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Abstract 

Extensive experimental data covering 40 years of research are available on Ru(bpy)3
2+ and Ru(tpy)2

2+, 
which are the archetypes of inorganic photochemistry. The last decade has enabled computational 
chemists to tackle this topic through density functional theory and to shed some new light on our old 
friends. For the first time, this theoretical study maps the minimum energy path linking the 3MLCT 
(metal-to-ligand charge transfer) and the 3MC (metal centred) states with the nudged elastic band (NEB) 
method, also providing the calculation of the corresponding energy barrier. Remarkably, the obtained 
data are in very good agreement with the experimental activation energies reported from variable 
temperature luminescence measurements. Calculation of vibrationally resolved electronic spectra 
(VRES) is also in excellent agreement with the experimental emission maximum and bandshape of 
Ru(bpy)3

2+. Additionally, the 3MC-GS minimum energy crossing point (MECP) was optimized for each 
complex. The combination of these data rationalizes the room-temperature luminescence of the bpy 
complex and non-luminescence of the tpy complex.  
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Introduction 

Ru(bpy)3
2+, and to a lesser extent Ru(tpy)2

2+, are the archetypes of inorganic, or supramolecular, 
photochemistry. In about 40 years, a wealth of publications have reported their spectroscopic studies 
and potential applications, and those of their numerous derivatives, in various experimental conditions. 
Several reviews summarize this data [1],[2],[3],[4],[5]. On the other side, theoretical inorganic 
photochemistry has significantly matured in the past 10 years. Density functional based methods have 
particularly enabled computational photochemists to approach photophysical events taking place in 
Ru(II) polypyridine complexes, such as ground state geometries and Franck-Condon excited state 
distribution [6],[7],[8],[9],[10],[11], 3MLCT (metal-to-ligand charge transfer) [12],[13],[14],[15],[16] and 
3MC (metal centred) [17],[18],[19] excited state relaxation, triplet-triplet internal conversion 
[20],[21],[22], luminescence [12],[16],[17],[23],[24] or non radiative deactivation [25],[26]. Some of 
these studies are meant to rationalize experimental observations or unravel complex mechanisms; others 
serve as predictive tool to anticipate the properties of yet unknown compounds. Ru(II) polypyridine 
complexes are also used to teach inorganic photophysics in a computational chemistry class [27] or in 
the field of photoredox catalysis [28]. This study aimed at confronting the emission data on the two 
cited archetypes (emission wavelength and bandshape, energy barriers) and the conclusions drawn from 
modern computational tools that are available in an open theoretical chemistry package (Orca) [29] in 
order to rationalize the room-temperature luminescence of Ru(bpy)3

2+ vs non-luminescence of 
Ru(tpy)2

2+. On the basis of previously described 3MLCT and 3MC states [17] [18] [19] [20] [21] [22] 
[25] [30], which were reoptimized, we here report for the first time the computation of the 3MLCT-3MC 
minimum energy path for Ru(bpy)3

2+ and Ru(tpy)2
2+, using the nudged elastic band method, a method 

that is popular in solid state physics and surface science for ground state potential energy surface 
exploration [31],[32] but has been reported scarcely in molecular inorganic photochemistry [33],[34], to 
the best of our knowledge. Very recently we have reported the successful use of this method in the 
context of deciphering photoreactivity mechanisms [35].  

 

Summary of experimental luminescence data 

In Ru(II) polypyridine complexes, the cascade of photoinduced elementary events, as well as their 
timescales, are now well established : following light absorption into a 1MLCT state, ultrafast and 
quantitative intersystem crossing occurs to populate a vibrationally hot 3MLCT manifold (<300 fs) [36], 
followed by internal conversion to the lowest 3MLCT state and vibrational cooling to the thermally 
equilibrated (THEXI) [37] 3MLCT state (10-20 ps) [38],[39]. Fluorescence of the 1MLCT state of 
Ru(bpy)3

2+ has also been observed on very short timescales [40]. In Ru(bpy)3
2+, the (de)localization of 

the unpaired electron on the ligand(s) has been the subject of specific spectroscopic studies, concluding 
that (i) the initially formed D3-symmetric MLCT state evolved into a C2-symmetric MLCT state 
bearing an unpaired electron localized on a single bpy ligand, and (ii) this charge localization process is 
coupled to solvation dynamics and occurs within 60 fs in acetonitrile at room temperature [41]. This 
lowest 3MLCT state can then either deactivate radiatively (i.e. by phosphorescence) or nonradiatively, 
or the system undergoes internal conversion to a 3MC state. For Ru(tpy)2

2+, from UV-visible transient 
absorption spectroscopy, the lifetime of the 3MLCT state is Ĳ=124 ps [42]. 3MLCT-3MC equilibration 
has been reported with a 2.3 ps timecale [42], on the basis of a loss in the reduced ligand near-UV 
absorption band without concomitant recovery of the ground-state bleach. From the 3MC state, the GS 
can be repopulated by nonradiative deactivation, with a 18 ps timescale [42]. The 3MLCT luminescence 
quenching is mainly ascribed to a thermally accessible 3MC state, which is non emissive [43]. 

In acetonitrile solution, room temperature emission studies describe Ru(tpy)2
2+ as essentially non 

luminescent (Ĳ < 0.005 ȝs) [3], while Ru(bpy)3
2+ emits at Ȝ=615 nm (Ĳ=1.1 ȝs) [44]. From variable 
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temperature time resolved emission measurements, the activation energy required to populate the 3MC 
state from the 3MLCT state was estimated to be 1700 cm–1 (5 kcal/mol) for Ru(tpy)2

2+ in BuCN [45]. 
The corresponding activation energy for Ru(bpy)3

2+ was estimated to be 3800 cm–1 (11 kcal/mol) in 
MeCN [46]. In terms of emission properties, the difference between Ru(bpy)3

2+ and Ru(tpy)2
2+ is 

explained essentially on a structural basis : two terpyridine ligands provide a weaker ligand field to the 
metal, due to their unfavorable bite angle (157°). This weaker ligand field stabilizes the 3MC (ligand-
field) state, thus allowing efficient non radiative deactivation of the 3MLCT state. 

The structural parameters of excited states are experimentally accessible through the use of time 
resolved X-ray absorption spectroscopy (EXAFS and XANES), thanks to the recent developments of 
ultrafast synchrotron beams [47]. This type of technique allows to probe the metal’s coordination sphere 
(symmetry, coordination number, nature of bound atoms, average M-L distances), oxidation and spin 
state [48],[49],[50]. It is worth noting that the only available data for Ru complexes concern the 3MLCT 
state of Ru(bpy)3

2+ [51],[52],[53]. To our knowledge, no structural data is available on 3MC states of 
Ru(II) complexes.  

 

Computational details 

Geometry optimizations were performed without symmetry with Orca 3.0 [29] using the B3LYP 
functional [54],[55], a relativistic small core pseudopotential on Ru (SD28) [56], the def2-TZVP basis 
set [57], and the empirical D3 dispersion correction [58],[59] (such conditions apply throughout). The 
restricted Kohn-Sham formalism was used for ground states, while its unrestricted analogue was used 
for triplet states. SCF convergence was achieved using the DIIS algorithm followed by a semi-quadratic 
SOSCF converger. Two complete sets of geometries were obtained : gas phase geometries, which are in 
excellent agreement with X-ray data [60],[61], and geometries in MeCN solvent, as modelled by SMD 
[62], which were optimized starting from the gas phase ones. Frequency calculations were run at the 
same level of theory and the absence of imaginary frequencies ascertained the nature of these points as 
minima. Molecular orbitals were viewed using Gabedit [63]. Mulliken spin densities on Ru were used as 
a straightforward descriptor of the electronic nature of the triplet excited state (~0.9 for a 3MLCT state, 
~1.8 for a 3MC state). Orbital analysis was systematically undertaken to view the localization of the 
unpaired electrons. 

3MC/GS minimum energy crossing points (MECPs) were optimized using Orca 3.0 using the same 
conditions, starting from a 3MC-type geometry. Frequency calculations were also run on the MECP 
geometries (SurfCrossNumFreq keyword), in gas phase and in solvent. 

VRES (vibrationally resolved electronic spectra) calculations (IMDHOT model with T=298 K or 77 K, 
setting the line-broadening factor to Σ = 500 cm–1 in order to obtain the same full width at half 
maximum as in the experimental spectra of refs [46] and [64], i.e. FWHM = 2870 cm–1) were performed 
to model emission spectra (data computed at 298 K shown in Figure 1 for Ru(bpy)3

2+ and Figure S1 for 
Ru(tpy)2

2+). Such calculations require the energy gap between the relevant states and the hessian for the 
ground state (in solvent), first using the orca_vib module to compute the dimensionless shifts between 
ground and excited state geometries, and then using the orca_asa program [65],[66] to incorporate the 
effect of the ground state vibrational frequencies. The IMDHOT model implemented in orca_asa is 
based on the following approximations, which are physically meaningful and computationally extremely 
efficient: the ground and excited potential energy surfaces are assumed to be harmonic; the vibrations of 
the excited state are assumed to be the same as those of the ground state [67]; the minimum of the 
excited PES is simply shifted with respect to the minimum of the ground state PES (dimensionless 
displacements along all normal modes). 
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The 3MLCT-3MC minimum energy paths were optimized with the nudged elastic band (NEB) method 
[31],[32] using a python module developed in the Clancy group [68] that is interfaced with Orca 3.0. 
The convergence criterion was set to 0.03 eV/Å. A 10-frame initial path was prepared by interpolating 
start and end geometries using the IDPP method [69]. IDPP initial paths are given in Supporting 
Information. The geometries were previously processed using lab-developed programs to minimize the 
discrepancy between start and end geometries. These calculations were performed using the BFGS 
algorithm at the same level of theory as all the geometry optimizations (minima and MECPs). Two sets 
of calculations were performed : gas phase NEB calculation between gas phase minima (shown in 
Figure S2), and SMD NEB calculation between SMD minima (shown in Figure 2 and converged paths 
given in Supporting Information). Not surprisingly, comparing the results from the two sets of data (gas 
phase and SMD) and confronting them to experimental values confirms that the highest level of 
methodology is desirable when strong comparison to experiment is wanted.  

 

Results and discussion 

* General considerations 

Charge transfer states, being intrisically stabilized in polar medium, are particularly sensitive to solvent 
[70]. Their electronic structure, in terms of localization of the transferred electron, can also be directly 
solvent-dependent. Solvent effects are more limited on GS and 3MC states, which bear much smaller 
dipole moments [71]. Such effects can be taken into account using different approaches. The most 
common, and least computationally demanding, approach in static DFT calculations considers the 
solvent as a polarized continuum which may accept some leaking electron density (e.g. COSMO) [72]. 
This approach has in particular been widely used for the calculation of absorption spectra. The SMD 
model [62] goes beyond COSMO since it includes the cavitation energy, i.e. the energetic cost due to 
tear apart solvent molecules in order to host the solute. The B3LYP hybrid functional has been shown to 
perform very well in reproducing ground state and 3MLCT geometries of many ruthenium(II) 
polypyridine complexes (experimental structural data on their 3MC states, e.g. from picosecond X-ray 
absorption spectroscopy, are still awaited), as well as their absorption and emission energies and 
spectral profiles, which involve MLCT states. Therefore this functional was used throughout this work. 

 

* Emission spectra 

ΔSCF calculations (in the case of Ru complexes, single point energy calculation of the ground state 
species at the 3MLCT geometry) give a rough estimate of the emission wavelength of a luminophore. 
Some approximations are due to the fact that (i) the 3MLCT zero-point energy is neglected, (ii) 
vibrational levels are neglected, (iii) the anharmonicity of the potential energy surfaces is neglected, and 
(iv) environment effects are generally either neglected (counterions) or modelled (solvent). This 
calculation yielded emission wavelengths of 689 nm (1.80 eV) for Ru(bpy)3

2+ (blue bar on Figure 1) and 
697 nm (1.78 eV) for Ru(tpy)2

2+ in MeCN (Table 1). 

Following the Franck-Condon principle, approaches that take into account the Boltzmann population of 
the 3MLCT state and the vibrational levels of the ground state include the contributions from the 0-0, 0-
1, 0-2, …, 0-n, 1-0, … transitions, at a given temperature. As shown on Figure 1 for Ru(bpy)3

2+, such 
vibrationally resolved electronic spectra (VRES) model much more accurately experimental emission 
bandshapes [16]. Therefore, computationally efficient procedures such as the one implemented in Orca 
should systematically be used to model emission spectra. Such VRES calculations emission spectra in 
MeCN yielded an emission maximum at 626 nm (1.98 eV) for Ru(bpy)3

2+ (Figure 1), in very good 
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agreement with the experimental value of 620 nm [46], and at 663 nm for Ru(tpy)2
2+ (1.87 eV, 

Figure S1). Obtaining a correct band maximum is necessary, but not sufficient. As shown on Figure 1 
for the room temperature emission of Ru(bpy)3

2+, the bandshape of the experimental emission spectrum 
(particularly its asymmetry) [64] is also very well reproduced using the VRES method.  

 

Fig. 1 Computed emission spectra for Ru(bpy)3
2+ (298 K, B3LYP, SMD-MeCN). The blue line shows 

the position of the emission maximum according to a ΔSCF calculation. The black spectrum was 
computed using the VRES method. The red bars represent the vibrational spacing of 1515 cm–1. 

 

Another interesting feature of the VRES method is that the vibrational spacing enables us to identify the 
localization of the excitation (Figure 1). In Ru(II) polypyridine complexes, the vibration that is mostly 
responsible for the vibronic structure is a C–C stretch at 1515 cm–1, in agreement with the 1500 cm–1 
experimental value measured from time-resolved resonance Raman spectroscopy and identified as 
signature of the bpy radical anion [39],[67],[73]. This corresponds to the stretching of the interpyridine 
bond of the reduced bpy ligand, which is consecutive to the population of a π* orbital that is bonding 
between these two carbon atoms. As a consequence of the population of this orbital, the interpyridine 
distance is reduced from 1.468 (GS) to 1.412 Å (3MLCT state) (values in solvent) (the Ru–N distances 
to the reduced bpy also decrease from 2.074 to 2.046 Å, for electrostatic reasons, see Chart 1).  

 

Table 1: Computed and experimental [3] emission wavelength maxima (nm). Emission energies in eV 
are given in parentheses. 

 exp 

298 K 

theo 

ΔSCF 

theo 

VRES 
298 K 

exp 

77 K 

theo 

VRES 
77 K 

theo 

ΔSCF’ 

Ru(bpy)3
2+ 620a 

(2.00) 
689 
(1.80) 

626b 
(1.98) 

580c 
(2.14) 

624b 
(1.99) 

566 
(2.19) 

Ru(tpy)2
2+ --- 697 663b 602d 660b 626 
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(1.78) (1.87) (2.06) (1.88) (1.98) 

a in MeCN; b in MeCN (SMD); c in MeOH/EtOH; d in BuCN. 

 

Applying the same methodology to model 77 K spectra of MLCT emitting states, which are very 
sensitive to solvent, necessarily yields bathochromically shifted emission energies. This is due to the 
fact that in the VRES calculation the energy gap is estimated between the 3MLCT and GS geometries, 
both relaxed in solvent (in their own solvation environment), whereas in the low temperature 
experiment (below the fluid-to-glass transition) the environment is frozen around the GS geometry. This 
underlines the so-called rigidochromic effect [74]. Solvation dynamics being precluded in frozen matrix, 
the 3MLCT state is actually less stabilised in the experiment (where it is surrounded by the GS solvation 
cage) [71] than in the calculation. Therefore the calculated emission energy is underestimated. The shift 
of the calculated 77 K 3MLCT emission energy can be estimated by performing two gas phase single 
point energy calculations, at the 3MLCT geometry optimised in solvent, for a singlet and a triplet state. 
This gives a ΔSCF’ value that can be compared to the one given by the VRES calculation : it turns out 
that ΔSCF’ = E(theo-VRES-77 K) + 0.2 eV for Ru(bpy)3

2+ and ΔSCF’ = E(theo-VRES-77 K) + 0.1 eV 
for Ru(tpy)2

2+. The same shifts are found between gas phase and solvent 3MLCT-GS gaps (Table 2), and 
between the room temperature ΔSCF and VRES emission energies (Table 1). The blue shift is larger for 
Ru(bpy)3

2+ because its 3MLCT state has a larger dipole moment (10 D, vs. 7 D for the 3MLCT state of 
Ru(tpy)2

2+), which makes it more sensitive to solvent effects.  

 

* Minima on the singlet and lowest triplet PES 

In the case of Ru(II) polypyridine complexes, optimizing ground state geometries is obviously a 
standard procedure. The inclusion of classical dispersion forces [58],[59] greatly improves the computed 
bond lengths and yields an excellent agreement with crystallographic interatomic distances [60],[61]. 
The real challenge lies in the capacity to optimize several different triplet states, since DFT is a 
variational method minimizing the energy of any state of given spin multiplicity. In addition, 
convergence of the wavefunction on open-shell systems is nontrivial, and convergence on the desired 
electronic excited state can be really challenging, even more so when the density of states is high. 

  

Chart 1. Ru-N distances in the ground state (black), 3MLCT (green), 3MC (red) and 3MC/GS MECP 
(purple) geometries for Ru(tpy)2

2+ (left) and Ru(bpy)3
2+ (right), in solvent (B3LYP-D3 + SMD-MeCN).  

 

Computed 3MLCT geometries [17],[23] are easily obtained starting the optimization from the ground 
state equilibrium geometries, and match the available structural data (the average Ru–N distance 
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decreases) [51],[52],[53]. Ground state and 3MLCT equilibrium geometries are similar in many respects 
(Chart 1). In terms of electronic structure, for Ru(bpy)3

2+, the lowest 3MLCT state is of C2 symmetry in 
solvent (electron localized on one ligand), while it is of D3 symmetry in vacuum (electron delocalized 
over the three ligands) [16],[17]. The 3MLCT state of Ru(tpy)2

2+ has the same electronic structure 
whether in the gas phase or in solvent, with the electron being transferred to one tpy ligand in both 
cases. Additionally, the GS-3MLCT energy gap (Table 2) is significantly reduced from the gas phase to 
solvent, since the 3MLCT state is more stabilised than GS by solvation [71], which will directly affect 
the photophysics of the complexes. 

On the other hand, the first full and unambiguous description of a 3MC DFT-optimized geometry [17] 
was obtained after providing a starting geometry displaying major bond elongations with respect to the 
ground state geometry, namely two trans elongated Ru-N bonds for Ru(bpy)3

2+. This successful 
optimization has allowed us to quantify the extent of structural distortions that are involved in the 3MC 
state of Ru(bpy)3

2+. More recently, the excited 3PES of Ru(tpy)2
2+ has also been thoroughly examined 

by DFT and TDDFT [18],[20],[21],[22]. The general features of these 3MC states are significant (up to 
0.4 Å, Chart 1) Ru-N elongation along two or four directions, depending on whether a pseudo dz2 or 
pseudo dx2-y2 antibonding dı* orbital is populated.  
3MLCT and 3MC states were reoptimized here to work with a fully consistent set of states and at the 
same level of theory. The energy gaps between minima (ΔE) are given in Table 2 (similar trends are 
observed for ΔE, Δ(E+ZPE) or ΔG (2λ8 K) energy gaps, see Table S3). As expected, the optimized 
3MLCT state is stabilized in solvent, which decreases the 3MLCT-GS gap and increases the 3MLCT-
3MC gap. In solvent, the 3MLCT-3MC energy gap is larger for Ru(bpy)3

2+ (0.18 eV, 4 kcal/mol) than for 
Ru(tpy)2

2+ (0.13 eV, 3 kcal/mol), but not much larger (and is similar within the accuracy of our 
method). It is thus required to go beyond this simple picture to rationalize the luminescence of one vs. 
the non-luminescence of the other.  

 

Table 2. Energy gaps and energy barriers (eV) for Ru(bpy)3
2+ and Ru(tpy)2

2+, in the gas phase and in 
solvent (B3LYP-D3 ± SMD-MeCN). Values in kcal/mol in parentheses. 

 Ru(bpy)3
2+ Ru(tpy)2

2+ 

 gas phase solvent gas phase solvent 

3MLCT-GS gap 2.22a (51.2) 2.03b (46.8) 2.10 (48.4) 2.00 (46.1) 

3MC-GS gap 2.16 (49.8) 2.21 (51.0) 2.11 (48.7) 2.13 (49.1) 

3MLCT-3MC gap 0.06 (1.4) –0.18 (–4.2) –0.01 (–0.3) –0.13 (–3.0) 

3MLCT  3MC barrier 0.20 (4.7) 0.38 (8.7) 0.09 (2.0) 0.18 (4.1) 

3MC  3MLCT barrier 0.26 (6.1) 0.20 (4.6) 0.07 (1.6) 0.06 (1.3) 

3/1MECP-3MC gap 0.28 (6.5) 0.27 (6.2) 0.04 (0.9) 0.04 (0.9) 

a The gas-phase 3MLCT geometry has D3 symmetry. b The lowest 3MLCT geometry in solvent has C2 
symmetry. 

 

* Exploring the 3MLCT-3MC internal conversion process 
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The 3MLCT-3MC minimum energy path (MEP) can be explored theoretically by two means : (i) using 
the strings method [75],[76] or the nudged elastic band method [31],[32], which minimize the energy 
path connecting the two minima using energies and gradients, thus allowing to quantify the activation 
barrier ; (ii) undertaking a transition state (TS) search followed by intrinsic reaction coordinate 
calculations to connect the TS with the two minima [77]. Both methods estimate the activation barrier 
ΔE≠, which is the most relevant data for comparison with experiment, but none have been reported so 
far for Ru(bpy)3

2+ and only method (ii) has been reported for Ru(tpy)2
2+ [22]. Alternatively, the 

topology of the triplet PES was probed by running (computationally demanding) TDDFT 2D PES scans 
[20],[21]. We have previously compared methods (i) and (ii) on another Ru(II) complex and have shown 
that they gave comparable results [34]. The two MEPs calculated using method (i) in MeCN (SMD) are 
shown on Figure 2 (MEPs in gas phase are shown on Figure S2 and are the direct consequence of 
relative MLCT destabilization in gas phase). The evolution of the Mulliken spin population on 
ruthenium can be followed along the MEP. This shows that the 3MLCT character is preserved for about 
half the way, after which electron density is suddenly transferred back to the metal to form a 3MC state 
(Tables S1-S2). 

In the case of Ru(bpy)3
2+, the profile of the MEP is relatively abrupt towards the 3MC state (which is a 

true minimum). This profile was qualitatively confirmed by two additional calculations:  
- a single point energy calculation at a geometry corresponding to x=1.1 (obtained by linear 

extrapolation along the MEP coordinate) indicated that this structure had an energy more than 1 
kcal/mol higher than that of the 3MC minimum. 

- another NEB calculation was run starting from a 20-image IDPP path. This yielded a slightly 
smoother but very similar energy profile. 

Therefore the 3MLCT  3MC minimum energy path appears to be genuinely relatively abrupt towards 
the 3MC minimum. 

 

Fig. 2 Computed NEB minimum energy path along the 3MLCT  3MC reaction coordinate for 
Ru(bpy)3

2+ (blue line) and Ru(tpy)2
2+ (red line) (B3LYP-D3, SMD-MeCN). The 3MLCT state is found 

at x=0 and the 3MC state at x=1. x is a reaction coordinate that corresponds to the geometrical 
advancement measuring the percentage of geometric distortion between start and end geometries. Plots 
of the Mulliken spin densities at the optimized transition states 
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The activation barriers computed using the NEB method are 4.1 kcal/mol (0.18 eV) for Ru(tpy)2
2+ in 

MeCN (2.0 kcal/mol = 0.09 eV in the gas phase), and 8.7 kcal/mol (0.38 eV) for Ru(bpy)3
2+ in MeCN 

(4.7 kcal/mol = 0.20 eV in the gas phase). Both values compare very well with the experimental values 
(activation energies derived from variable temperature time resolved emission measurements : 
5 kcal/mol [45] for Ru(tpy)2

2+ and 11 kcal/mol [46] for Ru(bpy)3
2+). The stabilization of the 3MLCT 

state in solvent doubles the MLCT  MC energy barrier with respect to the gas phase calculation. The 
3MLCT-3MC energy barrier is significant for Ru(bpy)3

2+ in solvent, which is consistent with its 
luminescence properties and with ultrafast time-resolved spectroscopic studies (transient absorption [78] 
and IR [79],[30]), which indicate that no intermediate state is populated during the decay of the 3MLCT 
state of Ru(bpy)3

2+. On the other hand, the 3MLCT-3MC energy barrier is small for Ru(tpy)2
2+, which is 

consistent with a non luminescent complex and with excited-state equilibration, as measured by ultrafast 
transient absorption spectroscopy [42]. The fact that the excited state population of Ru(tpy)2

2+ was 
experimentally found to reside mostly in the 3MLCT state [42] is in perfect agreement with our 
computed 3MLCT-3MC energy gap and with the forward and reverse energy barriers shown in Table 2. 
The 3MLCT-3MC energy barrier computed using the NEB method also fully agrees with previous 
computational data obtained at a slightly different level of theory by Persson et al., who estimated this 
barrier to be 2 kcal/mol in MeCN by TDDFT 2D-PES scans [21], and by Heinze et al. who optimized 
the 3MLCT-3MC transition state and located it 2 kcal/mol above the 3MLCT minimum in MeCN [22]. 
Comparing the 3MLCT-3MC energy gaps was insufficient to distinguish the phosphorescence of 
Ru(bpy)3

2+ from the luminescence quenching in Ru(tpy)2
2+. The knowledge of the 3MLCT  3MC 

energy barrier appears to be crucial to rationalize the observed photophysical properties. In other words, 
the 3MLCT  3MC internal conversion process is kinetically driven, rather than thermally driven. 

The quality of the NEB MEP was confirmed by transition state optimization in SMD-MeCN starting 
from NEB crest geometries, which converged on structures of similar energy and geometry as the NEB 
crests (Tables S5, S7). The Mulliken spin density on Ru at the TS is 1.33 for tpy and 1.61 for bpy, and 
the MC character at the transition states is also illustrated in plots of their spin densities (Figure 2). 

 

* Evolution from the 3MC state : the 3MC/GS minimum energy crossing point (MECP) 

Once the 3MC state is populated, which is favorable for Ru(tpy)2
2+ as it involves a low 4 kcal/mol 

energy barrier, the system may return to the 3MLCT state (3MC  3MLCT energy barrier) or may decay 
nonradiatively by crossing the ground state surface (MECP-3MC energy gap). Whether in the gas phase 
or in solvent, both barriers are of the same order of magnitude for both complexes (Table 2). From a 
general viewpoint, the relevance of spin crossing phenomena in organometallic reactivity is now well 
established, and is not limited to first-row transition metals [80],[81],[82]. Photochemical reactions 
involving coordination compounds are also commonly nonadiabatic, and intersystem crossing is 
encountered at several stages after photoexcitation (e.g. 1MLCT  3MLCT or 3MC  GS) [83]. Singlet 
and triplet potential energy surfaces may particularly cross in regions where the ground state species is 
largely destabilized by geometric distortions. Along the crossing line lies a point of minimum energy, 
whose geometry can be optimized using specific algorithms [84],[85],[86],[87]. The position of this 
MECP, in terms of energy and structure, is particularly important in the framework of inorganic 
photophysics, when one wants to estimate the ease of nonradiative ground state recovery by 3MC/GS 
crossing, which is directly related to luminescence quenching. This type of calculation is far from 
systematic in the literature but is nonetheless essential for the understanding of the photoinduced 
processes. As pointed before [22], distortions in the 3MC/GS MECP emphasize the distortions in the 
corresponding 3MC state. This effect is more pronounced for Ru(bpy)3

2+, whose two longest bonds are 
significantly elongated in the MECP (+0.1 to +0.3 Å) than for Ru(tpy)2

2+, whose two longest bonds are 
only moderately elongated in the MECP (+0.05 Å). No major angular variations are noted between 
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these 3MC states and MECPs. It is noteworthy that the MECP is almost degenerate with the 3MC state 
in the case of Ru(tpy)2

2+, while the MECP-3MC gap is significant in Ru(bpy)3
2+ (Table 2). This indicates 

that the 3MC state can decay nonradiatively more efficiently for the bis(tridentate) complex, in line with 
the absence of room temperature luminescence. To illustrate the theoretical rationalization of the 
luminescence properties of Ru(bpy)3

2+ and Ru(tpy)2
2+, energy gaps and barriers are summarized on 

Figure 3. 

 

Fig. 3 Schematic potential energy curves with energy gaps in eV, computed in SMD-MeCN 

 

* Investigation of other possible deactivation pathways : direct 3MLCT/GS MECP 

Following Heinze’s identification of a 3MLCT/GS MECP in cyclometallated bis(tridentate) Ru(II) 
complexes [88], we were interested to search for such a crossing point, which would be located on the 
left-hand side of Figure 3. For Ru(tpy)2

2+, (i) an MECP optimization starting from the GS geometry 
converges on the previously found 3MC/GS MECP; (ii) the same is obtained starting from the 3MLCT 
geometry; (iii) assuming that the distortions in the MECP emphasize the distortions in the corresponding 
triplet state (as for the 3MC/GS MECP) [25],[88], we built a guess geometry by tilting the central cycle 
of the tridentate ligand receiving the electron. The dihedral angle between the central and peripheral 
cycles is about 10° in the 3MLCT geometry and was increased to 30° in the guess geometry, as observed 
in Heinze’s 3MLCT/GS MECP [88]. An MECP optimization starting from this 30°-tilted guess 
geometry converged on the previously found 3MC/GS MECP. In all three cases, the MECP optimization 
algorithm thus converges on the 3MC/GS MECP. 

To further probe the 3MLCT/GS MECP region, we checked if the preceding angular distortion actually 
decreases the singlet-triplet gap. To do so, three geometries were interpolated between the 3MLCT and 
the 30°-tilted geometry and five ΔSCF calculations were performed. The ΔSCF value actually decreases 
along this distortion coordinate (ΔSCF = 1.68, 1.57, 1.45, 1.35 and 1.27 eV for a tilting angle of 12, 17, 
21, 26 and 30°), but insufficiently to approach the crossing seam. Therefore there is no accessible 
3MLCT/GS MECP for Ru(tpy)2

2+ that could account for an efficient direct nonradiative deactivation 
channel of the 3MLCT state, in line with the energy gap law and with the fact that the 3MLCT state is 
only weakly coupled to the ground state [89], whereas the 3MC state is in the strong coupling limit 
[89],[90]. Similarly, all attempts to optimize a 3MLCT/GS MECP for Ru(bpy)3

2+ converged on MC-type 
MECPs. Having no highly accessible non radiative deactivation pathways (neither through 3MC nor 
through 3MLCT/GS MECP), Ru(bpy)3

2+ is inevitably phosphorescent at room temperature. In the case 
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of Ru(tpy)2
2+, the observed luminescence quenching necessarily involves 3MLCT  3MC internal 

conversion, followed by 3MC  GS intersystem crossing through a very accessible 3MC/GS MECP.  

 

Conclusion 

State-of-the art DFT calculations not only provide geometries and electronic structures, or enable us to 
model absorption and emission spectra. They also go well beyond a Jablonski diagram, providing us 
with energy barriers, minimum energy paths and minimum energy crossing points, which are required to 
unravel complex multistep mechanisms in the excited state or to rationalize photophysical or 
photochemical data. This computational study reports, for the first time using the nudged elastic band 
method, the calculation of the minimum energy paths between the 3MLCT and 3MC minima for 
Ru(bpy)3

2+ and Ru(tpy)2
2+, providing us with a computational estimate of the 3MLCT-3MC energy 

barriers for both complexes, in the gas phase and in solvent, without requiring TS optimization or 
scanning arbitrary coordinates. In both cases, the data computed in solvent is in very good agreement 
with the experimental data, both in terms of absolute values and relative values (the barrier being twice 
larger for the tris(bidentate) complex). The quantitative character of the method is remarkable for such 
small energy barriers and holds great promise for the future of modern theoretical inorganic 
photochemistry. 
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Gas phase bond lengths; VRES for Ru(tpy)2
2+; gas phase NEB calculations; Mulliken spin density along 
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ΔE / Δ(E+ZPE) / ΔG (2λ8 K); cartesian coordinates for both complexes (GS, 3MLCT, 3MC and MECP), 
in the gas phase and in solvent; cartesian coordinates for the 3MLCT-3MC transition states optimized in 
SMD-MeCN (PDF). IDPP initial paths and converged minimum energy paths (xyz files).  
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