ordinal preferences. In Pro-
ceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS),
pages 402–410, 2016.

[Bodine-Baron et al., 2011] Elizabeth Bodine-Baron,
Christina Lee, Anthony Chong, Babak Hassibi, and
Adam Wierman. Peer effects and stability in match-
ing markets. In Proceedings of the 4th International
Symposium on Algorithmic Game Theory (SAGT),
pages 117–129, 2011.

[Chevaleyre et al., 2005] Yann Chevaleyre, Ulle Endriss,
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